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Spherical DCB-Spline Surfaces with
Hierarchical and Adaptive Knot Insertion

Juan Cao, Xin Li, Member, IEEE, Zhonggui Chen, and Hong Qin, Senior Member, IEEE

Abstract—This paper develops a novel surface fitting scheme for automatically reconstructing a genus-0 object into a continuous
parametric spline surface. A key contribution for making such a fitting method both practical and accurate is our spherical
generalization of the Delaunay configuration B-spline (DCB-spline), a new non-tensor-product spline. In this framework, we efficiently
compute Delaunay configurations on sphere by the union of two planar Delaunay configurations. Also, we develop a hierarchical and
adaptive method that progressively improves the fitting quality by new knot-insertion strategies guided by surface geometry and fitting
error. Within our framework, a genus-0 model can be converted to a single spherical spline representation whose root mean square
error is tightly bounded within a user-specified tolerance. The reconstructed continuous representation has many attractive properties
such as global smoothness and no auxiliary knots. We conduct several experiments to demonstrate the efficacy of our new approach

for reverse engineering and shape modeling.

Index Terms—Delaunay configurations, spherical splines, knot placement, knot insertion, non-tensor-product B-splines.

1 INTRODUCTION

THE problem of converting dense point samples or
piecewise meshes into compact and high-order contin-
uous representations frequently arises in a large variety of
applications in Computer-Aided Design (CAD), medical
imaging, visualization, reverse engineering, etc. Continuous
representations can facilitate tasks such as shape interroga-
tion, segmentation, classification, and surface quality
analysis/control. In principle, continuous surfaces can be
represented and built using three general categories of
methods: implicit surfaces, subdivision surfaces, and para-
metric spline surfaces.

Among these three categories, parametric spline surfaces
have been favored in many applications, and such method
enables many downstream procedures including free-form
deformation, finite element analysis. For example, com-
pared with subdivision surfaces, which keep global
smoothness without cutting and stitching, but usually do
not have analytic expressions, parametric surfaces admit
efficient closed-form evaluation and compact representa-
tion. Compared with implicit surfaces whose derivative
evaluations (e.g., tangency, curvature, or other higher order
quantities) may need extensive discretization and numer-
ical approximations, parametric surfaces are simpler and
more efficient to design, control, evaluate, and render.
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1.1 Spherical Spline Surface Modeling

A large number of solid models in our daily life has genus-0
closed surfaces as their boundaries. It is, therefore,
imperative to develop an effective way to model genus-0
surfaces using parametric splines with global smoothness.

Closed genus-0 spline surfaces can be constructed
through many approaches. The commonly used parametric
surface patches such as B-splines require domains to be
simple planar regions such as rectangles. Hence, a straight-
forward constructive method is by partitioning the original
domain into topological disks and composing individually
constructed surface patches. The partitioning of the model
into local charts and stitching of adjacent patches together
usually require extensive user intervention and could be
labor intensive. Enforcing high-order continuity along
cutting boundary is also a challenging problem.

To avoid such tedious cutting and gluing, constructing a
spline surface globally over one piece domain is a more
desirable approach. General spline surfaces can be defined
on manifolds that have nondisk topology. Many methods
and function spaces (see surveys in [1, Ch. 9.7] and [2]) have
been used successfully in coping with data-fitting and
reconstruction problems on surfaces, such as radial basis
functions [3], multiresolution methods [4], trivariate meth-
ods [5], spherical splines [6], polycube splines [7], and
manifold splines [8]. Spline surfaces such as DMS-splines,
T-splines, and polycube splines defined over discrete
meshes usually need to punch a small number of holes on
the domain before building the global affine mapping. It
unavoidably leads to some discontinuities on the definition
domain, and hence the constructed spline surfaces have
singularities where additional geometric patching to fix
such problems is necessary.

