Lecture 4-5

Transformations, Projections, and Viewing
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Matrices for 3D Transformations

3 3D transformations = 4 by 4 matrices, using homogeneous
coordinates

a A point (x,y,z) 2 points (Wx, Wy, Wz, W), or (x/W, y/W, z/W, 1)
O W=0 - corresponds to the point at infinity

o 3D Translation and Scaling are extended from 2D case
straightforwardly.

o As for Rotation:

The positive direction of 3D Rotations in right-handed system:
positive rotations = when looking from a positive axis foward the
origin, a 90 degree counterclockwise rotation will fransform one
positive axis into the other, according to the following table:

Rotation axis = x = positive rotation is fromy to z
axis =y > from z to x
axis =z > from x foy
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Matrices for 3D Transformations

o 3D Rotation:
o Previous 2D rotation {y- =

sin @

a 3D rotation about z axis

o I.e.
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sind cos@d O
0 0 1

0 0 0

o Rotation matrices

about x and y axes: R9=

0

0
0
1
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10

0 siné@
0 0

X}‘{COSH ;Zi:ﬂm can be treated as

0 cos@d -—-sind O

0 0]
cosd O
0 1

R,(0) =
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0

—siné
0
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0
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0O O
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1. All these basic transformation matrices have inverse, therefore any affine
transformation composed by them does too.

2. Any number of rotation, scaling, and
translation matrices can be multiplied

together. The result always has the form:
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Transforming lines and planes

Each transformation matrix applies on vectors, or individual points.

O Transforming lines by transforming the endpoints
ad Transforming triangles by tfransforming the three vertices.

d Transforming planes (represented using N=[A B C D], and defined through
{P|N+P=0} ) by transforming its normal.
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Composition of 3D Transformations

Exqmple: A common situation when we setup a local 3D coordinate system.

Given the directed line
segments P,P, and PP, in
(a), find the transformation
to transform it to their
ending positions in (b): P, at

the origin, P,P, on positive (a) Initial position (b) Final position

z-axis, and P,P; in the Transforming P,, P,, and P; from their initial (a) to their final (b) position.
positive y axis half of the

(v,z) plane

Show two ways to solve it:
(1) Apply a sequential primitive transformations: translation + rotations...
(2) Using the properties of orthogonal matrices
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Method 1

(a) Initial position {b) Final position

Transforming P,, P,, and P, from their initial (a) to their final (b) position.

Break it info simpler sub-problems, we can get it in four steps:
1. Translate P, to the origin

2. Rotate about the y-axis > P,P, lies in the (y,z) plane

3. Rotate about the x-axis > PP, lies on the z-axis

4. Rotate about the z-axis > PP, lies in the (y,z) plane

0
Step 1. Translate. Py =T =z —yy, ~2) - P, = lg}
(1 0 0 -Xx | ‘
01 0 - Yi (X — -"11
Tl(_Xl,_yl,_ZI) N 0 0 1 - Z Py=T(=x, =3 —2) Py = Z: - :': ,
1
000 1 -
s T
Py=T(=x, =y, =15) Py = AR ,
% T 4




Method 1

(a) Initial position {b) Final position
Transforming P,, P,, and P, from their initial (a) to their final (b) position.

Break it info simpler sub-problems, we can get it in four steps:
1. Translate P, to the origin

2. Rotate about the y-axis > P,P, lies in the (y,z) plane

3. Rotate about the x-axis > PP, lies on the z-axis

4. Rotate about the z-axis > PP, lies in the (y,z) plane

Step 2. Need to rotate about y-axis by —(90-8)=(6-90)
R, =R,(6-90") cos( — 90) = sinf = D—* =223,
1 1
sin(@ — 90) = — cosf = —g = -'t:‘,; 'r'.
where l l

D, = V(P + ;= Vi -7+ x- P
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Method 1

(a) Initial position {b) Final position
Transforming P,, P,, and P, from their initial (a) to their final (b) position.

Break it info simpler sub-problems, we can get it in four steps:
1. Translate P, to the origin

2. Rotate about the y-axis > P,P, lies in the (y,z) plane

3. Rotate about the x-axis > PP, lies on the z-axis

4. Rotate about the z-axis > PP, lies in the (y,z) plane

Step 3. Need to rotate about x-axis by ®
R,=R =4 gng=X
3 = R, (9) cosg D; sing D,
where

D, = IP;PEI = |P\Py = V(xz )+ -0t (-




Method 1

(a) Initial position {b) Final position

Transforming P,, P,, and P, from their initial (a) to their final (b) position.

