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tWe develop a geometri
 reassembly algorithm that 
omposes a3D model from its fragments. One important appli
ation of thiswork is skull 
ompletion and modeling in ar
heology and foren-si
s. Our reassembly algorithm employs a s
ale-spa
e represen-tation of shape based on the heat kernel, whi
h only depends onthe intrinsi
 geometry of the surfa
es. Partial mat
hing 
an thenbe 
ondu
ted e�e
tively. The entire assembly pipeline has threesteps: (1) fragment-template mat
hing based on heat-kernel; (2)mat
hing re�nement based on RANSAC and assembly 
ompu-tation; (3) assembly re�nement using least square transforma-tion error (LSTE) of break-
urves. The main 
ontribution ofthis paper is presenting novel algorithms for the �rst two steps.Experimental results on s
anned skull fragments demonstratethe e�
a
y and robustness of our algorithm.1 Introdu
tionThis work studies geometri
 algorithms to reassemble frag-mented 3D pat
hes. Geometri
 reassembly algorithms 
anfa
ilitate 
omputer-aided data a
quisition and 
ompletionwhen the model is not only in
omplete but even frag-mented. In this proje
t, our goal is to explore reliableand e�e
tive algorithms to help re
ompose ex
avated skullfragments, whi
h provide important information in ar
he-ology and forensi
 law enfor
ement. Anthropologists 
anre
onstru
t the fa
e geometry from the ex
avated skull af-ter they 
lean and 
omplete the skull. For example, inlaw enfor
ement, su
h fa
ial re
onstru
tion is an impor-tant te
hnique to help identify the de
eased (when otherID information is not available due to environmental ero-sion or human a
tivities) and has been demonstrated ef-fe
tive in many real 
ases [19℄. The fa
ial re
onstru
tion isperformed based on the statisti
al tissue depth and 
ranio-fa
ial anatomy. Before the tissue 
an be model, 
ompletionof the skull needs to be done, sin
e it is very di�
ult to di-re
tly 
ondu
t tissue and 
raniofa
ial stru
ture re
onstru
-tion when the skull is fragmented or has large regions miss-ing. A geometri
 modeling and pro
essing system that 
an
omplete the ex
avated skull reliably is therefore highly de-sirable and 
an greatly fa
ilitate subsequent tasks.With 3D s
anning te
hnologies, we 
an s
an skull datainto digital forms and use geometri
 pro
essing te
hnolo-gies to repair the digital model. For the model that isin one pie
e and is just in
omplete (e.g. it has holes and
ra
ks), many model 
ompletion algorithms proposed inmodeling/graphi
s literature [14, 18, 17℄ 
an be used. How-ever, if the model is fragmented, we need to �rst reassemblethese sub-pie
es together, whi
h is a 
hallenging and less-explored problem. Two general strategies 
ould be usedfor reassembly: we 
an rely on lo
al properties of thesefragment themselves, or we 
an use a 
omplete templatemodel for guidan
e.In skull reassembly, a di�
ulty of using templates isthat the geometry of skull is subtle and the template willnot be exa
tly the same from the fragmented subje
t skull,so the registration between themmight not be always a