To avoid both partitioning discontinuity and singula-
rities, the most natural parametric domain for closed genus-
0 surfaces is sphere. Upon spherical domains, globally
continuous parameterizations without cutting/stitching nor
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singularity points can be computed. One can obtain an
automatic spline reconstruction scheme and a globally C*-
continuous representation. This paper studies the construc-
tion of such a natural spline surface on the spherical domain.

1.2 Related Work

Spherical splines and their applications such as data
interpolation and approximation have been studied by a
number of researchers from viewpoints of CAGD and
physical simulation applications [6] in recent decades.
Comprehensive works on spherical splines and their
interpolation and approximation have been surveyed or
discussed in papers such as [6], [9], [10]. In fact, most existing
splines can be generalized to spherical domain and will have
similar properties with their planar counterparts. However,
they may also inherit drawbacks from the planar case. In the
followings, we discuss a few most-widely used splines.

1.2.1 Tensor-Product Splines and Radial Basis
Functions

In [4], tensor-product polynomial splines and trigonometric
splines were proposed for fitting functions/data on sphere,
based on multiresolution methods. Buss and Fillmore
defined barycentric combinations of spherical points as
least-squares minimizations of weighted geodesic distance,
which provide direct generalization of planar spline curves
to spherical ones [9]. Fasshauer investigated adaptive
approximation to scattered data given over the surface of
the unit sphere by radial basis functions [3]. For spherical
data interpolation/approximation, tensor products of uni-
variate splines are not good choices, since data locations are
usually not equally spaced over a regular grid. Radial basis
functions are not good candidates either, since they are
more suitable for rotationally symmetric data values [11].

1.2.2 Bernstein-Bezier Patches

Alfeld et al. [12] presented a natural way to define
barycentric coordinates on spherical triangles by omitting
the usual requirement of partition of unity. Based on the
aforementioned work, the homogeneous spherical Bernstein-
Beézier (SBB) [12], [13] and spherical simplex splines [14]
were proposed, which are spherical analogues of Bernstein-
Bézier polynomials and simplex splines, respectively. SBB
polynomials are popular and have been widely studied
[11], [15]. However, since the functional space spanned by
Bernstein-Bézier elements highly depends on domain
tessellations, the represented surface is uniquely defined
subject to certain domain tessellation. The challenge to
merge piecewise SBB polynomials with higher order
continuity is another disadvantage of this approach.

1.2.3 Triangular B-Splines

Triangular B-spline (or DMS-spline) is another powerful
and well-known scheme [16], [17] based on simplex splines
[18]. It has been widely studied and applied to applications
such as scattered functional data fitting, modeling, and
visualization [19], [20], [21], [22], [23]. Because of the
supreme ability of DMS-spline, its spherical analogue—
scalar spherical triangular B-spline, continues to attract
researchers’ interest. Scalar spherical DMS-spline inherit
many properties from their planar counterpart, such as the

capability of representing any piecewise smooth surfaces of
C*~! continuity by degree-k splines and including SBB
polynomials as a special case. It has been applied to data
fitting applications [24], [25]. However, spherical triangular
B-spline also inherits drawbacks from its planar counter-
part: for any given set of knots, one has to explicitly add the
“knot cloud” (i.e., auxiliary knots) in advance in order to
form a knot sequence for all the basis function construction.
The auxiliary knot placement is less intuitive and labor
intensive. So far, it is still not clear how these auxiliary knots
could affect the spline basis and the final surface in an
intuitive and quantitative way. Additionally, surface con-
structed by DMS-splines may not be as visually smooth due
to the “knot line” phenomenon [26]: the curvature along the
images of the line between two knots in the parametric
domain is larger than other regions, and a post fairing
process is urgently needed [25], [27].

1.3 Motivation and Contribution

In order to reconstruct a useful genus-0 closed surface from
data, a visually pleasant, everywhere C*, and analytic
surface representation is strongly desired. Recently, a new
bivariate simplex spline scheme based on Delaunay config-
uration has been introduced into the geometric computing
community by Neamtu [28], [29]. The simplex splines based
on Delaunay configurations (we call them Delaunay
configuration B-splines or DCB-splines for brevity) are
judged to be the most convincing multivariate general-
ization of univariate B-splines [30], and planar DCB-splines
have been used in the application of data reconstruction
[31] [32]. DCB-splines have many attractive theoretic and
computational properties, such as optimal smoothness and
polynomial reproducibility, and free from auxiliary knots;
therefore, it is ideal for the fitting purpose.

