Lecture 4,5

Geometry of Curves and Surfaces




e

Basic Geometry of Curves and Surfaces

ad Start with geometric properties of smooth curves and
surfaces

A Then discuss their computation on polygonal meshes

For more properties or proofs of these geometric concepts,
refer to standard differential geometry textbooks :

e.g. [do Carmo 76: Differential Geometry of Curves and
Surfaces, Prentice Hall]




Curves

A Consider smooth planar curves: differentiable 1-manifolds
embedded in R?
QParametric form: x: [a,b] = R? with x(u) = (z(u),y(u))?
u € la,b] C R
0 Coordinates x and y are differentiable functions of u

0 Tangent vector x’(u) to the curve at a point x(u) is defined as the
first derivative of the coordinate function: x'(u) = (z'(u),y'(u))?

> The trajectory of a point is a curve parameterized by time (u=t)
the tangent vector x’(t) > the velocity vector at time t

0O Assume parameterization to be regular, s.t.x'(u) # 0 for allu € [a, b]
0 A normal vector n(u) at x(u) can be computed as
n(u) = x"(u)*"/[[x"(u)*|

where + denotes rotation by 90 degree ccw.
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Parameterization of a Curve

> A curve is the image of a function x
0 Same curve can be obtained with different parameterizations:
- same trajectory using different speeds

QO With different parameterizations x; and x,, we usually have
x1(u) # x2(u) on agiven u
O Different representations for a same shape

a Can reparameterize a curve using a different mapping function
with g: u=2t, x,(0)=2>x,(t)

0 We want to extract properties of a curve that are independent of
its specific parameterization, e.qg. length, curvature...




Arc Length Parameterization

Q Curve length: (¢, d) = fj ||x’ (u)||du

O A unique parameterization that can be defined as a length-
preserving mapping, i.e., isometry, between the parameter interval
and the curve using the parameterization

s = s(u) = / |x"(¢)]|dt.

a Arc length parameterization x(s) :
a the length of the curve from x(0) to x(s) is equal to s
d independent of specific representation of the curve, maps the
parameter interval [a,b] to [O,L]
Q Any regular curve can be parameterized using arc length (isometry)
- ideal parameterization, many computations simplified
- doesnt work for surfaces (later)
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Surfaces

a Consider a smooth surface patch: differentiable 2-manifold
embedded in R? (u, v)

0 Parametric form: x(u,v) = | ylu,v) |, (uw,v)€NC R?
z(u,v)
where x,y,z are differentiable functions in u and v,
a Scalars (u,v) are called coordinates in parameter space

OIn the following, we use a function x or f to represent a surface

O Like tangent vectors of curves determine the metric of the curve,
O The first derivatives of X determines the metric of the surface




Surface Example (1)

2 Simple linear function:
parameter domain: Q= {(u,v) € R?: u,v € [0,1]}
surface: S = {(z,y,2) eR?: 2,9,z € [0,1],2+y =1}
parameterization: f(u,v) = (u, 1 — u,v)

inverse: [ 1(z,y,z) = (z, 2)




Surface Example (2)

Q Cylinder:
parameter domain: Q= {(u,v) € R* : u € [0,27),v € [0,1]}
surface: S = {(z,y,2) eR*: 2 +¢y* =1,z € [0,1]}
parameterization: f(u,v) = (cosu,sinu, v)

inverse: f~1(x,y, z) = (arccosz, 2)

=11 [ =




Surface Example (3)
O Hemisphere (orthographic definition) :

parameter domain: Q= {(u,v) € R*:u* +v? < 1}
surface: S ={(z,y,2) eER3:2°+9y*+22=1,2> 0}

parameterization: f(u,v) = (u,v,v/1 — u? — v?)

inverse:  fl(z,y,z) = (z,v)




Surface Example (4)

QO Hemisphere (stereographic definition) :

parameter domain: Q= {(u,v) € R?: u? + 0% < 1}

surface: S ={(z,y,2) eR*: 2?2 +9y?+ 22 =1,z > 0}
. = - ¥ 2 I 1— 2__n2
parameterization:  f(u,v) = (3 +u‘2‘fw.2. . +u2‘ e I +Z.2 +i‘2)
inverse:  f Y (a,y

]
/
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Reparameterization

O Example (3) and (4):
- There can be more than one parameterizations of S over

Q Any bijection ¢ : Q —

induces a reparameterization: ¢ = f oy

O Exercise: write the reparameterization o(u,v) between (3) and (4)

(3) flu,v) = (u,v, V1 —u2 — v2)
¥ plu,v) =7

p N\ — 2u 2u 1—u?—v2
(4) f(“' !) o (l+u:’—|—t'2' 1+u2+4v2° 'l-l-u:’-l—f'?-)

(,)_flof_[ ! y ]
o T+4V1-U2—Vv? 14++/1—u?—V?

