
Surface Parameterization 



Problem Definition 
 Recall the Texture Mapping that wrap an Image onto a mesh  

 A one-to-one map from geometry shape S to a texture image (2D 
domain) D 

 D here is a rectangular domain, e.g.  

 The mapping: a vector function                            , 

 Define  a “u-v” coordinates over the surface S. 

 Infinite mapping ways, which one is good? 

 

 Intrinsic distortion is measured by 1st fundamental forms 

 Ideal parameterization: isometry 



Historical Background 

 Cartography 

 Distortion: angles and areas distortion 
 Isometry: no distortion 
 Not all surfaces has the isometry to a planar region 
 Peeling oranges  can’t be of no distortion 

 Ptolemy was the first known to produce the data for creating a map 
showing the world (100-150AD) 
 [Geography]  project a sphere by longitude and latitude 

 

(a) Orthographic;      (b) stereographic;        (c) Mercator; and           (d) Lambert 



Historical Background (cont.) 

(a) The orthographic projection (Egyptians and Greeks, > 2000 years 
ago)  modifies both angles and areas 

(b)   Stereographic projection (Hipparchus, 190-120B.C.)  preserves 
angles, not areas 

(c)   Mercator projection (Mercator 1569)  preserves angles, not areas 

(d)   Lambert projection (Lambert 1772)  preserves areas, not angles 

 

(a) Orthographic;     (b) stereographic;        (c) Mercator; and           (d) Lambert 



Good “UV” versus bad “UV”? 

 What do we look for? What do we preserve? 

 Should we map it onto a rectangle? Or a disk? Or something 
different? What do we choose? 

 If the target shape is fixed (e.g. a rectangle, or a disk…), what is 
the best mapping then? 

 Consider the easiest case: 
 Source: a genus-zero open surface (a topological disk) 

 Target: planar square 



Mapping Criteria 
 Angle Distortion: change of the local angles 

 Conformal mapping: no angle distortion (locally, a right angle  a right angle, 
or a circle  a circle), preserving the “shape” 

 Area Distortion: change of the local area 
 Equiareal mapping: no area change 

 Isometric Mapping: neither angles nor area distortion 

 Isometric  conformal + equiareal 

 Isometry exists between a given surface and a planar domain, only if 
this surface is “developable” (Guassian curvature=0 everywhere) 

 Purely Equiareal Mapping is infinitely dimensional and not necessarily 
useful 



Mapping Criteria 
 Therefore:  

   Given an arbitrary topological disk surface and a planar domain 
 Isometric mapping rarely exists 

 Conformal mapping always exists (Riemann Mapping Theorem) 

 Infinitely many equiareal mapping, as a pure criterion, not easy to control and 
design 

We will focus on:  

A conformal mapping = an analytic function = two conjugate harmonic scalar fields 

    (will be explained later) 

A conformal map  harmonic 

 

 



Harmonic Flattening of a Triangle Mesh 

 Intuitively : considering that you are flattening a triangle mesh (deform it 
while preserving angles and make it flat) 
1) Pin vertices on the boundary loop on a planar rectangle boundary 

2) Move the interior vertices into the rectangle properly 

Algorithm Pipeline:  
 computing two harmonic functions  fu: (x,y,z)u, and fv: (x,y,z)v 

1) For boundary vertices, map them to one of the following four 
segments 

a) u=0, 0<v<1; 

b) 0<u<1, v=0; 

c) u=1, 0<v<1; 

d) 0<u<1, v=1. 



Flattening Triangle Mesh 
 An intuitive way : considering that you are flattening a triangle mesh 

(deforming it and make it flat) 
1) Pin vertices on the boundary loop on a planar rectangle boundary 

2) Move the interior vertices into the rectangle properly 

Algorithm Pipeline:  
 computing two harmonic functions  fu: (x,y,z)u, and fv: (x,y,z)v 

1) For each interior vertex, map it to 0<u<1, 0<v<1  

        there should not be flip-over (roughly speaking, every vertex vi 

should be mapped into the interior region of its one ring vertices vj) 



Flatten 3D Mesh by Harmonic Map 

 Harmonic function: a smooth function that minimizes the magnitude of its 
gradient: 

 

 

 Called the harmonic energy, or Dirichlet energy 

 A map composed of harmonic functions is called a harmonic map 

 It satisfies: 

 It is uniquely determined by the boundary condition 
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 Harmonic Function Examples: 

 1D Curve:  