Since spherical splines have many important applica-
tions, it is important to develop the theory of DCB-splines
on the spherical domain, and design useful algorithms for
their computation and applications. In this paper, we
further extend the concept of Delaunay configuration to
sphere, formulate a spherical analogue of DCB-spline, and
use it to automatically reconstruct genus-0 closed surfaces.
The specific contributions of this work include

1. We construct the Delaunay configurations directly
over the sphere and develop an effective computa-
tional method. A direct way to calculate spherical
Delaunay configurations is to compute 3D higher
order Voronoi diagram. As an effective alternative,
we obtain spherical Delaunay configurations by
merging together two sets of planar Delaunay
configurations, while significantly reducing its com-
putational complexity.

2. As our experiments demonstrate, if we construct the
DCB-spline using degree-k basis functions and there
are no degenerate knots, the fitted surface is ch1
continuous everywhere. The visually pleasant sur-
face is represented without any patching and
stitching, and the continuity is naturally preserved
without any additional constraints. The fitting
process is adaptive and capable of satisfying any
user-specified error tolerance.
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Fig. 1. Planar near-type and far-type Delaunay configurations (left), and
spherical Delaunay configurations (right).

3. We propose an automatic and effective surface
refining algorithm, in which the knot insertion is
adaptively controlled by surface geometry and
fitting error distribution in a hierarchical fashion. In
the initial step, knots are distributed according to the
curvedness of original data. In later iteration step, an
appropriate number of new knots are added adap-
tively according to the distribution of fitting error.

The remainder of this paper is organized as follows: in

Section 2, we extend the definition of Delaunay configuration
to the spherical setting and propose an effective computation
method. Section 3 describes the definition of spherical
Delaunay configuration B-splines. In Section 4, we provide
the overview and the technical details of our new algorithm
for the automatic fitting scheme. We show our experimental
results in Section 5, and conclude this paper in Section 6.

2 SPHERICAL DELAUNAY CONFIGURATIONS

This section first discusses the concepts and notions of
planar near/far type Delaunay configurations, spherical
Delaunay configuration, and their intrinsic relationship,
then proposes an efficient computation algorithm for
spherical Delaunay configurations.

2.1 Planar and Spherical Delaunay Configurations
Let W be a set of nondegenerate knots on plane T, i.e., no
more than three knots are cocircular or colinear. If A is a
finite set, we denote its size by #A. We define the near-type
Delaunay configuration and the far-type Delaunay config-
uration as follows:

Definition 1. A degree-k near-type Delaunay configuration of a
given set of knots W' is a pair of sets D,, = (Dp, Dr) such that
1) Dp,D; C W satisfy that #Dp =3, #Dr = k and 2) the
circumcircle of Dp contains only Dy (i.e., no other knots from
W) in its interior.

In Definition 1, the subscript “B” and “I” represent
“boundary” and “interior” knots, respectively, since knots
Dgp and Dy lie on the boundary and in the interior of a
circumcircle, respectively. Similarly, the subscript “E”
stands for “exterior” knots in the following definition.

Definition 2. A degree-k far-type Delaunay configuration of a
given set of knots W is a pair Dy = (Dp,Dg) such that
Dp,Dp C W,#Dp = 3,#Dp = kand the circumcircleof Dp
contains only D (i.e., no other knots from W) in its exterior.

Two examples are illustrated in Fig. 1(left): a degree-3
near-type Delaunay configuration D,, = {{5,6,7},{8,9,10}}
is shown in the blue circle, and a degree-3 far-type

Delaunay configuration Dy = {{2,4,10},{1,3,5}} is shown
in the black circumcircle.