u-rate (espe
ially when some fragment pie
es are small). On

the other hand, methods based on properties of fragmentsthemselves are also nontrivial sin
e some parts/pie
es maybe missing, di�erent fragment s
ans have di�erent s
al-ings and samplings. In this work, we make use of both ofthese strategies to a
hieve a robust reassembly. The over-all pipeline is illustrated in Fig. 1. The main 
ontributionsare two-folded.1. We adopt a multi-s
ale surfa
e des
riptor based onthe heat kernel, whi
h has not been used for datareassembly before. We analyze its good properties inmat
hing partial models to the 
omplete model.2. We integrate the developed methodologies into athree-step skull reassembly pipeline, and demonstratethat it is espe
ially suitable for this task and is moree�e
tive and robust than existing te
hniques.2 Ba
kground and Related Work2.1 Template Mat
hing and 3D Shape Des
riptorTemplate-based approa
hes are suitable for reassemblingfragments whose sizes are not always big and whose bound-ary geometry is worn or partially damaged. When we usea template to guide the fragment reassembly, we need tosolve a partial mat
hing problem, whi
h seeks a good map-ping from a model F to a sub-region of another model M .E�e
tive geometri
 feature extra
tion 
an greatly fa
ilitatethis partial mat
hing problem.A geometri
 des
riptor is usually a fun
tion de�ned onea
h point of a model to des
ribe lo
al or global 
hara
ter-isti
 of this model. Lo
al surfa
e normals and 
urve 
urva-tures are popular lo
al des
riptors in 3D obje
t mat
hing[29, 25℄. This kind of des
riptors is typi
ally very easy to
ompute and 
ompare. However, for a given point in theshape, there may be many points with the indistinguish-able des
riptor value. Therefore, they are usually usedtogether with a voting s
heme [1℄ or with an iterative align-ment s
heme to improve the dis
rimination ability [28℄.Sin
e templates and fragments might have di�erentsizes and shapes, algorithms that are not sensitive to lo
algeometri
 varian
e are desirable. One 
ommon strategy toderive point signatures is to summarize the shape distri-bution in the neighborhood of a point. For example, spinimages [12℄ and shape 
ontexts [3℄ are widely used pointsignatures that fall into this 
ategory. The spin image ata point is a 2D histogram of the 
ounts of 3D points ina surrounding region, established using the lo
al surfa
enormal as a referen
e for invarian
e. This provides a dis-
riminative lo
al shape des
riptor: points with the similarspin-image des
riptors indi
ate highly likely similar (
or-responding) regions. However, for two shapes that are notexa
tly the same, spin images 
ould be too sensitive tolo
al di�eren
e and may not 
orre
tly �nd 
orrespondingfeature points.On the other hand, shape des
riptors that 
apture theglobal geometri
 properties, su
h as Global Point Signature(GPS) [26, 23℄ are also studied. Eigenvalues of the Lapla
e-Beltrami operator are used together with the 
orrespond-ing eigenfun
tions to 
hara
terize the shape of models.1



Figure 1: Fragmented Skull Completion Pipeline. First, extra
t multi-s
ale features on the fragments (a) and the template; se
ond,perform HKS mat
hing to obtain a superset of potential mat
hes (b); then, use a RANSAC �ltering to 
orre
t the mat
hing (
)and get the rigid transformations on ea
h fragment; then, perform a postpro
essing (d) to 
omplete the skull through a assemblyre�nement and model repair (hole �lling) and �nally obtain the 
ompleted skull (e).However, pure global signature is also not suitable for han-dling fragment-template mat
hing, be
ause a sub-pie
e isglobally di�erent from a 
omplete model and su
h a de-s
riptor may not be applied to partial mat
hing dire
tly.Based on heat di�usion pro
ess, the heat kernel fun
-tion 
aptures geometri
al information around a point. Thedissipating time of heat provides a natural notion of s
aleto des
ribe the neighborhood of a point. Lo
al shape prop-erties 
an be 
hara
terized when observing this fun
tionwithin a small time range, while more global shape proper-ties are en
oded in a larger time range [30℄. Sin
e the heatkernel 
an 
apture surfa
e geometry in a multi s
ale way, itis a powerful tool for data representation [33℄. For instan
e,it is used for designing di�usion distan
e [16℄, isometry-invariant hierar
hi
al segmentation [6℄, �nding isometri
mat
hing [22℄[27℄, shape retrieval [21℄, and so forth.2.2 Fragments AssemblyAssembling 2D fragments has been explored in 
omputervision �elds [11, 15℄. Papaioannou and Karabassi [24℄ de-veloped a solution for assembly of 3D obje
ts, whi
h usesa 
omplementary surfa
e mat
hing algorithm, in 
onjun
-tion with fa
et boundary 
urve mat
hing to 
ompute thetransformations. But a prepro
essing is needed to ensurethe fra
ture fa
es are nearly planar and they mat
h ea
hother 
ompletely.Cooper et al. [5℄ proposed a framework of assem-bling 3D fragments mainly based on 3D measurement andmat
hing of break-
urve, sherd normal, et
. Willis etal. [35℄ then developed this approa
h by using Bayesianapproa
h to assemble pots based on 
urve mat
hing semi-automati
ally. Their experiments demonstrated theseframeworks work very well on pottery assembly. Curves
an also be mat
hed through an optimization algorithmssu
h as [32℄ that minimize the least square estimation ofpoint patterns. Unlike assembly problems of obje
ts whi
hare simple in stru
ture (like pottery), skull assembly mayneed di�erent te
hniques. Without the pre-assumptionon axially symmetri
 and 
ontour smoothness, skulls havesubtle fa
ial geometry and details. On the other hand, un-like potteries who may have various distin
t shapes, humanskulls have similar global geometry, therefore, a templateskull (from similar 
ategory of ra
es and ages) 
an be usedto assist the assembly. Yin et al.[37℄ presented an assemblyand 
ompletion algorithm to �rst use a template skull toperform a rough assembly then perform assembly re�ne-ment based on break 
urve analysis in a redu
ed sear
hingspa
e. However, limited by the dis
rimination power oftheir des
riptor, a very good template is needed to ensurethe robustness of the reassembly.