Like curves, finding a good parameterization for surfaces
- find a good reparameterization

- /
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Tangent Plane

A Two partial derivatives:

ox ox

m(?i—{_’]j'?f[_}) and  x,(up,vp) := a(uu,’uﬂ)

are the 2 tangent vectors of the two iso-parameter curves:
Cu(t) =x(up +t,v9) and Cy(t) = x(up,ve + 1)

X (Ug, Vo) 1=

O Assuming a regular parameterization, ie., x, x x, # 0
O The tangent plane at this point is spanned by x,, and x,

O The surface normal vector is orthogonal o both tangent vectors and can

be computed as Xy X Xy
n —
qu X XT;H
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Tangent Plane (Examples)

3 Surface example (3)

QdGiven a point (u,v) on the orthographic hemisphere, to compute
the tangent plane and normal vector:

f(u,v)=(u,v, «,-"'I'l —u’ —vz) S, v)=(1,0,— _if )

| 2 2
V]I—u" —v

—V f q 9
)= QL) ()= vl ) = (532

0 Surface example (4) (exercise)

QGiven a point (u,v) on the stereographics hemisphere, to compute
the tangent plane and normal vector.

3 The computed Normal and tangent plane are independent of
the parameterization (following our intuition)

-
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Directional Derivatives

O Consider the straight line passing (ug, vp)
(u,v) = (up,vo) + tw
and a direction vector w = (uy, v,,)" defined in parameter space
QO Its corresponding curve on the surface is

Cw(t) = x(up + tuy,vo + tuy,).

0 The directional derivative w of x at (uo,v0) relative to the
direction w is defined to be the tangent to
Cw at t = 0, given by w = 9C(t)/0t

> The parameterization maps a parametric velocity vector w to
a vector w on tangent plane: w = Jw

e D
Where J: Jacobian Matrix of x : gu gv

J = ?3 a_g — [Xu; Xv}
9z 0z
K | Ju ov
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First Fundamental Form

a J encodes the metric of the surface, namely, it allows
measuring how angles, distances, and areas are transformed
by the mapping.

O Let Wi, W2 be two unit direction vectors in the parameter
space

a The cosine of the angle on the surface between them is:
W?Wg = (J\Xﬂ’l)T (Jﬁfg) = V_V,f (JTJ) ﬁfg

0 The matrix product is known as the first fundamental form:

_ T o JFH. ' ‘frr fn ' fyi-- _ E F
t=Jr4= (.ft 'fu jlfl) (F (?F)
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First Fundamental Form (cont.)

0 The first fundamental form |

ODetermines the squared length of a tangent vector
w2 = %7 Tw

QUsed to measure the length of a curve x(t) = x(u(t))

(image of a planar regular curve: u(t) = (u(t),v(t)) )

1) The tangent vector of the curve:
dx(u(t))  Oxdu N Ox dv

dt ou dt Ov dt
2) So the length: i(a,b) of x(u(t)) is

b
[(a,b) /\/utv (ug, ve) L dt

- / VB + 2Fu,v, + Guidt.

= XUt + XoUt




First Fundamental Form (cont.)