We denote the families of all near-type and far-type
Delaunay configurations of degree k associated with the set
W as D,(W) and D;(W), respectively. The near-type
Delaunay configuration is the ordinary planar Delaunay
configuration.

A sphere can be partitioned into two disjoint parts by
specifying and removing a circle on the sphere. To avoid
ambiguity, we denote the part with smaller area as the
interior of the circle on sphere. A great circle ¢ partitions a
sphere into two equal-area regions M; and M, either one
can be considered as the interior in such case.

Then, in complete analogy to Definition 1, we can define
set U of n knots on the sphere S? = {x| ||x|| = 1,x € R3} and
Delaunay configuration by spherical geodesics and call this
spherical Delaunay configuration.

Definition 3. A degree-k spherical Delaunay configuration of
a given set of knots U is a pair of sets X = (Xp, X1) such that
1) Xp, X1 C U satisfy that #Xp = 3,#X; =k and 2) the
spherical geodesic circumcircle of Xp contains only X7 (i.e., no
other knots from U) in its interior.

We denote the family of all spherical Delaunay config-
urations of degree k associated with the knot set U on
sphere as SD(U). Examples of spherical Delaunay config-
urations are shown in Fig. 1(right): two degree-2 spherical
Delaunay configurations {{1,4,5},{2,3}},{{11,12,13},
{9,10}} and a degree-3 spherical Delaunay configuration
{{6,7,8},{9,10, 11}}. We denote unordered spherical Delau-
nay configurations as X = XpJ X;. The set of all spherical
Delaunay configurations X corresponding to the same
unordered Delaunay configuration X is denoted as <X>.
The family of unordered spherical Delaunay configurations
of the set U on S2 is denoted as [X].

2.2 Spherical Delaunay Configuration Computation

Since each Delaunay configuration corresponds to a vertex of
high-order Voronoi cell, Delaunay configurations can be
obtained during the construction of the high-order Voronoi
diagrams [33]. Similarly, the spherical Delaunay configura-
tions can be obtained by computing high-order Voronoi
diagrams on sphere. In other words, we can obtain spherical
Delaunay configurations by computing 3D Voronoi dia-
grams on sphere. However, this computation method is very
expensive, i.e.,, computing 3D Voronoi diagrams needs
quadratic complexity even for the first-order case [33], [34],
[35]. Here, we propose a simpler and more efficient method
for spherical Delaunay configuration computation, as an
extension to the spherical Voronoi diagram computation
[36]. In [36], using two inversions, the spherical Voronoi
diagram of a given set of points on a sphere is obtained by
gluing two planar Voronoi diagrams together. Similar to [36],
we choose two special inversions, and prove that any
spherical Delauany configuration is invariate under at least
one of the two chosen inversion. Then, the Delaunay
configuration set is obtained by merging two sets of planar
Delaunay configurations. Note that the spherical Delaunay
triangulation in [36] is only a degree-0 spherical Delaunay
configuration, which is a special case discussed in our paper.
With spherical Delaunay triangulation, one can only define
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Fig. 2. Inversion function ¢,(v). When o = (0,0,1), ¢, transfers unit
sphere onto plane T, : z = 0.5.

degree-0 basis functions, which is not enough for the purpose
of general spline construction and surface fitting. In this
section, we compute general Delaunay configurations on
sphere, which enables us to define basis functions of higher
degrees on the spherical domain.

We first introduce an inverse transformation in 3D
euclidean vector space: The Inversion with the inversion
center at point o is defined by

v—o
¢U(U) = 2 + o, (1)

lo— ol
where || - || is the euclidean L; norm. For both circles on

sphere and plane, we now use prefix ext and int to
represent the interior and exterior regions of circles,
respectively. For example, extS. stands for the exterior of
spherical circle S, on sphere; intP. stands for the interior of
circle P. on plane. Let inversion center ¢ be on the unit
sphere S? and S. be a spherical circle on the unit sphere,
then ¢, has the following properties:

1. ¢, maps S? to a plane, which we call the inverse plane
T, associated with the inversion center o.

