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Abstract

We develop a geometric reassembly algorithm that composes a
3D model from its fragments. One important application of this
work is skull completion and modeling in archeology and foren-
sics. Our reassembly algorithm employs a scale-space represen-
tation of shape based on the heat kernel, which only depends on
the intrinsic geometry of the surfaces. Partial matching can then
be conducted effectively. The entire assembly pipeline has three
steps: (1) fragment-template matching based on heat-kernel; (2)
matching refinement based on RANSAC and assembly compu-
tation; (3) assembly refinement using least square transforma-
tion error (LSTE) of break-curves. The main contribution of
this paper is presenting novel algorithms for the first two steps.
Experimental results on scanned skull fragments demonstrate
the efficacy and robustness of our algorithm.

1 Introduction

This work studies geometric algorithms to reassemble frag-
mented 3D patches. Geometric reassembly algorithms can
facilitate computer-aided data acquisition and completion
when the model is not only incomplete but even frag-
mented. In this project, our goal is to explore reliable
and effective algorithms to help recompose excavated skull
fragments, which provide important information in arche-
ology and forensic law enforcement. Anthropologists can
reconstruct the face geometry from the excavated skull af-
ter they clean and complete the skull. For example, in
law enforcement, such facial reconstruction is an impor-
tant technique to help identify the deceased (when other
ID information is not available due to environmental ero-
sion or human activities) and has been demonstrated ef-
fective in many real cases [19]. The facial reconstruction is
performed based on the statistical tissue depth and cranio-
facial anatomy. Before the tissue can be model, completion
of the skull needs to be done, since it is very difficult to di-
rectly conduct tissue and craniofacial structure reconstruc-
tion when the skull is fragmented or has large regions miss-
ing. A geometric modeling and processing system that can
complete the excavated skull reliably is therefore highly de-
sirable and can greatly facilitate subsequent tasks.

With 3D scanning technologies, we can scan skull data
into digital forms and use geometric processing technolo-
gies to repair the digital model. For the model that is
in one piece and is just incomplete (e.g. it has holes and
cracks), many model completion algorithms proposed in
modeling/graphics literature [14, 18, 17] can be used. How-
ever, if the model is fragmented, we need to first reassemble
these sub-pieces together, which is a challenging and less-
explored problem. Two general strategies could be used
for reassembly: we can rely on local properties of these
fragment themselves, or we can use a complete template
model for guidance.

In skull reassembly, a difficulty of using templates is
that the geometry of skull is subtle and the template will
not be exactly the same from the fragmented subject skull,
so the registration between them might not be always accu-
rate (especially when some fragment pieces are small). On

the other hand, methods based on properties of fragments
themselves are also nontrivial since some parts/pieces may
be missing, different fragment scans have different scal-
ings and samplings. In this work, we make use of both of
these strategies to achieve a robust reassembly. The over-
all pipeline is illustrated in Fig. 1. The main contributions
are two-folded.

1. We adopt a multi-scale surface descriptor based on
the heat kernel, which has not been used for data
reassembly before. We analyze its good properties in
matching partial models to the complete model.

2. We integrate the developed methodologies into a
three-step skull reassembly pipeline, and demonstrate
that it is especially suitable for this task and is more
effective and robust than existing techniques.

2 Background and Related Work
2.1 Template Matching and 3D Shape Descriptor

Template-based approaches are suitable for reassembling
fragments whose sizes are not always big and whose bound-
ary geometry is worn or partially damaged. When we use
a template to guide the fragment reassembly, we need to
solve a partial matching problem, which seeks a good map-
ping from a model F' to a sub-region of another model M.
Effective geometric feature extraction can greatly facilitate
this partial matching problem.

A geometric descriptor is usually a function defined on
each point of a model to describe local or global character-
istic of this model. Local surface normals and curve curva-
tures are popular local descriptors in 3D object matching
[29, 25]. This kind of descriptors is typically very easy to
compute and compare. However, for a given point in the
shape, there may be many points with the indistinguish-
able descriptor value. Therefore, they are usually used
together with a voting scheme [1] or with an iterative align-
ment scheme to improve the discrimination ability [28].

