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Abstract—This paper presents a new framework, Knowledge-
Transfer Generative Adversarial Network (KT-GAN), for fine-
grained text-to-image generation. We introduce two novel mecha-
nisms: an Alternate Attention-Transfer Mechanism (AATM) and
a Semantic Distillation Mechanism (SDM), to help generator
better bridge the cross-domain gap between text and image. The
AATM updates word attention weights and attention weights of
image sub-regions alternately, to progressively highlight impor-
tant word information and enrich details of synthesized images.
The SDM uses the image encoder trained in the Image-to-
Image task to guide training of the text encoder in the Text-
to-Image task, for generating better text features and higher-
quality images. With extensive experimental validation on two
public datasets, our KT-GAN outperforms the baseline method
significantly, and also achieves the competive results over differ-
ent evaluation metrics.

Index Terms—Generative Adversarial Network, Knowledge
Distillation, Text-to-Image Generation, Alternate Attention-
Transfer Mechanism

I. INTRODUCTION

Photographic Text-to-Image (T2I) synthesis aims to gener-
ate a realistic image that is semantically consistent with a given
text description, by learning a mapping between the semantic
text space and the complex RGB image space [25], [36]. A
key challenge in synthesizing realistic objects with semantic
details is the heterogeneous gap between high-level concepts in
text descriptions and pixel-level contents of synthetic images.
Building an effective synthesizer to bridge this domain gap is
difficult.

Many approaches [25], [41], [11], [42], [16], [24] based
on Generative Adversarial Networks (GANs) [9] bridge the
domain gap by utilizing a discriminator to distinguish the syn-
thesized text-image pair and the ground-truth pair. However,
such a discriminator alone is usually insufficient to model
underlying semantic consistency between text and image [23],
and consequently, results in semantic or structural errors in
synthesized images (see Figure 1, the “Direct T2I” column).
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Text  Description         GT             I2I         Direct T2I  Guided T2I              
This bird has a red 
crown, a black beak, 
and a soptted brown 
breast.

This vibrant blue bird 
has  a  spiky crown 
and a black tail.

Fig. 1. Images generated by I2I task, Direct T2I task, Guided T2I task (Use
I2I to guide T2I to better encode text feature and synthesize images) and the
corresponding ground truth (GT).

Recently, the attention mechanism [35], [22], [13] has been
exploited to address this problem, which guides the generator
to better match certain visual words with corresponding image
subregions. But using word-level attention alone does not en-
sure global semantic consistency due to the diversity between
text and image modalities [23]. Thus, MirrorGAN [23] models
Text-to-Image and Image-to-Text together to enhance global
cross-domain semantic consistency. However, the Image-to-
Text in MirrorGAN [23] is still a cross-domain generation,
which is not easier than homogeneous generation task such
as I2I task. Thus, the problem of semantic inconsistency
between heterogeneous information still remains. SEGAN [13]
introduces a new contrastive loss and a Semantic Consis-
tency Module (SCM) to better align the synthesized image
and the ground truth in feature space. But still due to the
heterogeneous semantic inconsistency, SEGAN cannot extract
effective text features that can guide the synthesis of realistic
and detailed images.

Our observation is that Image-to-Image (I2I) synthesis be-
longs to a homogeneous generation task, whose information
gap is much smaller than that between heterogeneous gap.
I2I can generate a synthesized image that has much stronger
semantic consistency with the ground truth image. Thus, I2I
may effectively guide T2I to better encode text features and
synthesize images. As shown in Figure 1, T2I guided by I2I
(last column) produces much better results than direct T2I
synthesis.

In addition, the recent AttnGAN [35] and its subsequent
improvements [10], [13], [17], [22], [31] adopt the word-level
attention mechanism to enhance the local semantic matching
between word features and local image features. In these
algorithms, during the process of image synthesis, the weights
of word features are fixed. Consequently, if the attention
mechanism does not produce accurate weight estimation in one
pass, then important words will be neglected, and image details
will be missing. Thus, our second technical development is
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an attention update mechanism so that attention module can
gradually focus on important words in a progressive way
during the process of image synthesis.

Based on the above observations, we propose a new
Knowledge-Transfer Generative Adversarial Network (KT-
GAN) for T2I synthesis with two new components: (1) a
Semantic Distillation Mechanism (SDM) that uses the I2I
task to guide the T2I task for both text feature encoding
and image generation, and (2) an Alternate Attention-Transfer
Mechanism (AATM) to better identify important words in text.
The main contributions of this paper are as follows:
(i) We designed a Semantic Distillation Mechanism with a

novel distillation loss function, to use I2I to guide T2I for
better text feature extraction and image synthesis.

(ii) We designed an Alternate Attention-Transfer Mechanism
to progressively refine word-level attention weights and
enrich details of the synthesized image.

(iii) We validated our KT-GAN on two datasets: CUB-Bird
[32] and large-scale MS-COCO [19]. Extensive experi-
mental results and analysis demonstrate the effectiveness
of KT-GAN and significantly improved performance com-
pared against most previous most state-of-the-art methods
on all four evaluation metrics.

II. RELATED WORK

Semantic Attention mechanism. Attention models have
been extensively exploited in computer vision and natural
language processing, for instance in object detection [40],
image/video captioning [39], person Re-identification [33] and
visual question answering [29]. In T2I synthesis, recently,
AttnGAN [35] introduces the word-level visual attention
mechanism for T2I synthesis, it enhances the synthesis of fine-
grained details at different image regions. The following work,
obj-GAN [17] proposes a object-driven attention mechanism
to further improve the detail synthesis, and produces finer
images. A limitation of both AttnGAN [35] and obj-GAN [17]
is that weight of words are fixed, which sometimes results in
attention mechanism neglecting many important words. Re-
cently, SEGAN [13] introduce the attention regularization term
to filter out unimportant words and highlight the important
words. But it is difficult to find the adaptive threshold in the
regularization term.

Recently, [43] propose the attention update mechanism
to transfer the pose of a given person to a target pose.
The mechanism can effectively and dynamically utilize pose
and appearance features to smoothly guide the pose transfer
process. Inspired by [43], we propose the suitable attention
update mechanism to progressively focus on important words.

Knowledge Distillation. Knowledge Distillation (KD) [34],
[15] with neural networks was pioneered by Hinton [8], which
is a transfer learning method that aims to improve the training
of a student network by relying on knowledge borrowed from
a powerful teacher network. This has also been addressed
for model compression [2], [7], cross-domain task [20], [1]
and continual learning tasks [21], [6]. [2] propose two
distinct teacher-student frameworks based on knowledge dis-
tillation mechanism for person detection. [20] apply domain-

invariant feature distillation mechanism for cross-domain sen-
timent classification. Lifelong GAN [21] employs knowledge
distillation to address catastrophic forgetting for conditional
generative continual learning tasks. However, above works
belongs to homologous information distillation mechanism,
because both teacher task and student task belong to the same
or similar tasks. In KT-GAN, we solve the more challenging
heterogeneous information distillation task. In our KT-GAN,
teacher task (I2I) is quite different from student task (T2I).

III. PROPOSED METHOD

We first revisit the attention mechanism in AttnGAN
(Sec. III-A), then introduce our two new mechanisms: the
Alternate Attention-Transfer Mechanism (AATM) (Sec. III-B)
and Semantic Distillation Mechanism (SDM) (Sec. III-C). By
integrating the AATM and SDM into the AttnGAN, we get
our proposed KT-GAN.

A. Attention Generator in AttnGAN [35] Revisit

The AttnGAN [35] introduced an Attentional Generative
Network (AGN) to guide the synthesis of different sub-regions
in the image following their most relevant words. The input
text description is transformed into the sentence feature s and
word features W0 by a pre-trained bi-directional LSTM text
encoder in [35].

As shown in left part of Figure 2, the AGN has m blocks
(B0, B1, · · · , Bm−1) and the corresponding m generators (G0,
G1, · · · , Gm−1). The generators take the hidden states (H0,
H1, · · · , Hm−1) as input and generate images of small-to-large
scales (I ′0, I ′1, · · · , I ′m−1):

B0 : H0 = F0(z, F
ca(s));

Bi : Hi = Fi(Hi−1||F attn
i (W0, Hi−1)), i = 1, 2, · · · ,m− 1;

Gi : I
′
i = Gi(Hi).

