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ABSTRACT: Characterizing urban hydrographs during rain storms, hurricanes, and river floods 52 

is important to decrease loss of lives and assist emergency responders with mapping disruptions 53 

to operation of major cities. High water marks, stream gages, and rapidly deployed instrumentation 54 

are the current state-of-practice for hydrological data during a flood event. The objective of this 55 

study was to develop technology that can provide accurate and timely flood hydrographs while 56 

harnessing the Big Data generated from videos and images. In particular, levels are predicted from 57 

images by using reference objects as a scale. The novelty of this work involved leveraging object-58 

based image analysis (OBIA), which used image segmentation training algorithms to differentiate 59 

areas of images or videos. In particular, the deep learning-based semantic segmentation technique 60 

was trained using images from an MIT database along with images compiled from traffic cameras 61 

and the experiments and a case study. The fully convolutional network was used for image 62 

segmentation and subsequent object labeling. This algorithm was applied to a laboratory and two 63 

field experiments before demonstration at Buffalo Bayou in Houston, TX during Hurricane 64 

Harvey. The laboratory and field experiments indicated that the image segmentation technique was 65 

reproducible and accurate from a controlled environment to rain storms and localized flooding in 66 

small streams on the LSU campus. Moreover, the segmentation algorithm successfully estimated 67 

flood levels in Buffalo Bayou in downtown Houston, Texas during Hurricane Harvey. This 68 

signifies that if time-lapse imagery is available, this algorithm- and program-estimated water 69 

elevations can provide insight to the hydrograph and spatial inundation during flooding from 70 

rainstorms or hurricanes.  71 

 72 
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1. INTRODUCTION 75 

Major rain storms and hurricanes, such as Hurricanes Katrina in 2005; Sandy in 2012; Harvey, 76 

Irma, and Maria in 2017; and Florence in 2018; can cause flooding events that disrupt operations 77 

of major cities and result in physical infrastructure, social, and economic damages. Magnitude of 78 

high water and duration found in hydrographs during these extreme flood events correlate to the 79 

extent of these damages. Currently, high water marks and stream gages provide hydrological data, 80 

along with debris lines found on structures. For instance, the U.S. Geological Survey (USGS) and 81 

Federal Emergency Management Agency (FEMA) collected flood data from 2,123 high water 82 

marks and 40 USGS stream gages throughout Texas following Hurricane Harvey. This information 83 

is important because it assists officials in updating building codes, planning evacuation routes, 84 

creating floodplain management ordinances, providing environmental assessments and planning 85 

other community efforts to become more flood-resilient (Lu et al., 2018; Rani et al., 2018; Watson 86 

et al., 2018; Xiao et al. 2018). However, continuous flood hydrographs are difficult to construct 87 

given only the information from water marks and stream gages (Calvo and Savi, 2009; Xing et al., 88 

2018). For example, high water marks and debris lines only describe the water elevation at its 89 

peak, but it lacks information about the duration of the event, the time of day of peak water levels, 90 

or the rate at which the water level rose or fell. When temporal sequence of water level information 91 

is available, these signals can be modeled and used to interpolate and extrapolate (predict) the 92 

spatial and temporal expanse of flood inundation (Ghorbani et al., 2010; Kisi et al., 2012; 93 

Maheswaran and Khosa, 2013), for geographic visualization (Kulkarni et al., 2014), simulations 94 

(Chen et al., 2018), and flood warning system for emergency evacuation and response (Wang et 95 

al., 2018). 96 
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Water related data can also be obtained from different sources, such as sensors mounted 97 

on stream gages (Ghorbani et al., 2010; Kisi et al., 2012, Maheswaran and Khosa, 2013), airborne 98 

sensing (Li et al., 2010), satellite imagery (Kulkarni et al., 2014), wireless sensor networks and 99 

geographic information (Horita et al. 2015), and various social media and crowdsourcing data 100 

(Wang et al., 2018). Stream gages provide more data on these characteristics, but these instruments 101 

are often installed far from the flooded areas of interest to relay accurate and real-time data to 102 

emergency operation centers. This dearth of data available for flood hydrograph reconstruction is 103 

hampering communities to learn from past events in order to become resilient towards future 104 

floods, hurricanes, and sea level rise.  Accordingly, the impetus for this study stems from the 105 

realization that big datasets of time-lapse videos and images are created every day, including traffic 106 

monitoring, private and public security, and social media. For example, the Houston TRANSTAR 107 

system consists of approximately 900 cameras that continuously streams live footage. These 108 

images are publicly accessible through the internet and hence represent a rich data source if water 109 

levels can be extracted from reference objects using computer vision techniques.  110 

Extracting water level information from image and video data is nontrivial because it is 111 

inherently difficult to segment water. Thus, this work aims to tackle this problem by advancing 112 

object-based image analysis (OBIA) techniques. OBIA has been previously applied in conjunction 113 

with aerial photography for vegetation classification and urban feature identification, along with 114 

damage analysis, disaster management, and risk management (Blaschke, 2010; Garcia et al., 2018; 115 

Lee and Yang 2018; Bandini, 2017). Van der Sande et al. (2003) also classified land use in the 116 

villages of Itteren and Borgharen in The Netherlands to create a floodplain friction map for use 117 

with flood models. Beyond the current applications, this paper describes a novel methodology to 118 

estimate water elevations by leveraging time-lapse photos and OBIA. To achieve this objective, 119 



5  

two control laboratory experiments and three flood events in bayous and canals around the 120 

