Surface Parameterization




Problem Definition

» Recall the Texture Mapping that wrap an Image onto a mesh

A one-to-one map from geometry shape S to a texture image (2D
domain) D

D here is a rectangular domain, e.g. D = [0, 1] x [0. 1]
The mapping: a vector function f:S—DCR?,

composed by two scalar function f, and f,.

<Define a “u-v" coordinates over the surface S.
Infinite mapping ways, which one is good?

Intrinsic distortion is measured by 15t fundamental forms
Ideal parameterization: isometry




-

Historical Background

(a) Orthographic;  (b) stereographic; (c) Mercator; and (d) Lambert

» Cartography

» Distortion: angles and areas distortion
e Isometry: no distortion
* Noft all surfaces has the isometry to a planar region
 Peeling oranges - can't be of no distortion

* Ptolemy was the first known to produce the data for creating a map
showing the world (100-150AD)

» [Geography] = project a sphere by longitude and latitude




Historical Background (cont.)

(a) Orthographic;  (b) stereographic; (c) Mercator; and (d) Lambert

(a) The orthographic projection (Egyptians and Greeks, > 2000 years
ago) > modifies both angles and areas

(b) Stereographic projection (Hipparchus, 190-120B.C.) - preserves
angles, not areas

(c) Mercator projection (Mercator 1569) - preserves angles, not areas
(d) Lambert projection (Lambert 1772) > preserves areas, not angles




Good "UV" versus bad "UV"?

What do we look for? What do we preserve?

Should we map it onto a rectangle? Or a disk? Or something
different? What do we choose?

If the target shape is fixed (e.g. a rectangle, or a disk...), what is
the best mapping then?

Consider the easiest case:

0 Source: a genus-zero open surface (a topological disk)

Q Target: planar square




Mapping Criteria

Angle Distortion: change of the local angles

e Conformal mapping: no angle distortion (locally, a right angle > a right angle,
or a circle > a circle), preserving the “shape”

Area Distortion: change of the local area
e Equiareal mapping: no area change

Isometric Mapping: neither angles nor area distortion
Isometric <> conformal + equiareal

Isometry exists between a given surface and a planar domain, only if
this surface is "developable” (Guassian curvature=0 everywhere)

Purely Equiareal Mapping is infinitely dimensional and not necessarily
useful

f
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Mapping Criteria

e Therefore:

Given an arbitrary topological disk surface and a planar domain
e TIsometric mapping rarely exists
e Conformal mapping always exists (Riemann Mapping Theorem)

o Infinitely many equiareal mapping, as a pure criterion, not easy to control and
design

We will focus on:

A conformal mapping = an analytic function = two conjugate harmonic scalar fields
(will be explained later)

A conformal map = harmonic
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Harmonic Flattening of a Triangle Mesh

e Intuitively : considering that you are flattening a triangle mesh (deform it
while preserving angles and make it flat)
1) Pin vertices on the boundary loop on a planar rectangle boundary
2) Move the interior vertices into the rectangle properly

Algorithm Pipeline:
computing two harmonic functions f: (x,y,2)2u, and f,: (x,y,z)>v
1) For boundary vertices, map them to one of the following four
segments
a) u=0,0<v<I;
b) 0<u<l, v=0;
c) u=l,0<v<I;
d) 0<u<li,v=1.




Flattening Triangle Mesh

* An intuitive way : considering that you are flattening a triangle mesh
(deforming it and make it flat)
1) Pin vertices on the boundary loop on a planar rectangle boundary
2) Move the interior vertices into the rectangle properly

Algorithm Pipeline:
computing two harmonic functions f: (x,y,2)2u, and f,: (x,y,z)>v
1) For each interior vertex, map it to 0<u<i, 0<v<1
there should not be flip-over (roughly speaking, every vertex v,
should be mapped into the interior region of its one ring vertices v)




e
Flatten 3D Mesh by Harmonic Map

3O Harmonic function: a smooth function that minimizes the magnitude of its
gradient:

1 2
E(f):ELHVf | dx (1)

- Called the harmonic energy, or Dirichlet energy

0 A map composed of harmonic functions is called a harmonic map
0 It satisfies: f=(f,.f) :S—>D; Af(p)=0,Yp(x,y,2)eS (2
a It is uniquely determined by the boundary condition