3 Heat Kernel Shape Des
riptorIn this se
tion, we brie�y re
ap the basi
 theory and prop-erties of the heat kernel des
riptor; then dis
uss why su
ha des
riptor is ideal for this reassembly task.3.1 Mathemati
al Ba
kgroundLet M be a 
ompa
t Riemannian manifold and u(x, t) bethe amount of heat at a point x ∈ M at time t. Theheat propagation over M is governed by the heat di�usionequation:
{

∂u(x,t)
∂t

= −∆u(x, t)
u(x, 0) = f(x)where ∆ is the Lapla
e-Beltrami operator and f(x) is theinitial temperature de�ned on M . If M has boundaries,we additionally require u to satisfy the Diri
hlet boundary
ondition u(x, t) = 0 for all x ∈ ∂M at all t.Given the initial fun
tion f , the solution to this heatequation at time t 
an be 
omputed through the heat op-erator Ht:
u(x, t) = Htf. (1)For any M , there exists a fun
tion ht(x, y) [8℄ that

u(x, t) =

∫

M

ht(x, y)f(y)dy. (2)The ht(x, y) satisfying this equation is 
alled the heat ker-nel, and its value 
an be thought as the amount of heatthat is transferred from point x to point y during time t.For a 
ompa
t surfa
e M , the heat kernel has the followingeigen-de
omposition [13℄:
ht(x, y) =

∞
∑

i=0

e
−λitΦi(x)Φi(y) (3)where λ0, λ1, ... are eigenvalues and Φ0,Φ1, ... are the 
orre-sponding eigenfun
tions of the Lapla
e-Beltrami operator,whi
h satisfy ∆MΦi = λiΦi.The Heat Kernel Signature (HKS) [30℄ is a powerfuldes
riptor that 
hara
terizes lo
al and global geometry ofthe surfa
e pat
h 
entered at ea
h point:

ht(x) =

∞
∑

i=0

e
−λitΦi(x)

2
. (4)The HKS inherits many good properties from heat ker-nel and is therefore e�e
tive in des
ribing shapes at di�er-ent s
ales and identifying geometri
 features. For a pie
e-wise linear surfa
e mesh, HKS 
an be 
omputered from theeigen-values and eigenve
tors of the mesh Lapla
e opertor.This 
omputation is detailed in [30℄. We use the sparseeigen-solver in Matlab to 
ompute them.2



3.2 Properties of HKS for Geometri
 ReassemblyThe heat kernel and heat kernel signature are desirablefor the reassembly of fragmented obje
ts. Spe
i�
ally, forour fragmented skull assembly, we adopt it as a reliabledes
riptor for partial mat
hing be
ause it is multi-s
ale,informative (dis
riminative), and stable.3.2.1 Multi-s
ale Property
Figure 2: Multi-s
ale Property. The green point (a), 
onsideredin the fragment (red region) and in the whole model (
yan) hasthe overlapped signature 
urves (b).For small values of t, the fun
tion ht(x, y) is mainlydetermined by a small neighborhood of x; its neighbor-hood grows to a bigger region as t in
reases. The multi-s
ale property of the heat kernel implies, in parti
ular,that for small t, ht(x, y) only re�e
ts lo
al 
hara
teristi
of the shape around point x, while for large values of t,
ht(x, y) 
aptures the global stru
ture of M from the viewof point x. This intuition 
an be formalized [10℄ as: (a)For any smooth and relatively 
ompa
t domain D ⊆ M ,
limt→0 h

D
t (x, y) = hM

t (x, y); and (b) if D1 ⊆ D2 ⊆ . . . ⊆
Dn, ∪Dn

Di
= M , then limn→∞ hDn

t (x, y) = hM
t (x, y) for any

t. The expli
it relationship between time and the size ofdi�usion region is also dis
ussed in [9℄. Suppose W t
x is theBrownian motion on M starting at point x, the heat ker-nel 
an be viewed as the transition density fun
tion of theBrownian motion, and is determined by the probability of