0 Used to measure the surface area: 4 // /@etMdudy — // /56 — Fedude.

1 Area element: dA = [, x f. | dudv = x(f; L f)—(f - f.) dudv = VEG - F*dudv

O Example: area of a unit hemisphere (ohrographic parameterization)

1 1-—v2
' 1
i N ] f'l_ i i A Al N i -
flu.v) = (u,v,vV1 —u2 —v?) A(S) = / / A2 o du dv
1 I . /1—p2
2 _
EG-F =+ ! Vi—?
l—u™ —v - u
= arcsin 3 o dv
v ! v1—v2

QI allows measuring angles, distances, and areas - a useful geometric tool.
\EISome’rimes denoted by the letter G and called the metric tensor. y
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Metric Distortion

3 On a surface point f(u,v)

0 A displacement on the parametric domain (A, Av)

Q- anew point f(u+ Au, v+ Av)

0 Approximated by 15t order Taylor expansion:

.

flu+ Au, v+ Av) = flu. v) + fulu, ©)Au + fo(u, v)Av

Planar local region: the vicinity of u = (u.v)

* J s ( =
Region on tangent plane T atp = flu.v) €

Circles around u

-
51| ellipses around p

flu+ Au, v+ Av) =p+ J(w) (if) where J;

= (fu fv) is the Jacobian of f

f ¢
~T Ny
A
Q‘ \;\I: (I p 1\
Q | T, [~k
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Metric Distortion (cont.)

f
i T (—\fv
. U —I— Au, v _+_ Av) = p+ ' f U ,_\1:‘
Q T,,\ f,

Decompose the Jacobian (3*2) matrix by SVD:

ap O .

']f —USVI = U ( 0 0_2) V1

- / 0 0 \
unitary, orthonormal (7 € R**? l V € R2x2
singular values oy = o9 > 0
v, L, Ry U
2
‘u &N oLy Pl
K oy U,

P
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Metric Distortion (cont.)

LV 3 u_
V2 re 'X - ‘2 B -~
'/u@ 41N T P
>V U 9% \
Q Q Q T,
- ) b A
"""*—-.___________\_‘_\__- . f B _—_______'______——'"'"-_-—-’
. ogp 0 .
,]f — UV = ( 0 52) e
_________________________________ 0 0
(1) 2D Rotation V - planar rotation around u;
(2) Stretching matrix 3, - stretches by factors ando: intheuand v
directions;
(3) 3D rotation U - map the planar region onto the tangent plane

Tiny sphere with radius-r = ellipse with semi-axes of length ro; and roy

o, =0, —> Local scaling, circles to circles . Confomal
0,6,=1 —> Area preserved . Equiareal




Anisotropy

3 Under the Jacobian matrix, a vector w is transformed into a
tangent vector w

a A unit circle - an ellipse (called anisotropy ellipse)
0 The axes of the ellipse: e; = J&, and ey = J&y;

0O The lengths of the axes: o, = /A1 and 03 = v/ As.
singular values of the Jacobian matrix J

o =\ 1/2(E +G) + /(E - G2 + 4F7,

oy = \/1/2(13 +G) = (E - G)? + 4F2,
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Metric Distortion Example

(1) Cylinder
0 parameterization: f(u,v) = (cosu,sinu, v)
. cosu U
Q Jacobian: Jf = ( —sinu u)
0 1

a first fundamental form: 1; = ([l, T)

Q eigenvalues: A =1, A =1
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Metric Distortion Example

(2) Hemisphere (stereographic)

a parameterization:

) 2(:!—41.;2(1’.3 —..lufl_rdz
d Jacobian: Jp = | —duwwd? 2d—12d?

—_11;_d2 — ..'I.:_rn",'2
0 first fundamental form: 1, = (’1“""2 0 )
- 0 4d?
Q eigenvalues: Ny = 4d?, Ny = 4d”
Conformal

)

w,v) = (2ud, 2vd. (1 —u* — v3)d
Ju,v) = (2ud, 2vd.

1

where d = Touzrof

S
T
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Metric Distortion Example

(3) Hemisphere (orthographic)

d parameterization:  f(u,v) = (u, v, é)

I 0
d Jacobian:  J; :( 0 1 )

—ud —uwud

O first fundamental form: 1

( 14+u?d?  uwvd? )
uvd?  1+v2d?
1

)
, Ao =d”

J eigenvalues: A\ =

where
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2 Order Derivatives —

Surface Curvature: Normal Curvature

3 How curved a surface is on a point > look at the curvature of
curves embedded in the surface

d At a surface point p € S (parameter: t = (u;,v,)7 )
QaPick a tangent vector t = wuix,, + v4X, }

Q0 Get the surface normal vector n Defermines a plane

Normal curvature H’-n(E) at p = curvatur planar curve created by
intersection of the surface and the plane

normal vector

where IT denotes the 2nd
fundamental form:

T T
I — [8 f] L Xuut Xy
f g xIn xIn

uv

surface

tangent vector

=

®) t'me eu? + 2fugv; + gu?

i H--n_ — — .
normal section ETIE Euf 19 F’u-tvt n G’U? ;
. 4

/
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Surface Curvature: Principal Curvatures

0 The curvature properties of the surface

» Looking at all normal curvatures from rotating the tangent vector

around the normal at p o ) )
t Lt  euy +2fuv + go;

O The rational quadratic function of fin(t) = tf1t Eu? +2Fwv; + G’
has 2 distinct extremal values - principal curvatures
(maximum curvature K1 and minimum curvature k2 )

Ag! 7& A2 12 R1 = R2
max/min curvature Isotropic
> curvature

2 corresponding
principal directions

7 /L

|
AN
D

L — Umbilical points Y
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Euler Theorem and Curvature Tensor

0 Relates principal curvatures to the normal curvature
kn(t) = K1cos® 1) + kosin® 1,

0 Surface curvature encoded by two principal curvatures
O Any normal curvature is a convex combination of them

2 Curvature Tensor C
0 A symmetric 3*3 matrix with eigenvalues K1, K2, 0
and corresponding eigenvectorst1, t2, n
0 Computed by

C=PDP-!, where P = [t|,t,n] and D = diag(x1, k2, 0)
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Mean and Gaussian Curvature

0 Two other extensively used curvatures:

0 Mean curvature H: the average of the principal curvatures
0 Gaussian curvature K: the product of the principal curvatures

— K:Hlfﬁg

Widely use as local descriptor to analyze properties of surfaces

<0

Another example: used for visual inspection in computer—aided geometric design.

Left: mean curvature; right: Gaussian curvature.
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Intrinsic Geometry

d Intrinsic Geometry:
0 About the shape itself, not about its representation and location

O Properties that can be perceived by 2D creatures that live on it
(without knowing the 34 dimension)

> in differential geometry: properties that only depend on the
first fundamental form (e.g. length and angles of curves on the
surface, Gaussian curvature)

> Invariant under isometries

0 Extrinsic Geometry:

0 depends not only on the metrics but also the embedding of the
surface

A Could change under isometries
Qde.g. Mean curvature
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Discrete Geometric Computations

0 Some integral computations on triangle meshes are
straightforward:

QOLength of a discrete curve
Lengths of edge segments

0 Area of a discrete surface patch
Areas of triangle meshes

0 Volume of a solid object
Volumes of tetrahedral meshes
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Discrete Differential Operators

3 Slightly more difficult:

Owe have discussed the differential properties on a differentiable
surface (e.g. at least existence of 2" derivatives)

O How to compute them on Polygonal meshes which represent
piecewise linear surfaces

> to compute the approximations of the differential properties of
the underlying surface

0 General idea : o compute discrete differential properties as
spatial averages over a local neighborhood N(x) of a point x on
the mesh




e
Local Averaging Region

ad A straightforward approximation:
O x 2 mesh vertex v,
O N(x) = one-ring (n-ring) neighborhoods N, (v;)
O Size of local neighborhoods - stability and accuracy of evaluation

O Bigger: more smoothing, more stable against of noise
0 Smaller: more accurately capture fine-scale variations; preferable for clean data

0 More accurate approximation
0 Barycentric cell: connect triangle barycenters + edge midpoints
O Voronoi cell: triangle circumcenters + ...
O Mixed-voronoi cell: midpoint of edge opposing obtuse angle on center vertex + ...

Barycentric cell Voronoi cell Mixed Voronoi cell




Normal Vectors

1 Many operations in computer graphics require normal vectors (per
face or per vertex), e.g. phone shading

O Face Normal vector: the normalized cross-product of two triangle
edges: o -x)xGu-x)
(5 = xa) % (xk = %4

d Vertex Normal: (spatial averages of normal vectors in a local one-
ring neighborhood S rexs vy @ n(T)

HZTGM (v) OT “(T)H

QO Different weights used:
Constant weights: @7 = 1 (efficient, not good on irregular meshes)
Triangle area: o = |T'| (efficient, may be problematic on obtuse triangles)
Incident triangle angles: ap = 071 (usually natural, slightly expensive)




Gradients (1s' order derivatives)