Louisiana State University (LSU) campus were conducted to develop hydrographs for method 121 

verification. A segmentation algorithm was developed to automatically label the water and gage 122 

from these experiments. Manually estimated water levels were used to verify the accuracy of the 123 

segmentation algorithm and program. To establish the applicability to natural hazards, the 124 

segmentation algorithm was subsequently used to estimate flood levels in Buffalo Bayou in 125 

downtown Houston, Texas during Hurricane Harvey. The algorithm- and program-estimated water 126 

elevations were recorded as hydrographs and compared to in-situ measurements and nearby stream 127 

gages. With a validated methodology, the societal impact is immense because databases of time-128 

lapse camera images can be collected and analyzed in near real-time to provide insight to the rise 129 

and fall of water levels and spatial coverage during flooding from rainstorms or hurricanes. 130 

 131 

2. RELATED WORK  132 

2.1. Contour Detection through Image Segmentation  133 

To automatically segment and extract the contours of the flood and reference objects from an 134 

image, a program is needed to outperform semantic segmentation or instance segmentation. 135 

Semantic segmentation is the process of automatically labeling regions on each pixel of an image 136 

with the category name of the recognized object. Instance segmentation proceeds one step further 137 

to distinguish each individual object rather than just a category. Classic image segmentation 138 

methods (Alvarez et al., 2010; Barrow and Tenenbaum, 1981; Grady, 2006; Kass et al., 1988; 139 

Roerdink and Meijster, 2000) often identify a specific object contour using manually designed 140 

features, i.e., color change or its gradient, with a regularization through geometric or elastic 141 

smoothness. These methods are often sensitive to initial guess and image noise, as they are easily 142 
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impeded by local minima. More recent use of deep learning-based algorithms permits extraction 143 

of more abstract and robust features that capture local and global characteristics, significantly out 144 

performing traditional methods. The most widely adopted deep learning-based semantic 145 

segmentation framework comes from the fully convolutional network (FCN) (Long et al., 2015), 146 

which trains a series of convolutional layers to extract features and then uses a new 147 

deconvolutional operation to upsample the feature vector to infer pixelwise category. Commonly 148 

adopted convolutional neural network (CNN) architectures in feature extractors are AlexNet 149 

(Krizheysky et al., 2012), VGG16 (Smionyan and Zisserman, 2014), and ResNet (He et al., 2016). 150 

Earlier methods (e.g., Hariharan et al., 2014) generated segmentation candidates and extracted 151 

features for each candidate, then used a support vector machine (SVM) to classify the candidates 152 

by their features into corresponding categories. A widely adopted strategy (Arnab, 2017; Bai, 153 

2017; Liu, 2017) starts from semantic segmentation results (e.g., output from FCN), then partitions 154 

pixels of the same category into different instances based on their spatial positions.  155 

A video is a sequence of images with strong temporal coherency. Consecutive frames are 156 

similar and contents only undergo small and continuous deformations. By exploiting this implicit 157 

continuity assumption, the robustness of semantic segmentation can be improved but with extra 158 

constraints (i.e., computationally expensive). Thus, the current focus in this study is on reducing 159 

computation complexity by finding a balance between segmentation accuracy and algorithm 160 

efficiency. Shelhamer et al. (2016) indicates that the semantic contents of a scene usually evolve 161 

slowly, and the output of deeper layers are more stable than shallower layers. Therefore, a schedule 162 

scheme can integrate information in the previous frames into the interface of CNNs.  The Deep 163 

Feature Flow introduced in Zhu (2017) designs a feature propagation function to transfer features 164 

in previous frames to the next, leading to a significant improvement in segmentation efficiency.  165 
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Another category of semantic video segmentation algorithm exploits temporal consistency 166 

across frames to improve the prediction accuracy, such as post-segmentation refinement where 167 

upon the FCN-computed segmentation results (Chen et al., 2018a; Lin 2017; Zhu, 2017) and 168 

temporal smoothness constraints can be adopted to refine and optimize the segmentation. For 169 

example, Kundu et al. (2016) define the dense 3D (2D+Time) conditional random field (CRF) on 170 

frame blocks, where a random field will be optimized to assign spatially and temporally consistent 171 

labeling to each pixel. Generic neural network architectures in Nilsson (2018), Hu (2018), and 172 

Chen (2018b) propose to propagate information from previous several frames to the current frame. 173 

However, this approach needs dense labeling data (e.g., pixel-wise labeled videos) to train the 174 

network. Such labeled flood video datasets are not available, and manually generating a sufficient 175 

dataset is laborious. Therefore, the aim of this study is to design a spatiotemporal smoothness 176 

model that can refine semantic segmentation results by using temporal smoothness and prior 177 

knowledge.  The developed system is anticipated to work without needing a significant volume of 178 

labeled flood data.  179 

 180 

2.2. Applications of Image Segmentation in Geoscience 181 

Image segmentation is gaining significant attention in geoscience research and practical 182 

applications because it can be used for object identification and target description. In particular, 183 

automatic image segmentation helps us to reduce tedious work such as manual labeling for 184 

processing remote sensing images. Vasuki et al. (2017) developed an interactive image 185 

segmentation tool for lithology boundary detection from photographic images of rock surfaces. 186 

Chen et al. (2018) designed an optimal path clustering algorithm to segment remote sensing land 187 

cover images for scene classification. Jasiewicz et al. (2018) proposed a multi-scale seeded region 188 
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growing algorithm to segment large-sized land cover images for Earth Observation (EO) data 189 

analysis. However, these methods are usually built based on traditional segmentation algorithms, 190 

such as region growing (Jasiewicz et al., 2018), region merging (Vasuki et al., 2017), and 191 

clustering (Chen et al., 2018). They are not sufficiently robust when handling water data that 192 

contains complex heterogeneous texture and illumination contrast. Karimpouli and Tahmasebi 193 

(2019) built a deep convolutional autoencoder to segment digital rock images. Deep learning based 194 

image segmentation can be helpful in handling the aforementioned challenges. But when 195 

processing temporal flood footage data, lighting conditions and water appearance change 196 

dramatically over space and time, making segmentation from a single scene extremely challenging 197 