2. VS.C 5% ¢,(S.) =P, P.CT,.

3. If o €intS,, then ¢,(intS\{o}) = extP..

4. If o € extS,, then ¢, (intS.) = intP..

Fig. 2 shows an example of inversion with its inversion
center at point (colored in red) o = (0,0, 1), which maps unit
sphere S? onto plane T4 : S — {(z,y,2) € R*|z = 0.5}.
Meanwhile, it maps the spherical circle S, (decorated by the
blue curve on the sphere) onto the planar circle P, (decorated
by the big blue curve) on plane T{g ). Since S. has ¢ in its
interior, ¢, maps the interior of S. (colored as the yellow
region on the sphere) to the exterior of P, (colored as the
yellow region on the plane).

Given a point set X = {t; [i=0,...,m —1} C 5%, we
denote their images under inversion ¢, by X7 = ¢,(X),
where ¢,(t;) € T;,. When there is no ambiguity, we simply
use the indexing integers to represent points when their
coordinates are not involved. For example, a set of points
to,t1,...,t,-1 are denoted as {0,1,...,m — 1}. The above
observations immediately lead to following properties.

Property 1. A degree-k spherical Delaunay configuration SD =
{XBp, X1} has the same combinational structure as a near-type
(far-type) Delaunay configuration D, = {X%, X9} (Dy=
{X%, X%} if the spherical circumcircle of Xp has inversion
center o in its exterior (interior).
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We say that two pairs have the “same combinational
structure” if their elements and orders are the same: Xp =
X% and X] = X{; (X] = XZ)

Property 2. Given a spherical Delaunay configuration SD =
{Xp, X} on S2, suppose there are two inversion centers o
and oy, locating in the interior and exterior of spherical
circumcircle of Xp, respectively, then under the inverse
transformations ¢,, and ¢,,, SD will be mapped to a planar
far-type Delaunay configuration Dy = { X7, X7'} on inverse
plane T, and a near-type Delaunay configuration D, =
{X%, X7} on inverse plane T,,, respectively.

Property 1 implies that, for a given knot set U on sphere
S?, one part of SD(U) has the same combinatorial structure
as the near-type Delaunay configurations D, (U?), while the
rest part has the same combinatorial structure as the far-
type Delaunay configurations D;(U?). Computing near-
type Delaunay configurations has been widely studied, so if
we can compute far-type Delaunay configurations, then the
spherical Delaunay configurations can be obtained.

According to Property 2, a far-type Delaunay configura-
tion on one inverse plane has the same combinational
structure with a near-type Delaunay configuration on
another inverse plane associated with an appropriate
inversion center. Furthermore, for the given knot set U
and an inversion center o; on sphere, suppose S, i =
0,1,..,¢q—1 are all the spherical Delaunay configurations
whose circumcircle includes o7 in their interior. Then,
Property 2 also implies that if there is another inversion
center oy satisfying oy € (', extS.,, then for each far-type
Delaunay configuration on inverse plane 7}, , there is a near-
type Delaunay configuration on 7, correspondingly. In
other words, all far-type Delaunay configurations on
inverse plane 7, can be computed from near-type
Delaunay configurations on the second inverse plane 7,,.

Given a knot set U C S?, let 01 = (0,0,1) and o9 be its
antipole, say, (0,0, —1). Suppose 1,05 ¢ U and U | {01,002}
is not degenerated, i.e.,, no more than three knots are
spherically colinear and no more than four knots are
spherically co-circular. We reduce the computation of
Delaunay configurations of points on a sphere to, respec-
tively, computing Delaunay configurations of two sets of
points in R? and merging identical ones in different
Delaunay configuration sets. The algorithm is as follows:

Algorithm 1. Computation of degree-k spherical Delaunay

configurations.

Input: knot set U C S°.