W t
x at time t (see [9, 20℄ for details).In our fragment-template mat
hing problem, a purelo
al des
riptor 
an be easily a�e
ted by lo
al noise andgeometry disparity, while a global des
riptor 
ould not tol-erate the intrinsi
 di�eren
e between a 
omplete templateand an in
omplete fragment. Therefore, due to HKS'smulti-s
ale property, unlike lo
al des
riptors su
h as spinimages[12℄ or global des
riptors su
h as GPS[23℄, the HKSallows us to perform multi-s
ale 
omparison between di�er-ent neighboring regions of points on the same shape. Fur-thermore, the HKS of points on di�erent shapes are 
om-mensurable, whi
h allows us to perform the partial mat
h-ing and registration even when the template and subje
tfragments have di�erent subtle lo
al geometries. Fig. 2shows an example of HKS of the 
orresponding points onthe template and the fragment.3.2.2 Informative PropertySkull models have subtle and detailed geometry, a desir-able shape des
riptor needs to be dis
riminative. Di�erentpoints from di�erent skull lo
ations have di�erent HKS sig-natures. More rigorously, let T : M → N be a surje
tivemap between two Riemannian manifolds. If hM

t (x, y) =
hN
t (T (x), T (y)) for any x, y ∈ M and any t>0, then T isan isometry [30℄.The Varadhan's Lemma [10℄ indi
ates that for everypair of points x, y ∈ M , the geodesi
 distan
e d2(x, y) =

Figure 3: HKS are informative. Ea
h point has a unique heatdi�usion 
urves. Di�erent points have di�erent signatures.
−4 limt→0 t log h

M
t (x, y). The informative property im-plies that the heat equation 
ontains all of the informa-tion about the intrinsi
 shape geometry and hen
e fully
hara
terizes the shape.HKS en
odes the geometri
 information about theneighborhoods of a point x at various s
ales together. Thisproperty, together with the multi-s
ale property whi
h isdis
ussed earlier, make HKS a suitable dis
riminative de-s
riptor (an example shown in Fig. 3) for our mat
hingpurpose .3.2.3 S
aling-invariant HKS Mat
hing

Figure 4: Normalization for S
aling Transformations. (a) showsone skull with two s
aling, the right one is twi
e larger. (b)shows their HKS in the same 
oordinate, and (
) shows theresult of normalization.We 
onsider the heat di�usion 
urve under a s
alingtransformation of an obje
t. Given a model M and itss
aled surfa
e M ′ = βM , where β is the s
aling fa
tor,following eq (4), the new eigenvalues and eigenfun
tionswill satisfy λ′ = β2λ and φ′ = βφ. So we have the followingequation:
h
′

t(x) =
∞
∑

i=0

e
−λitβ

2

Φi(x)
2
β
2
. (5)This means HKS 
hanges under the s
aling transformation,relating the signature h′ at time t for M ′ with the β2 timesof the signature h at time β2t for M .Fragments are s
anned separately, so the s
ales of thesedigital models are usually in
onsistent. Without a s
aling-invariant des
riptor and mat
hing s
heme, we need to pre-pro
ess the original skulls. A typi
al approa
h is pla
ingmarkers and measure their distan
es, then using these dis-tan
es to re-s
ale all digital fragment models into 
oherentsizes with respe
t to the template model. Su
h approa
his tedious, error-prone, and 
ould 
ontaminate the originalskull. So we want to seek for a geometri
 algorithm that
an handle partial mat
hing between models with in
on-sistent s
aling.Bronstein and Kokkinos [4℄ suggested a prepro
essingto make HKS a s
ale invariant vision. It is based on alogarithmi
ally sampled s
ale-spa
e in whi
h shape s
al-ing 
orresponds, up to the multipli
ative 
onstant β, to ashift. And this shift is then undone by taking the dis
rete-time Fourier transform and Fourier transform modulus3