(e.g., Fig. 4(a)). Integrating temporal consistency constraint (see discussion in Section 3.3) is 198 

critical to improve the robustness of segmentation. Techniques developed in this work are general 199 

and applicable to other geoscience applications.  200 

 201 

3. IMAGE PROCESSING METHODOLOGY 202 

3.1 Overview 203 

A learning-based semantic segmentation undergoes two stages, i.e., training and segmentation. 204 

The training data may include images sampled from video footage, other general images captured 205 

by traffic cameras, or found on the Internet. These images can provide different views of the site 206 

using different cameras under different illuminations. More diverse training images can require a 207 

more complex network and more datasets to train but also provide a more generalizable program 208 

to work more stably with various images. In contrast, if the system is used to analyze a certain type 209 

of scene, an image corpus with smaller variance can be designed. This method makes the network 210 

easier to train but less generalizable to different images or videos. An ever-growing flood labeling 211 
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database can effectively support the training of deep networks for general flood recognition and 212 

segmentation. 213 

The semantic segmentation module discussed herein is based on FCN (Long et al., 2015), 214 

where an auto-encoder consisting of an encoder and a decoder was built. The encoder utilizes 215 

general image classification networks that extract feature maps from original images. The decoder 216 

uses a series of deconvolutional layers to restore a labeled image back to its original size. Then, 217 

each pixel is assigned into a specific class. After training the network, new images or videos can 218 

be fed to automatically get a pixelwise segmentation (labeling) result. A flood region and common 219 

reference objects (staff gage, pillar, guardrail, or traffic pole) can be identified and segmented from 220 

the background. However, the raw segmentation results may contain some noise especially in 221 

regions with ambiguous colors, which leads to incorrect labeling. The temporal consistency is 222 

utilized to refine the segmentation result to get a more stable and accurate segmentation. 223 

From the segmented flood contour and the reference object, the height of the reference 224 

object above the water level is estimated using the ratio of pixel heights. The pixel height of an 225 

object is defined as the vertical height difference from the highest pixel of the reference object 226 

down to the water interface. The submerged ratio is calculated by: 227 

 

0

1 th
x

h
    (1) 228 

where h0 is the original pixel height of the reference object before submergence and ht is the new 229 

pixel height at time t. The details of converting the pier height from pixel to actual length is further 230 

explained in Section 5.2 231 

 232 

 233 

 234 
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3.2 Training Semantic Segmentation 235 

Existing labeled images are used to train an FCN network for flood segmentation. Datasets from 236 

ADE20K (Zhou et al., 2016, 2017) containing about 1,888 water/flood images were used as initial 237 

training datasets. During training, data augmentation was incorporated to increase the robustness 238 

of the model, including random brightness disturbance, random hue color disturbance, random 239 

contrast disturbance, and random affine transformation. In practice, this model can handle 240 

moderate changing such as aperture and white balance. The collected images were also manually 241 

annotated and added as additional system training. Fig. 1 illustrates the architecture of the auto-242 

encoder. Initially, an image is fed into the encoder (i.e., the feature extractor). The encoder consists 243 

of a series of convolutional layers and outputs a feature vector. The decoder contains several 244 

deconvolutional operations, receives the feature vector, and outputs a 3-dimensional volume 245 

whose width and height match the original image resolution and the depth n equals the number of 246 

classification. 247 

Given an image of resolution U × V and a list L of labels to consider, the output of the 248 

decoder is a tensor YU×V×|L|. The prediction on a pixel (u, v), denoted as yu,v, is an L -dimensional 249 

vector and yu,v,l indicates the prediction score or likelihood of pixel (u, v) being assigned label l. 250 

During the training phase, the loss function is defined using a softmax cross entropy and an L2 251 

regularization term:  252 

  2
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where (u, v) is the pixel position, yu,v is the output prediction vector on this pixel,  {l0, . . . , ln} is  256 

the set of considered labels, and θ indicates all the trainable parameters in the network. yˆu,v,l  257 

contains the groundtruth labeling information, whose value is 1 if pixel (u, v) should be assigned 258 

label l and 0 otherwise. σ(yu,v)l ∈ [0, 1] is the softmax function which normalizes the raw inference 259 

value yu,v,l to a value in [0, 1], and can be considered as the probability of (u, v) being labeled l. 260 

This loss function penalizes the inconsistency between the pixelwise prediction and the 261 

groundtruth label. The regularization term suppresses large parameters, which usually lead to 262 

overfitting. With such a network trained on this dataset, it is used to generate the segmentation on 263 

given images. Fig. 2 shows an example of semantic segmentation result on the Buffalo Bayou 264 

flood video. The color-encoded labels overlay the original image for better visualization. The blue 265 

and yellow regions correspond to detected water and piers, respectively. 266 

 267 

3.3 Segmentation Refinement using Temporal Smoothness 268 

The aforementioned semantic segmentation only considers a given image itself, without 269 

considering its previous and next frames. Noisy signals are often inevitable. In the flood 270 

application, rain, wind, and lighting can all contribute to unstable imaging. Furthermore, rain drops 271 

can fall on the camera and blur a portion of the video for a period of time. These outliers can 272 

severely affect the semantic segmentation on single images. On the other hand, if the input is a 273 

video, there is strong correlation between consecutive frames, and temporal consistency across 274 

adjacent frames provides us useful constraints to refine the individually segmented objects (either 275 

the flood region or the reference object). Intuitively, it is necessary to consider several consecutive 276 

frames together and ensure the tracked object contours remain stable. Fig. 3 illustrates this 277 

mechanism where temporal smoothness constraint is enforced in each temporal block that consists 278 
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several consecutive images. Each image and its preceding 𝐾 frames form its overlapping temporal 279 

block (illustrated in a colorful oval), and this image segmentation will be refined using 280 

segmentations from other images in this block.  281 

Two temporal smoothness constraints were designed to refine an image semantic 282 

segmentation using its associated block. The first is the contour trajectory smoothness constraint. 283 