Since templates and fragments might have different
sizes and shapes, algorithms that are not sensitive to local
geometric variance are desirable. One common strategy to
derive point signatures is to summarize the shape distri-
bution in the neighborhood of a point. For example, spin
images [12] and shape contexts [3] are widely used point
signatures that fall into this category. The spin image at
a point is a 2D histogram of the counts of 3D points in
a surrounding region, established using the local surface
normal as a reference for invariance. This provides a dis-
criminative local shape descriptor: points with the similar
spin-image descriptors indicate highly likely similar (cor-
responding) regions. However, for two shapes that are not
exactly the same, spin images could be too sensitive to
local difference and may not correctly find corresponding
feature points.

On the other hand, shape descriptors that capture the
global geometric properties, such as Global Point Signature
(GPS) [26, 23] are also studied. Eigenvalues of the Laplace-
Beltrami operator are used together with the correspond-
ing eigenfunctions to characterize the shape of models.
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Figure 1: Fragmented Skull Completion Pipeline. First, extract multi-scale features on the fragments (a) and the template; second,
perform HKS matching to obtain a superset of potential matches (b); then, use a RANSAC filtering to correct the matching (c)
and get the rigid transformations on each fragment; then, perform a postprocessing (d) to complete the skull through a assembly
refinement and model repair (hole filling) and finally obtain the completed skull (e).

However, pure global signature is also not suitable for han-
dling fragment-template matching, because a sub-piece is
globally different from a complete model and such a de-
scriptor may not be applied to partial matching directly.
Based on heat diffusion process, the heat kernel func-
tion captures geometrical information around a point. The
dissipating time of heat provides a natural notion of scale
to describe the neighborhood of a point. Local shape prop-
erties can be characterized when observing this function
within a small time range, while more global shape proper-
ties are encoded in a larger time range [30]. Since the heat
kernel can capture surface geometry in a multi scale way, it
is a powerful tool for data representation [33]. For instance,
it is used for designing diffusion distance [16], isometry-
invariant hierarchical segmentation [6], finding isometric
matching [22][27], shape retrieval [21], and so forth.

2.2 Fragments Assembly

Assembling 2D fragments has been explored in computer
vision fields [11, 15]. Papaioannou and Karabassi [24] de-
veloped a solution for assembly of 3D objects, which uses
a complementary surface matching algorithm, in conjunc-
tion with facet boundary curve matching to compute the
transformations. But a preprocessing is needed to ensure
the fracture faces are nearly planar and they match each
other completely.

Cooper et al. [5] proposed a framework of assem-
bling 3D fragments mainly based on 3D measurement and
matching of break-curve, sherd normal, etc. Willis et
al. [35] then developed this approach by using Bayesian
approach to assemble pots based on curve matching semi-
automatically.  Their experiments demonstrated these
frameworks work very well on pottery assembly. Curves
can also be matched through an optimization algorithms
such as [32] that minimize the least square estimation of
point patterns. Unlike assembly problems of objects which
are simple in structure (like pottery), skull assembly may
need different techniques. Without the pre-assumption
on axially symmetric and contour smoothness, skulls have
subtle facial geometry and details. On the other hand, un-
like potteries who may have various distinct shapes, human
skulls have similar global geometry, therefore, a template
skull (from similar category of races and ages) can be used
to assist the assembly. Yin et al.[37] presented an assembly
and completion algorithm to first use a template skull to
perform a rough assembly then perform assembly refine-
ment based on break curve analysis in a reduced searching
space. However, limited by the discrimination power of
their descriptor, a very good template is needed to ensure
the robustness of the reassembly.

3 Heat Kernel Shape Descriptor

In this section, we briefly recap the basic theory and prop-
erties of the heat kernel descriptor; then discuss why such
a descriptor is ideal for this reassembly task.

3.1 Mathematical Background

Let M be a compact Riemannian manifold and u(z,t) be
the amount of heat at a point x € M at time t. The
heat propagation over M is governed by the heat diffusion
equation:

ot
u(z,0) = f(x)

where A is the Laplace-Beltrami operator and f(z) is the

initial temperature defined on M. If M has boundaries,

we additionally require u to satisfy the Dirichlet boundary

condition u(z,t) = 0 for all z € M at all ¢.