(1)

Here, z ∼ N(0, 1). F ca is a conditioning augmentation mod-
ule [41] that converts a sentence feature s to a conditioning
feature for the generator. F ca, F attni , Fi, and Gi are modeled
as neural networks. Here, ‖ denotes the concatenation of two
maps along depth axis.

Consider the i-th block Bi, the black dotted box in the
middle row of Figure 2: the core of Bi is F attni (W0, Hi−1),
which can update where to draw or highlight the details of the
image according to word feature W0. F attni (W0, Hi−1) has
two inputs: the word features W0 ∈ RD×T (T is the number
of words, D is the dimension of word features) and the image
features from the previous hidden layer Hi−1 ∈ RD̂×N . F attni

is computed in three steps: (1) Normalized Cross Correlation
(NCC) between W0 and Hi−1 is computed as the attention
weights to words; (2) A word-context matrix F attni (W0, Hi−1)
for image feature is computed; and (3) the image feature Hi

is updated by: Hi = Fi(Hi−1 ‖ F attn(W0, Hi−1)). For more
details please refer to AttnGAN [35].

B. AATM

We can observe that the input of word feature is always
W0 in the block Bi(i = 1, 2, 3, · · · ,m−1) of AttnGAN [35].



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Attention Mechanism from AttnGAN:
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Fig. 2. The left part is cascade-attention generation networks in AttnGAN [35]. The black dotted box is the attention block in AttnGAN. The red dotted box
is the attention block in AATM. NCC denotes the Normalized Cross Correlation.

A problem for the attention mechanism in AttnGAN is that
word weights calculated in a single attentional block are
not guaranteed to be correct. As a result, some visually
important words could be neglected and their semantics are
not reflected in the synthesized image. In order to tackle this
problem, we design an Alternate Attention-Transfer Mecha-
nism (AATM) to iteratively and progressively identify visually
important words in the sentence. We construct the AATM by
introducing a Word Feature Update module into the block
Bi(i = 1, 2, 3, · · · ,m − 1), as illustrated in the red dotted
box in Figure 2.

Each block Bi in AATM contains two modules: Word
Feature Update module (components in yellow in Fig. 2)
and Image Feature Update module (components in black in
Fig. 2). Firstly, the Word Feature Update module updates
the weight of word feature based on the image feature and
word feature from the last block. With these blocks, important
words will gradually aggregate their weights and they will
get highlighted. Secondly, the image features should also be
updated according to such change, i.e., image features are
synchronized to indicate where to draw the detail on the image
according to the updated word features.

Word Feature Update module. In the i-th block Bi, it
takes in image features Hi−1 and word features Wi−1 from
the Bi−1 block, and outputs the updated word features Wi

through a three-step procedure.
(Step 1) Calculate an NCC Matrix R∗ ∈ RT×N between

Hi−1 ∈ RD̂×N and Wi−1 ∈ RD×T : (i) We map word features
to the same latent semantic space of the image features by
W ′i−1 = UWi−1, W ′i−1 = {w′ji−1 ∈ RD̂|j = 1, 2, · · · , T},
where U ∈ RD̂×D is a perceptual layer. Each column of
Hi−1 = {hji−1 ∈ RD̂|j = 1, 2, · · · , N} (hidden features) is a
feature vector of an image’s sub-region. (ii) The word-image
Cross Correlation Matrix is R = (ri,j) = W ′

T
i−1Hi−1 ∈

RT×N . Here, ri,j encodes the dot-product similarity between
the ith word in the sentence and jth sub-region in the image.
(iii) The NCC Matrix R∗ is R∗ = (r∗i,j) =

exp(ri,j)∑T
k=1 exp(rk,j)

.

(Step 2) Calculate attentional weight mask R̂ of words: (i)

We reshape R∗ ∈ RT×N to R′ ∈ RT by maxpooling. Each
element in R′ represents the maximum similarity of a word to
all image sub-regions, which is regarded as this word’s weight.
(ii) In order to match R′ with the word feature matrix Wi−1 ∈
RT×D, we reshape R′ to attention weight mask R̂ ∈ RT×D
by repeating the column of R′ for D times.

(Step 3) Update the word feature Wi by

Wi = α · [R̂�Wi−1]⊕ β · [Wi−1], (i = 1, 2, 3, ...m− 1) (2)

where � denotes element-wise product, α is the retention
factor of current word feature information, β is the attenuation
parameter of the word feature information in the previous
stage, which reduces the interference of non-important words
to some extent. By multiplying the transformed word features
Wi−1 with the weight R̂, features Wi of certain words
are either preserved or suppressed. The residual connection
⊕ and the progressive feedback from discriminators of
previous blocks together help important words to aggregate
their weights quickly.

Image Feature Update module. We use the whole op-
erations (Eq. 1) Fi in AttnGAN as the Image Feature
Update module in our each block Bi. However, in At-
tnGAN the input word feature of Fi is always W0, but
in our AATM, the word features and image features need
to be updated alternately, thus, in our each Bi, we need
to rewrite Hi = Fi(Hi−1||F attni (W0, Hi−1)) in Eq. 1 as
Hi = Fi(Hi−1||F attni (Wi, Hi−1)). With this modification,
our AATM can be implemented correctly.

C. SDM

Besides introducing a better attention mechanism (AATM)
into the T2I, we also design a new Semantic Distillation
Mechanism (SDM) to guide the text encoder to provide better
input features for the T2I. As illustrated in the green box
in Figure 3, the SDM trains a student task (T2I) under the
guidance of a trained teacher task (I2I), which performs the
supervised cross-task semantic transfer. Our SDM contains
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Fig. 3. The Framework of the proposed KT-GAN. KT-GAN contains two novel strategies: Semantic Distillation Mechanism (SDM) and Alternate Attention-
Transfer Mechanism (AATM) in Figure2. The AATM is embedded in the generator of the student task. The SDM contains three main components: the teacher
task (Image-to-Image task, I2I), the student task (Text-to-Image task, I2I), and the Semantic Distillation Loss (SDL).

three main components: the teacher task (I2I), the student task
(T2I), and the Semantic Distillation Loss (SDL).

In the teacher task, we train an I2I task to obtain a good
image encoder and a good image generator. We design an SDL
to train a good text encoder, GTE (Guided Text Encoder), that
matches with the trained image encoder in I2I. In the student
task, we train a T2I task to get a good image generator. The
implementation steps are as follows.

Step 1: Train networks in the teacher task (I2I).
Step 2: Train text encoder by SDL.
Step 3: Train networks in the student task (T2I).

In Step 1, I2I transforms an input image into a global
image feature v ∈ RD by an image encoder. This image
encoder is initialized using a pre-trained Inception-V3 [28] on
ImageNet [26], and is then fine-tuned during the I2I training.
We modify AttnGAN [35] from an T2I synthesizer to an I2I
synthesizer. Note that choosing the structure of AttnGAN [35]
as the teacher’s network is appropriate, because it aligns well
with the T2I task. The modification of AttnGAN mainly
includes two operations. (i) Remove the attention mechanism
in the generator, use global image feature v as the input of the
generator. (ii) Introduce the perceptual loss (Lper) [4] into the
I2I to improve the quality of synthesized image. More details
of these modifications can be found in Appendix-A.

In Step 2, we use use the trained image encoder in I2I task
to guide training of an effective text encoder for the T2I task.

In Step 3, we use the text encoder trained by SDL in Step
2 to generate text feature as the input to T2I. Meanwhile,
we use the generator and discriminator trained in Step 1 as
the initial generator and discriminator. Rather than training
the generator and discriminator from scratch, this inheritance
greatly improves the generator’s performance.

Semantic Distillation Loss (SDL). The core of SDM is
SDL. In this distillation, image encoder needs to be fixed,
because it was already trained in I2I, and can provide effective
feature template for text encoder in T2I to follow. In training
process, we should design the SDL to (1) globally, push the
sentence feature s to match the fixed global image feature v,
and (2) locally, push the word feature W0 to match the fixed
image feature’s sub-regions V0. The DAMSM loss in [35] is a
widely used function to match image features and text features.
We made two main modifications on DAMSM Loss. (1) First,

unlike AttnGAN [35] that trains both image encoder and
text encoder, we modify DAMSM loss to fix image encoder
and only train text encoder. (2) Second, DAMSM can not
effectively deal with imbalanced easy/difficult data samples
in training process. Inspired by [18], Focal Loss can better
balance the easy and hard samples. Thus, we further revise
the construction of SDL following the design of Focal Loss.

