
Lecture 4-5Lecture 4-5
Transformations, Projections, and Viewing

Matrices for 3D Transformations
3D transformations 4 by 4 matrices, using homogeneous
coordinates

A point (x y z) points (Wx Wy Wz W) or (x/W y/W z/W 1)A point (x,y,z) points (Wx, Wy, Wz, W), or (x/W, y/W, z/W, 1)
W=0 corresponds to the point at infinity

o 3D Translation and Scaling are extended from 2D case

The positive direction of 3D Rotations in right-handed system:

straightforwardly.
o As for Rotation:
The positive direction of 3D Rotations in right handed system:

positive rotations = when looking from a positive axis toward the
origin, a 90 degree counterclockwise rotation will transform one
positive axis into the other, according to the following table:
Rotation axis = x positive rotation is from y to z

axis = y from z to x
axis = z from x to yy

Matrices for 3D Transformations
o 3D Rotation:

o Previous 2D rotation can be treated as ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

y
x

θθ
θθ

cossin
sincos

'
'

a 3D rotation about z axis
o i.e.

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡ −

=
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

00cossin
00sincos

'
'

y
x

y
x

θθ
θθ

o Rotation matrices

⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣ 11000
0100

1
' zz

⎥
⎤

⎢
⎡

0i0
0001

θθ ⎥
⎤

⎢
⎡

0010
0sin0cos θθ

about x and y axes:
⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣

−
=

1000
0cossin0
0sincos0

)(
θθ
θθ

θxR

⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣

−
=

1000
0cos0sin
0010

)(
θθ

θyR

1 All these basic transformation matrices have inverse therefore any affine 1. All these basic transformation matrices have inverse, therefore any affine
transformation composed by them does too.

2. Any number of rotation, scaling, and
translation matrices can be multiplied ⎥

⎥
⎤

⎢
⎢
⎡

232221

131211

y

x

trrr
trrr

Mtranslation matrices can be multiplied
together. The result always has the form: ⎥

⎥
⎥

⎦
⎢
⎢
⎢

⎣

=

1000
333231

232221

z

y

trrr
M

Transforming lines and planes
Each transformation matrix applies on vectors, or individual points.

Transforming lines by transforming the endpointsTransforming lines by transforming the endpoints
Transforming triangles by transforming the three vertices.
Transforming planes (represented using N=[A B C D]T, and defined through
{P|N•P=0}) by transforming its normal{P|N•P=0}) by transforming its normal.

Composition of 3D Transformations
Example:
Given the directed line

A common situation when we setup a local 3D coordinate system.

segments P1P2 and P1P3 in
(a), find the transformation
to transform it to their
ending positions in (b): P1 at ending positions in (b) P1 at
the origin, P1P2 on positive
z-axis, and P1P3 in the
positive y axis half of the
(y z) plane (y,z) plane

Show two ways to solve it:
(1) Apply a sequential primitive transformations: translation + rotations…
(2) Using the properties of orthogonal matrices () g p p g

Method 1

Break it into simpler sub-problems, we can get it in four steps:
1 Translate P to the ori in1. Translate P1 to the origin
2. Rotate about the y-axis P1P2 lies in the (y,z) plane
3. Rotate about the x-axis P1P2 lies on the z-axis
4. Rotate about the z-axis P1P3 lies in the (y,z) plane

⎤⎡ 001

Step 1. Translate.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=−−−

1000
100
010
001

),,(
1

1

1

1111 z
y
x

zyxT

⎦⎣ 1000

Method 1

Break it into simpler sub-problems, we can get it in four steps:
1 Translate P to the ori in1. Translate P1 to the origin
2. Rotate about the y-axis P1P2 lies in the (y,z) plane
3. Rotate about the x-axis P1P2 lies on the z-axis
4. Rotate about the z-axis P1P3 lies in the (y,z) plane

Step 2. Need to rotate about y-axis by –(90-θ)=(θ-90)