Contours segmented in the last 𝐾  frames are used to evaluate the stability of current frame 284 

segmentation. For example, if 𝐾 = 1 for the current image frame 𝐼𝑡 , the previous frame 𝐼𝑡−1 is 285 

considered, where the subscripts 𝑡 and 𝑡 − 1 are time indices. The direct image segmentation result 286 

of 𝐼𝑡 is denoted as 𝑆𝑡. A temporal blending is first conducted to obtain a new segmentation 𝑆𝑡
′: 287 

 1(1 )* *t t tS S S 
      (5) 288 

Another threshold results in the final smoothed segmentation 𝑆𝑡
′: 289 

 ( , ,1)t tS T S     (6) 290 

where the variable 𝜆 is a decay rate that controls the historical segmentation influence (in this 291 

study 𝜆 = 0.2), 𝛼  is a binarization threshold (in this study, 𝛼 = 0.5), 𝑇  is the binary threshold 292 

function that returns 1 for pixels whose intensity is greater than 𝛼, and returns 0 otherwise. The λ 293 

is the decay rate, which controls the historical segmentation influence. Lower λ indicates a higher 294 

weight/impact from the previous results. The benefit of using this propagation model is that the 295 

impact of the prior segmentation can disappear smoothly. The setting of hyper-parameter λ is 296 

affected by the video frame rate, as well as the flood and scene variation conditions. If the flood 297 

changes rapidly or the frame rate is low, λ is larger to decrease the influence of previous frames.298 

 The second constraint is the prior constraint. If there are multiple consecutive outlier 299 

frames, or an outlier’s contour is highly abnormal, only enforcing trajectory smoothness constraint 300 

is insufficient. For example, during the night at the Buffalo Bayou in Fig. 4, the dark environment 301 
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results in significant difficulty to track the contour of the raising water and hence is continuously 302 

unreliable. Therefore, a model is needed that can understand prior knowledge. In particular, a 303 

threshold is specified to provide a physical constraint on the rise and fall of the hydrograph based 304 

on engineering judgement. In this case, it is assumed the water level change within every minute 305 

is usually less than 1 ft (30.5 cm). Converting this value to the video pixel, a detector is used to 306 

monitor the estimated height and identify abnormal perturbation. In the Buffalo video, the interval 307 

between two consecutive frames is one minute (Fig. 4). Hence, an estimate is made to understand 308 

which change is unlikely true and thus treated as an outlier. A Laplacian detector detects sudden 309 

changes in water level estimation for each frame. The estimation outliers are refined following the 310 

prior constraint. Fig. 4 illustrates an example of this temporal smoothing. Fig. 5 shows the Buffalo 311 

hydrographs before and after refinement using temporal smoothness. The superimposed yellow 312 

regions are segmented water. The direct image segmentation result in Fig. 4(a) contains multiple 313 

incorrectly identified regions (highlighted in red boxes). After applying temporal smoothness, the 314 

segmentation in Fig. 4(b) becomes more stable and accurate. 315 

The experiments demonstrate that the aforementioned constraints can stably segment water 316 

contours from collected videos. Meanwhile, more advanced (also more computationally 317 

expensive) temporal smoothness models can be adopted. For example, the CRF in Kundu et al. 318 

(2016) is adopted to model this temporal consistency. In each overlapping temporal block (Fig. 3), 319 

a CRF is built to balance each pixel classification (image segmentation result) and similarity 320 

between pixel pairs (spatial and temporal smoothness of segmentation in a video). CRF was 321 

implemented and adopted as the temporal smoothness model and found that its performance is 322 

only slightly better than the current model. However, CRF is time-consuming and often takes 323 

hundreds of CPU hours to converge. Therefore, the current less complicated spatiotemporal 324 
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smoothness model is adopted which can already produce desirable results from obtained videos. 325 

For example, the GPU memory requirement is 3.3 GB for training, where the computation time is 326 

150 seconds per epoch. For segmentation, the GPU memory requirement is 4.8 GB, and the 327 

computation time is 15 frames per second. The total training time is about 5 hours. The smoothing 328 

step runs quickly (10 seconds).  329 

 330 

4. LABORATORY AND FIELD CALIBRATION 331 

The images used for labeling and algorithm development were collected from controlled 332 

laboratory and field experiments on the LSU campus, specifically at two streams referred to as 333 

Bayou Fountain and Corporation Canal (Fig. 6). Bayou Fountain runs on the west side of campus 334 

and is fed by drainage from the campus. It is 2.5 m wide where water levels are typically less than 335 

30 cm, and a stream gage allows validation the labeled images. Corporation Canal starts in 336 

downtown Baton Rouge and runs across the east side of campus and into Bayou Duplantier. Due 337 

to their large drainage areas, both bodies of water are known to rise significantly during intense 338 

rain events, making them prime locations to test the new methodology proposed.  339 