Break it info simpler sub-problems, we can get it in four steps:
1. Translate P, to the origin

2. Rotate about the y-axis > P,P, lies in the (y,z) plane

3. Rotate about the x-axis > PP, lies on the z-axis

4. Rotate about the z-axis > PP, lies in the (y,z) plane

Step 4.

y
Ao

Need to rotate about z-axis by a

R4 = Rz (a)
cosa = yg'/D,, sina = X3 /Dy, Dy = V= + g

ol

So the final composited transformation is:

Ria) * R(®) - R(6 — 90) - T(—x,

s }'1 1




Method 2

A generally useful quicker way z
to get the rotation matrix. ) ot powiion iy el porion

Transforming P,, P;, and P, from their initial (a) to their final (b) position.

To obtain the rotation matrix R using the properties of orthogonal matrices
1)  Each row is a unit vector

2) Each row is perpendicular to the other r, ro r, 0
3) R's transpose is its inverse matrix n, r, r;, 0
4)  The i row (except the last row) as a vector, will be rotated by '(‘) % rS (l)

R(B) to lie on the positive axis e . -

1. we want to rotate PP, to "+z"-axis, so the 3rd row should

be the normalized P,P,: R =1[r, r r] =P

2. R, unit vector is perpendicular to the plane of P,, P, and

P,, and will rotate into the "+x"-axis, so the 1t row:
R,=1In, rp, "= P\Py X PP,

TR R SR TR PP

3. Finally: |
Y Rr.- (17 ro, r:h]r =R, X R,
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Viewing in 3D

2D shapes - window clip, translate, scale, translate > 2D viewport
3D shapes - projection > 2D viewport
(view volume clip = projection > 2D transform)

Clipped
3D world-coordinate world 2D device
output primitives coordinates coordinates

Transform

Clip against Project onto into viewport

— view projection in 2D device
volume plane coordinates
for display

Conceptual model of the 3D viewing process.
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Projections

Generally:
dProjections transform points in a n-D coordinate system into points ina
m-D coordinate system (m<n)

QdComputer Graphics has long been used for studying n-D objects by
projecting them into lower dimensional (especially, 2D) space.

Noll, M. , “A Computer Technique for Displaying N-dimensional hyperobjects”,
CACM, 10(8), Aug. 1967, 469-473.

A

HZI"G: Penlaniors p, \ Pro;ectors
dWe focus on projections " Y-
*‘ PrO}ecnon

=iy 2P
fr'OIT\ 3D 1-0 ZD 'J;""" ﬂ Projection
plane plane
Center of Center of
projection pfolecnon
at infinity
a) (b)

(a) Line AB and its perspective projection A'8’. (b) Line AB and its parallel
projection A'B’. Projectors AA’ and BB’ are parallel.

QProjection :
dstraight projection rays (projectors) emanating from a center of projection
QPassing through each point of the object
dIntersecting a projection plane to form the projection image
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Classification of Projections

General Classification:

[dWe deal with planar geometric projections

[dNon-planar projection: the projection plane is a curved surface (e.g. many
cartographic projections)

[Non-geometric projection: the projection rays are curved (e.g. the Omnimax
film)

Planar Geometric Projections:
dParallel projection: projection center is infinitely far away
dso that all projectors are parallel
dWe only need to specify direction of projection
Perspective projection: projection center is finite distance away
(Need to specify projection center

A A

£ Projectors
Projectors \ ’ \
L N ‘ 8 A N
L P L P
- . y
A - Projection , & Projection
o4l lane
plane N P
Center of Center of J
projection projection +
at infinity
(a) (b)

(a) Line AB and its perspective projection A'8’. (b) Line A8 and its parallel
\\ projection A'B’. Projectors AA’ and BB’ are parallel. /




Classification of Projections

General Classification:

Planar Geometric Projections:
LPerspective projection:
QVisually : perspective foreshortening (the object size varies
inversely with the distance from the projection center), similar to
human visual system
UMeasurement:
Hnot good for recording exact shape,
angles are preserved only on those faces of the object parallel to the
projection plane,
Hparallel lines generally are not projected to be parallel
dParallel projection:
QVisually : less realistic
dMeasurement:
Ogood for exact measurement,
dparallel lines remain parallel,
angles only preserved on faces that are parallel to the projection plane

For more detailed discussions, check: Carlbom, . and J. Paciorek, “Planar Geometric
& Projections and Viewing Transformations”, Computing Surveys, 10(4), Dec. 1978, pp. 465-502.
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Perspective Projections

HdAny set of parallel lines, that are not parallel to the projection plane, converge

to a vanishing point.

QAxis vanishing point: if the set of lines that converges is parallel to one of the

three principal axes
HdThere are at most three such points

He.g. if the projection plane cuts only the z-axis, then only the z axis has a
principal vanishing point (lines parallel to either x or y axes have no vanishing

point)

LPerspective projections are categorized by # of principal vanishing pts (i.e. by

the # of axes the projection plane cuts)

z-axis vanishing point

Center of projection

Two point perspective projection
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Parallel Projections

Categorized into two types, depending on the relation between (1) the direction

of projection and (2) the normal to the projection plane:

QOrthographic parallel projections: (1) and (2) have the same direction
Oblique parallel projections: (1) and (2) have different directions

Orthographic Parallel projections:
dFront,top,side-elevation projections:
0Often used in engineering drawings
oDistances and angles can be measured
oBut...
L Axonometric orthographic projections:
oProjections not normal to a principal axis
oParallelism of lines preserved, angles not preserved
oDistances can be measured along each principal axis
(with different scales)
0A commonly used type: isometric projection

- projction direction makes equal angles with each axis
(e.g. direction (1,1,1), every axis pair looks like 120 degree)

Projection
plane
(top view)

A ; Projectors for
i ¥ side view

Projection

Projectors o ol
for top view g '

plane
(side view)

Projectors for

- front view
Projection
plane
(front view)

P 0|ect on

plane
normal
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Parallel Projections (cont.)

Categorized into two types, depending on the relation between (1) the direction

of projection and (2) the normal to the projection plane:

QOrthographic parallel projections: (1) and (2) have the same direction
Obligue parallel projections: (1) and (2) have different directions

Oblique Parallel projections:
HCavalier projections:
dProjection direction makes a 45° angle with the
projection plane
dResult: line perpendicular to the projection plane
preserves length, no foreshortening
02 examples, right middle 2 figs.
direction: (v2/2,42/2,-1) and (J3/2,1/2,-1)
projection plane: z=0 plane
Cabinet projections:
dProjection direction makes a 63.4° angle with the
projection plane
dResult: line perpendicular to the projection plane
has half length
QVisually more realistic, right bottom 2 figs
direction: (J2/442/4-1) and (J3/41/4,-1)
projection plane: the z=0 plane

Projection Y
plane 1

Projection-plane -
normal -
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Planar Geometric Projections

Planar geometric
pm}ecﬁnns

Parailel Perspective

Orthographic Obllqua One-point
1 1
(plan) Cabine wo-poin
Front Axonomelric .
slovation Cavaler Three-point

elevaimn

Isometric
Other
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Specifying an 3D View

3D viewing = view volume clip > projection > 2D transformation

1. Projection plane (also called view plane)
Defined by a point on the plane (view reference point, VRP) +
a normal to the plane (view-plane normal, VPN)

3D viewing-reference coordinate (VRC) system:
HdOrigin > VRP
OOne axis of VRC = VPN (now called the n axis)
HdAnother axis - view up vector (VUP), v-axis on the view plane
QThe last axis > u-axis to form the right-handed system

2. A window on the view plane
dContents projected outside of the window is not shown
dDefined by a min and max window coordinates along two axes

View
plane
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Specifying an 3D View

3. The center and direction of projection (DOP)
(Defined by a projection reference point (PRP) + an indicator
of the projection type
AIf the projection type is "perspective”, then PRP is the center
of projection (COP)
QIf the projection type is "parallel”, then the DOP is from the

PRP to center of the window on view plane (CW)
(CW might not be VRP, depending on max/min of (u,v))
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View Volume