Figure 5: Signatures under Di�erent Resolutions. (a,b,
) showsa skull with 35k, 20k, and 10k fa
es, respe
tively. Correspondingpoints in three skulls have very similar signature 
urves.
Figure 6: Robustness of HKS. The green point on an in
om-plete skull (a) has a similar signature (b, the blue 
urve) to thesignature on the 
ompleted skull (b, the red 
urve).(FTM). We adopt this approa
h. Fig. 4 illustrates thes
ale-invariant property on skulls of di�erent s
aling afterthe prepro
essing.3.2.4 StabilityBeing s
anned separately, di�erent fragments may not onlyhave di�erent s
aling, but also have di�erent sampling andtessellations. Holes and lo
al noise may exist due to o

lu-sions, low re�e
tan
e, or other reasons. Therefore, a de-s
riptor tolerating sampling resolution and geometri
 noiseis desirable.On dis
rete surfa
es, [30℄ uses the mesh Lapla
e op-erator [2℄ to estimate the Lapla
e-Beltrami operator andshows that HKS is insensitive to the meshing and resolu-tions. This helps us to make our mat
hing insensitive todi�erent resolutions, as shown in Fig. 5.Heat kernel is stable against lo
al noise (e.g. small lo
algeometri
 perturbation) due to the nature of heat di�usionpro
ess on the manifold. The heat kernel 
an be 
onsid-ered as a Brownian motion, whi
h means that ht(x, y) is aweighted average possibility over all paths to rea
h y from
x in time t [10℄. Suppose W t

x is the Brownian motion onmanifold M , if we slightly perturb a subregion M ′ ⊂ M ,only the paths passing through M ′ will get a�e
ted. Thesignature is therefore relatively stable. For a perturbationapplied on a point x, the variation of HKS on x is signi�-
ant for small t, but this de
ays as t in
reases. Fig. 6 showsan example of the robustness of HKS.4 Skull Assembly PipelineGiven a set of fragments {Fi} (Fig. 7(a)), we shall 
om-pute transformations {Ti} that transform these fragmentsto align with a given template M . Transformed fragments
{Ti(Fi)} will then roughly reassemble the original geom-

Figure 7: Coarse Assembly. (a) shows the skull fragments (S2);(b) shows the reassembled skull after Steps (1) and (2).
Figure 8: Multi-s
ale Feature Dete
tion. The 
olor indi
ates theheat value of the point, and features are extra
ted in di�erents
ales. (a) k = 0, (b) k = 60, (
) k = 100.etry of the subje
t skull (Fig. 7(b)). We 
all this step
oarse assembly. After the 
oarse assembly, we further re-�ne the assembly by analyzing and mat
hing break bound-ary 
urves of fragments. The pipeline has 3 steps.(1) Dete
t features by analyzing the heat �eld and heatdi�usion;(2) Extra
t a superset of initial mat
hes by HKS, then
ompute a smaller set of �nal mat
hes from these
andidates using RANSAC, then 
ompute the rigidtransformations;(3) Mat
h the break 
urves, re�ne the assembled frag-ments, then 
omplete the skull.4.1 Feature Dete
tionOn two given shapes M (template) and F (fragment), we�rstly 
ompute heat di�usion on M . A point vi is 
alleda feature in s
ale k, if F k(vi) is the lo
al maximum orminimum within its 2-ring region [34℄, where F k(vi) meansthe heat value of vi in s
ale k.In our experiments, we 
ompute the HKS signature
urve for ea
h model by uniformly sampling 100 points inthe logarithmi
ally s
ale over the time interval [tmin, tmax]with tmin = 0, tmax = 4 log 10

λ2
, where λ2 is the smallesteigenvalue and k is the step. For a small k, the dete
tedfeatures mainly en
ode lo
al geometry while they 
hara
-terize geometry more globally for a larger k. Therefore,long protrusions su
h as tooth tips 
an be extra
ted aslo
al extremals in a large-s
ale k.Fig. 8 shows the features dete
ted in di�erent s
ales.The features dete
ted in the s
ale k = 0 are easily a�e
tedby noise. As k in
reases, the heat �eld be
omes smoothergradually. The features dete
ted in di�erent s
ales 
an welldepi
t the shape information in a multi-s
ale sense. In ourexperiments, we found k = 60 to be a suitable threshold(sin
e HKS is not sensitive to the resolution, we found kvalues between 40 and 80 all provide relatively good andsimilar results).4