)90(2
o−= θyRR

hwhere

Method 1

Break it into simpler sub-problems, we can get it in four steps:
1 Translate P to the ori in1. Translate P1 to the origin
2. Rotate about the y-axis P1P2 lies in the (y,z) plane
3. Rotate about the x-axis P1P2 lies on the z-axis
4. Rotate about the z-axis P1P3 lies in the (y,z) plane

Step 3. Need to rotate about x-axis by Φ

)(3 φxRR =

where

Method 1

Break it into simpler sub-problems, we can get it in four steps:
1 Translate P to the ori in1. Translate P1 to the origin
2. Rotate about the y-axis P1P2 lies in the (y,z) plane
3. Rotate about the x-axis P1P2 lies on the z-axis
4. Rotate about the z-axis P1P3 lies in the (y,z) plane

Step 4. Need to rotate about z-axis by α

)(4 αzRR =

So the final composited transformation is:

Method 2
A generally useful quicker way
to get the rotation matrix.

To obtain the rotation matrix R using the properties of orthogonal matrices
1) Each row is a unit vector
2) Each row is perpendicular to the other
3) R’s transpose is its inverse matrix3) R s transpose is its inverse matrix
4) The ith row (except the last row) as a vector, will be rotated by

R(θ) to lie on the positive axis ei

R h T

1. we want to rotate P1P2 to “+z”-axis, so the 3rd row should
be the normalized P1P2 :

If R rotates a normalized vector v to ei, then its ith row is vT

be the normalized P1P2 :

2. Rx unit vector is perpendicular to the plane of P1, P2 and
P3, and will rotate into the “+x”-axis, so the 1st row:

3. Finally:

Viewing in 3D
2D shapes window clip, translate, scale, translate 2D viewport
3D shapes projection 2D viewport

(view volume clip projection 2D transform)(view volume clip projection 2D transform)

Projections
Generally:

Projections transform points in a n-D coordinate system into points in a
D di t t ()m-D coordinate system (m<n)

Computer Graphics has long been used for studying n-D objects by
projecting them into lower dimensional (especially, 2D) space.p j g (p y,) p

Noll, M. , “A Computer Technique for Displaying N-dimensional hyperobjects”,
CACM, 10(8), Aug. 1967, 469-473.

Here:Here:
We focus on projections
from 3D to 2D.

Projection :
straight projection rays (projectors) emanating from a center of projectionstraight projection rays (projectors) emanating from a center of projection
Passing through each point of the object
Intersecting a projection plane to form the projection image

Classification of Projections
General Classification:

We deal with planar geometric projections
Non-planar projection: the projection plane is a curved surface (e g many Non-planar projection: the projection plane is a curved surface (e.g. many

cartographic projections)
Non-geometric projection: the projection rays are curved (e.g. the Omnimax

film)

Planar Geometric Projections:
Parallel projection: projection center is infinitely far away

so that all projectors are parallel
We only need to specify direction of projectionWe only need to specify direction of projection

Perspective projection: projection center is finite distance away
Need to specify projection center

Classification of Projections
General Classification:
Planar Geometric Projections:

Perspective projection:
Visually : perspective foreshortening (the object size varies

inversely with the distance from the projection center), similar to
human visual systemhuman visual system

Measurement:
not good for recording exact shape,
angles are preserved only on those faces of the object parallel to the

projection planeprojection plane,
parallel lines generally are not projected to be parallel

Parallel projection:
Visually : less realistic
M t Measurement:

good for exact measurement,
parallel lines remain parallel,
angles only preserved on faces that are parallel to the projection plane

For more detailed discussions, check: Carlbom, I. and J. Paciorek, “Planar Geometric
Projections and Viewing Transformations”, Computing Surveys, 10(4), Dec. 1978, pp. 465-502.

