
Lecture 4,5 
Geometry of Curves and Surfaces 



Basic Geometry of Curves and Surfaces 

 Start with geometric properties of smooth curves and 
surfaces 

 Then discuss their computation on polygonal meshes 

 

For more properties or proofs of these geometric concepts, 
refer to standard differential geometry textbooks : 

e.g. [do Carmo 76: Differential Geometry of Curves and 
Surfaces, Prentice Hall] 

 



Curves 

 Consider smooth planar curves: differentiable 1-manifolds 
embedded in R2 

Parametric form:                          with 

Coordinates x and y are differentiable functions of u 

Tangent vector x’(u) to the curve at a point x(u) is defined as the 
first derivative of the coordinate function: 

 The trajectory of a point is a curve parameterized by time (u=t) 
the tangent vector x’(t)  the velocity vector at time t 

Assume parameterization to be regular, s.t.               for all 

A normal vector n(u) at x(u) can be computed as 

 

 where     denotes rotation by 90 degree ccw. 



Parameterization of a Curve 

 A curve is the image of a function x 

 Same curve can be obtained with different parameterizations:  
  same trajectory using different speeds 

 With different parameterizations x1 and x2, we usually have  

                               on a given u 

 Different representations for a same shape 
 Can reparameterize a curve using a different mapping function 
     with g: ut ,    x1(u)x2(t) 

 We want to extract properties of a curve that are independent of 
its specific parameterization, e.g. length, curvature… 

 

 



Arc Length Parameterization 

 Curve length:     

 A unique parameterization that can be defined as a length-
preserving mapping, i.e., isometry, between the parameter interval 
and the curve using the parameterization 

 Arc length parameterization x(s)  : 
 the length of the curve from x(0) to x(s) is equal to s 

 independent of specific representation of the curve, maps the 
parameter interval [a,b] to [0,L] 

 Any regular curve can be parameterized using arc length (isometry) 

  ideal parameterization, many computations simplified  

  doesn’t work for surfaces (later) 



 Consider a smooth surface patch: differentiable 2-manifold 
embedded in R3 

Parametric form: 
 

   where x,y,z are differentiable functions in u and v,  

Scalars (u,v) are called coordinates in parameter space 
In the following, we use a function x or f to represent a surface 

Surfaces 

 Like tangent vectors of curves determine the metric of the curve,  

 The first derivatives of X determines the metric of the surface 



Surface Example (1) 



Surface Example (2) 



Surface Example (3) 



Surface Example (4) 



Reparameterization 

Like curves, finding a good parameterization for surfaces  
     find a good reparameterization 
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Tangent Plane 

 Two partial derivatives: 
 

 
   are the 2 tangent vectors of the two iso-parameter curves: 

 Assuming a regular parameterization, i.e.,  

 The tangent plane at this point is spanned by 

 The surface normal vector is orthogonal to both tangent vectors and can 
be computed as  



Tangent Plane (Examples) 

 Surface example (3) 
Given a point (u,v) on the orthographic hemisphere, to compute 

the tangent plane and normal vector: 

 

 Surface example (4)  (exercise) 
Given a point (u,v) on the stereographics hemisphere, to compute 

the tangent plane and normal vector. 

 
 The computed Normal and tangent plane are independent of 

the parameterization (following our intuition) 



Directional Derivatives  

 Consider the straight line passing           

 

    and a direction vector                      defined in parameter space 

 Its corresponding curve on the surface is 

 The directional derivative                         relative to the 
direction     is defined to be the tangent to 

 

 The parameterization maps a parametric velocity vector     to 
a vector     on tangent plane: 

Where J: Jacobian Matrix of x : 



First Fundamental Form 

 J encodes the metric of the surface, namely, it allows 
measuring how angles, distances, and areas are transformed 
by the mapping. 

 Let     ,      be two unit direction vectors in the parameter 
space 

 The cosine of the angle on the surface between them is: 

 
 

 The matrix product is known as the first fundamental form: 



First Fundamental Form (cont.) 

 The first fundamental form I 

Determines the squared length of a tangent vector  

 

Used to measure the length of a curve  

(image of a planar regular curve:                            ) 

1) The tangent vector of the curve: 

 

 

2) So the length:                           is 

 



First Fundamental Form (cont.) 

 Used to measure the surface area: 

I allows measuring angles, distances, and areas  a useful geometric tool.  
Sometimes denoted by the letter G and called the metric tensor. 

 Example: area of a unit hemisphere (ohrographic parameterization) 



Metric Distortion 

On a surface point f(u,v) 
A displacement on the parametric domain 

 a new point 

Approximated by 1st order Taylor expansion: 

 



Metric Distortion (cont.) 





Anisotropy 

 Under the Jacobian matrix, a vector     is transformed into a 
tangent vector  

 A unit circle  an ellipse (called anisotropy ellipse) 

The axes of the ellipse: 

The lengths of the axes: 

 singular values of the Jacobian matrix J 

 



 



 





2nd Order Derivatives — 
Surface Curvature: Normal Curvature 

How curved a surface is on a point  look at the curvature of 
curves embedded in the surface 

 At a surface point             (parameter:                     ) 
Pick a tangent vector 

Get the surface normal vector n Determines a plane 

Normal curvature  = curvature of planar curve created by 
intersection of the surface and the plane 

where II denotes the 2nd 
fundamental form: 



Surface Curvature: Principal Curvatures 

 The curvature properties of the surface  
 Looking at all normal curvatures from rotating the tangent vector 

around the normal at p 

 The rational quadratic function of 

      has 2 distinct extremal values  principal curvatures 

       (maximum curvature      and minimum curvature     ) 

Umbilical points 

max/min curvature        
 
2 corresponding 
principal directions 

Isotropic 
curvature  



Euler Theorem and Curvature Tensor 

 Relates principal curvatures to the normal curvature 

 Surface curvature encoded by two principal curvatures 

 Any normal curvature is a convex combination of them 

 Curvature Tensor C 

 A symmetric 3*3 matrix with eigenvalues 

       and corresponding eigenvectors   

 Computed by 

C=PDP-1,  where                         and 



Mean and Gaussian Curvature 

 Two other extensively used curvatures: 
Mean curvature H: the average of the principal curvatures 

Gaussian curvature K: the product of the principal curvatures 

Widely use as local descriptor to analyze properties of surfaces 

Another example: used for visual inspection in computer-aided geometric design. 