O A piecewise linear function f defined on vertex
fvi) = f(xi) = f(w) = fi
0 The function is interpolated linearly within the triangle (xi,x;,xx)
f(u) = fiBi(u) + f;B;(u) + frBi(u)
where B;(u) is the barycentric coordinate
3 In this triangle: Vf(u) = f;VB;(u) + f;VB;(u) + fxVBr(u) (1)
0 Partition of unity > VB,(u) + VB, (u) + VBg(u) = 0 *
1,2 Vi) = (f; = fi)VBj(u) + (fi = fi)VBg(u)

(U; —d)x (U, —U;) 0,)"

_ (Uk _Uj)
2AT # VBi(u)_ 2AT

Bi (U) —

O The gradient is constant in each triangle

-




Laplace-Beltrami Operator and Curvature
(2nd order derivatives)

0 Review Laplace operator in continuous case:
0 Defined as the divergence of the gradient: A =V? =V .V
A For a 2-parameter function f(u,v)

> In Euclidean space: Af = divVf = div ({(}*) = fuu + fou

> On surfaces: Laplace-Beltrami operator Asf =divs Vs,

(imagine a gradient vector field on a surface, then think about
its divergence)

0 Applied to the coordinate function x of the surface

0 The Laplace-Beltrami operator = mean curvature normal

([do Carmo 76])
Asx = —2Hn.

N

Often, we directly write it as A for simplicity




Discrete Curvature

1) Discrete Mean Curvature: 1
H(v;) = §H5Xi||

2) Discrete Guassian Curvature [Mayer et al. 03]:

K(v,) — Aii (27? S 9,

3) Principal Curvature:

H;ljg(’vi) = H(’Ul) + \/H(Uﬁ)z — K(’Ui)

Recall that:

K1 + K2

H = K:f’ilﬁlg
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Discrete Laplace-Betrami Operator (1)

3 Uniform Laplacian ([Taubin 95], suitable for uniformly

sampled surfaces)
1
Af(vt) — |N1(U?;)‘ Z (fj _ f‘i)a

v; EN(vi)

QApplied to the coordinate function x:

a vector pointing from the center vector to the average of
the one-ring vertices

dNot a good approximation for irregular triangle meshes

E.9. On a planar triangle mesh, this vector is often not
zero. But according to its mean curvature, it should be.
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Discrete Laplace-Beltrami Operator (2)

0 Cotangent Formula (more accurate, most widely used)

A To integrate the divergence of the gradient over a local
averaging domain Ai,

2 by Divergence Theorem

/4 divF(u)dA — /M Flu)  n(u)ds

where n is the outward pointing unit normal

for Lapalacian we have:

5 /4 Af(u)dA — /Aidiva(u)dA
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Discrete Laplace-Beltrami Operator (2)

Now consider this integration on triangle mesh:

The integral on one triangle: (the boundary of the local Voronoi region
passes through the midpoints a and b of the two triangle edges,
gradient in a triangle is constant > equals integral through ab)

/ Vf(u)-n(u)ds = Vf(u)-(a—b):
JOA;NT
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Discrete Laplace-Beltrami Operator (2)
Plugging in the gradient equation, we get

' (x; —xp)" - (x5 — xp)+
] Vi) -n(a)ds = (f; — fi)— 1A ’
dA;NT T
(x5 —xa)™" - (x5 — X))
+ — Ji
(fx = fi) 1A,

Let 5, 7, denote the inner triangle angles at vertices v;, vg, respectively.
Since Ar = 3siny;|[x; — x|l [|x; —xkl| = 5 sinye % — x| Ix; — xx,
and cosvy; = ﬁ? :?m? ::ﬂ and cosy, = I(If::?ci?llﬁj::il)l’ this expression
simplifies to | |

1
[ Vs n(a)ds = 5 (eotawlf; = £) + ety (i - 1),
8A;NT




Discrete Laplace-Beltrami Operator (2)

The final integration over the entire averaging region:

/A,Aﬂu)dA B % Y (cotay; + cot B ;) (f; — fi),

v v €N(v;)

In other words:

Af(w) = o 3 (cotau +cothiy) (fy — fi).

Y useN(vi)

For more details, check: [ “Discrete
Differential-Geometry Operators for
Triangulated 2-Manifolds,” by Meyer,
Desbrun, Schroder, Barr, 2003]