Perspective Projections
Any set of parallel lines, that are not parallel to the projection plane, converge

to a vanishing point.
Axis vanishing point: if the set of lines that converges is parallel to one of the g p f f g p f

three principal axes
There are at most three such points

e.g. if the projection plane cuts only the z-axis, then only the z axis has a
principal vanishing point (lines parallel to either x or y axes have no vanishing p p g p (p y g
point)

Perspective projections are categorized by # of principal vanishing pts (i.e. by
the # of axes the projection plane cuts)

One point perspecti e projectionOne point perspective projection

Two point perspective projection

Parallel Projections
Categorized into two types, depending on the relation between (1) the direction

of projection and (2) the normal to the projection plane:
Orthographic parallel projections: (1) and (2) have the same directiong p p p j () ()
Oblique parallel projections: (1) and (2) have different directions

Orthographic Parallel projections:
Front,top,side-elevation projections: , p, p j

oOften used in engineering drawings
oDistances and angles can be measured
oBut…

Axonometric orthographic projections:g p p j
oProjections not normal to a principal axis
oParallelism of lines preserved, angles not preserved
oDistances can be measured along each principal axis
(with different scales)()
oA commonly used type: isometric projection

projction direction makes equal angles with each axis
(e.g. direction (1,1,1), every axis pair looks like 120 degree)

Parallel Projections (cont.)
Categorized into two types, depending on the relation between (1) the direction

of projection and (2) the normal to the projection plane:
Orthographic parallel projections: (1) and (2) have the same directiong p p p j () ()
Oblique parallel projections: (1) and (2) have different directions

Oblique Parallel projections:
Cavalier projections:p j

Projection direction makes a 45 ◦ angle with the
projection plane

Result: line perpendicular to the projection plane
preserves length, no foreshorteningp g , g

2 examples, right middle 2 figs.
direction: and
projection plane: z=0 plane

Cabinet projections:

)1,2/2,2/2(−)1,2/1,2/3(−

p j
Projection direction makes a 63.4◦ angle with the

projection plane
Result: line perpendicular to the projection plane

has half lengthg
Visually more realistic, right bottom 2 figs

direction: and
projection plane: the z=0 plane

)1,4/2,4/2(−)1,4/1,4/3(−

Planar Geometric Projections

Specifying an 3D View

3D viewing = view volume clip projection 2D transformation

1. Projection plane (also called view plane)
Defined by a point on the plane (view reference point, VRP) +

a normal to the plane (view-plane normal, VPN)a normal to the plane (view plane normal, VPN)
3D viewing-reference coordinate (VRC) system:

Origin VRP
One axis of VRC VPN (now called the n axis)
Another axis view up vector (VUP) v axis on the view planeAnother axis view up vector (VUP), v-axis on the view plane
The last axis u-axis to form the right-handed system

2. A window on the view plane
Contents projected outside of the window is not shownp j
Defined by a min and max window coordinates along two axes

Specifying an 3D View

3. The center and direction of projection (DOP)
Defined by a projection reference point (PRP) + an indicator Defined by a projection reference point (PRP) + an indicator

of the projection type
If the projection type is “perspective”, then PRP is the center

of projection (COP)p j ()
If the projection type is “parallel”, then the DOP is from the

PRP to center of the window on view plane (CW)
(CW might not be VRP, depending on max/min of (u,v))

View Volume

The View volume bounds that portion of the world that is to be
clipped out and projected onto the view planeclipped out and projected onto the view plane.
For perspective projections:

view volume semi-infinite pyramid with apex at the PRP and
edges passing through the corners of the windowg p g g
Positions behind the center of projection are not projected

For parallel projections:
View volume infinite parallelepiped with sides parallel to the
direction of projection (direction from the PRP to the center of direction of projection (direction from the PRP to the center of
the window)

Limiting the view volume (for both projection types)
To eliminate extraneous objects j
To eliminate unnecessary computation

e.g. displaying distant objects in perspective projections
setup a front clipping plane and back clipping plane, specified by
the signed quantities front distance (F) and back distance (B)the signed quantities front distance (F) and back distance (B)