 340 

4.1 Laboratory Control Experiments 341 

The control laboratory experiments involved a water tank and a meter stick to use as a water level 342 

reference gage (Fig. 7), and the electrical tape of 15.24 cm length provided a control for the 343 

program to automatically label. Using a Brinno TLC200 Pro time-lapse camera capturing images 344 

every 1 second, water was poured into the water tank at varying rates to create a hydrograph with 345 

varying slopes to test the robustness of the labeling algorithm. The Brinno camera automatically 346 

creates a time-lapse video so the images used for labeling were extracted using the program 347 
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video2image.py. Using the labelme program, the water in the first image was traced with a polygon 348 

and labeled as water, as was the labeled ruler and staff gage (Fig. 7). The transfer_label.py program 349 

transfers the first polygons and labels to subsequent images, which reflects the change in water 350 

level. Photos were labeled at five second intervals to accurately capture the hydrographs and to 351 

train the program to automatically label the remaining frames of the laboratory videos. In Fig. 8, 352 

the virtual gage hydrograph (blue circle and green square symbols) refer to the segmentation, 353 

which used the labeled images. The predictions were validated by manually measuring the water 354 

elevations of non-labeled images (red triangles and purple diamonds). In particular, Fig. 8 shows 355 

that the program-estimated water levels from the laboratory control experiments closely matches 356 

those that were manually measured (RMSE ~ 0.13 cm). The value of ΔE~ 0.25 cm gives the largest 357 

difference between the virtual gage and validation values for the laboratory control experiments. 358 

Thus, the controlled experiments demonstrated that the program was working with precision and 359 

accuracy, which permitted testing to expand to controlled field experiments along two streams on 360 

the LSU campus. 361 

 362 

4.2 Field Experiments 363 

For the rain event on 18 May 2018 at Bayou Fountain, a waterproof Brinno camera was mounted 364 

across the stream gage to capture images every minute for 64 minutes. The Brinno camera in Fig. 365 

9(a) demonstrated limited focus capabilities (maximum resolution 1280x720 pixels), leaves and 366 

other debris masked the stream bank from the water, and rain droplets gathered on the water-proof 367 

casing which blurred many of the images (Fig. 9b). The images were still used to test the accuracy 368 

of the labeling program in a noisy environment, i.e., water level is not easily distinguished due to 369 

debris or image quality. However, the Brinno TLC200 Pro was replaced with the Moultrie S-50i 370 
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game camera (resolution 1920×1080 pixels) to evaluate the labeling accuracy with another camera 371 

and overcome the resolution and raindrop issues (Fig. 9(c) compares Moultrie and Brinno 372 

cameras). The Moultrie camera captured images from rain events on 11 and 12 June 2018. Images 373 

were captured every 30 seconds for 121 minutes on July 11, while the June 12 rain event images 374 

were captured at 30 second intervals for 20 minutes. The latter duration was significantly shorter 375 

because the intense precipitation caused the stream to overflow and submerge the Moultrie camera. 376 

Following Bayou Fountain, another Moultrie S-50i game camera was attached to a bridge timber 377 

pile at Corporation Canal to provide additional images for labeling and to verify the algorithm for 378 

another site under different environmental conditions. An existing stream gage attached to a bridge 379 

pier measures the water level starting at 1.83 m (6 ft) above the bottom of the canal (Fig. 10a).  380 

The same procedure to label the laboratory experiments was used for the Brinno camera at 381 

Bayou Fountain. The Moultrie camera also followed the labeling process (Fig. 10b), with one less 382 

step because this camera directly provides images. Because the rise and fall of water levels during 383 

rain events took hours, the images from Bayou Fountain on 18 May were labeled at a 4 minute 384 

interval and the images on 11 June were labeled at 5 minute intervals. The images from Bayou 385 

Fountain on 12 June 2018 were labeled every minute and images from Corporation Canal were 386 

labeled at 2 minute intervals. The intervals of labeled images were selected based on the duration 387 

of rain and rise of the flood hydrograph. The May 18 and June 11 Bayou Fountain hydrographs 388 

extended for approximately 55 minutes and 120 minutes, respectively, while the June 12 389 

Corporation Canal hydrograph was only 20 minutes. The water levels from Bayou Fountain on 390 

June 12 were less accurately labeled by the program, as the camera switched to the nighttime 391 

infrared setting due to the low-light conditions. This caused a switch from color to black and white 392 

images and hence the water and stream bank did not sufficiently contrast to train the program. 393 
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The manually labeled images were used to train the program to automatically label the 394 

remaining frames of the field experiment videos. The results in Fig. 11 show the comparison 395 

between the virtual gage and manually evaluated images for validation. The greatest difference 396 

between the manually-estimated and virtual gage water elevations was less than 5 cm. This 397 

occurred during the May 18 Bayou Fountain event (Fig. 11a) because of rain drops on the Brinno 398 

lens clouding the images, debris in the water and on the bank making the water line 399 

indistinguishable, and lower resolution of the Brinno camera. Fig. 11(a) also suggests that the 400 

switch from the Brinno to Moultrie camera allowed the automatic segmentation program to more 401 

accurately detect and estimate the water levels in Bayou Fountain and Corporation Canal. In 402 

particular, the water levels only differed by an average of 2 cm and a maximum of 5 centimeters. 403 

For example, the RMSE for the Brinno camera during the May 18 experiment was 2 cm, while the 404 

RMSE for the Moultrie cameras were 0.9 cm and 1.2 cm at Bayou Fountain and Corporation Canal, 405 

respectively. Therefore, the increased image resolution from 720p to 1080p and lack of raindrops 406 

collecting on the lens of the camera alleviated the problems encountered on May 18. Following 407 

June 11 and 12, the segmentation algorithm was refined using images from the three experiments, 408 

which permitted re-evaluation of the images from the May 18 Bayou Fountain event (see green 409 

squares in Fig. 11a). With the updated algorithm, the RMSE was reduced from 2 cm to 0.4 cm and 410 

the greatest difference between the virtual gage and validation points decreased to 0.9 cm. The 411 

results from the laboratory and field experiments verified the accuracy of the segmentation 412 

algorithm and labeling program. These techniques were next applied to a case study at Buffalo 413 