The SDL is composed of LS∗ and LW∗ . The distillation loss
LS∗ (“S∗” stands for “Sentence”) is designed for matching
sentence feature s and global image feature v. The distillation
loss LW∗ between Word feature W0 and local image feature
V0 (“W ∗” stands for “Words”) is designed similarly.

The distillation loss LS∗ . For a batch of image-sentence
pairs {(vi, si)}Mi=1, firstly we define the probability of match-
ing between sentence feature si and fixed image feature v∗i
(trained in I2I) as P (si, v∗i ):

P (si, v
∗
i ) =

2 · exp(d(v∗i , si))∑M
j=1 exp(d(v

∗
j , si)) +

∑M
j=1 exp(d(v

∗
i , sj))

.

(3)
Here, d(x, y) is cosine distance between x and y. Then, we
define the LS∗ as the negative log matching probability as

LS∗ = −
M∑
i=1

(1− P (si, v∗i ))γ logP (si, v∗i ). (4)

Here, γ is tunable focusing parameter γ ≥ 0 in [18].
The distillation loss LW∗ . In LW∗ , we aim to make the

word feature W0 = {wj0 ∈ RD|j = 1, 2, · · · , T} (output of
the text encoder) to align with the fixed image feature’s sub-
regions V ∗0 = {v∗j0 ∈ RD|j = 1, 2, · · · , N} (output of the
fixed image encoder).

(1) Following [17], [35], [14], we define a normalized
image-text similarity matrix R+ ∈ RT×N through two
operations:

(1.a) Let R = (ri,j) = WT
0 V
∗
0 ∈ RT×N encode the dot-

product similarity between the i-th word in the sentence and
j-th sub-region in the image.

(1.b) This R is normalized to R∗ = (r∗i,j) =
exp(ri,j)∑T
k=1 exp(rk,j)

,

and then normalized to R+ = (r+i,j) =
exp(r∗i,j)∑N
k=1 exp(r

∗
i,k)

.

(2) Same as [17], [35], [14], we also define the attention-
driven word-image matching score:
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(2.a) We define the dynamic representation of the im-
age with respect to the i-th word using a vector Oi =∑N
j=1 r

+
i,jv
∗j
0 .

(2.b) We can define the attention-driven word-image
matching score between image v∗ and sentence s,

RW (v∗, s) = log(

T∑
i=1

exp(β0Oi · wi0))
1
β0 , (5)

where β0 is a factor weighing the importance of the most
relevant word-to-region pair. As described in [35], when β0 →
∞, RW (v∗, s)→ maxTi=1Oi · wi0.

(3) Based on the attention-driven word-image matching
score, for a batch of image-sentence pairs {(v∗i , si)}Mi=1, we
define the probability of matching between sentence feature
si and fixed image feature v∗i (trained in I2I) as P (si, v∗i ):

P (si, v
∗
i ) =

2 · exp(RW (v∗i , si))∑M
j=1 exp(RW (v∗i , sj)) +

∑M
j=1 exp(RW (v∗j , si))

, (6)

Finally, follow the design of Focal Loss [18], we define the
Distillation Loss LW∗ by introducing a modulating factor (1−
P (si, v

∗
i ))

γ with a tunable focusing parameter γ ≥ 0:

LW∗ = −
M∑
i=1

(1− P (si, v∗i ))γ logP (si, v∗i ). (7)

Here, the value of γ in LW∗ is the same as the value of γ in
LS∗

Finally, the Semantic Distillation Loss is defined as

LSDL = λ1LS∗ + λ2LW∗ . (8)

Here, the subscript SDL stands for “Semantic Distillation
Loss”.

Generative and Discriminative Loss in Student Task. At
the Block-Bi, the Generative loss LGi and Discriminative loss
LDi are defined as

LGi = −
1

2
[EI′i∼PGi logDi(I

′
i)︸ ︷︷ ︸

unconditional loss

+EI′i∼PGi logDi(I
′
i, s)]︸ ︷︷ ︸

conditional loss

, (9)

where the unconditional loss is trained to generate images
towards the true image distribution to fool the discriminator,
and the conditional loss is trained to generate images to match
text descriptions.

The discriminator Di is trained to classify the input into the
class of real or fake images by minimizing the cross-entropy
loss
LDi =−

1

2
[EIi∼Pdatai logDi(Ii) + EI′

i
∼PGi

log(1−Di(I′i))︸ ︷︷ ︸
unconditional loss

+EIi∼Pdatai logDi(Ii, s) + EI′
i
∼PGi

log(1−Di(I′i, s)]︸ ︷︷ ︸
conditional loss

,
(10)

where Ii is from the true image distribution pdata at the ith

scale, and I ′i is from distribution pGi of the generative images
at the same scale.

To generate realistic images, the final loss function of the
generator and discriminator are defined as

LG = LG + λ3LDAMSM ,LD =

m−1∑
i=0

LDi ,LG =

m−1∑
i=0

LGi .

(11)
Here, we utilize the DAMSM loss [35] to make generated
images better conditioned on text descriptions.

IV. EXPERIMENTAL RESULTS

A. Experiment Settings

Implementation details. The resolution of the images par-
ticipating in the evaluation are 256×256. All hyper-parameter
values are listed in the Appendix-B. We find the suitable values
for these hyper-parameters by a series of ablation studies in
the Appendix-C. In the training stage: (i) Train I2I task; (ii)
Train SDM; (iii) Train T2I task. In the testing stage: Only
input features of sentence and words to the generator of the
Student Network.

Datasets. Two widely used datasets are used. The CUB-
Bird dataset [32] contains 11, 788 bird images belonging to
200 categories, and 10 visual description sentences for each
image. We pre-process and split the images following the same
pipeline in [25], [41]. The MS-COCO dataset [19] contains
80k training images and 40k test images, and each image has
5 text annotations.

Evaluation. We compare KT-GAN and other state-of-
the-art algorithms using four measures: (1) Inception Score
(IS) [27]; (2) Fréchet Inception Distance (FID) [12]; (3) We
also compare the Rank-1 score in text-to-image retrieval [5];
(4) Human perceptual test.

IS uses fine-tuned inception models provided by [41] to
compute the KL-divergence between the conditional class
distribution and the marginal class distribution. A larger IS
(better) means that a T2I generator can synthesize a higher
diversity of images for all classes, where each image be-
longs more clearly to a specific class. FID computes the
Fréchet distance between synthetic and realistic images based
on the extracted features from a pre-trained Inception-V3
network [28]. A lower FID (better) implies a closer distance
between generated image distribution and real-world image
distribution. The Rank-1 score denotes the most relevant
synthesized images for each text sentence in text-to-image
retrieval. A bigger Rank-1 score (better) implies the syn-
thesized image has better consistency with the given text.
The trained retrieval model provided by [5] was used to
calculate the Rank-1. The Human perceptual test aims to
judge whether the generated images are well-conditioned on
the text descriptions from human subjective perception. In
order to conduct the Human perceptual test, we randomly
select 1000 text descriptions in the CUB-Bird test set and 2000
text descriptions in the MS-COCO test set. Given the same
text description, 30 volunteers (not including any author) are
asked to rank the images generated by different methods. The
average ratio ranked as the best by human users are calculated
to evaluate the compared methods. A bigger score (better) in
the Human perceptual test implies the synthesized image has
better consistency with the given text description.

B. Effectiveness of New Modules

We evaluate the effectiveness of two new components,
AATM and SDM, in terms of three measures. The results are
documented in Table I. (I) We introduce AATM to replace the
attention mechanism in AttnGAN [35], i.e. AttnGAN+AATM.
As shown in Table I, AttnGAN+AATM leads to 8.7% and
10.2% improvement of IS, 24.1% and 10.2% improvement
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TABLE I
IS↑, FID ↓ AND RANK-1 ↑ PRODUCED BY COMBINING DIFFERENT COMPONENTS OF THE KT-GAN ON CUB-BIRD AND MS-COCO TEST SETS.