Output: degree-k spherical Delaunay configuration set A.
LA~
2: map knot set U by function ¢,,(v) to planes 7,, and get
images U,,, 1 = 1,2

: compute the degree-k near-type Delaunay
configurations {D%} of U,,, i = 1,2

LA~ AU

: for each D, = (X%, X7?) € {D?*} do

if ¢, (01) is in the interior of circumcircle of X7 then

A—AUD,
end if

[63)

® N Gk
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9: end for
10: return A

The computational complexity of Step 2 is O(n). In Step 3,
since Delaunay configuration is implied in computing higher
order Vonoroi diagram, we can finish its calculation in
O(nlogn) using the method in [33]. In Step 5, no more than
(2k 4 1)n configurations will be searched, which takes O(n)
to finish. In Step 6, each operation takes O(1) to finish. The
entire algorithm has only O(n log n) complexity, much lower
than that of direct computation of high-order Vonoroi
diagram in 3D space, which is usually higher than O(n?) [33].

3 SPHERICAL DELAUNAY CONFIGURATION
B-SPLINES (SPHERICAL DCB-SPLINES)

Spherical simplex splines are spherical analogues of planar
simplex splines. These spherical simplex splines are locally
supported smooth functions on spherical domain. We
introduce concepts and necessary notations of spherical
simplex splines here and refer readers to [14], [24] for more
details.

Given a knot set on the unit sphere V = {ty,ty,...,
trro} C S? and a split set W = {t;,, t;,,ti,} CV, W forms a
spherical triangle At t; t;, on S2. Then, for point p € S2, its
spherical barycentric coordinates (p°, pt, p?) with respect to
At; t;, t;, is defined as

20

®.p'.p") =
det(p, ti,, t;,) det(t, p,ti,)
det(ts,, b, t;,)  det(ts,, b, ti,

det(t;,, ti,, P) (2)
)" det(ti,, b, t5,) )

where we treat points as vectors, and det(a, b, c) indicates
the signed volume of the tetrahedron formed by the origin
and a,b,c. Much work [9], [12], [37] has focused on the
definition and discussion of spherical barycentric coordi-
nates, and we choose the one (2) developed in [12] because
of its simplicity as well as its many properties shared by its
planar counterpart. Unlike the planar braycentric coordi-
nates, when p lies on or within spherical At; t; t;,, we have
PP p 4+ > 1

A degree-k spherical simplex spline associated with knot
set V is recursively defined as

M(p|V) =Y P/ (pW)M(p[V\{t,}), pes’ (3)
7=0

when k=0, V = {ty, t;, to} and degree-zero simplex spline
is defined as

x[to, t1,t2)(P)

to,t1,t
M(plto, t1, t2) = [ det(to, t1, t2)|

which is the normalized characteristic function on the
spherical half open convex hull of [ty, ti, t2).

Given a knot set U C S?, the spherical DCB-spline
associated with an unordered Delaunay configuration X
is denoted as B;, and defined as

B~(p) = pes (4

1
WP = 2 diw)

M(p|B;),

For spherical barycentric coordinates that do not yield
partition of unity, i.e.,

I(p)= Y B;p) > 1,
XelX]

pe s

in order to guarantee the partition of unity for spherical
DCB-splines, we normalize each basis in (4) as

p € S (5)

The normalized bases satisfy the convex hull property.

Suppose [X] has n elements, we index the unordered
spherical Delaunay configurations in [X]as X;,i=0,1,...,
n — 1. Then, the spherical DCB-spline surface constructed
by bases in (5) is defined as

n—1

F(p) =Y Bi(p)c;, peS, (6)

=0

where B;(p) is the basis function defined by X, and c; € R3
is its corresponding control point.