The View volume bounds that portion of the world that is to be
clipped out and projected onto the view plane.
O For perspective projections:

O view volume - semi-infinite pyramid with apex at the PRP and
edges passing through the corners of the window

O Positions behind the center of projection are not projected

O For parallel projections:

O View volume - infinite parallelepiped with sides parallel to the
direction of projection (direction from the PRP to the center of
the window)

d Limiting the view volume (for both projection types)

O To eliminate extraneous objects

0 To eliminate unnecessary computation
0 e.g. displaying distant objects in perspective projections

> setup a front clipping plane and back clipping plane, specified by
the signed quantities front distance (F) and back distance (B)
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3D View Port

Now we have the view volume (decided by PRP, VRC system,
window range u and v, F and B)

To map all contents onto the display surface:

[ Map the view volume to the viewport rectangular window with
a z-depth
O front (back) clipping plane = z,. ., (Zin)
d  u, (u.)side of the view volume 2> X, (X0x) pPlane
Qv (Viex)side of the view volume 2 v, (Ymex) Plane

[ To display images for all points after their projections, simply
discard the z-component

O For visible surface detection: the hidden surface removal
simply uses the z-component to determine which primitives
are closer to viewer and should be visible
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Matrix for Planar Geometric Projections

Start from the simplest cases:

[ A perspective projection whose projection plane is normal to z-axis
at z=d

QA parallel projection whose projection plane is the z=0 plane

- Each projection can be defined as a 4 by 4 matrix (coherent with
other transformation matrices)

..Later more general cases will be transformed to these cases.

~




Case 1. Perspective Projection

Case 1.1: projection plane at z=d, projection center at the origin, a
point P(x,y,z) to be projected onto it as P,(x,, y,, z,=d)

y

o s
I
I

Projection
plane
r=d_x=i ‘=d ‘=l X P(I.}’.Z)
iy zid’ P zid” f {‘ .
p Yo Yo
g ,2
d
x \
View
along X, l Px.y. 2)
y axis |
1 » z
d Projection J
plane h
d
V-a —» Z ] 0 0 O
ew i
along y ' M = o1 0 0
x axis p Pix. y. 2) per 00 1 0
Projection 0 0 lid 0




Case 1. Perspective Projection

Case 1.2: projection plane at z=0, the center of projection at z=-d,
a point P(x,y,z) to be projected onto it as P(x,, y,, z,=0)

Projection
plane Pxy, 2)
Xp : =X Y= _ Y
' d +d d z+d
L » Z
-
d x=d'x= X
d P Z+d (Z!‘d)'i'l‘

-0 o
L i
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Case 2. Parallel Projection

Case 2.1: orthographic projection onto projection plane at z=0
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Case 3. A More General Projection

Case 3.1: a perspective projection P(x,y,z)2>P,(X,, ¥, Z,)

O projection plane is perpendicular to z axis

Q the center of projection (COP) has the distance Q from the
point (0,0,z,)

Q the direction from (0,0,z,) to COP is the normalized (d,, d,, d,)

coP

N

d, . d,
X = 27 + z”? 1 O _ﬁ Zp$
'Ip = — :’ 2 dz dz
2__*~ d d
oa ' 01 - 5,
d d Mgeneral = ’ 2 ’
0,0 2,) y = ZB’ + zpal & 00 - Z, Z,
yp = > '., " de de
[ y Q E, + ] 0 O _ 1 ZP
P,=(1-)COP+tP, 0<=t<=1 I Qd, Qd,

'z, — 2 .z 22+ 20d,
COP =(0,0,2,)+Q(dy, d,, d,) , _, 04 ' _""oa "' "od

274 B2 4
o=t 0d) 04
z=(z, + Qd)

Qd,
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Case 3. A More General Projection

Case 3.2: a parallel projection but not orthographic
O Cavalier and Cabinet projection onto the (x,y) plane, with a angle

shown below.
1 0 gy zp$
i Yy dz dz
: Mg eeeee | = ’ 2 i
1 ' 0 0 -2 o,
30 11 Laes Qd, Qd
z z 0 0 L Z—+1
i Qd, Qd,
Cavalier 0 Infinity  cosa sina
(left)
Cabinet 0 Infinity  (cosa)/2 (sina)/2 -1
(right)
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Case 3. A More General Projection