KT-GAN=ATTNGAN+AATM+SDM

Method CUB-Bird MS-COCO
IS FID Rank-1 IS FID Rank-1

AttnGAN [35] 4.36± 0.03 23.98 27.9% 25.89± 0.47 35.49 22.9%
AttnGAN+SDM 4.76± 0.02 18.21 32.6% 29.02± 0.17 31.86 24.4%

AttnGAN+AATM 4.74± 0.05 20.40 29.4% 28.54± 0.38 32.54 23.7%
KT-GAN 4.85± 0.04 17.32 32.9% 31.67± 0.36 30.73 24.5%

of FID, and 4.7% and 1.5% improvement of Rank-1, on
CUB-Bird and MS-COCO test datasets respectively. (II) If
we introduce the SDM to AttnGAN (AttnGAN+SDM), we
obtain 9.2% and 12.1% improvement over the AttnGAN in IS,
14.9% and 8.3% improvement over the AttnGAN in FID, and
1.5% and 0.8% improvement over the AttnGAN in Rank-1,
on CUB-Bird and MS-COCO datasets respectively. (III) KT-
GAN: If we introduce the SDM and AATM into AttnGAN,
we obtain 11.2% and 22.3% improvement over the AttnGAN
in IS, 27.8% and 15.5% improvement over the AttnGAN in
FID, and 5.0% and 1.6% improvement over the AttnGAN in
Rank-1, on CUB-Bird and MS-COCO datasets respectively.

In all, Table I shows that both components contribute to the
KT-GAN’s performance improvement. The IS of KT-GAN is
4.85 on CUB-Bird and 31.67 on the MS-COCO test dataset.
The FID of KT-GAN is 17.32 on CUB-Bird and 30.73 on the
MS-COCO test dataset. The Rank-1 of KT-GAN is 32.9% on
CUB-Bird and 24.5% on the MS-COCO test dataset.

C. Component Analysis of AATM

We compare IS, FID and Rank-1 of different designs in
the Word Feature Update Module (Eq. 2) on the CUB-Bird
dataset. Due to GPU memory constraints, we did not try
the KT-GAN with more than three blocks. And AATM is
employed over the last two blocks. Thus, AATM can only
be applied to blocks B1 and/or B2, and there are three
possible variants: (I) AATM (B1) indicates that AATM is only
implemented in block B1. As shown in Table II, compared
with AttnGAN, the performance of AttnGAN+AATM (B1)
gains the moderate improvements in these three measures.
(II) AttnGAN+AATM indicates that AATM is implemented
in both blocks B1 and B2 in this paper. Compared with
AttnGAN+AATM (B1), the performance of AttnGAN+AATM
(B1) further gains the moderate improvements in these three
measures. It demonstrates that progressively adding the AATM
into the block (Bi (i = 1, 2, . . . ,m − 1)) can effectively
improve the performance of generator. (III) In order to show
the effectiveness of the residual connection, we drop out
residual connection in Eq. 2, i.e. Wi = α · [R̂ �Wi−1]. The
performance of “AttnGAN+AATM w/o Res” is degraded in
these three measures. It indicates that the accumulation of
word information from previous blocks also play an important
role in synthesizing process.

Figure 4 compares AttnGAN and AttnGAN+AATM by
visualizing the iterative update on word weights and their
corresponding attention maps. Weights for the top-5 words

are listed. The attention maps are plotted on synthesized
images: each word’s relevant region is brighter. In Figure 4, the
AttnGAN generally can not effectively accumulate important
word information and improve attention maps. In the CUB-
Bird example (left column), word weights and attention in
Block-B2 are not better than in Block-B1 and remain incor-
rect (e.g., “a” “the” “short” and “beak”). Similarly, in the
MS-COCO example (right column), the AttnGAN’s attention
always focuses on certain words and misses important visual
information from some other words, and eventually leads to
bad synthesis. In contrast, our AATM progressively aggregates
the weights of important words and enhances the accuracy
of their attention. We can clearly see such improvements
in Block-B2 over Block-B1 (e.g., left column: “beak” and
“short”, right column: “many”, “sheep” and “field”). As for
the update module for the Image Feature, the module from
[35] is already effective and we simply followed that. So no
ablation study on that is discussed here.

TABLE II
IS↑, FID ↓ AND RANK-1 ↑ ON CUB-BIRD TESTING DATA ABOUT

VARIANTS OF EQ. 2 IN WORD FEATURE UPDATE MODULE.

Method IS FID Rank-1
AttnGAN [35] 4.36± 0.02 23.98 27.9%

AttnGAN+AATM (B1) 4.70± 0.03 20.76 29.0%
AttnGAN+AATM 4.74± 0.05 20.40 29.4%

AttnGAN+AATM w/o Res 4.49± 0.04 22.17 28.3%

D. Component Analysis of SDM

We use ablation study to verify the two designs in our SDM:
(1) I2I can guides T2I to get better text encoder, and (2) I2I
generators are good initial generators in T2I.

For (1), we use the Guided Text Encoder (GTE) trained
by SDL to train AttnGAN+AATM from scratch, i.e. At-
tnGAN+AATM+GTE. As shown in Table III, compared with
AttnGAN+AATM without distillation: the IS rises from 4.74
to 4.80 on CUB-Bird dataset, and from 28.54 to 30.03 on
MS-COCO dataset; the FID declines from 20.40 to 18.13 on
CUB-Bird dataset, and from 32.54 to 31.22 on MS-COCO
dataset; the Rank-1 rises from 29.4% to 32.0% on CUB-Bird
dataset, and from 23.7% to 24.2% on MS-COCO dataset.
For (2), if we use the trained generator and discriminator
in I2I as the initial generator and discriminator in T2I, i.e.
AttnGAN+AATM∗. As shown in Table III, compared with At-
tnGAN+AATM, the performance of AttnGAN+AATM∗ also
gains the moderate improvements on the CUB-bird dataset and
MS-COCO datatset over three measures respectively. Finally,
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The  blue bird with a black head and a short beak.  (From CUB dataset)
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Fig. 4. The top-5 word weights and synthesized images’ attention maps from AttnGAN and AttnGAN+AATM. The red mark indicates that the weight > 0.5.

TABLE III
IS↑, FID ↓ AND RANK-1 ↑ OF DIFFERENT VARIANTS OF SDM ON THE CUB-BIRD AND MS-COCO DATASETS.

Method CUB-Bird MS-COCO
IS FID Rank-1 IS FID Rank-1

AttnGAN+AATM 4.74± 0.05 20.40 29.4% 28.54± 0.38 32.54 23.7%
AttnGAN+AATM+GTE 4.80± 0.07 18.13 32.0% 30.03± 0.44 31.22 24.2%

AttnGAN+AATM∗ 4.81± 0.06 17.45 32.8% 29.28± 0.60 30.89 24.5%
KT-GAN 4.85± 0.04 17.32 32.9% 31.67± 0.36 30.73 24.5%

we incorporate both designs into the AttnGAN+AATM, i.e.
KT-GAN. Compared with AttnGAN+AATM: the IS rises from
4.74 to 4.85 on CUB-Bird dataset, and from 28.54 to 31.67
on MS-COCO dataset; The FID declines from 20.40 to 17.32
on CUB-Bird, and from 32.54 to 30.73 on MS-COCO dataset;
The Rank-1 rises from 29.4% to 32.9% on CUB-Bird dataset,
and from 23.7% to 24.5% on MS-COCO dataset.

Thus, the effectiveness of the two designs can be demon-
strated by these ablation studies. And it indicates that the SDM
can help the T2I task bridge the domain gap.