Given: f(x0)=y0, f(x1)=y1 

The harmonic function f(x) is uniquely defined, 
and can be computed by minimizing E in (1) 
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Harmonic Function (1D) 

 Harmonic Function Examples: 

 1D Curve:  

Given: f(x0)=y0, f(x1)=y1 

The harmonic function f(x) is uniquely defined, 
and can be computed by minimizing E in (1) 
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 Property of a harmonic function  f(x), (the red curve) 

 Mean-value principle :      
 

      function value on a point is the average of values of it surrounding points 

  we can use this to numerically compute the function 

 Maximal principle :  

Maximal/minimal function values only exist on the boundary 
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Flatten 3D Mesh by Harmonic Map 

 Flatten a 2D variable function f(u,v) , similarly minimize the harmonic 
energy 

 

 It is equivalent to solving: 
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 If the boundary conditions: 

(1) If                                    

(2) If                                                     
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Flatten Mesh To Square 
 Physical simulation: 

 Edges of the triangle mesh are springs (spring network) 
 Fix the boundary on the plane 
 Relax the interior of this network 
 Physical law being the only rule 
 Stabilized position   mapping for the interior vertices 

 A mesh with n+b (interior: 1.. n, boundary: n+1…n+b) vertices: 
 The rest string length  0 
 Potential energy  (Ds2)/2 , (D-constant, s-final string length) 
 Boundary vertices pi  ui   (2d-vector ui denotes its planar coordinates) 
 Minimize spring energy: 



Mesh Mapping (cont.) 
 To find the minimized solution: 

(for any interior vertex i=1…n) 

 Remove boundary points from the left to right hand side: 

 Lead to two sparse linear systems (in two axis directions): 
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(1) Boundary Mapping 

 No fold-over  not direct projection 
 Flatten a curve: 

a) Choosing the shape of the planar domain boundary 

b) Choosing the distribution of the points on the boundary 

a) Boundary Shape: Usually rectangle, circle, etc.  

 Convex shape  bijectivity guarantees for many weights 

 Larger distortion when surface is highly concave 

 Choose square here 

 b) Distribution: Usually uniform length, chord length, …  

 Uniform distribution: works for well (uniformly) sampled data 

 Chord length: working well in most cases 

 

 



(2) Interior Mapping  
   – different weights 

 Different Dij : 
 Graph embedding:                                                                 

 Wachspress coordinates: 
 Earliest generalization of barycentric coordinates 

 Mainly used in finite element methods 

 Discrete Harmonic coordinates: 
 Standard piecewise linear approximation to Laplace equation 

 Minimizing deformation energy 

 Mean value coordinates: 
 Discretizing mean value theorem of harmonic function 

 Positive weights guaranteed, stable parameterization 

Any symmetric weights 
(Dij=Dji)  minimizes a spring 
energy with physical 
explanation. 
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Three different popular formula 
 Graph Embedding: [Tutte 1963] 

 Discrete Harmonic Mapping: [Eck 1995] 

 Meanvalue Coordinates: [Floater 1997]  
 

Susan Surface Graph Embedding Mean Value Harmonic 



Three different popular formula 
 On another surface: 

Bimba Surface Graph Embedding 

Mean Value Harmonic 



 Visually, we can tell the difference. 

 But how do we measure the distortion numerically? And where do these 
weight formula come from? 
 E.g. why the harmonic mapping looks conformal? 

 How do we design (or choose to use) a mapping technique? 
 E.g. shall we always use harmonic? 

 Purely Conformal? 
 Applications needs angle-preserving 

 Applications that also needs area-preserving 

 What about more general surfaces? 
 Closed Genus-0 surfaces  spherical mapping 

 Higher genus surfaces  global parameterization 

 Surface to surface  inter-surface mapping 

Carefully Read & Understand Previous Slides 

The following materials/slides are optional 



Differential Geom. Background Review 
 A surface               (2-manifold), has the parametric representation:  

  for points             in some domains in 

 A representation is regular if 

i. The functions               are smooth (differentiable when we need) 

ii. The vectors                                   are linearly independent 

 1st fundamental form (quadratic inner product on the tangent space) : 

   permits the calculation of surface metric 

 

 

 denoting  

 

  We have                , where 



Differential Geom. Background (cont.) 

f is allowable if the parameterizations x and x* are both regular. 