Bayou in downtown Houston during Hurricane Harvey.  414 

 415 

 416 
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5. CASE STUDY OF HOUSTON FLOODING DURING HURRICANE HARVEY   417 

5.1 Background 418 

Hurricane Harvey made landfall at San Jose Island along the Texas coast on 25 August 2017 as a 419 

Category 4 hurricane. Rain gages in Houston recorded over 76.2 cm (30 inches) of rainfall over 420 

the region during the week that the cyclone looped over southeastern Texas. This major storm 421 

caused catastrophic flooding of the densely-populated regions of Houston and Beaumont (Blake 422 

and Zelinsky, 2018). Inland rivers that drain into the Gulf of Mexico, such as the Colorado, 423 

Guadalupe, and Brazos Rivers, were overwhelmed by floodwaters, leading to flooded major 424 

interstate highways, such as I-10 and I-45 (Blake and Zelinsky, 2018). In particular, Buffalo Bayou 425 

flows from Katy, TX through Houston and into the Gulf of Mexico via Galveston Bay (Buffalo 426 

Bayou Partnership, 2018). Data obtained from stream gages and high-water marks along Buffalo 427 

Bayou reveal the severity of flooding in Houston during Hurricane Harvey. The USGS identified 428 

multiple high-water marks from Harvey in Sesquicentennial Park near Buffalo Bayou (USGS 429 

Flood Event Viewer, 2018). Fig. 12 shows the locations of the high-water marks (see blue squares). 430 

A high-water mark on the northern bank of Buffalo Bayou revealed a water elevation of 10.3 m 431 

(33.7 ft) NAVD88, while a debris line on the southern bank marked an elevation of 11.9 m (39.1 432 

ft) NAVD88. USGS also reported a peak stage of 10.3 m (33.7 ft) NAVD88 on 1 September 2017 433 

at 17:00 (5:00 pm). 434 

The Harris County Flood Control District measures water levels throughout the county 435 

using stream gages. In particular, Buffalo Bayou is monitored by seven stream gages spanning 436 

from Barker Reservoir to Burnett Bay. During Hurricane Harvey, these stream gages captured high 437 

water levels in the channel. Located 4 km west of the camera location, the Shepherd Drive stream 438 

gage reported a peak water elevation of 11.8 m (38.8 ft) on 28 August 2017, approximately 12.8 439 
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m (42 ft) above the bottom of the stream bed. At Milam Street, the rising floodwaters reached an 440 

elevation of 8.3 m (27.1 ft) on 27 August 2017, a water level of 11.3 m (33.85 ft) above the bottom 441 

of bayou (Harris Country Flood Warning System, 2017). However, the stream gage at Milam 442 

Street only collected data until 02:44 (2:44 am) on August 27. This gage failure demonstrates the 443 

need for multiple methods to construct and verify flood hydrographs. 444 

 445 

5.2 Hurricane Harvey Image Analysis 446 

During Hurricane Harvey, a time-lapse camera was placed on the second floor of the Bayou Place 447 

Offices building on Capitol Street near Milam Street (see Fig. 12 for general location and Fig. 13b 448 

for exact location). The camera overlooked Buffalo Bayou, Memorial Drive overpass, Interstate 449 

45 overpass, and the Houston Aquarium. The camera recorded the rise and fall of flood levels in 450 

Buffalo Bayou from approximately 16:00 (4:00 pm) on Friday, August 25 to 03:00 (3:00 am) on 451 

Wednesday, August 30. Although the Harrison County Flood Control District stream gage at 452 

Milam Street does not report water levels after 02:44 (2:00 am) on Sunday, August 27, the camera 453 

observed flood waters continuing to rise and overtopping Memorial Drive overpass by 09:30 (9:30 454 

am) later that morning.  455 

The video of Buffalo Bayou during Hurricane Harvey was analyzed using semantic 456 

segmentation to create a hydrograph. In particular, images were extracted each second to form a 457 

near continuous hydrograph. The algorithm used an I-45 bridge pier adjacent to Buffalo Bayou as 458 

a reference object and created a hydrograph to show the ratio of the bridge pier submerged by 459 

water (see yellow rectangle in Fig. 13a). Buffalo Bayou and the bridge pier were surveyed by T. 460 

Baker Smith, LLC to determine the elevations of the bottom of the channel and the bottom and top 461 

of the pier using a Leica TS02 Total Station (Fig. 13c). The elevations of the pier at ground surface 462 
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and at the top were 0.83 m (2.72 ft) NAVD88 and 18.1 m (59.41 ft) NAVD88, respectively. The 463 

total length of the bridge pier is 17.28 m (57.5 ft). To calculate the elevation of the water, the 464 

submerged ratio was converted to a distance from the bottom of the pier using Eq. (7). The 465 

submerged ratio refers to the ratio of pixels water covered pixels to visible pixels in the image 466 

segmentation program.  467 

 468 

                   Water Elevation (m, NAVD88) = 0.83m +17.28m (submerged ratio)                  (7) 469 

 470 

The reconstructed hydrograph in Fig. 14 was compared to the Milam Street stream gage, 471 

which is the closest information available on Buffalo Bayou. In particular, the Milam stream gage 472 

shows an initial rise and fall of the hydrograph on August 26, which was visually verified with the 473 

Buffalo Bayou video. This first rise is likely related to the first impulse of the floodwaters arriving 474 

in Houston. Approaching midnight of August 26, the Milam gage hydrograph begins to rapidly 475 

rise until the instrument failed at an elevation of 8 m NAVD88 in the morning of August 27. In 476 

comparison, the image segmentation algorithm developed herein shows fluctuations in water level 477 

at an elevation 1 to 3 m in the evening of August 25 and early morning of August 26. During the 478 

daylight, image segmentation successfully captures the Milam Street hydrograph starting around 479 