Figure 9: This �gure shows the 
omparison pro
ess. (a) is thefragment and (b) is the template. (
) plots the HKS 
urves ofthe 
orresponding points on (a) and (b); (d) illustrates their
ommon portion.4.2 Coarse Mat
hingThe 
oarse mat
hing in step 2 of our assembly pipeline
ontains two sub-steps, whi
h will be dis
ussed in the fol-lowing subse
tions.4.2.1 Initial Mat
hingOn both template M and fragments set F = {Fi}, where
Fi are the fragments pie
es, we �rst put all the featuresdete
ted by HKS into 
andidate sets, denoted as P ⊆ Fand Q ⊆M , respe
tively.Then for ea
h point pi ∈ P , we sear
h for its 
orre-sponding features qi ∈ Q. We 
orrespond two points iftheir HKS 
urves mat
h well. We use ΦF

pi to denote theheat di�usion 
urve pi on F and use ΦF
pi(k) to indi
ate theheat value in s
ale k.Unlike isometri
 mat
hing [34℄[22℄, 
orrespondingpoints in the fragment and template may have di�erentinitial HKS and di�erent di�usion time, therefore, simpledistan
e su
h as ∑n

k=1 ||Φ
F
pi (k) − ΦM

qi (k)|| is not suitablefor our problem.We modify the mat
hing of HKS and develop di�er-ent metri
s at a given range of s
ales. Firstly, to makethe time t meaningful and stable for di�erent surfa
es, wenormalize the HKS of every mat
h into a same 
oordinatesystem, and 
ompare the 
ommon portion. We then eval-uate the quality of the mat
h (pi, qi) by 
omputing thedi�eren
e between Φ(pi)
F and Φ(qi)

M in their 
ommondi�usion time:
E(pi,qi)(k) = ||Φ

F
pi (k)− ΦM

qi (k)||, (6)where E(p(i,),qi)
(k) is a fun
tion to evaluate the mat
hing

(pi, qi) and E(p(i,),qi)
(k) indi
ates the di�eren
e in s
ale

k. And �nally we use the varian
e D(E) to evaluate thedi�eren
e between two HKS so as to �nd the 
losest 
urveor the best mat
h for a given point. Fig. 9 demonstratesthis pro
ess.After the 
omputation of feature points and des
rip-tors, we 
an build an initial mat
hing graph, 
orrelatingea
h feature point on M and its n most similar mat
heson F . In our experiments, we set N = 5. We use su
ha 
onservative threshold (whi
h may leads to quite a fewfalse positives, but usually guarantee at least one reliablemat
hing), and we will re�ne this mat
hing in the nextse
tion. Fig. 10(a) shows an example of the result of thisstep.

4.2.2 RANSAC Re�nementThe initial mat
hing provides a 
onservative many-to-many 
orresponden
e, where the 
orre
t mat
h for ea
hpoint is in
luded but many in
orre
t mat
hing are also in-volved. Given su
h a 
andidate mat
hing graph (typi
ally,4 out of 5 mat
hes are wrong), we need a �lter to eliminatethese wrong mat
hes.We develop su
h a �ltering s
heme based on theRANSAC strategy, whi
h is a 
lassi
al te
hniques for pa-rameter estimation that 
an optimize the �tting of a fun
-tional des
ription to presented data. Rather than usingas mu
h as possible of the data to obtain an initial solu-tion then attempting to eliminate the invalid data points,RANSAC uses a small initial data set and enlarges this setwith 
onsistent data when possible [7℄[36℄. Therefore, onlya small number of random guesses to �nd a 
andidate set isneeded to start the pro
ess. Intuitively, although we 
ouldskip the initial mat
hing step dis
ussed in the previous se
-tion and enumerate all possible mat
hes between templateand fragments and evaluate all their validity, this will leadto an ine�
ient pro
ess with big time 
onsumption andpoor a

ura
y.By using HKS, the approximate features 
an be ob-tained on the template and fragment, it is the result ofthe global similarity of skulls. Tevs et al. [31℄ developed aRANSAC subgraph extra
tion method. We 
ompute theEu
lidean distan
es of every 
orre
t mat
hing here (whi
his enough for our problem), and the aggregate of thesedistan
e errors, for a 
orre
t mat
h, yields a Gaussian dis-tribution:
p(l1, ..., ln(i,j)|mi,j) =

1

σm(2π)m/2

m
∏

k=1

exp(
lk − l

(0)
k

2σ2
), (7)where lk denotes the a
tual distan
e observed and l
(0)
k the
orre
t distan
e. Then, Bayes rule is employed to 
omputethe probability of mat
h mi,j being 
orre
t. p(mi,j) is theprior probability of mat
h, whi
h in our 
ase is given bythe des
riptor mat
hing.