Given the initial function f, the solution to this heat
equation at time ¢ can be computed through the heat op-
erator H;:

(1)

u(x,t) = He f.
For any M, there exists a function h(z,y) [8] that

umwzﬁmmwmwy (2)

The h¢(z,y) satisfying this equation is called the heat ker-
nel, and its value can be thought as the amount of heat
that is transferred from point x to point y during time t.
For a compact surface M, the heat kernel has the following
eigen-decomposition [13]:

he(w,y) =Y e M0 (2)Pi(y) 3)
i=0

where Ao, A1, ... are eigenvalues and ®g, @1, ... are the corre-

sponding eigenfunctions of the Laplace-Beltrami operator,

which satisfy Ay ®; = \iP;.

The Heat Kernel Signature (HKS) [30] is a powerful
descriptor that characterizes local and global geometry of
the surface patch centered at each point:

he(z) =Y e M di(x)”.

1=0

(4)

The HKS inherits many good properties from heat ker-
nel and is therefore effective in describing shapes at differ-
ent scales and identifying geometric features. For a piece-
wise linear surface mesh, HKS can be computered from the
eigen-values and eigenvectors of the mesh Laplace opertor.
This computation is detailed in [30]. We use the sparse
eigen-solver in Matlab to compute them.



3.2 Properties of HKS for Geometric Reassembly

The heat kernel and heat kernel signature are desirable
for the reassembly of fragmented objects. Specifically, for
our fragmented skull assembly, we adopt it as a reliable
descriptor for partial matching because it is multi-scale,
informative (discriminative), and stable.

3.2.1 Multi-scale Property
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Figure 2: Multi-scale Property. The green point (a), considered
in the fragment (red region) and in the whole model (cyan) has
the overlapped signature curves (b).

For small values of ¢, the function hi(z,y) is mainly
determined by a small neighborhood of z; its neighbor-
hood grows to a bigger region as t increases. The multi-
scale property of the heat kernel implies, in particular,
that for small ¢, h:(x,y) only reflects local characteristic
of the shape around point =, while for large values of t,
ht(z,y) captures the global structure of M from the view
of point . This intuition can be formalized [10] as: (a)
For any smooth and relatively compact domain D C M,
lim 0 b (x,y) = hi' (x,y); and (b) if Dy C D2 C ... C
Dy, UP™ = M, then limy, o0 hi' " (z,y) = b (z,y) for any
t. The lexplicit relationship between time and the size of
diffusion region is also discussed in [9]. Suppose W/ is the
Brownian motion on M starting at point z, the heat ker-
nel can be viewed as the transition density function of the
Brownian motion, and is determined by the probability of
Wt at time t (see [9, 20] for details).

In our fragment-template matching problem, a pure
local descriptor can be easily affected by local noise and
geometry disparity, while a global descriptor could not tol-
erate the intrinsic difference between a complete template
and an incomplete fragment. Therefore, due to HKS’s
multi-scale property, unlike local descriptors such as spin
images[12] or global descriptors such as GPS|[23], the HKS
allows us to perform multi-scale comparison between differ-
ent neighboring regions of points on the same shape. Fur-
thermore, the HKS of points on different shapes are com-
mensurable, which allows us to perform the partial match-
ing and registration even when the template and subject
fragments have different subtle local geometries. Fig. 2
shows an example of HKS of the corresponding points on
the template and the fragment.

3.2.2 Informative Property

Skull models have subtle and detailed geometry, a desir-
able shape descriptor needs to be discriminative. Different
points from different skull locations have different HKS sig-
natures. More rigorously, let T': M — N be a surjective
map between two Riemannian manifolds. If b’ (z,y) =
WY (T(z), T(y)) for any =, y € M and any t>0, then T is
an isometry [30].

The Varadhan’s Lemma [10] indicates that for every
pair of points x,y € M, the geodesic distance d*(x,y) =

vos o
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Figure 3: HKS are informative. Each point has a unique heat
diffusion curves. Different points have different signatures.

—4limy—o tlog hi* (z,y). The informative property im-
plies that the heat equation contains all of the informa-
tion about the intrinsic shape geometry and hence fully
characterizes the shape.

HKS encodes the geometric information about the
neighborhoods of a point x at various scales together. This
property, together with the multi-scale property which is
discussed earlier, make HKS a suitable discriminative de-
scriptor (an example shown in Fig. 3) for our matching
purpose .