E. Comparison with state-of-the-art GAN models

We compare our KT-GAN with state-of-the-art GAN mod-
els for text-to-image synthesis on CUB-Bird and MS-COCO
test datasets. The IS for our proposed KT-GAN and other
compared methods are listed in Table IV. On the CUB-Bird
dataset, our KT-GAN (4.85) leads to the highest IS scores. On
the MS-COCO dataset, the KT-GAN (31.67) also performs
better than most existing approaches except for the SD-
GAN [10]. However, SD-GAN requires multiple text sentences
to train the generator. If the given database only contains
images with single sentence description (which is common
in some practical tasks such as Story Visualization [38] and
Text-to-Video [37]), SD-GAN can not be trained. In contrast,
KT-GAN and AttnGAN [35] only need one sentence per
image and they can be trained normally. Besides, the SD-
GAN contains many Siamese branches, which is much more

TABLE IV
IS↑ BY STATE-OF-THE-ART GAN MODELS AND OUR KT-GAN ON
CUB-BIRD AND MS-COCO TEST DATASETS. ATTNGAN IS OUR

BASELINE MODEL. THE FIRST, SECOND AND THIRD SCORES ARE SHOWN
IN RED, GREEN AND BLUE RESPECTIVELY.

Methods CUB-Bird MS-COCO
GAN-INT-CLS [25] 2.88± 0.04 7.88± 0.07

StackGAN [41] 3.70± 0.04 8.45± 0.03
StackGAN++ [11] 3.84± 0.06 8.30± 0.10

HDGAN [42] 4.15± 0.05 11.86± 0.18
AttnGAN [35] 4.36± 0.02 25.89± 0.19

AttnGAN+O.P.*[31] - 24.76± 0.43
Obj-GAN [17] - 30.29± 0.33

MirrorGAN [23] 4.56± 0.05 26.47± 0.41
ControlGAN [3] 4.58± 0.09 24.06± 0.60
LeicaGAN [30] 4.62± 0.06 -

SEGAN [13] 4.67± 0.04 27.86± 0.31
SD-GAN [10] 4.67± 0.09 35.69± 0.50
DM-GAN [22] 4.75± 0.07 30.49± 0.57

KT-GAN (Proposed) 4.85± 0.04 31.67± 0.36

complex than KT-GAN. Thus, SD-GAN require much more
powerful hardware devices for training.

In Table V, we compare the different models’ performance
using FID and Rank-1. The KT-GAN greatly improves the
baseline AttnGAN [35] in terms of FID and Rank-1, on
CUB-Bird and MS-COCO dataset respectively. And KT-GAN
achieves the best score in terms of Rank-1 on the two standard
datasets. However, the FID of KT-GAN is lower than that
of DMGAN. Compared with the text descriptions in MS-
COCO dataset, the text descriptions in CUB-Bird datasets is
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A bird with a blue 
breast,  black eye 
patch, short, white 
bill and black tarsi 
and thighs.

This is a light red 
bird with a strong, 
broad sharp brown 
bill.

T h i s  b i r d  h a s 
yellow belly, breast, 
t h ro a t ,  e y e b ro w 
with black and grey 
wings and tail.

A man in glasses 
s n o w b o a r d i n g 
down a hill.

Multiple types of 
vegetables sitting in 
a card board box.

T h e  s i d e  o f  a 
c h a r t e r e d  b u s 
painted with a red 
horse.

A group of cows are 
grazing in the grass. 

Fig. 5. Images of 256× 256 resolution are generated by AttnGAN [35], SEGAN [13], DM-GAN [22] and KT-GAN (Ours) conditioned on text descriptions.
Texts in the left four columns are from CUB-Bird [32] test datasets. Texts in the right four columns are from MS-COCO [19] test datasets.

TABLE V
FID ↓ AND RANK-1 ↑ BY SOME GAN MODELS AND OUR KT-GAN ON

CUB-BIRD AND MS-COCO TEST DATASETS. ATTNGAN IS OUR
BASELINE MODEL. THE FIRST, SECOND AND THIRD SCORES ARE SHOWN

IN RED, GREEN AND BLUE RESPECTIVELY.

Method CUB-Bird MS-COCO
FID Rank-1 FID Rank-1

StackGAN [41] 51.89 22.8% 74.05 -
HDGAN [42] 25.17 24.6% 71.27 19.9%
AttnGAN [35] 23.98 27.9% 35.49 22.9%
SEGAN [13] 18.17 30.2% 32.28 23.3%

Obj-GAN [17] - - 25.64 24.1%
DM-GAN [22] 16.09 31.7% 32.64 23.6%

KT-GAN (Proposed) 17.32 32.9% 30.73 24.5%

TABLE VI
HUMAN PERCEPTUAL TEST RESULTS ↑ OF KT-GAN COMPARING WITH
ATTNGAN [35] AND DM-GAN [22]. THE BOLD IS THE BEST RESULT.

Method CUB-Bird MS-COCO
AttnGAN [35] 21.46% 19.27%
DMGAN [22] 33.74% 35.10%

KT-GAN 44.80% 45.63%

more detailed and localized. The Dynamic Memory Module
in DMGAN is a kind of local attention mechanism. Our KT-
GAN combines the global knowledge distillation strategy with
the local word attention enhancement strategy. Compared with
our KT-GAN, the DMGAN pays more attention on the details
generation indeed. Besides, the Dynamic Memory Module in
DMGAN contains too many learning parameters. The good
Dynamic Memory Module with more learning parameters can

better drive the generator to learn the real data distribution. So,
in the CUB-Bird dataset, the FID of DMGAN is better than
that of our KT-GAN. In the semantic consistent aspect, our
KT-GAN enhances the semantic consistent from global and
local aspects. Thus, the “Rank-1” of our KT-GAN are better
than that of DMGAN. Besides, because the Dynamic Memory
Module in DMGAN contains too many learning parameters.
So, the DMGAN’s generator is more complex than our KT-
GAN. In all, the results of FID demonstrates that KT-GAN
performs better in capturing the feature distribution of more
complex real images. The results of Rank-1 demonstrates
the KT-GAN leads to better semantic consistency between
synthesized images and its text description.

In Table VI, we compared our KT-GAN with AttnGAN [35]
and DM-GAN [22] using Human perceptual test. After the
volunteers finished the experiment, we counted the votes for
each method in the two datasets. The results of subjective
test shows that KT-GAN is more effective in terms of se-
mantic consistency. These results demonstrate the superiority
of KT-GAN for generating visually realistic and semantically
consistent images.

Visualization. For qualitative evaluation, Figure 5 shows
text-to-image synthesis examples generated by AttnGAN [35],
SEGAN [13], DM-GAN [22] and KT-GAN (Ours). Observing
the samples generated on the CUB-Bird dataset in the left four
columns of Figure 5, images synthesized by AttnGAN [35]
and SEGAN [13] are prone to semantic structure ambiguity.
The quality of images synthesized by DM-GAN [22] is higher
than that of AttnGAN [35] and SEGAN [13], but not as good
as that of our KT-GAN. In contrast, our KT-GAN model better
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highlights the main object with detail, and its contrast with the
background. In terms of multi-subjects image generation, e.g.,
the MS-COCO data (see the right four columns of Figure 5), it
is more challenging to generate photo-realistic images when
text descriptions are more complicated and contain multiple
objects. Because KT-GAN can better bridge the domain gap
between text and image, it can better capture the major objects
and arrange contents in a more meaningful way. Eventually,
these lead to images with better global structure. More visu-
alizations are given in Appendix-D.

A small boat in a large body of water.

A small boat on the green field. 

A bird with a triangular bill covered in rich blue plumage.

A bird with a triangular bill covered in rich yellow plumage.

Fig. 6. Examples of KT-GAN on the ability of catching subtle changes (phrase
in red) of the text descriptions on CUB-Bird (top) and MS-COCO (bottom)
test sets.

Besides, we further evaluate the sensitivity of the proposed
KT-GAN by changing just one word or phrase in the input
sentence. As shown in Figure 6, the synthesized images are
modified according to the changes of the input sentence,
e.g., bird color (“blue” versus “yellow”) and image scene
(“in a large body of water” versus “on the green field”). It
demonstrates that our KT-GAN has the ability to catch subtle
changes of the text and retains the semantic diversities and
details from text.

V. LIMITATION AND DISCUSSION

Fig. 7. Failure Cases are generated by our KT-GAN on the CUB-Bird test
set (top row) and on the MS-COCO test set (bottom row).

Although our proposed KT-GAN shows superiority in gen-
erating visually realistic and semantically consistent images,

some limitations and discussion must be taken into consider-
ation.