0 Harmonic Function Examples:

2 1D Curve: ) :
Given: f(x,)=y,, f(x,)=y, Yo

The harmonic function f(x) is uniquely defined, R
and can be computed by minimizing E in (1) X XX




Harmonic Function (1D)

0 Harmonic Function Examples:
2 1D Curve: f(x)
Given: f(x,)=yo, f(x))=y,
The harmonic function f(x) is uniquely defined,

Yo

Y1

and can be computed by minimizing E in (1)

a Property of a harmonic function f(x), (the red curve)
O Mean-value principle :

f(x):ij f(y)dy,vx,yeS
2& Jly-x<e

function value on a point is the average of values of it surrounding points

- we can use this to numerically compute the function

O Maximal principle :

Maximal/minimal function values only exist on the boundary
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Flatten 3D Mesh by Harmonic Map

3 Flatten a 2D variable function f(u,v) , similarly minimize the harmonic
energy — 1 - 2
E(F)=—] IVE(p)IIdp
pe

QO It is equivalent to solving: AT(D)=V-VT(p)=0,vpes
= . = , (-

ad If the boundary conditions:
(1) Tf T(P)lps:0S >constC S F(P)],s=C.¥peS
(2) If () |yups:0S — D > f(u,v)eD,V(u,v)eS




Flatten Mesh To Square

 Physical simulation:
o Edges of the triangle mesh are springs (spring network)
Fix the boundary on the plane
Relax the interior of this network
Physical law being the only rule
Stabilized position = mapping for the interior vertices

* A mesh with n+b (interior: 1.. n, boundary: n+1..n+b) vertices:
e The rest string length > 0
» Potential energy > (Ds?)/2 , (D-constant, s-final string length)
* Boundary vertices p; > u; (2d-vector u;denotes its planar coordinates)
e Minimize spring energy:

n+b

E=33 3 4Dyl —wl

i=1 jEN;

where D), = [).. is the spring constant of the spring between p, and p.
ij ji I 5 I 5 i P;




Mesh Mapping (cont.)

e To find the minimized solution:

dul - Z Dij(u; — uj)=0 =) jZ\: Diju; = ; Diju,

(for any interior vertex i=1..n)

* Remove boundary points from the left to r'lgh‘r hand side:

Z AijU; = Z AijUj, ﬂ’u ZD

JjeEN; . J<n JEN;.i>n

jeN;

* Lead to two sparse linear systems (in two axis directions):
AU=U and AV =V,

Z iU and vy = Z Aijv;

JEN;.j>n JeN; j>n (3)
1 ifi =7y,
A= (aff)a j=1....n v i = _/\U if J S ‘\’v

0 otherwise.




(1) Boundary Mapping

* No fold-over > not direct projection
* Flatten a curve:

a) Choosing the shape of the planar domain boundary
b) Choosing the distribution of the points on the boundary

a) Boundary Shape: Usudlly rectangle, circle, etc.

» Convex shape - bijectivity guarantees for many weights
 Larger distortion when surface is highly concave
* Choose square here

b) Distribution: Usually uniform length, chord length, ...
» Uniform distribution: works for well (uniformly) sampled data
* Chord length: working well in most cases
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(2) Interior Mapping
- different weights

» Different D;:
e Graph embedding: D, =1
* Wachspress coordinates:

Earliest generalization of barycentric coordinates _ cot oy + cot :Bij
Mainly used in finite element methods o (r__ )2
1

e Discrete Harmonic coordinates:

Standard piecewise linear approximation to Laplace equation

Minimizing deformation energy Dij = cot Vi T cot Yii
e Mean value coordinates:

Discretizing mean value theorem of harmonic function
Positive weights guaranteed, stable parameterization

_ tana;; +tan g;

Any symmetric weights
(D;=Dj) minimizes a spring
energy with physical
explanation.




Three different popular formula
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Three different popular formula

e On another surface:

Mean Value Harmonic

™~
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Carefully Read & Understand Previous Slides

1The following materials/slides are optional

Visually, we can tell the difference.