3.2.3 Scaling-invariant HKS Matching
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Figure 4: Normalization for Scaling Transformations. (a) shows
one skull with two scaling, the right one is twice larger. (b)
shows their HKS in the same coordinate, and (c) shows the
result of normalization.

We consider the heat diffusion curve under a scaling
transformation of an object. Given a model M and its
scaled surface M’ = BM, where 3 is the scaling factor,
following eq (4), the new eigenvalues and eigenfunctions
will satisfy A’ = 82X and ¢’ = B¢. So we have the following

equation:
o o]

HOED I A0S
i=0
This means HKS changes under the scaling transformation,
relating the signature b’ at time ¢ for M’ with the 32 times
of the signature h at time 8%t for M.

Fragments are scanned separately, so the scales of these
digital models are usually inconsistent. Without a scaling-
invariant descriptor and matching scheme, we need to pre-
process the original skulls. A typical approach is placing
markers and measure their distances, then using these dis-
tances to re-scale all digital fragment models into coherent
sizes with respect to the template model. Such approach
is tedious, error-prone, and could contaminate the original
skull. So we want to seek for a geometric algorithm that
can handle partial matching between models with incon-
sistent scaling.

Bronstein and Kokkinos [4] suggested a preprocessing
to make HKS a scale invariant vision. It is based on a
logarithmically sampled scale-space in which shape scal-
ing corresponds, up to the multiplicative constant /3, to a
shift. And this shift is then undone by taking the discrete-
time Fourier transform and Fourier transform modulus

(5)
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Figure 5: Signatures under Different Resolutions. (a,b,c) shows
a skull with 35k, 20k, and 10k faces, respectively. Corresponding
points in three skulls have very similar signature curves.
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Figure 6: Robustness of HKS. The green point on an incom-
plete skull (a) has a similar signature (b, the blue curve) to the
signature on the completed skull (b, the red curve).

(FTM). We adopt this approach. Fig. 4 illustrates the
scale-invariant property on skulls of different scaling after
the preprocessing.

3.2.4 Stability

Being scanned separately, different fragments may not only
have different scaling, but also have different sampling and
tessellations. Holes and local noise may exist due to occlu-
sions, low reflectance, or other reasons. Therefore, a de-
scriptor tolerating sampling resolution and geometric noise
is desirable.

On discrete surfaces, [30] uses the mesh Laplace op-
erator [2] to estimate the Laplace-Beltrami operator and
shows that HKS is insensitive to the meshing and resolu-
tions. This helps us to make our matching insensitive to
different resolutions, as shown in Fig. 5.

Heat kernel is stable against local noise (e.g. small local
geometric perturbation) due to the nature of heat diffusion
process on the manifold. The heat kernel can be consid-
ered as a Brownian motion, which means that h:(x,y) is a
weighted average possibility over all paths to reach y from
x in time t [10]. Suppose W is the Brownian motion on
manifold M, if we slightly perturb a subregion M’ C M,
only the paths passing through M’ will get affected. The
signature is therefore relatively stable. For a perturbation
applied on a point z, the variation of HKS on z is signifi-
cant for small ¢, but this decays as ¢ increases. Fig. 6 shows
an example of the robustness of HKS.

4 Skull Assembly Pipeline

Given a set of fragments {F;} (Fig. 7(a)), we shall com-
pute transformations {75} that transform these fragments
to align with a given template M. Transformed fragments
{T;(F;)} will then roughly reassemble the original geom-

Figure 7: Coarse Assembly. (a) shows the skull fragments (S2);
(b) shows the reassembled skull after Steps (1) and (2).

Figure 8: Multi-scale Feature Detection. The color indicates the
heat value of the point, and features are extracted in different
scales. (a) k = 0, (b) k = 60, (c) k = 100.

etry of the subject skull (Fig. 7(b)). We call this step
coarse assembly. After the coarse assembly, we further re-
fine the assembly by analyzing and matching break bound-
ary curves of fragments. The pipeline has 3 steps.

(1) Detect features by analyzing the heat field and heat
diffusion;

(2) Extract a superset of initial matches by HKS, then
compute a smaller set of final matches from these
candidates using RANSAC, then compute the rigid
transformations;

(3) Match the break curves, refine the assembled frag-
ments, then complete the skull.

