
Lecture 4,5 
Geometry of Curves and Surfaces 



Basic Geometry of Curves and Surfaces 

 Start with geometric properties of smooth curves and 
surfaces 

 Then discuss their computation on polygonal meshes 

 

For more properties or proofs of these geometric concepts, 
refer to standard differential geometry textbooks : 

e.g. [do Carmo 76: Differential Geometry of Curves and 
Surfaces, Prentice Hall] 

 



Curves 

 Consider smooth planar curves: differentiable 1-manifolds 
embedded in R2 

Parametric form:                          with 

Coordinates x and y are differentiable functions of u 

Tangent vector x’(u) to the curve at a point x(u) is defined as the 
first derivative of the coordinate function: 

 The trajectory of a point is a curve parameterized by time (u=t) 
the tangent vector x’(t)  the velocity vector at time t 

Assume parameterization to be regular, s.t.               for all 

A normal vector n(u) at x(u) can be computed as 

 

 where     denotes rotation by 90 degree ccw. 



Parameterization of a Curve 

 A curve is the image of a function x 

 Same curve can be obtained with different parameterizations:  
  same trajectory using different speeds 

 With different parameterizations x1 and x2, we usually have  

                               on a given u 

 Different representations for a same shape 
 Can reparameterize a curve using a different mapping function 
     with g: ut ,    x1(u)x2(t) 

 We want to extract properties of a curve that are independent of 
its specific parameterization, e.g. length, curvature… 

 

 



Arc Length Parameterization 

 Curve length:     

 A unique parameterization that can be defined as a length-
preserving mapping, i.e., isometry, between the parameter interval 
and the curve using the parameterization 

 Arc length parameterization x(s)  : 
 the length of the curve from x(0) to x(s) is equal to s 

 independent of specific representation of the curve, maps the 
parameter interval [a,b] to [0,L] 

 Any regular curve can be parameterized using arc length (isometry) 

  ideal parameterization, many computations simplified  

  doesn’t work for surfaces (later) 



 Consider a smooth surface patch: differentiable 2-manifold 
embedded in R3 

Parametric form: 
 

   where x,y,z are differentiable functions in u and v,  

Scalars (u,v) are called coordinates in parameter space 
In the following, we use a function x or f to represent a surface 

Surfaces 

 Like tangent vectors of curves determine the metric of the curve,  

 The first derivatives of X determines the metric of the surface 



Surface Example (1) 



Surface Example (2) 



Surface Example (3) 



Surface Example (4) 



Reparameterization 

Like curves, finding a good parameterization for surfaces  
     find a good reparameterization 
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Tangent Plane 

 Two partial derivatives: 
 

 
   are the 2 tangent vectors of the two iso-parameter curves: 

 Assuming a regular parameterization, i.e.,  

 The tangent plane at this point is spanned by 

 The surface normal vector is orthogonal to both tangent vectors and can 
be computed as  



Tangent Plane (Examples) 

 Surface example (3) 
Given a point (u,v) on the orthographic hemisphere, to compute 

the tangent plane and normal vector: 

 

 Surface example (4)  (exercise) 
Given a point (u,v) on the stereographics hemisphere, to compute 

the tangent plane and normal vector. 

 
 The computed Normal and tangent plane are independent of 

the parameterization (following our intuition) 



Directional Derivatives  

 Consider the straight line passing           

 

    and a direction vector                      defined in parameter space 

 Its corresponding curve on the surface is 

 The directional derivative                         relative to the 
direction     is defined to be the tangent to 

 

 The parameterization maps a parametric velocity vector     to 
a vector     on tangent plane: 

Where J: Jacobian Matrix of x : 



First Fundamental Form 

 J encodes the metric of the surface, namely, it allows 
measuring how angles, distances, and areas are transformed 
by the mapping. 

 Let     ,      be two unit direction vectors in the parameter 
space 

 The cosine of the angle on the surface between them is: 

 
 

 The matrix product is known as the first fundamental form: 



First Fundamental Form (cont.) 

 The first fundamental form I 

Determines the squared length of a tangent vector  

 

Used to measure the length of a curve  

(image of a planar regular curve:                            ) 

1) The tangent vector of the curve: 

 

 

2) So the length:                           is 

 



First Fundamental Form (cont.) 

 Used to measure the surface area: 

I allows measuring angles, distances, and areas  a useful geometric tool.  
Sometimes denoted by the letter G and called the metric tensor. 

 Example: area of a unit hemisphere (ohrographic parameterization) 



Metric Distortion 

On a surface point f(u,v) 
A displacement on the parametric domain 

 a new point 

Approximated by 1st order Taylor expansion: 

 



Metric Distortion (cont.) 





Anisotropy 

 Under the Jacobian matrix, a vector     is transformed into a 
tangent vector  

 A unit circle  an ellipse (called anisotropy ellipse) 

The axes of the ellipse: 

The lengths of the axes: 

 singular values of the Jacobian matrix J 

 



 



 





2nd Order Derivatives — 
Surface Curvature: Normal Curvature 

How curved a surface is on a point  look at the curvature of 
curves embedded in the surface 

 At a surface point             (parameter:                     ) 
Pick a tangent vector 

Get the surface normal vector n Determines a plane 

Normal curvature  = curvature of planar curve created by 
intersection of the surface and the plane 

where II denotes the 2nd 
fundamental form: 



Surface Curvature: Principal Curvatures 

 The curvature properties of the surface  
 Looking at all normal curvatures from rotating the tangent vector 

around the normal at p 

 The rational quadratic function of 

      has 2 distinct extremal values  principal curvatures 

       (maximum curvature      and minimum curvature     ) 

Umbilical points 

max/min curvature        
 
2 corresponding 
principal directions 

Isotropic 
curvature  



Euler Theorem and Curvature Tensor 

 Relates principal curvatures to the normal curvature 

 Surface curvature encoded by two principal curvatures 

 Any normal curvature is a convex combination of them 

 Curvature Tensor C 

 A symmetric 3*3 matrix with eigenvalues 

       and corresponding eigenvectors   

 Computed by 

C=PDP-1,  where                         and 



Mean and Gaussian Curvature 

 Two other extensively used curvatures: 
Mean curvature H: the average of the principal curvatures 

Gaussian curvature K: the product of the principal curvatures 

Widely use as local descriptor to analyze properties of surfaces 

Another example: used for visual inspection in computer-aided geometric design. 