p(mi,j |l1, ..., ln(i,j)) =
p(l1, ..., ln(i,j)|mi,j)p(mi,j)
∑

i,j p(l1, ..., ln(i,j)p(mi,j))
(8)Based on the above dis
ussion, we use a RANSAC ran-domized sampling algorithm, judged by the probability, toevaluate how well the mat
hes preserve the Eu
lidean dis-tan
e. The algorithm is formulated as follows. Fig. 10shows an example.In: fragment F , template T , the max iteration number k,and a mat
hing 
andidate super-set C;Out: the re�ned mat
hing set S;0) S = ∅;1) Sele
t 3mat
hes from C randomly (whi
h 
an be usedto solve a rigid transformation) and stored in temper-ate set D;2) Enumerate ea
h of the rest 
andidates in ci ∈ Cand evaluate whether for this mat
h, eq 8 ex
eedsa threshold ǫ, if so, add this mat
h ci into D;3) Che
k whether the size of D is larger than the size of

S, if so, S ← D;4) D ← ∅; Go to step 1, unless the max iteration number
k is rea
hed.A threshold ǫ that is not too stri
t is usually desirable.In our experiments, we set k = 500 and we found ǫ = 90%always leads to good results.5



Figure 10: This �gure shows input and output of the RANSAC�lter, (a) is the superset of mat
hes whi
h in
ludes many wrongmat
hes and (b) is the �nal mat
hes sifted by the �lter.
Figure 11: Postpro
essing: assembly re�nement and skull 
om-pletion. (a) shows the reassembled skull (S2) after rough as-sembly; (b) shows the result after break 
urve mat
hing andassembly re�nement; (
) is the �nal 
ompleted skull.4.2.3 Lo
al RegistrationAfter the 
orre
t mat
hing is 
omputed, we 
an 
omputethe rigid transformation Ti for ea
h fragment by solvingan over-determined system:

Ti









p1i
p2i
. . .

pni









=









q1i
q2i
. . .

qni









,where Ti is the rigid transformation on Fi. As long aswe have more than 3 pairs of 
orresponding features, we
an solve the transformation and thus reassemble the frag-ments. Fig. 7(b) shows a 
oarse assembly example.4.3 Postpro
essing and Skull CompletionWith the help of template skull, the fragments are roughlyassembled after the above steps. However, su
h a 
oarsereassembly may not be very a

urate. Gaps or interse
-tions between fragments may exist in the above assemblingresult. Sometimes this is due to the geometri
 di�eren
ebetween the (fragmented) subje
t skull and the templateskull. We further re�ne the reassembly by analyzing thelo
al geometry of these fragments, using the method in-trodu
ed in [37℄. The rough assembly result is re�nedthrough an optimization of the least square transforma-tion error (LSTE) of break-
urves. Finally, when the re-assembly is �nished. The missing or damaged regions (e.g.holes) are repaired using the inherent symmetry [37℄ of theskull. Fig. 11 shows the re�ne and 
ompletion pro
ess.5 Experimental ResultsIn our experiments, all the skulls are s
anned and pro-vided by forensi
 anthropologists. We used our assemblyalgorithm to repair four sets (two male skulls s1, s2 andtwo female skulls s3, s4) of fragmented skulls. In pra
-ti
e, a template M is sele
ted from an organized skulldatabase, in whi
h skulls are 
lassi�ed by the sex, ra
e,age, 
ranial form, and et
. Given an in
omplete subje
t

Figure 13: (s1 - s3) are the fragmented skulls. (t1) and (t2)are the templates. The di�erent 
oarse reassembling results areshown in (a) - (d); (e) - (h) show the results after the re�nementguided by break 
urve mat
hing.

Figure 14: Comparison of our proposed reassembly and thealgorithm of [37℄. The fragments (a) are assembled using thetemplate (b). (
) is the result from [37℄ and (d) is the result ofour method.