In terms of model design. First, I2I task, SDM and T2I task
are not jointly optimized with complete end-to-end training
due to limited computational resources. Second, we use AATM
to refine the word embeddings for generator, which could be
further improved. In the future sudies, we can further use some
sentence parser to extract the informations of objects or details.

In terms of image visualization. We show some failure
images synthesized by our KT-GAN on the CUB-Bird test set
(the first row of Figure 7) and the MS-COCO test set (the
second row of Figure 7).

On the CUB-Bird dataset (the first row of Figure 7): in the
first two images, the body parts of the bird are missing; in the
third and the fourth images, the bill of the bird is very strange;
in the fifth image, the background is too noisy; in the sixth
images, our KT-GAN creates the bird with two heads.

On the challenging COCO datasets (the second row of
Figure 7): like all existing approaches, our KT-GAN also
cannot effectively extract correlated structural and semantic
information to support realistic synthesis; in the first two
images, KT-GAN tends to place objects corresponding to
specific features at many locations throughout the image; in
the last four pictures, the big problem of current methods and
our KT-GAN is that objects in the images can not be correctly
synthesized by the generator.

We think the above issues are caused by: (i) The generator’s
generation capacity is not strong enough; so, it is necessary to
design a stronger generator to better synthesize the objects or
details; (ii) A single sentence contains very little semantics;
Based on the limited semantic information, it is difficult for
the generator to synthesize complex images, especially the
complex scenes and objects on the MS-COCO dataset; Thus, it
is necessary to explore more valid semantic information from
more text descriptions to help the generator synthesize high-
quality images.

VI. CONCLUSIONS

In this paper, we propose a novel Attention-Transfer Mecha-
nism (AATM) and a Semantic Distillation Mechanism (SDM),
and build a Knowledge-Transfer Generative Adversarial Net-
work (KT-GAN) for Text-to-Image (T2I) synthesis. The SDM
uses Image-to-Image synthesis to guide the T2I synthesis to
better encode text feature and synthesize photographic image.
The AATM helps the generator progressively identify impor-
tant words and enrich the details of synthesized image. SDM
and AATM successfully bridge the heterogeneous gap and
help the generator synthesize high quality images. Extensive
experimental results and analysis demonstrate the effectiveness
of KT-GAN and significantly improved performance compared
against previous most state-of-the-art methods.
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APPENDIX A
STRUCTURE OF TEACHER TASK (I2I TASK)

In the Figure 8, the Teacher Network includes three main
module: Image Encoder module, Generator, and Discriminator.
In our paper, we describe that the modification of AttnGAN
mainly includes two operations. (i) Remove the attention
mechanism in the generator, use global image feature v as
the input of the generator. (ii) Introduce the perceptual loss
(Lper) [4] into the I2I to improve the quality of synthesized
image.

In addition the above two main modifications, compared
with AttnGAN [35], the input feature to the synthesizer is
image features instead of text features. The corresponding
loss functions need to be simply modified. Thus, in the
following, we describe the details of loss function in the
Teacher Network.

Before describing the loss functions, we simply introduce
the pipeline of synthesizer in Figure 8 in order to easily
understand the following definition of the loss functions.

A.1: Terminologies for Teacher Network Pipeline

In Section III-C, we explain the student network. Here
we elaborate the teacher’s network. They are similar. we use
symbols B′, G′, and H ′ et al. to represent corresonding B,G,
and H et al. in the student network (T2I task).

The input image is transformed into global image feature
v ∈ RD by a pre-trained Inception-V3 [28] Image Encoder
on ImageNet [26]. As shown in left part of Figure 8, the
teacher network has m blocks (B′0, B′1, · · · , B′m−1) and
the corresponding m generators (G′0, G′1, · · · , G′m−1). The
generators take the hidden states (H ′0, H ′1, · · · , H ′m−1) as
input and generate images of small-to-large scales (Î0, Î1, · · · ,
Îm−1):

B′0 : H ′0 = F ′0(z
′, F ′ca(v));

B′i : H
′
i = F ′i (H

′
i−1 ‖ H ′i−1), i = 1, 2, · · · ,m− 1;

G′i : Îi = G′i(H
′
i).

(12)

Here, z′ ∼ N(0, 1). F ′ca is a conditioning augmenta-
tion module [41] that converts a sentence feature v to a
conditioning feature for the generator. F ′ca, F ′i , and G′i
are modeled as neural networks. Here, ‖ denotes the con-
catenation of two maps along depth axis. In our paper,
based on the modification (i) about AttnGAN [41], we
modify the Hi = Fi(Hi−1||F attni (W0, Hi−1)) in Eq. 1 to
H ′i = F ′i (H

′
i−1 ‖ H ′i−1) . In the subsection A, we describe

the details of the loss functions in I2I task (Teacher Network).

A.2: Generative and Discriminative Loss.

Combining the above modules together, at the i-th stage of
the teacher network, the Generative loss LG′i and Discrimina-
tive loss LD′i are defined as

LG′i = −
1

2
EÎi∼PG′

i

[logD′i(Îi)]︸ ︷︷ ︸
unconditional loss

− 1

2
EÎi∼PG′

i

[logD′i(Îi, v)]︸ ︷︷ ︸
conditional loss

,

(13)
where the unconditional loss is trained to generate images
towards the true data distribution to fool the discriminator, and
the conditional loss is trained to generate samples to match the
real image feature embedding.

The discriminator D′i is trained to classify the input into the
class of real or fake images by minimizing the cross-entropy
loss

LD′
i
=−

1

2
EIi∼Pdatai [logD

′
i(Ii)]−

1

2
EÎi∼PG′

i

[log(1−D′i(Îi)]︸ ︷︷ ︸
unconditional loss

+

−
1

2
EIi∼Pdatai [logD

′
i(Ii, v)]−

1

2
EÎi∼PG′

i

[log(1−D′i(Îi, v)]︸ ︷︷ ︸
conditional loss

,

(14)

where Ii is from the realistic image distribution pdata at the
i-th scale, and Îi is from distribution pG′i of the generative
images at the same scale.
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The final objective function of the generative network and
discriminative network in the Teacher Network are defined as

LG∗ =
m−1∑
i=0

LG′i +
m−1∑
i=0

ηiLperi ,LD∗ =
m−1∑
i=0

LD′i . (15)

Here, we train LG∗ and LD∗ using the entire training dataset.

APPENDIX B
NETWORK/ALGORITHM PARAMETERS

Based on experiments on a held-out validation set, we
list the hyperparameters in Table VII. Due to GPU memory
constraints, we did not try the KT-GAN with more than three
blocks. Thus, we set the parameter m = 3 in this paper.

TABLE VII
PARAMETER VALUES OF OUR KT-GAN

Hyperparameter Value
Dimension of output in Text and Image Encoders 256

α β in Eq. 2 0.85, 0.9
M in Eq. 4 and Eq. 7 50
γ in Eq. 4 and Eq. 7 2

β0 in Eq. 5 5
λ1, λ2 in Eq. 8 50, 50
λ3 in Eq. 11 5

η0, η1, η2 in Eq. 15 10−3, 10−2, 10−1

APPENDIX C
NETWORK/ALGORITHM PARAMETERS DISCUSSION

In this subsection, we mainly find the suitable values for
these hyper-parameters in Table VII by a series of ablation
studies.

1) α, β: The α, β is the important hyper-parameters in
the KT-GAN. The hyper-parameters α and β belong to the
AATM module. We use the AttnGAN+AATM to discuss
the sensitivity of the hyper-parameters α, β. As shown in
Table VIII, when the α = 0.85, β = 0.9 or α = 0.9, β = 0.85,
the AttnGAN+AATM achieves the best performance in the
three measures.

TABLE VIII
INCEPTION SCORE (IS ↑), FID ↓ AND RANK-1 ↑ OF DIFFERENT VALUES

OF THE HYPER-PARAMETERS α, β ON CUB-BIRD DATASET.