 

 



Isometric mappings 

Isometric  length-preserving 

 (e.g. cylinder  plane (cylindrical coordinates  Cartesian coordinates)) 

 

 

 

Under an isometry: 

 Curve-lengths don’t change 

 Angles don’t change 

 Areas don’t change 

 Gaussian curvatures don’t change  

 

 

 

 



Conformal mappings 

Conformal  angle-preserving 

 (e.g. stereographic and Mercator projections) 

 

 

 

Under an conformal map: 

 Angles don’t change 

 Circle  another circle (only scaling allowed) 

 

 

 

 



Equiareal mappings 

Equiareal  area-preserving 

 (e.g. Lambert projections) 

 

 

 

(Note that:       ) 

 

 



An example: planar mappings 

A planar mapping is a special type of the surface mapping: 

 

 

 

its 1st fundamental form: 

 

 

 

eigenvalues of I 



Planar Mappings (cont.): ConformalHarmonic 

A conformal mapping  

 – a complex function satisfies the Cauchy-Riemann equation: 

 

 

where 

 

 A harmonic mapping  

 – a complex function satisfies these two Laplace equations 

 

 Isometric  Conformal  Harmonic 



Harmonic Mapping with Boundary Mapping 
Fixed 

 Easy to compute, easy to approximate  

 Guaranteed existence (when suitable boundary mapping is provided) 

 Minimizing deformation (minimizing the Dirichlet energy) 

 Conformality depends on the boundary condition 

 One-sidedness 



Harmonic Map on Mesh 

 Following the smooth case definition  discrete setting: 
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(because                              ) 

Harmonic Map on Mesh (cont.) 
 The local energy:  
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Harmonic Map on Mesh (cont.) 
 Total discrete harmonic energy: 

 
),(

2)(
2

1
)(

jihalfedge

ijij ffwfE

 It is minimized when 

0)(
)(

),(







jihalfedge

ijij

i

ffw
f

fE









)(

)(

jiij

jjiij

i
ctgctg

fctgctg
f





Cotangent Weights of Discrete Harmonic Map 



Mean Value Coordinates 

 A problem of the cotangent weight 

 Weights with “barycentric” property: 
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Metric Distortion 

 Look at surface point f(u,v), move a little away from (u,v): 

approximated by 1st order Taylor expansion: 

Displacement:  new point: 

Planar local region: the vicinity of 

Region on tangent plane Tp at 

Circles around u 

ellipses around p 



Metric Distortion (cont.) 

Decompose the Jacobian (3*2) matrix by SVD: 

unitary, orthonormal 



Metric Distortion (cont.) 

(1) 2D Rotation V           planar rotation around u; 

(2) Stretching matrix    stretches by factor    and     in the u and v 
directions; 

(3) 3D rotation U   map the planar region onto the tangent plane 

Tiny sphere with radius-r  ellipse with semi-axes of length 

21  

121 

Local scaling, circles to circles   :  Confomal 

Area preserved     :  Equiareal 



Metric Distortion (cont.) 

The symmetric 2*2 matrix’s eigenvalues: 

Singular values of any matrix A are the square roots of  

     the eigenvalues of the matrix ATA 

Look at 



   

   

   

   

Metric Distortion Example 

Isometry 

(1) Cylinder 



Metric Distortion Example 

Conformal 

(2) Hemisphere (stereographic) 

   

   

   

   

where 



Metric Distortion Example 

Not conformal, not equiareal 

(3) Hemisphere (orthographic) 

   

   

   

   

where 



Minimizing         over the space of all admissible parameterizations  best 
parameterization 

Minimizing Metric Distortion 

Overall distortion of a parameterization f can be generally defined by: 

Discretely, we can look at linear function f:  

 from parameter triangles           to surface triangles 

Or we can look at inverse function g=f-1 : 



Minimizing Metric Distortion (cont.) 



Minimizing Metric Distortion (cont.) 

Discrete Harmonic Map  

     [Pinkall EM’93] [Eck SIG’95]: 

Least Square Conformal Map 
[Desbrun SIG’02] [Levy SIG’02]: 



Minimizing Metric Distortion (cont.) 

Conformal Mapping:   try to make 

Another one:  MIPS energy 

[Hormann 02] 

 Advantage:  (1) symmetry: 

  (2) bijectivity  

 Disadvantage: non-linear 

   



Many more about mapping… 

 Free-boundary mapping 

 Deforming the metric 

 Global parameterization 

 Inter-shape mapping 



Application on meshing 

With the parameterization, we can do 

             Remeshing – to generate high quality mesh 