Figure 15: Reassembly of Simulated Fra
turing. (a1) and (b1)are fragments partitioned from the 
omplete models (a2) and(b2) respe
tively. (a3) and (b3) are reassembled skulls; (a4)and (b4) 
olor-en
ode the reassembly errors. The red indi
ateslarger deviation while the blue indi
ates smaller errors (Min =

0.0 and Max = 3% of the length of the bounding box).6



Figure 12: The Assembly of Skull s4. (a) shows the fragments of s4 and (b) is the template. (
-f) show the mat
hing fromfragments to the template. (g) is the 
oarse reassembly result (before re�nement).Table 1: Runtime Table: The fragmented skulls to be 
ompletedand the template skulls are listed in the 
olumns Subje
t andTemplate, respe
tively. #∆(K): the number of thousand trian-gles in the mesh; #F : number of fragments; THKS : the time of
omputing HKS in se
onds; TRAN : the time of RANSAC pro-
ess with 500 iterations. TCom: the time of post-pro
essing andskull 
ompletion. Experimental time is measured in se
onds.Skulls Temp #∆(K) #F THKS TR TCom

S1 T1 35.1 4 328.2 6.9 27.8
S1 T2 35.1 4 341.6 7.2 28.1
S2 T1 37.2 5 321.9 7.3 28.4
S2 T2 37.2 5 333.7 7.5 29.0
S3 T1 52.4 6 492.3 6.2 40.3
S3 T2 52.4 6 489.1 6.3 38.8
S4 T1 43.8 6 400.6 6.1 36.3
S4 T2 43.8 6 402.2 6.2 37.9skull, anthropologists analyze their anthropometry fea-tures (lengths/ratios of distan
es between features), pre-di
t whi
h 
ategory this skull belongs to, and sele
t atemplate skull from the same 
ategory as the template.We perform our assembly algorithms on a 2.4GHz desktopwith 2GB RAM. The runtime table is given in Table. 1.The assembling results of the skulls s1, s2 are shown inFig. 1 (e) and Fig. 11 (
), and the assembly of the femaleskull s3 is shown in Fig. 13 (d). Fig. 12 illustrates theassembly of skull s4,In Fig. 13, we show our experiments to reassemble frag-ments using di�erent templates. For s2, we use two tem-plates t1 and t2 for the mat
hing. Partial mat
hing againstdi�erent templates leads to slightly di�erent 
oarse assem-bly, but after the re�nement, the results are similar. Ourentire pipeline therefore is not very sensitive to the sele
-tion of templates.Fig. 14 shows the 
omparison between our proposedmethod and the algorithm of [37℄. Due to relatively sig-ni�
ant di�eren
e between the subje
t skull and the tem-plate, the 
oarse assembly of [37℄ fails and 
an not be �xedsu

essfully by the break 
urve mat
hing. In 
ontrast, ourproposed approa
h demonstrates better reliability againstthe not-similar template and su

essfully re
ompose thesubje
t skull.In the above experiments, we only have the s
annedskull fragments without the ground truth 
omplete skull.

We are not able to quantitatively measure the assemblyerror. We also develop experiments to evaluate our algo-rithms by intentionally breaking our 
omplete skulls intopie
es. We then reassemble these fragments and measurethe deviation between the result and the original model.The numeri
al errors illustrating this a

ura
y are plottedin Fig. 15. The re
onstru
tion error is smaller than 3%.6 Con
lusionWe introdu
e an geometri
 reassembly algorithm for frag-mented skull 
ompletion. We employ a multi-s
ale de-s
riptor based on heat kernel and analyze the its severaldesirable properties in geometri
 reassembly and in ourtask. Then we develop a partial mat
hing algorithm basedon this des
riptor. We integrate our developed algorithminto the skull assembly pipeline, whi
h mainly 
onsistsof three 
omponents: mat
hing 
omputation between thefragments and template, rough assembly 
omputation, andmat
hing re�nement. The new s
heme improves the e�-
a
y of the �rst two steps, and our rough assembly resultstherefore outperform [37℄.A limitation of the 
urrent assembly algorithm is inhandling tiny fragmented pie
es. If a tiny fragment doesnot have enough salient geometri
 features, then its mat
h-ing with template is di�
ult and unreliable. Right now wegive up reassembling su
h fragments and rely on the sub-sequent hole �lling algorithm to repair the 
orrespondingmissing region. Also, re�nement guided by the break 
urvemat
hing is sometimes not reliable if the boundary is wornor partially damaged. Currently after the re�nement ofea
h fragment, if the mat
hing error of break 
urves withadja
ent parts is bigger than a threshold, we skip the re-�nement on this fragment and restore the assembly sug-gested by the template-subje
t mat
hing. We will explorea better re�nement strategy to deal with this issue.7 A
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