Method IS FID Rank-1
α = 1.0, β = 1.0 4.60± 0.07 21.16 29.1%
α = 0.85, β = 0.9 4.74± 0.05 20.40 29.4%
α = 0.9, β = 0.85 4.74± 0.02 20.33 29.4%
α = 0.5, β = 1.0 4.64± 0.04 21.53 29.3%
α = 1.0, β = 0.5 4.66± 0.07 20.89 29.4%
α = 0.5, β = 0.5 4.52± 0.04 21.76 28.7%

2) γ: In the SDM, we introduce the focal loss into the
cross-modal knowledge distillation stage. We hope the focal
loss can better balance the hard samples and easy samples in
the cross-modal knowledge matching process. Here, the γ is
the important hyper-parameter in the focal loss [18]. In this
subsection, we mainly find the suitable value for γ in the KT-
GAN. In Table IX, when the hyper-parameter γ = 2.0, the
KT-GAN gains the best performance on the CUB-Bird test
set over these three measures.

TABLE IX
IS ↑, FID ↓ AND RANK-1 ↑ OF DIFFERENT VALUE OF THE

HYPER-PARAMETER γ ON CUB-BIRD DATASET.

Method IS FID Rank-1
γ = 0 4.82± 0.08 17.22 31.0%
γ = 0.5 4.82± 0.02 17.39 31.8%
γ = 1.0 4.84± 0.02 17.36 32.2%
γ = 2.0 4.85± 0.04 17.32 32.9%
γ = 5.0 4.84± 0.09 17.45 32.0%

3) β0: β0 is a factor that determines how much to magnify
the importance of the most relevant word-to-region context
pair. When β0 → ∞, RW (v∗, s) → maxTi=1Oi · wi0. So,
in this subsection, we find the suitable value for the β0. As
shown in Table X, when β0 = 1, 2, 5, the performance of the
KT-GAN is stable. When β0 = 2, 5, KT-GAN achieves the
best performance on the CUB-Bird data set over these three
measures.

TABLE X
IS ↑, FID ↓ AND RANK-1 ↑ OF DIFFERENT VALUE OF THE

HYPER-PARAMETER β0 ON CUB-BIRD DATASET.

Method IS FID Rank-1
β0 = 1 4.79± 0.05 17.75 32.7%
β0 = 2 4.85± 0.03 17.34 32.9%
β0 = 5 4.85± 0.04 17.32 32.9%
β0 = 50 4.63± 0.06 18.62 31.5%

4) λ3: In the training stage of KT-GAN, we also utilize
the DAMSM loss [35] to make generated images better
conditioned on text descriptions. Same as AttnGAN [35], we
also set λ3 = 5 in our KT-GAN. Besides, we further show
the performance of KT-GAN based on different value of the
hyper-parameter λ3 in Table XI. When λ3 = 0, 5, 10, the
performance of KT-GAN is stable.

TABLE XI
IS ↑, FID ↓ AND RANK-1 ↑ OF DIFFERENT VALUE OF THE

HYPER-PARAMETER λ3 ON CUB-BIRD DATASET.

Method IS FID Rank-1
λ3 = 0 4.82± 0.07 17.44 32.9%
λ3 = 5 4.85± 0.04 17.32 32.9%
λ3 = 10 4.87± 0.06 17.29 33.1%
λ3 = 50 4.60± 0.04 19.64 31.0%

5) η0, η1, η2 : η0, η1, η2 is hyper-parameters in the teacher
network of KT-GAN. The η0, η1, η2 balance the learning
weights of the three scale perceptual losses in the teacher
network. Table XII shown the main results on the CUB-Bird
test set. As shown in Table XII, when η0 = 10−3, η1 = 10−2,
η2 = 10−1, KT-GAN achieves the best performance in the
CUB-Bird dataset over three measures.
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A woman that  i s 
standing i n front of  
a tray of food.
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A   p a c k  o f 
“Hiragishi Donuts”  
i n  a  p l a s t i c 
container wrapped 
in a rubber band. 

A sky view looking 
at  the clock  tower 
of a building.

Two men in a red 
j a c k e t s  s n o w 
boarding down the 
snow.

A plate containing 
servings of meat, 
broccoli and beans.

A doll standing next 
to vase filled with 
flowers and plants.

A  g r e e n  b u s  i s 
packed near a city 
curb.

A red  and white 
tug boat drifting in 
the water. 

Fig. 9. Images of 256 × 256 resolution are generated by our KT-GAN, DM-GAN [22], SEGAN [13], and AttnGAN [35] (baseline) conditioned on text
descriptions from MS-COCO test datasets.

A kitchen with  a 
very messy counter 
space.
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The pizza is cheesy 
with pepperoni fro 
the topping.

A  l u s h  g r e e n 
hillside covered in 
cows grazing.

A large clock tower 
towering  above a 
city with clocks on 
every side. 

A dog jumping to 
catch s frisbee in a 
yard.

Snow p i l e d  h i gh 
around pipes with 
people walking in 
background.

Many people  are 
w a l k i n g  a l o n g  a 
crowded  market 
place.

Cut daffodils and 
bachelor's buttons 
l a y  o n  a  w h i t e 
surface.

Fig. 10. Images of 256 × 256 resolution are generated by our KT-GAN, DM-GAN [22], SEGAN [13], and AttnGAN [35] (baseline) conditioned on text
descriptions from MS-COCO test datasets.

APPENDIX D
MORE VISUAL COMPARISON RESULTS

In this section, we show more visual comparison results
between our KT-GAN, DM-GAN [22], SEGAN [13],
and AttnGAN [35] (baseline) on the CUB-Bird and

MS-COCO dataset in Figure 11, Figure 12, Figure 9,
and Figure 10. These visual comparison results further
demonstrate the generalization ability of the KT-GAN.
Besides, we show more generated results on CUB-Bird
dataset and MS-COCO dataset. As shown in Figure 13, we
further show 400 images for each dataset. Since the limited
size of the Appendix, you can down these figures from
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T h i s  b i r d  h a s  a 
whi te  be l ly  wi th 
blue wings and a 
blue head.
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A small bird has a 
long  and  orange 
beak with a bright 
white belly, and it's 
b a c k  i s  b r i g h t 
turquoise

t h i s  s m a l l  s t o u t 
billed perching bird 
has a scarlet  red 
head,  ches t ,  and 
b e l l y  t h a t 
t r a n s i t i o n s  t o  a 
streaked pinkish 
b ro w n  a b d o m e n 
and wings.

this bird has an all 
brow n  bac k  a n d 
w i n g s ,  b u t  a 
s treaked  breas t ,  
belly and abdomen 
and a small ,  thin 
bill.

this is a white bird 
wi th  b lack spots 
and a yel low tai l 
wing.

a small bird with a 
white  breast  and 
bel ly,  and a grey 
body with different 
colors of grey for its 
wings.

this is a white and 
g r a y  b i r d  w i t h 
black in the outer 
r e c t r i c e s . i t  h a s 
smal l  f e e t  and  a 
yellow and black 
bill

the small bird has a 
orange body and 
grey wing feathers.. 

Fig. 11. Images of 256 × 256 resolution are generated by our KT-GAN, DM-GAN [22], SEGAN [13], and AttnGAN [35] (baseline) conditioned on text
descriptions from CUB-Bird test datasets.

this is a orange and 
yellow bird and the 
b i l l  i s  b lack  and 
inner rectrices the 
throat is black
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a bird with a small 
triangular bill, gray 
c r o w n ,  b l a c k 
e y e b r o w,  w h i t e 
throat ,  and gray 
body.

s m a l l  b i r d  w i t h 
d a r k  b r o w n 
feathers and black 
feathers throughout 
its body and grey 
feathers on its body.

t h e  b i r d  h a s  a n 
orange bel ly and 
breast as well as a 
black bill.

this small bird is 
white  and brown 
with a face that has 
black on the eyes 
which makes it look 
as if it is wearing a 
mask.

the bird is mostly 
yellow and black 
w i t h  a  n a r r o w , 
pointed beak

t h i s  b i r d  h a s  a 
white belly with a 
black breast and a 
yellow crown.

the bird has a small 
bill that is brown 
and light.

Fig. 12. Images of 256 × 256 resolution are generated by our KT-GAN, DM-GAN [22], SEGAN [13], and AttnGAN [35] (baseline) conditioned on text
descriptions from CUB-Bird test datasets.

https://pan.baidu.com/s/11QCfAcCfWi41B2DHiWGemA,
password: qqx1, and view more details.
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incremental learning. In ECCV, 2018.