12:00 on August 26, i.e., the two lines are in close agreement in Fig. 14. When the Milam Street 480 

gage fails, the image segmentation provides continuous information on the flood waters. For 481 

example, the peak flood level of approximately 14 m occurred on the night of August 27 to 482 

morning of August 28. The water level started to rapidly decrease on August 28 to about 9 m 483 

before slightly rising to 10.5 m by the early morning of August 29. During August 29, flood levels 484 

in Buffalo Bayou decreased to approximately 3 m. After August 30, Buffalo Bayou remained at a 485 
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constant water level of 3 m, which was verified with other stream gages upstream (Shepherd Drive 486 

and San Felipe Drive) that indicated waters remained relatively high for an extended duration into 487 

early 2 September 2017. The sharp decline in the segmentation analysis in the early morning of 488 

August 27 is because of the difficulty in labeling images at night, especially if limited lighting is 489 

available and reflectance of light on water is present. As natural light increased from sunrise, the 490 

image segmentation method self-corrected and continued to provide reasonable results during the 491 

course of the remaining flood event. Though, it is evident that the water level fluctuations mostly 492 

occur at night. Nevertheless, Fig. 14 demonstrates the image segmentation methodology developed 493 

and implemented in this study is capable of capturing a flood hydrograph.  494 

 495 

6. SUMMARY AND CONCLUSIONS  496 

Measuring and disseminating real-time water levels in urban environments during rain storms, 497 

hurricanes, and river floods is paramount to ensuring human safety and assisting in mapping 498 

disruptions to the operation of major cities that result in physical infrastructure, social, and 499 

economic damages. High water marks, stream gages, and rapidly deployed instrumentation 500 

currently provide hydrological data during a flood event. The impetus of this study was to develop 501 

technology that can provide accurate and timely water levels while harnessing the Big Data 502 

generated from videos and images posted by individuals on social media, YouTube, and permanent 503 

infrastructure such as road traffic cameras. This Big Data facilitates creation of a high-fidelity 504 

spatial-temporal map of flooding that does not currently exist.  505 

 The techniques presented in this study involves using reference objects in videos and 506 

images to estimate water levels with time. The novelty of this work involved leveraging object-507 

based image analysis (OBIA), which used image segmentation training algorithms to differentiate 508 
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areas of images or videos. In particular, the deep learning-based semantic segmentation technique 509 

was trained using images from an MIT database along with images compiled from traffic cameras 510 

and the experiments and case study presented herein. The FCN was used for image segmentation 511 

and subsequent object labeling. This algorithm was applied to a laboratory and two field 512 

experiments before demonstration at Buffalo Bayou in Houston, TX during Hurricane Harvey. 513 

The field experiments indicated that the image segmentation technique was reproducible and 514 

accurate from a controlled environment to rain storms and localized flooding in small streams on 515 

the LSU campus. Moreover, the segmentation algorithm successfully estimated flood levels in 516 

Buffalo Bayou in downtown Houston, Texas during Hurricane Harvey. This signifies that if time-517 

lapse imagery is available, this algorithm- and program-estimated water elevations can provide 518 

insight to the hydrograph and spatial inundation during flooding from rainstorms or hurricanes. 519 

Future work with this technique includes the need to resolve image analyses at night, remove 520 

effects of rainfall on camera lenses, and developing a system to collect images during extreme 521 

events. Moreover, this technique can be harnessed to larger data streams (e.g., Houston traffic 522 

cameras and local security cameras) to develop near real-time water levels in urban environments 523 

that can allow emergency operation centers to make informed decisions on emergency response 524 

and disaster recovery. 525 

To better tackle nighttime images, dark image enhancing and contrast enhancing 526 

algorithms can be adopted to preprocess the dark images. The mutual coherence between daytime 527 

images and nighttime images will be explored such that the structures extracted from the daytime 528 

images can guide the segmentation of nighttime images. The model also learns the appearance of 529 

the water based on the training images. In this current compiled training dataset, photos containing 530 

water with turbulence, debris, among others were not specifically the objective. Such types of 531 
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water videos and images represent the next steps in this research investigation. Raindrops often 532 

harm the segmentation results, as those regions can be misidentified. However, this effect can be 533 

currently diminished by the proposed temporal blending and the prior constraints. Moreover, if 534 

wind gusts alter the position of a camera, the water segmentation component is still reliable 535 

because the classification of each pixel is based on extracted features and their matching with ones 536 

in previous frames. This is not sensitive to camera tilt/shift. The water level estimation can be 537 

affected if the reference object can move. A future direction to tackle this issue is to register all 538 

the frames to the coordinates of the first initial frame. If the reference object becomes lost, the 539 

estimation can proceed using another reference object. Future work will collect more labeled flood 540 

datasets and will explore more advanced but inexpensive models to more flexibly incorporate high-541 

level temporal information to achieve reliable segmentation in complex and noisy scenes. 542 
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COMPUTER CODE AVAILABILITY 555 

There are two sets of codes used in this study. The first code was Pytorch-FCN, which we used as 556 

a starting point for developing our codes, and it was develop by Ketaro Wada in 2017. The second 557 

source code was developed by the LSU team in 2018. It is called LSU Water Segmentation and 558 

the developers are Xin Li, Yongqing Liang, and Can-Yu Le. The contact information for all of 559 

these authors is provided at the beginning of the manuscript. The required hardware is a typical 560 

computer (Windows, Apple, Linux), where the required software and programming language are 561 

Python. Program size is minimal, possibly one (1) MB. The authors developed our segmentation 562 

algorithm and program based on the open-source library FCN by Ketaro Wada 563 

(https://github.com/wkentaro/pytorch-fcn). The LSU code can be accessed at 564 

https://github.com/xmlyqing00/LSUWaterSegmentation.  565 
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LIST OF FIGURE CAPTIONS 714 