4.1 Feature Detection

On two given shapes M (template) and F (fragment), we
firstly compute heat diffusion on M. A point v; is called
a feature in scale k, if F*(v;) is the local maximum or
minimum within its 2-ring region [34], where F*(v;) means
the heat value of v; in scale k.

In our experiments, we compute the HKS signature
curve for each model by uniformly sampling 100 points in
the logarithmically scale over the time interval [tmin, tmaz]
with tmin = 0,tmaes = 4log i—o, where Ao is the smallest
eigenvalue and k is the step. For a small k, the detected
features mainly encode local geometry while they charac-
terize geometry more globally for a larger k. Therefore,
long protrusions such as tooth tips can be extracted as
local extremals in a large-scale k.

Fig. 8 shows the features detected in different scales.
The features detected in the scale k = 0 are easily affected
by noise. As k increases, the heat field becomes smoother
gradually. The features detected in different scales can well
depict the shape information in a multi-scale sense. In our
experiments, we found & = 60 to be a suitable threshold
(since HKS is not sensitive to the resolution, we found k
values between 40 and 80 all provide relatively good and
similar results).
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Figure 9: This figure shows the comparison process. (a) is the
fragment and (b) is the template. (c) plots the HKS curves of
the corresponding points on (a) and (b); (d) illustrates their
common portion.

4.2 Coarse Matching

The coarse matching in step 2 of our assembly pipeline
contains two sub-steps, which will be discussed in the fol-
lowing subsections.

4.2.1 Initial Matching

On both template M and fragments set F' = {F;}, where
F; are the fragments pieces, we first put all the features
detected by HKS into candidate sets, denoted as P C F
and Q C M, respectively.

Then for each point p; € P, we search for its corre-
sponding features ¢; € Q. We correspond two points if
their HKS curves match well. We use <I>gi to denote the
heat diffusion curve p; on F and use @, (k) to indicate the
heat value in scale k.

Unlike isometric matching [34][22], corresponding
points in the fragment and template may have different
initial HKS and different diffusion time, therefore, simple
distance such as _p_, ||®]. (k) — @2/ (k)|| is not suitable
for our problem.

We modify the matching of HKS and develop differ-
ent metrics at a given range of scales. Firstly, to make
the time ¢ meaningful and stable for different surfaces, we
normalize the HKS of every match into a same coordinate
system, and compare the common portion. We then eval-
uate the quality of the match (p;,¢;) by computing the
difference between <I>(p¢)F and <I>(qi)M in their common
diffusion time:

(6)

where E(p;,),q4;,)(k) is a function to evaluate the matching

E(p,.qp) (k) = ||®5, (k) — ®g] ()|,

Pi»q;

(pi, @) and E(pi),q,)(k) indicates the difference in scale
k. And finally we use the variance D(E) to evaluate the
difference between two HKS so as to find the closest curve
or the best match for a given point. Fig. 9 demonstrates
this process.

After the computation of feature points and descrip-
tors, we can build an initial matching graph, correlating
each feature point on M and its n most similar matches
on F. In our experiments, we set N = 5. We use such
a conservative threshold (which may leads to quite a few
false positives, but usually guarantee at least one reliable
matching), and we will refine this matching in the next
section. Fig. 10(a) shows an example of the result of this
step.

4.2.2 RANSAC Refinement

The initial matching provides a conservative many-to-
many correspondence, where the correct match for each
point is included but many incorrect matching are also in-
volved. Given such a candidate matching graph (typically,
4 out of 5 matches are wrong), we need a filter to eliminate
these wrong matches.

We develop such a filtering scheme based on the
RANSAC strategy, which is a classical techniques for pa-
rameter estimation that can optimize the fitting of a func-
tional description to presented data. Rather than using
as much as possible of the data to obtain an initial solu-
tion then attempting to eliminate the invalid data points,
RANSAC uses a small initial data set and enlarges this set
with consistent data when possible [7][36]. Therefore, only
a small number of random guesses to find a candidate set is
needed to start the process. Intuitively, although we could
skip the initial matching step discussed in the previous sec-
tion and enumerate all possible matches between template
and fragments and evaluate all their validity, this will lead
to an inefficient process with big time consumption and
poor accuracy.