Left: mean curvature;  right: Gaussian curvature. 



Intrinsic Geometry 

 Intrinsic Geometry:  
About the shape itself, not about its representation and location 
Properties that can be perceived by 2D creatures that live on it 

(without knowing the 3rd dimension) 
 in differential geometry: properties that only depend on the 

first fundamental form (e.g. length and angles of curves on the 
surface, Gaussian curvature) 

 Invariant under isometries 

 
 Extrinsic Geometry:  
depends not only on the metrics but also the embedding of the 

surface 
Could change under isometries 
e.g. Mean curvature 



Discrete Geometric Computations 

 Some integral computations on triangle meshes are 
straightforward: 
 
Length of a discrete curve  
Lengths of edge segments  

 
Area of a discrete surface patch 
Areas of triangle meshes  

 
Volume of a solid object 
Volumes of tetrahedral meshes 



Discrete Differential Operators 

 Slightly more difficult: 
we have discussed the differential properties on a differentiable 

surface (e.g. at least existence of 2nd derivatives) 

How to compute them on Polygonal meshes which represent  
piecewise linear surfaces 

 to compute the approximations of the differential properties of 
the underlying surface 

General idea : to compute discrete differential properties as 
spatial averages over a local neighborhood N(x) of a point x on 
the mesh 

 



Local Averaging Region 
 A straightforward approximation:  

 x   mesh vertex vi 

 N(x)  one-ring (n-ring) neighborhoods Nn(vi) 

 Size of local neighborhoods  stability and accuracy of evaluation 
 Bigger: more smoothing, more stable against of noise 
 Smaller: more accurately capture fine-scale variations; preferable for clean data 

 More accurate approximation 
 Barycentric cell: connect triangle barycenters + edge midpoints 
 Voronoi cell: triangle circumcenters + … 
 Mixed-voronoi cell: midpoint of edge opposing obtuse angle on center vertex + … 



Normal Vectors 
 Many operations in computer graphics require normal vectors (per 

face or per vertex), e.g. phone shading 
 Face Normal vector: the normalized cross-product of two triangle 

edges: 
 

 Vertex Normal: (spatial averages of normal vectors in a local one-
ring neighborhood) 

 
Different weights used: 

 Constant weights:                 (efficient,  not good on irregular meshes) 
 Triangle area:                    (efficient, may be problematic on obtuse triangles) 
 Incident triangle angles:                   (usually natural, slightly expensive) 



Gradients (1st order derivatives) 

 A piecewise linear function f defined on vertex 

 The function is interpolated linearly within the triangle 

where Bi(u) is the barycentric coordinate 

 In this triangle: 

 Partition of unity  
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 The gradient is constant in each triangle 



Laplace-Beltrami Operator and Curvature 
 (2nd order derivatives) 

 Review Laplace operator in continuous case: 
Defined as the divergence of the gradient:  

For a 2-parameter function f(u,v) 

 In Euclidean space:  

 

On surfaces: Laplace-Beltrami operator 

    (imagine a gradient vector field on a surface, then think about 
its divergence) 

 

 
 Applied to the coordinate function x of the surface 
The Laplace-Beltrami operator = mean curvature normal  

 ([do Carmo 76]) 

Often, we directly write it as ∆ for simplicity 



Discrete Curvature 

1) Discrete Mean Curvature: 

2) Discrete Guassian Curvature [Mayer et al. 03]: 

3) Principal Curvature: 

Recall that:   



Discrete Laplace-Betrami Operator (1) 

 Uniform Laplacian ([Taubin 95], suitable for uniformly 
sampled surfaces) 

 

 

 

Applied to the coordinate function x:   

   a vector pointing from the center vector to the average of 
the one-ring vertices  

Not a good approximation for irregular triangle meshes 

E.g.  On a planar triangle mesh, this vector is often not 
zero.  But according to its mean curvature, it should be. 

 



Discrete Laplace-Beltrami Operator (2) 

 Cotangent Formula (more accurate, most widely used) 

 To integrate the divergence of the gradient over a local 
averaging domain Ai,  

 by Divergence Theorem 

 

 

where n is the outward pointing unit normal 

     

 

 

 for Lapalacian we have: 



Discrete Laplace-Beltrami Operator (2) 

Now consider this integration on triangle mesh: 

The integral on one triangle: (the boundary of the local Voronoi region 
passes through the midpoints a and b of the two triangle edges, 
gradient in a triangle is constant  equals integral through ab) 



Discrete Laplace-Beltrami Operator (2) 

Plugging in the gradient equation, we get 



Discrete Laplace-Beltrami Operator (2) 

The final integration over the entire averaging region: 

In other words: 

For more details, check: [ “Discrete 

Differential-Geometry Operators for 

Triangulated 2-Manifolds,” by Meyer, 

Desbrun, Schroder, Barr, 2003] 