Fig. 1. Semantic segmentation architecture based on the Fully Convolutional Network (FCN). 715 
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Fig. 2. The semantic segmentation result on 16:55 August 25, 2017. The blue mask indicates water 717 

and the yellow mask indicates pier (image permission from Teddy Vandenberg). 718 

 719 

Fig. 3. The structure of temporal smoothness consists of temporal blocks of several consecutive 720 

images. Each image and its preceding frames form its overlapping temporal block (illustrated in 721 

the colorful ovals). Image segmentation is refined using segmentations from other images in this 722 

block. 723 
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Fig. 4. Segmentation refinement using temporal smoothness: (a) Raw segmentation result, (b) 725 

Temporal constraint (image permission from Teddy Vandenberg).  726 
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Fig. 5. Comparison between the original raw and refined water level estimations. 728 
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Fig. 6. Map of LSU campus where marked rectangles are the field experiment sites Bayou 730 

Fountain and Corporation Canal. Circles mark the camera locations. 731 
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Fig. 7.  Labeled image from Brinno camera showing blue water to contrast yellow meter stick. 733 

 734 

Fig. 8. Laboratory hydrographs developed from virtual gage. 735 
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Fig. 9.  Field experiment at Bayou Fountain: (a) Visual of staff gage using Brinno TLC200 Pro 737 

camera, (b) Low quality image from Brinno camera due to raindrops, and (c) Visual of 738 

staff gage using Moultrie S-50i Game camera. 739 

Fig. 10  Field experiment at Canal Corporation using Moultrie Camera: (a) Staff gage, and (b) 740 

Labeled image during June 12 event. 741 
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Fig. 11  Hydrographs created from estimated water levels: (a) May 18 at Bayou Fountain with 743 

Brinno camera and June 11 at Bayou Fountain with Moultrie camera, (b) June 12 at 744 

Corporation Canal with Moultrie camera. 745 

 746 

Fig. 12  Overlay of downtown Houston and Buffalo Bayou with locations of (a) high water marks 747 

and (b) stream gages and camera location (image from Google Earth). 748 

 749 

Fig. 13 Hurricane Harvey Case Study in Buffalo Bayou, Houston: (a) Camera location on Bayou 750 

Place Offices building, (b) Image of flooding Memorial Drive overpass from camera 751 

(image permission from Teddy Vandenberg), and (c) Survey of bridge pier and Buffalo 752 

Bayou by T. Baker Smith, LLC. 753 

 754 

Fig. 14. Comparison of reconstructed hydrograph and Milam Street Stream Gage. 755 
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 756 
 757 
Figure 1. Semantic segmentation architecture based on the Fully Convolutional Network (FCN). 758 

 759 

 760 
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 761 
 762 
Figure 2.  The semantic segmentation result on 16:55 August 25, 2017. The blue mask 763 

indicates water and the yellow mask indicates pier (image permission from Teddy 764 

Vandenberg). 765 

 766 

 767 

 768 

 769 

 770 
 771 

Figure 3.  The structure of temporal smoothness consists of temporal blocks of several 772 

consecutive images. Each image and its preceding frames form its overlapping 773 

temporal block (illustrated in the colorful ovals). Image segmentation is refined 774 

using segmentations from other images in this block.  775 

  776 
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(a)                                                                           778 

 779 
(b) 780 

Figure 4.  Segmentation refinement using temporal smoothness: (a) Raw segmentation 781 

result, (b) Temporal constraint (image permission from Teddy Vandenberg).  782 

 783 

 784 
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 785 
 786 

Figure 5. Comparison between the original raw and refined water level estimations. 787 
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 791 

 792 
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 793 
 794 
Figure 6. Map of LSU campus where marked rectangles are the field experiment sites Bayou 795 

Fountain and Corporation Canal. Circles mark the camera locations. 796 
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 798 

 799 
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 800 
 801 

Figure 7. Labeled image from Brinno camera showing blue water to contrast yellow meter stick. 802 

 803 

 804 
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 805 
Figure 8. Laboratory hydrographs developed from virtual gage. 806 
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    809 
                    (a)               (b)  810 

 811 
(c) 812 

Figure 9.  Field experiment at Bayou Fountain: (a) Visual of staff gage using Brinno TLC200 813 

Pro camera, (b) Low quality image from Brinno camera due to raindrops, and (c) 814 

Visual of staff gage using Moultrie S-50i Game camera. 815 

 816 

 817 

 818 
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(a) 820 

 821 
(b) 822 

Figure 10.  Field experiment at Canal Corporation using Moultrie Camera: (a) Staff gage, and 823 

(b) Labeled image during June 12 event. 824 
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(a) 826 

 827 
(b) 828 

Figure 11.  Hydrographs created from estimated water levels: (a) May 18 at Bayou Fountain 829 

with Brinno camera and June 11 at Bayou Fountain with Moultrie camera, (b) June 830 

12 at Corporation Canal with Moultrie camera. 831 

 832 
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 833 
 834 
Figure 12.  Overlay of downtown Houston and Buffalo Bayou with locations of (a) high water 835 

marks and (b) stream gages and camera location (image from Google Earth). 836 
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(a) 847 

  848 
                                              (b)                                                                   (c) 849 

Figure 13. Hurricane Harvey Case Study in Buffalo Bayou, Houston: (a) Image of flooding 850 

Memorial Drive overpass from camera (image permission from Teddy 851 

Vandenberg), (b) Camera location on Bayou Place Offices building, and (c) Survey 852 

of bridge pier and Buffalo Bayou by T. Baker Smith, LLC. 853 

 854 
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 858 
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 860 

Figure 14. Comparison of reconstructed hydrograph and Milam Street Stream Gage. 861 
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