By using HKS, the approximate features can be ob-
tained on the template and fragment, it is the result of
the global similarity of skulls. Tevs et al. [31] developed a
RANSAC subgraph extraction method. We compute the
Euclidean distances of every correct matching here (which
is enough for our problem), and the aggregate of these
distance errors, for a correct match, yields a Gaussian dis-
tribution:

3 1 O e — 11
P(lay s bngajyImag) = o (2m) 2 kl:[lexP(T‘g): (7)

where [ denotes the actual distance observed and l,(co) the
correct distance. Then, Bayes rule is employed to compute
the probability of match m; ; being correct. p(m; ;) is the
prior probability of match, which in our case is given by
the descriptor matching.

Ltiy) = P s bngig [ )P (i, 5)
o 225, P e bngi jyp(mi )

Based on the above discussion, we use a RANSAC ran-
domized sampling algorithm, judged by the probability, to
evaluate how well the matches preserve the Euclidean dis-
tance. The algorithm is formulated as follows. Fig. 10
shows an example.

(8)

p(mill, ...

In: fragment F', template T', the max iteration number k,
and a matching candidate super-set C;

: the refined matching set S;
0) S=0;
1) Select 3 matches from C randomly (which can be used

to solve a rigid transformation) and stored in temper-
ate set D;

2) Enumerate each of the rest candidates in ¢; € C
and evaluate whether for this match, eq 8 exceeds
a threshold e, if so, add this match ¢; into D;

3) Check whether the size of D is larger than the size of
S, if so, S + D;

4) D + 0; Go to step 1, unless the max iteration number
k is reached.

A threshold e that is not too strict is usually desirable.
In our experiments, we set k& = 500 and we found e = 90%
always leads to good results.
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Figure 10: This figure shows input and output of the RANSAC
filter, (a) is the superset of matches which includes many wrong
matches and (b) is the final matches sifted by the filter.

Figure 11: Postprocessing: assembly refinement and skull com-
pletion. (a) shows the reassembled skull (S2) after rough as-
sembly; (b) shows the result after break curve matching and
assembly refinement; (c) is the final completed skull.

4.2.3 Local Registration

After the correct matching is computed, we can compute
the rigid transformation 7; for each fragment by solving
an over-determined system:

pé qé
T pi _ q;
j28 q

where T; is the rigid transformation on F;. As long as
we have more than 3 pairs of corresponding features, we
can solve the transformation and thus reassemble the frag-
ments. Fig. 7(b) shows a coarse assembly example.

4.3 Postprocessing and Skull Completion

With the help of template skull, the fragments are roughly
assembled after the above steps. However, such a coarse
reassembly may not be very accurate. Gaps or intersec-
tions between fragments may exist in the above assembling
result. Sometimes this is due to the geometric difference
between the (fragmented) subject skull and the template
skull. We further refine the reassembly by analyzing the
local geometry of these fragments, using the method in-
troduced in [37]. The rough assembly result is refined
through an optimization of the least square transforma-
tion error (LSTE) of break-curves. Finally, when the re-
assembly is finished. The missing or damaged regions (e.g.
holes) are repaired using the inherent symmetry [37] of the
skull. Fig. 11 shows the refine and completion process.

5 Experimental Results

In our experiments, all the skulls are scanned and pro-
vided by forensic anthropologists. We used our assembly
algorithm to repair four sets (two male skulls s1, s2 and
two female skulls s3, s4) of fragmented skulls. In prac-
tice, a template M is selected from an organized skull
database, in which skulls are classified by the sex, race,
age, cranial form, and etc. Given an incomplete subject
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Figure 13: (sl - s3) are the fragmented skulls. (t1) and (t2)
are the templates. The different coarse reassembling results are
shown in (a) - (d); (e) - (h) show the results after the refinement
guided by break curve matching.

Figure 14: Comparison of our proposed reassembly and the
algorithm of [37]. The fragments (a) are assembled using the
template (b). (c) is the result from [37] and (d) is the result of
our method.
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Figure 15: Reassembly of Simulated Fracturing. (al) and (bl)
are fragments partitioned from the complete models (a2) and
(b2) respectively. (a3) and (b3) are reassembled skulls; (a4)
and (b4) color-encode the reassembly errors. The red indicates
larger deviation while the blue indicates smaller errors (Min =
0.0 and Maz = 3% of the length of the bounding box).