Left: mean curvature;  right: Gaussian curvature. 



Intrinsic Geometry 

 Intrinsic Geometry:  
About the shape itself, not about its representation and location 
Properties that can be perceived by 2D creatures that live on it 

(without knowing the 3rd dimension) 
 in differential geometry: properties that only depend on the 

first fundamental form (e.g. length and angles of curves on the 
surface, Gaussian curvature) 

 Invariant under isometries 

 
 Extrinsic Geometry:  
depends not only on the metrics but also the embedding of the 

surface 
Could change under isometries 
e.g. Mean curvature 



Discrete Geometric Computations 

 Some integral computations on triangle meshes are 
straightforward: 
 
Length of a discrete curve  
Lengths of edge segments  

 
Area of a discrete surface patch 
Areas of triangle meshes  

 
Volume of a solid object 
Volumes of tetrahedral meshes 



Discrete Differential Operators 

 Slightly more difficult: 
we have discussed the differential properties on a differentiable 

surface (e.g. at least existence of 2nd derivatives) 

How to compute them on Polygonal meshes which represent  
piecewise linear surfaces 

 to compute the approximations of the differential properties of 
the underlying surface 

General idea : to compute discrete differential properties as 
spatial averages over a local neighborhood N(x) of a point x on 
the mesh 

 



Local Averaging Region 
 A straightforward approximation:  

 x   mesh vertex vi 

 N(x)  one-ring (n-ring) neighborhoods Nn(vi) 

 Size of local neighborhoods  stability and accuracy of evaluation 
 Bigger: more smoothing, more stable against of noise 
 Smaller: more accurately capture fine-scale variations; preferable for clean data 

 More accurate approximation 
 Barycentric cell: connect triangle barycenters + edge midpoints 
 Voronoi cell: triangle circumcenters + … 
 Mixed-voronoi cell: midpoint of edge opposing obtuse angle on center vertex + … 



Normal Vectors 
 Many operations in computer graphics require normal vectors (per 

face or per vertex), e.g. phone shading 
 Face Normal vector: the normalized cross-product of two triangle 

edges: 
 

 Vertex Normal: (spatial averages of normal vectors in a local one-
ring neighborhood) 

 
Different weights used: 

 Constant weights:                 (efficient,  not good on irregular meshes) 
 Triangle area:                    (efficient, may be problematic on obtuse triangles) 
 Incident triangle angles:                   (usually natural, slightly expensive) 



Gradients (1st order derivatives) 

 A piecewise linear function f defined on vertex 

 The function is interpolated linearly within the triangle 

where Bi(u) is the barycentric coordinate 

 In this triangle: 

 Partition of unity  
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 The gradient is constant in each triangle 



Laplace-Beltrami Operator and Curvature 
 (2nd order derivatives) 

 Review Laplace operator in continuous case: 
Defined as the divergence of the gradient:  

For a 2-parameter function f(u,v) 

 In Euclidean space:  

 

On surfaces: Laplace-Beltrami operator 

    (imagine a gradient vector field on a surface, then think about 
its divergence) 

 

 
 Applied to the coordinate function x of the surface 
The Laplace-Beltrami operator = mean curvature normal  

 ([do Carmo 76]) 

Often, we directly write it as ∆ for simplicity 



Discrete Curvature 

1) Discrete Mean Curvature: 

2) Discrete Guassian Curvature [Mayer et al. 03]: 

3) Principal Curvature: 

Recall that:   



Discrete Laplace-Betrami Operator (1) 

 Uniform Laplacian ([Taubin 95], suitable for uniformly 
sampled surfaces) 

 

 

 

Applied to the coordinate function x:   

   a vector pointing from the center vector to the average of 
the one-ring vertices  

Not a good approximation for irregular triangle meshes 

E.g.  On a planar triangle mesh, this vector is often not 
zero.  But according to its mean curvature, it should be. 

 



Discrete Laplace-Beltrami Operator (2) 

 Cotangent Formula (more accurate, most widely used) 

 To integrate the divergence of the gradient over a local 
averaging domain Ai,  

 by Divergence Theorem 

 

 

where n is the outward pointing unit normal 

     

 

 

 for Lapalacian we have: 



Discrete Laplace-Beltrami Operator (2) 

Now consider this integration on triangle mesh: 

The integral on one triangle: (the boundary of the local Voronoi region 
passes through the midpoints a and b of the two triangle edges, 
gradient in a triangle is constant  equals integral through ab) 



Discrete Laplace-Beltrami Operator (2) 

Plugging in the gradient equation, we get 



Discrete Laplace-Beltrami Operator (2) 

The final integration over the entire averaging region: 

In other words: 

For more details, check: [ “Discrete 

Differential-Geometry Operators for 

Triangulated 2-Manifolds,” by Meyer, 

Desbrun, Schroder, Barr, 2003] 