3D View Port

Now we have the view volume (decided by PRP, VRC system,
window range u and v F and B)window range u and v, F and B)

To map all contents onto the display surface:
Map the view volume to the viewport rectangular window with
a z-deptha z depth

front (back) clipping plane zmax (zmin)
umin (umax)side of the view volume xmin (xmax) plane
vmin (vmax)side of the view volume ymin (ymax) planemin (max) ymin (ymax) p

To display images for all points after their projections, simply
discard the z-component
For visible surface detection: the hidden surface removal

l h d h h simply uses the z-component to determine which primitives
are closer to viewer and should be visible

Matrix for Planar Geometric Projections

Start from the simplest cases:
A perspective projection whose projection plane is normal to z-axis A perspective projection whose projection plane is normal to z-axis
at z=d
A parallel projection whose projection plane is the z=0 plane
Each projection can be defined as a 4 by 4 matrix (coherent with

h f)other transformation matrices)

…Later more general cases will be transformed to these cases.

Case 1. Perspective Projection
Case 1.1: projection plane at z=d, projection center at the origin, a

point P(x,y,z) to be projected onto it as Pp(xp, yp, zp=d)

Case 1. Perspective Projection
Case 1.2: projection plane at z=0, the center of projection at z=-d,

a point P(x,y,z) to be projected onto it as Pp(xp, yp, zp=0)

Case 2. Parallel Projection
Case 2.1: orthographic projection onto projection plane at z=0

Case 3. A More General Projection
Case 3.1: a perspective projection P(x,y,z) Pp(xp, yp, zp)

projection plane is perpendicular to z axis
the center of projection (COP) has the distance Q from the the center of projection (COP) has the distance Q from the
point (0,0,zp)
the direction from (0,0,zp) to COP is the normalized (dx, dy, dz)

⎥
⎥
⎤

⎢
⎢
⎡ −01 x

p
x

d
dz

d
d

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢

+−

−
=

00

10
2

p
z

p

z

p

z

y
p

z

y

zz

general

z
Qd
z

Qd
z

d
d

z
d
d

dd

M

Pp=(1-t)COP+tP, 0<= t <= 1 ⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣
+− 1100

z

p

z

zz

Qd
z

Qd

QQ

COP = (0,0,zp)+Q(dx, dy, dz)

Case 3. A More General Projection
Case 3.2: a parallel projection but not orthographic

Cavalier and Cabinet projection onto the (x,y) plane, with α angle
shown belowshown below.

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡ −

10

01

yy

z

x
p

z

x

dd
d
dz

d
d

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢

+

+−

−
=

1100

00

10
2

p

p
z

p

z

p

z

y
p

z

y

general

z

z
Qd
z

Qd
z

d
z

d
M

Zp Q dx dy dz

⎥
⎥
⎦⎢

⎢
⎣

+− 100
z

p

z QdQd

Cavalier
(left)

0 Infinity cosα sinα -1

Cabinet
(right)

0 Infinity (cosα)/2 (sinα)/2 -1

Case 3. A More General Projection
Therefore, this is a general representation

(for projection plane z=0, … etc):
⎤⎡ dd

The following table includes previously
derived projection matrixes.

⎥
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎢
⎡

−

−

10

01

y
p

y

z

x
p

z

x

d
d

z
d
d

d
dz

d
d

⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

+

+−
=

1100

00
2

p

p
z

p

z

p

zz
general

z

z
Qd
z

Qd
z

dd
M

⎥
⎥
⎦⎢

⎢
⎣

+− 100
z

p

z QdQd
Zp Q dx dy dz

Mcavalier 0 Infinity cosα sinα -1
Mcabinet 0 Infinity (cosα)/2 (sosα)/2 -1
Mort 0 Infinity 0 0 -1
Mper d d 0 0 -1per

M’per 0 d 0 0 -1

3D Viewing Process

Implementing Planar Geometric Projections
For Computational efficiency!

