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Figure 1: Parameterizing a Star Shape onto a Solid Sphere. (Left) Initial u

and v coordinates can be projected from the boundary surface to the inscribed

sphere. (Right) The w coordinate (depth) can be computed using methods of

fundamental solutions [4].

sectionHarmonic Volumetric Parameterization using MFS After the de-
composition of a given object M , we get a set of star shapes {Mi}, each
region being guarded by a point gi. Then we can parameterize each sub-
region onto a solid sphere. A key property that we will show shortly is that
such a harmonic map is guaranteed to be bijective. The harmonic map can
be computed using the method of fundamental solutions (MFS) [4],
by setting the boundary condition of the volumetric map to be the spherical
parameterization of ∂Mi. We use the harmonic spherical parameterization
[2] to get the harmonic surface map f ′ : ∂Mi → S2. [2] takes the normal
map as the initial mapping and conduct the optimization on local tangential
plane before projecting the adjusted position back to the sphere. If the ini-
tial map (like the normal map) has large flip-over regions, the optimization
will be slow and could trap locally. Since each Mi now is a star shape, the
following approach efficiently gets a bijective initial spherical mapping. Fig-
ure 1 illustrates our idea. In the left picture, full visibility of the local region
guarantees a bijective projection from the boundary points onto the sphere.
When the boundary mapping is decided, we only need to compute the third

1



dimensional coordinate w of the parameter. Figure 1 (Right) illustrates the
concept of the different iso-w level sets. Such a harmonic function w can be
computed using the MFS method. We refer to [4] for technical details, and
only briefly recap the idea as follows.

MFS for Volumetric Parameterization. Based on the Green’s func-
tion and the maximum principle of harmonic functions, the harmonic func-
tion w defined on a region D never reaches maximal or minimal values in the
interior of D, and w is fully determined by the boundary condition and can
be computed by fundamental solutions of the 3D Laplace equation. The ker-
nel function for the 3D Laplace equation coincides with the electric potential
produced by point charges. Therefore, its intuitive physical explanation is
to design a potential field that approximates the boundary condition. The
potential field, guaranteed to be harmonic by the fundamental solutions, is
the function w that we seek for. The parameterization therefore is converted
to a boundary fitting problem for the potential field, and can be solved using
a linear system effectively.

1 Bijectiveness of Harmonic Mapping on Star

Regions

In the surface case, a harmonic map is a minimizer of the Dirichlet energy and
indicates a minimal surface [6]. It can be effectively approximated through
FEM analysis of harmonic energy [1]. The theoretic foundation for harmonic
surface mapping is built upon the Radó Theorem, which states that, on a
simply connected surface M with a Riemannian metric, suppose a harmonic
function f : M → D ⊂ R

2 maps M to a convex planar domain D, if f
on the boundary is a homeomorphism then f in the interior of M is also a
diffeomorphism.

FEM analysis of harmonic energy can also be conducted [7] on 3-manifolds
using tetrahedral meshes. However, the Radó theorem does not hold for 3-
manifolds. Therefore, fundamental theoretic obstacles remain for volumetric
harmonic mapping. We tackle this fundamental parameterization problem
for volumetric data through star decomposition. It can be proved that for
specific domains such as convex shapes, bijective harmonic parameterization
exists. Then in order to compute a bijective mapping, we can first decompose
volumetric data into a set of solvable sub-domains for local piecewise map-
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ping computation. We show ([3] gives a rigorous mathematic proof through
analyzing the induced foliation) the existence of harmonic volumetric pa-
rameterization on a star-shaped region and that the bijective map can be
constructed using the MFS-based framework effectively. The idea is as fol-
lows.

Lemma 1 In a star-shaped domain M guarded by a point g, the harmonic
function w : M → [0, 1] has its only critical point at g.

When M is visible to a guard g and a harmonic function w is defined over
M , with w|∂M = 1 and w|g = 0. We can use g as the origin O and create
a local coordinate system. Then we analyze the gradient of the harmonic
function ∇w within this local coordinate system. At p(x1, x2, x3), we can
define another harmonic function h(p) =< p,∇w >, where <,> denotes the
dot product. Since w is harmonic, ∂w

∂xi

is also harmonic, then we can verify
h(p) is harmonic by:

∆h = (
∑

k

∂2

∂x2

k

)(
∑

i

xi

∂w

∂xi

) = 2∆w +
∑

i

xi∆(
∂w

∂xi

) = 0.

The maximum principle of harmonic map guarantees h reaches its max
and min values only on the boundary of the harmonic field, i.e. surface
boundary ∂M and the infinitely small ball bounding O, ∂B(O, ε). ∇w has
same direction of p so it is easy to see that f > 0 in all the region bounded
by ∂B(O, ε) and ∂M . Therefore, for arbitrary ε, f 6= 0, we have ∇w 6= 0
in M/{O}, the harmonic potential is proved to have no critical point in M
except O.

Theorem 1 Given a potential value r, the level set w−1(r) is a topological
sphere.

This is guaranteed by Morse theory [5], which says that two level sets share
the same topology if there does not exist critical point between these two
layers. Therefore, based on Lemma 1, all interior iso-layer w−1(r) has the
same topology with the region boundary. This demonstrates the harmonic
function w computed using MFS, together with the other two coordinates
u, v defined by surface mapping, induce a bijective spherical map M → S2,
which is also a diffeomorphism.
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We conduct our harmonic volumetric parameterization on decomposed
sub-regions. And verify the signed volume of each tetrahedron when mapped
onto the target object. Under the mapping, all the deformed tetrahedra still
preserve the positive volume. Which demonstrates the non-degeneracy of our
parameterization, meanwhile, decomposition improves the mapping distor-
tion, namely,the quasi-conformality of the harmonic mapping also effectively
increases.

(a) Parameterization of the volumetric Rocker-arm

(b) Torus-cone (4-parts) (c) Spherical level set

Figure 2: Harmonic Parameterization of Rocker-arm and Torus-cone. (a) The
volumetric rocker-arm model, its spherical parametric domain, and the volumetric

parameterization visualized in one cross-section. (b) The volumetric torus-cone

model is decomposed to 4 star regions, also, the color-encoded w distance field is

visualized in one cross-section. (c) Each sub-region is parameterized onto a solid

sphere, whose color-encoded level set is visualized.
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