Figure 12: The Assembly of Skull s4. (a) shows the fragments of s4 and (b) is the template. (c-f) show the matching from
fragments to the template. (g) is the coarse reassembly result (before refinement).

Table 1: Runtime Table: The fragmented skulls to be completed
and the template skulls are listed in the columns Subject and
Template, respectively. #A(K): the number of thousand trian-
gles in the mesh; #F": number of fragments; Tk s: the time of
computing HKS in seconds; Tran: the time of RANSAC pro-
cess with 500 iterations. T, : the time of post-processing and
skull completion. Experimental time is measured in seconds.

Skulls Temp #A(K) #F THKS TR Tcom
Sh T 35.1 4 328.2 | 6.9 27.8
St T> 35.1 4 3416 | 7.2 28.1
Sa T 37.2 5 3219 | 7.3 28.4
So 15 37.2 5 333.7 | 7.5 | 29.0
Ss T 52.4 6 492.3 | 6.2 40.3
S3 Ts 52.4 6 489.1 | 6.3 | 38.8
Sa T 43.8 6 4006 | 6.1 | 36.3
Sa Ts 43.8 6 402.2 | 6.2 37.9

skull, anthropologists analyze their anthropometry fea-
tures (lengths/ratios of distances between features), pre-
dict which category this skull belongs to, and select a
template skull from the same category as the template.
We perform our assembly algorithms on a 2.4GHz desktop
with 2GB RAM. The runtime table is given in Table. 1.
The assembling results of the skulls s1, s2 are shown in
Fig. 1 (e) and Fig. 11 (c), and the assembly of the female
skull s3 is shown in Fig. 13 (d). Fig. 12 illustrates the
assembly of skull s4,

In Fig. 13, we show our experiments to reassemble frag-
ments using different templates. For s2, we use two tem-
plates t1 and ¢2 for the matching. Partial matching against
different templates leads to slightly different coarse assem-
bly, but after the refinement, the results are similar. Our
entire pipeline therefore is not very sensitive to the selec-
tion of templates.

Fig. 14 shows the comparison between our proposed
method and the algorithm of [37]. Due to relatively sig-
nificant difference between the subject skull and the tem-
plate, the coarse assembly of [37] fails and can not be fixed
successfully by the break curve matching. In contrast, our
proposed approach demonstrates better reliability against
the not-similar template and successfully recompose the
subject skull.

In the above experiments, we only have the scanned
skull fragments without the ground truth complete skull.

We are not able to quantitatively measure the assembly
error. We also develop experiments to evaluate our algo-
rithms by intentionally breaking our complete skulls into
pieces. We then reassemble these fragments and measure
the deviation between the result and the original model.
The numerical errors illustrating this accuracy are plotted
in Fig. 15. The reconstruction error is smaller than 3%.

6 Conclusion

We introduce an geometric reassembly algorithm for frag-
mented skull completion. We employ a multi-scale de-
scriptor based on heat kernel and analyze the its several
desirable properties in geometric reassembly and in our
task. Then we develop a partial matching algorithm based
on this descriptor. We integrate our developed algorithm
into the skull assembly pipeline, which mainly consists
of three components: matching computation between the
fragments and template, rough assembly computation, and
matching refinement. The new scheme improves the effi-
cacy of the first two steps, and our rough assembly results
therefore outperform [37].

A limitation of the current assembly algorithm is in
handling tiny fragmented pieces. If a tiny fragment does
not have enough salient geometric features, then its match-
ing with template is difficult and unreliable. Right now we
give up reassembling such fragments and rely on the sub-
sequent hole filling algorithm to repair the corresponding
missing region. Also, refinement guided by the break curve
matching is sometimes not reliable if the boundary is worn
or partially damaged. Currently after the refinement of
each fragment, if the matching error of break curves with
adjacent parts is bigger than a threshold, we skip the re-
finement on this fragment and restore the assembly sug-
gested by the template-subject matching. We will explore
a better refinement strategy to deal with this issue.
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