Therefore, this is a general representation
(for projection plane z=0, ... etc): ]

d
1 0 ——*+
The following table includes previously S
derived projection matrixes. 01
IvlgeneraI: 7
0 0 -
Qd
0 0 - :
Qd,
-E--E---
M.odier O Infinity  cosa sina -1
M.binet O Infinity  (cosa)/2 (sosa)/2 -1
M+ 0 Infinity 0 0 1
Mer d d 0 0 -1
M, O d 0 0 -1

o
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3D Viewing Process

Clipped
3D world-coordinate world 2D device
output primitives coordinates coordinates

output 2D device
primitives coordinates

Transform
I m view volume Nmﬂ k%‘l;m
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Implementing Planar Geometric Projections

For Computational efficiency!

Certain view volumes are easier to clip against (canonical view volumes):
O For parallel-projection view volume:
(%.y,2) in {([-1,11,[-1,11,[-1,0])}
Q  For perspective-projection view volume:
(x,y,2) in {[-z, z],[-z,Z], [-Zspin, -1]}
Normalizing transformations N, and N,
transform an arbitrary view volume into the canonical view volumes

xory xory
4
1 Back 1 — Back
Front plane plane
plane Front
plane -
» —I *» —Z
-1 -1
-1 -] -
(a) Parallel (b) Perspective

~
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Normalizing Transformation Matrix N__,

Derive N, for the most general case > the oblique parallel projection
General Pipeline:

1.  Translate the VRP to the origin

2. Rotate VRC: the (u,v,n)-axis (VPN) > (x,y,z)-axis

3. Shear: the direction of projection (DOP) > z-axis

4. Translate and scale into the parallel-projection canonical view volume

View-orientation matrix < step 1, 2
View-mapping matrix < step 3,4

Example (see the figure in the next page)

1. Translation T(-VRP)

2. Rotation R(vectors u,v,n > x,y,z)

3. DOP=CW -PRP = [u“‘*"‘;umin Vm“;vmi“ 0 1" ~[prp, prp, prp, 11’ (1 0 shx,, O
The shear : Sh, (shx,,., shy,,.) > SH, (shx,,,shy , )= 3 (1) Sh}{par 3

4. Translation: Tpar:T(_“max;“mm ,_Vmaxz"min —F) 00 0 1
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Normalizing Transformation Matrix N__,
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Normalizing Transformation Matrix N_,

General Pipeline:

1. Translate the VRP to the origin

2. Rotate VRC: the (u,v,n)-axis (VPN) > (x,y,z)-axis

3. Translate : COP (given by PRP) = origin y

4. Shear: the center line of the view volume > z axis | f::;z:v'-"'

5. Scale into the canonical view volume View volume
= center line

Example ] e,

1. Sameas N, VPN e

2. Sameas N,

3. T(-PRP)

4. Center line = CW - PRP= {“m ;um Vinax ;Vmin 0 1} —{prlou prp,  prp, 1}

- Shear (same as N,
5. Scaling: S,.. =S[ 2vrp!, 2vrp', -1 j

(umax - umin )(Vrp'z +B) ’ (Vmax _Vmin )(Vrp'z +B) , Vrp'z _B
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Clipping Against a Canonical View Volume

3D world-
coordinate

output
primitives

Q Geometric Clipping Algorithm

d Clipping in Homogeneous Coordinates

Project onto

2D device
coordinates
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Projection Transformations in OpenGL

» Perspective Projection

Viewing Coordinate System (VCS)




-

Projection Transformations in OpenGL
(cont.)

» Perspective Projection

e void glFrustum(double left, double
right, double bottom, double top,

double near, double far);

double aspect, double near, double

 void gluPerspective(double fovy, . y=top
far); ‘ FOV

———————
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Projection Transformations in OpenGL
(cont.)

* Orthographic Projection

e void glOrtho(GLdouble left, GLdouble
right, GLdouble bottom, GLdouble top,
GLdouble zNear, GLdouble zFar);

e void gluOrtho2D( GLdouble left,
GLdouble right, GLdouble bottom,
GLdouble top);

e Routines:
e First, put:
glMatrixMode(GL_PROJECTION);

glLoadldentity();
* Then, put one of:

glFrustrum/gluPerspective or glOrtho