But how do we measure the distortion numerically? And where do these
weight formula come from?

e E.g. why the harmonic mapping looks conformal?

How do we design (or choose to use) a mapping technique?

e E.g. shall we always use harmonic?

Purely Conformal?

o Applications needs angle-preserving

o Applications that also needs area-preserving

What about more general surfaces?

» Closed Genus-0 surfaces - spherical mapping

» Higher genus surfaces - global parameterization
e Surface to surface - inter-surface mapping
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Differential Geom. Background Review

* Asurface S c R’ (2-manifold), has the parametric representation:
K(Hl : -u.g) = (1 (-u.l : -u.g}, ;r.g(-u.l : -u.g}, T3 (-u.l : -u.g))
for points (u'.v?) in some domains in k>

* A representation is reqgular if
i.  The functions zy,z2, 23 are smooth (differentiable when we need)

.. (‘)] ()X . .
i. Thevectors , _ ale’ = = are linearly independent
» ¥

 1sf fundamental form (quadratic inner product on the tangent space) :
- permits the calculation of surface metric

‘ 1.2 - 2
ds® = x1 - X4 (d.-u.l) + 2% - Xo dutdu® + xo - X9 (d-u.g)

denoting ;. .—x. x5 a=12 [F=12

du 912 22

a1
We have ds® = (du' du®)1( ™" , where 1= ( J11 912
2

-
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Differential Geom. Background (cont.)

f
L (ul,u?) J

f is allowable if the parameterizations x and x* are both regular.

B
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Isometric mappings

Isometric < length-preserving
(e.g. cylinder - plane (cylindrical coordinates - Cartesian coordinates))

Theorem 1. An allowable mapping from S to S* is isometric if and only if
the coefficients of the first fundamental forms are the same, i.e.,

I=T1"

Under an isometry:

O Curve-lengths don't change

O Angles don't change

O Areas don't change

0 Gaussian curvatures don't change
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Conformal mappings

Conformal < angle-preserving
(e.g. stereographic and Mercator projections)

Theorem 2. An allowable mapping from S to S* is conformal or angle-
preserving if and only if the coefficients of the first fundamental forms are
proportional, i.e.,

I=n(ul,u*)T*, (1)
for some scalar function n # 0.
Under an conformal map:

O Angles don't change
a Circle & another circle (only scaling allowed)




Equiareal mappings

Equiareal <> area-preserving
(e.g. Lambert projections)

Theorem 3. An allowable mapping from S to S* is equiareal if and only if
the discriminants of the first fundamental forms are equal, 1.e.,

g9=2y". (2)

(Note that: ¢=detI=gi1g0 —gi )

Theorem 4. Every isometric mapping is conformal and equiareal, and every
conformal and equiareal mapping is isometric, i.e.,

isometric < conformal + equiareal.




An example: planar mappings

A planar mapping is a special type of the surface mapping:
[IR?—TR?, f(a,y) = (u(z,y),v(z,y))
its 15" fundamental form: 1= J%J
where .J = (:"“ :"“) is the Jacobian of f.

Proposition 1. For a planar mapping f : R? — IR? the following equivalen-
cies hold:

1. [ isisometric <« I= (é
2. fis conformal &= I= (] 0

3. [ isequiareal < detl=1

eigenvalues of I
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Planar Mappings (cont.): Conformal->Harmonic

A conformal mapping
- a complex function satisfies the Cauchy-Riemann equation:

du v u v

dr Ay Oy Oz

J

Au =0, Av =0, where A= — 4

A harmonic mapping
- a complex function satisfies these two Laplace equations

Isometric = Conformal = Harmonic




e

Harmonic Mapping with Boundary Mapping
Fixed

O Easy to compute, easy to approximate
O Guaranteed existence (when suitable boundary mapping is provided)
O Minimizing deformation (minimizing the Dirichlet energy)

Theorem 5 (RKC). If f : S — IR? is harmonic and maps the boundary S
homeomorphically into the boundary 0S* of some convexr region S* C R? ,
then [ is one-to-one;

O Conformality depends on the boundary condition
1 One-sidedness
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Harmonic Map on Mesh

d Following the smooth case definition > discrete setting:

E(f):jsu Vi |2 ds=> < Vi, Vi, > A,

AeF
3 Look at one triangle (V,, V,, V;):
2 Define: S :ﬂx(\/iiz__vtl_)
Normalized normal index mod 3
0 We have: S,+S,+S, =nx(V, -V, +V, -V, +V, -V,) =0
> <S,,S,>=<5,->_S,>=-> <§,,S, >

j#i j#i

Inner product

v, l TV,
_82

O Aninterior point V can be represented by barycentric coordinates:

i+1 i+1

V=XV A=AIA and A=W IV [SINAW, V) =<8 V-V >

Linear function: f(V)=2 f(4V)=) 4f(V) =Z% <S,V >—Z% <S.V., >

VW) =T A, < (V)
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Harmonic Map on Mesh (cont.)
O The local energy: <VfA,VfA>A:ﬁ<iZfiSi,;ijj >
=ﬁ(zi:fi2<8i,8i>+2§fifj<8i,8j >)

(because <S:.S; >=—;< 555 2) =ﬁ(—f02(< S8, > +<8,,8, »)..+23 1, <5,$; >)
i<j

-1
=y (= £)P<5,8,>+.)

-1
=——>(f-f)<S,S. >
Az (6 .S,
1
Therefore : EA(f)=§ZWij(f,- - f)?
i<j
<S,S. >
where w=-—"
2A
ee. cos(z -6
- SR 0) _ag() l
ee; sing, -S
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Harmonic Map on Mesh (cont.)

d Total discrete harmonic energy:

E(f)% Sw (f, - 1,)?

halfedgd(i, j)
2 It is minimized when

E(f): Zwij(fj - fi):O
6fi halfedgd(i, j)

- > (ctg 6, +ctgo;) f,
" ) (ctg 6, +ctgb;)

Cotangent Weights of Discrete Harmonic Map
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Mean Value Coordinates

Dij =Cot y;; +Cot y;

Need remeshing? or
L )

d Weights with "barycentric” property:

V=Y
Mean Value Weights
Z /ll = 1, V/ll >0 Using Mean Value Property
of the Harmonic Function D = tana ji +1an :Bij

O A problem of the cotangent weight

k Mean Value Harmonic
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Metric Distortion

3 Look at surface point f(u,v), move a little away from (u,v):

Displacement: (Au, Av) > new point: f(u+ Au, v+ Av)

approximated by 15t order Taylor expansion:

~

flu+ Au, v+ Av) = flu,v) + f,(u, v)Au + f,(u,v)Av

Planar local region: the vicinity of u = (u,v)

: Pt v
Region on tangent plane T, atp = f(u,v) € S

Circles around u

.
ellipses around p

flu+ Au,v+ Av)=p+ Jf(u)(é‘“) where J; = (f, f,) is the Jacobian of f

Awv

\_

0 T

f f
Ay Tt G
I/ pgfu
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Metric Distortion (cont.)

.'I':“
R\ fy
| PG SR
flu+ Au,v+ Av) = p+ Je(u) (ﬁl:) K
o) To h

Decompose the Jacobian (3*2) matrix by SVD:
- o1 0 -
] f = [TZ‘FI = [T ( 0 02) Vri
/ 0 0 \
unitary, orthonormal [ ¢ R3*3 \l, V e [R2x2
singular values o1 = o9 > ()

A 2 U
NG S U = Ci)
ngv] QKy @ T T3,
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Metric Distortion (cont.)

L

\

- ay 0 n
Jy=USVT =U ( ) ) Vi

A 2 U
V
692 m A1 o 0 o p,»%2Y:
K Vi &y
Q Q Q Tp &, U
f _//

(1) 2D Rotation V - planar rotation around u;

(2) Stretching matrix 3, - stretches by factor s;and o, in the uand v
directions;

(3) 3D rotation U —~> map the planar region onto the tangent plane

Tiny sphere with radius-r - ellipse with semi-axes of length 7oy and ro,

0, =0, —> Local scaling, circles to circles
K 0,0,=1 —> Area preserved

: Confomal
. Equiareal




Metric Distortion (cont.)