Certain view volumes are easier to clip against (canonical view volumes):n w um p g n (n n w um)
For parallel-projection view volume:

(x,y,z) in {([-1,1],[-1,1],[-1,0])}
For perspective-projection view volume:

(x y z) in {[z z] [z z] [z 1]}(x,y,z) in {[-z, z],[-z,z], [-zmin, -1]}
Normalizing transformations Npar and Nper

transform an arbitrary view volume into the canonical view volumes

Normalizing Transformation Matrix Npar

Derive Npar for the most general case the oblique parallel projection
General Pipeline:
1 Translate the VRP to the origin1. Translate the VRP to the origin
2. Rotate VRC : the (u,v,n)-axis (VPN) (x,y,z)-axis
3. Shear : the direction of projection (DOP) z-axis
4. Translate and scale into the parallel-projection canonical view volume

View-orientation matrix step 1, 2
View-mapping matrix step 3,4

Example (see the figure in the next page)
1. Translation T(-VRP)
2. Rotation R(vectors u,v,n x,y,z)

D P P P ⎤⎡ hTTvvuu]1[]10[minmaxminmax ++
3. DOP = CW – PRP =

The shear : Shxy(shxpar, shypar)

4. Translation: ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
010
001

),(par

par

parparxy

shy
shx

shyshxSH

)(minmaxminmax FvvuuTT −
+

−
+

−=

T
nvu

T prpprpprp]1[]10
22

[minmaxminmax −

4. Translation:

and Scaling:
⎦⎣ 1000),

2
,

2
(FTTpar −−−=

)1,2,2(
minmaxminmax BFvvuu

SS par −−−
=

z

y
par

z

x
par dop

dop
shy

dop
dopshx −=−= ,

Normalizing Transformation Matrix Npar

Normalizing Transformation Matrix Nper

General Pipeline:
1. Translate the VRP to the origin
2 Rotate VRC : the (u v n) axis (VPN) (x y z) axis2. Rotate VRC : the (u,v,n)-axis (VPN) (x,y,z)-axis
3. Translate : COP (given by PRP) origin
4. Shear : the center line of the view volume z axis
5. Scale into the canonical view volume

Example
1. Same as Npar
2. Same as Nparpar

3. T(-PRP)

4. Center line = CW – PRP=

Sh (N)

T

nvu

T

prpprpprpvvuu
⎥⎦
⎤

⎢⎣
⎡−⎥⎦

⎤
⎢⎣
⎡ ++ 110

22
minmaxminmax

Shear (same as Npar)

5. Scaling:
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+−+−

=
BvrpBvrpvv

vrp
Bvrpuu

vrpSS
zz

z

z

z
per '

1,
)')((

'2,
)')((

'2

minmaxminmax

Clipping Against a Canonical View Volume

Geometric Clipping Algorithm

Cli i i H C di tClipping in Homogeneous Coordinates

P T f GLProjection Transformations in OpenGL

Perspective Projection

Viewing Coordinate System (VCS)

Projection Transformations in OpenGL
()(cont.)

Perspective Projectionp j
void glFrustum(double left, double
right, double bottom, double top,
double near, double far);)

void gluPerspective(double fovy,
double aspect, double near, double

y
y=top

far);
-z

FOV

=z=-near

z=-far

Projection Transformations in OpenGL j f m p
(cont.)

Orthographic Projectiong p j
void glOrtho(GLdouble left, GLdouble
right, GLdouble bottom, GLdouble top,
GLdouble zNear, GLdouble zFar);

void gluOrtho2D(GLdouble left,
GLdouble right, GLdouble bottom,
GLdouble top);

Routines:
First, put:
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
Then, put one of:
glFrustrum/gluPerspective or glOrtho