[7] Tung Frederick and Mori Greg. Similarity-preserving knowledge distil-
lation. In ICCV, 2019.

[8] Hinton Geoffrey, Vinyals Oriol, and Dean Jeff. Distilling the knowledge
in a neural network. In NeurIPS Workshop, 2015.

[9] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Xu Bing, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In NeurIPS, 2014.

[10] Yin Guojun, Liu Bin, Sheng Lu, Yu Nenghai, Wang Xiaogang, and Shao
Jing. Semantics disentangling for text-to-image generation. In CVPR,
2019.

[11] Zhang Han, Xu Tao, Hongsheng Li, Shaoting Zhang, Xiaogang Wang,
Xiaolei Huang, and Dimitris Metaxas. Stackgan++: Realistic image syn-
thesis with stacked generative adversarial networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2018.

[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update

rule converge to a local nash equilibrium. In NeurIPS, 2017.
[13] Tan Hongchen, Liu Xiuping, Li Xin, Zhang Yi, and Yin Baocai.

Semantics-enhanced adversarial nets for text-to-image synthesis. In
ICCV, 2019.

[14] Wanming Huang, Yida Xu, and Ian Oppermann. Realistic image gener-
ation using region-phrase attention. In https://arxiv.org/abs/1902.05395,
2019.

[15] Li Jia, Fu Kui, Zhao Shengwei, and Ge Shiming. Spatio temporal
knowledge distillation for efficient estimation of aerial video saliency.
IEEE Transactions on Image Processing, 28(4):1902–1914, 2020.

[16] Justin Johnson, Agrim Gupta, and Fei Fei Li. Image generation from
scene graphs. In CVPR, 2018.

[17] Wenbo Li, Pengchuan Zhang, Lei Zhang, Qiuyuan Huang, Xiaodong
He, Siwei Lyu, and Jianfeng Gao. Object-driven text-to-image synthesis
via adversarial training. In CVPR, 2019.

[18] Tsung Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar.
Focal loss for dense object detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PP(99):2999–3007, 2017.

[19] Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
coco: Common objects in context. In ECCV, 2014.

[20] Hu Mengting, Wu Yike, Zhao Shiwan, Guo Honglei, Cheng Renhong,
and Su Zhong. Domain-invariant feature distillation for cross-domain
sentiment classification. In EMNLP, 2019.

[21] Zhai Mengyao, Chen Lei, Tung Fred, He Jiawei, Nawhal Megha, and
Mori Greg. Lifelong gan: Continual learning for conditional image
generation. In ICCV, 2019.

[22] Zhu Minfeng, Pan Pingbo, Chen Wei, and Yang Yi. Dm-gan: Dynamic
memory generative adversarial networks for text-to-image synthesis. In
CVPR, 2019.

[23] Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao. Mirrorgan:
Learning text-to-image generation by redescription. In CVPR, 2019.

[24] Lao Qicheng, Havaei Mohammad, Pesaranghader Ahmad, Dutil Francis,
Di Jorio Lisa, and Fevens Thomas. Dual adversarial inference for text-
to-image synthesis. In ICCV, 2019.

[25] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt
Schiele, and Honglak Lee. Generative adversarial text to image synthe-
sis. In ICML, 2016.

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
and Michael Bernstein. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[27] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Chen Xi. Improved techniques for training gans. In



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

NeurIPS, 2016.
[28] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,

and Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In CVPR, 2016.

[29] Yu Ting, Yu Jun, Yu Zhou, and Tao Dacheng. Compositional attention
networks with two-stream fusion for video question answering. IEEE
Transactions on Image Processing, 29:1204–1218, 2019.

[30] Qiao Tingting, Zhang Jing, Xu Duanqing, and Tao Dacheng. Learn,
imagine and create: Text-to-image generation from prior knowledge. In
NeurIPS, 2019.

[31] Hinz Tobias, Heinrich Stefan, and Wermter Stefan. Generating multiple
objects at spatially distinct locations. In ICLR, 2019.

[32] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The
Caltech-UCSD Birds-200-2011 Dataset. Technical report, 2011.

[33] Zhang Wei, He Xuanyu, Yu Xiaodong, Lu Weizhi, Zha Zhengjun, and
Tian Qi. A multi-scale spatial-temporal attention model for person
re-identification in videos. IEEE Transactions on Image Processing,
29:3365 – 3373, 2020.

[34] Han Xianjing, Song Xuemeng, Yao Yiyang, and Xu Xin-Shun. Neural
compatibility modeling with probabilistic knowledge distillation. IEEE
Transactions on Image Processing, 29:871–882, 2020.

[35] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan,
Xiaolei Huang, and Xiaodong He. Attngan: Fine-grained text to image
generation with attentional generative adversarial networks. In CVPR,
2018.

[36] Liu Yang, Liping Jing, and Michael Ng. Robust and non-negative
collective matrix factorization for text-to-image transfer learning. IEEE
Transactions on Image Processing, 24(12):4701–4714, 2015.

[37] Li Yitong, Min Martin Renqiang, Shen Dinghan, Carlson David, and
Carin Lawrence. Video generation from text. In AAAI, 2018.

[38] Li Yitong, Gan Zhe, Shen Yelong, Liu Jingjing, Cheng Yu, Wu Yuexin,
Carin Lawrence, Carlson David, and Gao Jianfeng. Storygan: A
sequential conditional gan for story visualization. In CVPR, 2019.

[39] Quanzeng You, Hailin Jin, Zhaowen Wang, Fang Chen, and Jiebo Luo.
Image captioning with semantic attention. In CVPR, 2016.

[40] Zhu Yousong, Zhao Chaoyang, Guo Haiyun, Wang Jinqiao, Zhao Xu,
and Lu Hanqing. Attention couplenet: Fully convolutional attention
coupling network for object detectiong. IEEE Transactions on Image
Processing, 28(1):113–126, 2019.

[41] Han Zhang, Tao Xu, and Li Hongsheng. Stackgan: Text to photo-realistic
image synthesis with stacked generative adversarial networks. In ICCV,
2017.

[42] Zizhao Zhang, Yuanpu Xie, and Yang Lin. Photographic text-to-image
synthesis with a hierarchically-nested adversarial network. In CVPR,
2018.

[43] Zhu Zhen, Huang Tengteng, Shi Baoguang, Yu Miao, Wang Bofei,
and Bai Xiang. Progressive pose attention transfer for person image
generation. In CVPR, 2019.

Hongchen Tan is doctor candidate of Mathematical
Sciences at Dalian University of Technology. His
research interests are Person Re-identification and
Text-to-Image Synthesis. Various parts of his work
have been published in top forums and journals, such
as TIP, ICCV, and Neurocomputing.

Xiuping Liu is a Professor in School of Mathemati-
cal Sciences at Dalian University of Technology, P.R.
China. She received Ph.D degrees in computational
mathematics from Dalian University of Technology.
Her research interests include shape modeling and
analyzing, and computer vision.

Meng Liu is a Professor with the School of Com-
puter Science and Technology, Shandong Jianzhu
University. She received the M.S. degree in com-
putational mathematics from Dalian University of
Technology, China, in 2016. Her research interests
are multimedia computing and information retrieval.
Various parts of her work have been published in top
forums and journals, such as SIGIR, MM, and IEEE
TIP. She has served as reviewers and subreviewers
for various conferences and journals, such as MMM
2018, ACM MM 2018/2019, JVCI, and INS.

Baocai Yin is a Professor of computer science at
Dalian University of Technology and the Dean of
the Faculty of Electronic Information and Electrical
Engineering. He received the B.S. and Ph.D. degrees
in computer science from Dalian University of Tech-
nology, Dalian, China. His research interests include
digital multimedia and computer vision.

Xin Li is a professor at Division of Electrical &
Computer Engineering, Louisiana State University,
USA. He got his B.E. degree in Computer Science
from University of Science and Technology of China
in 2003, and his M.S. and Ph.D. degrees in Com-
puter Science from State University of New York
at Stony Brook in 2005 and 2008. His research
interests are in Geometric and Visual Data Com-
puting, Processing, and Understanding, Computer
Vision, and Virtual Reality. For more detail, please
see http://www.ece.lsu.edu/xinli.