Singular values of any matrix A are the square roots of
the eigenvalues of the matrix ATA

. o (R b
Look at Jf Jf in Jf: (fti)(fu Iv) :If: (F G)

The symmetric 2*2 matrix's eigenvalues:
Mo =3((E+G) £ V4F? + (E — G)?)

f is isometric or length-preserving <= o1 =09=1

f is conformal or angle-preserving <= o1 = 09

f is equiareal or area-preserving <= o109 =1

= A=A =1,

—

—

A1 = Ag,
Ay = 1.

isometric <=  conformal + equiareal
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Metric Distortion Example

(1) Cylinder
0 parameterization: f(u,v) = (cosu,sinu,v)
: cosu 0
Q Jacobian: J; = (—siuu (])
0 1

a first fundamental form: 1; = ([1] [1])

Q eigenvalues: A =1, Ao =1

Isometry
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Metric Distortion Example

(2) Hemisphere (stereographic)

Q parameterization: f(u,v) = (2ud, 2vd, (1 — u? — v*)d) where d = Tu
2d—Aud?  —duvd?

Q Jacobian: J; = ( —4uvd? 20’.4@20’.2)

—dud®  —dvd?
. . _(4d® 0
O first fundamental form: 1, = ( 0 4d2)
0 eigenvalues: Ay = 4d*, Ny = 4d?
Conformal

1

2—|—'U2
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Metric Distortion Example

(3) Hemisphere (orthographic)

: ORI o) — (1 0 L S
d parameterization:  f(u,v) = (u,v,5) where d N
_ 10
4 Jacobian: J; = ( 0 1 )
—ud —vd

14+u2d?®  wuvd? )

O first fundamental form: 1 = ( wod?  14u2d?

0 eigenvalues: A\ =1, Ao = d?

Not conformal, not equiareal
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Minimizing Metric Distortion
Overall distortion of a parameterization f can be generally defined by:

E(f)= fE(Jl(u v), o9, v) dudz/& (€2)
9

Minimizing E(f) over the space of all admissible parameterizations > best
parameterization

Discretely, we can look at linear function f:
from parameter ’rr'iangles t € Q0 to surface triangles 7' € 7
D ILERIPYD ST
te2 tell
Or we can look at inverse function g=f!: of =1/0} and o3 = 1/0}

ZEO'l o3) /24

reT
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Minimizing Metric Distortion (cont.)

T

U g P2
U, K \

P+
UO f‘t
Po
A(t) = 5 det(ur — up, ug — up) A(T) = 5ll(py — po) X (P2 — Po)|
) s R~ ..
(Ui)‘) + (Ué)z - A(t)? Z Hui+2 - u-z’-+1H2 [(pz'—H —DPi)  (Pigo _pf.)}
VY=o
ot AT
27 AW
P 9 1 &
(01) +(03)" = AT D tiss = wia[P[(piy — i) - (Piyo — P2
: i=0
L Alt
rlof = 4




Minimizing Metric Distortion (cont.)

Discrete Harmonic Map Ep(oy, 09) =
[Pinkall EM'93] [Eck SI&'95]:

Least Square Conformal Map
[Desbrun SIG'02] [Levy SIG02]:

(0" + 02%)

bo | =

‘)

=

1
Ec(oy,09) = 5(01 — 09)

Ep(oy,09) — Ec(01,09) = 0109

_ _ A(Q
m— i)~ Eclo) = > A1)/ 3 AT = 4o

teQ TeT T)

Therefore, if we take a conformal map, fix its boundary and thus the area of the para-
meter domain €2, and then compute the harmonic map with this boundary, then we get
the same mapping, which illustrates the well-known fact that any conformal mapping is

harmonic, too.




Minimizing Metric Distortion (cont.)

Conformal Mapping: > try to make o1 = o2

Ec(oy,09) = (o — 0)° En(o1,03) = (01 + 02°)
_ 2 2
Another one: MIPS energy Ey(or. 09) = g L0201 +.ag
[Hormann 02] 29 7172

O Advantage: (1) symmetry:  Ey(ol, ol) = Ey(ol, ob)
(2) bijectivity
O Disadvantage: non-linear
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Many more about mapping...

Free-boundary mapping
Deforming the metric
Global parameterization
Inter-shape mapping

O 0O 0O O

594
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