4 SuRFACE FITTING USING SPHERICAL
DCB-SPLINES

4.1 Problem Statement

Spline surface fitting is a fundamental problem in computer
graphics, visualization, computer-aided design, and many
other application fields. Our goal is to find a parametric
spherical DCB-spline surface defined on the unit sphere 52,
approximating an unknown surface M sampled by a set of
points X = {x¢,X1,...,X,-1}. In our initial input, these
sample points are vertices of a genus-0 polygonal (trian-
gular) mesh M, and we seek a rational parametric spherical
DCB-surface (defined in (6)) to fit the input data X,
satisfying certain criteria that measure the approximation
quality. Let F(p) denote the reconstructed spherical DCB-
surface, and u; be the parameter value on spherical domain
associated with vertex x;, then we use the euclidean
distance between F(u;) and x;, ¢ = |x; — F(w)|, to
measure the distance between the reconstructed surface
F(5?) and the original surface M, we call ¢; the fitting error
of vertex x;.

The tolerance of root mean square fitting error (RMSE) is
specified by the user. The surface fitting problem, therefore,
becomes the minimization of fitting error {e;} so that the
RMSE is less than the specified tolerance. Like most fitting
processes, we minimize e; in the least-squares sense

min Z e = mmz Ix; — F(w)|" (7)

4.2 Algorithmic Overview

Our goal is to create a spherical DCB-spline surface F(S5?)
that best approximates M. Like classical univariate B-spline
curves, the following three factors typically influence the
shape of spherical DCB-spline surface in the fitting
procedure: 1) surface parameterization, 2) knot selection
and placement, and 3) control point locations. It is possible
to construct an optimal spherical DCB-spline surface from



given scattered points by solving a nonlinear optimization
problem when all parameter values, knot positions, and
control point positions become unknown. However, this
leads to a high-order nonlinear optimization problem (with
many variables) that can hardly be solved efficiently.
Therefore, like most existing standard approaches, we take
a more efficient divide-and-conquer fitting strategy, follow-
ing the three-stage procedure: parameterization, knot
placement, and least squares minimization.

Given a surface M, we first compute its spherical
parameterization: ¢ : S — M. Ideally, a parameterization
should have neither angular distortion nor area distortion.
Such an ideal parameterization is called an isometry.
Unfortunately, given an arbitrary surface, due to the
intrinsic geometry obstacle, its isometry to a sphere S*
rarely exists. We, therefore, seek a parameterization that
minimizes angle and area distortion for subsequent
spherical spline fitting. Conformal maps preserve the shape
angle of the surface over the parametric domain; therefore,
it is potentially important for high-quality fitting in the
subsequent steps. However, conformal maps could intro-
duce relatively big area distortion (for example, a long
branch region on M may shrink to a small parametric
region on S?). This is undesirable for spline fitting, because
in these regions with large area distortion, we could have
far fewer knots for geometric details on the long branch.
Thus, a parameterization that effectively minimizes both
angle and area distortions is most desirable.

Upon parameterization, we place knots on the spherical
domain and construct spherical DCB-spline basis functions.
For a given knot sequence on unit sphere, we can construct
basis functions and associate each of them with a control
point, then we optimize control point positions by solving a
linear least-squares problem.

Finally, since it is usually unknown in advance how
many knots and control points are required for a specified
accuracy, we use a progressive procedure to adaptively
adjust the number of knots and control points. In general,
this knot adjustment process can proceed in either of the
following two ways: 1) start with a minimal or a smaller
number of knots and iteratively increase the number of
knots until satisfying the error bound; or 2) start with a
maximal or a larger number of knots and iteratively reduce
the number of knots in order to satisfy the error bound. The
second way is usually more time consuming especially
when the initial knots are not well determined [38].
Therefore, we adjust knots using the first strategy. If the
current fitting error e; does not satisfy the preassigned
tolerance, then we add more knots and create more bases to
refine the surface fitting. We also exploit a heuristic method
to optimize the positions of new knots, so that in each
refinement a number of new knots can be well distributed
and adapted to surface geometry and fitting error.

The surface fitting process is progressive. The input of
each refinement is a closed genus-0 surface M sampled by
{x;}; the output is the spherical DCB-spline with control
points and e;. We have the following fitting pipeline:

1. Specify a tolerance of the root mean square of fitting
error € > 0;

2. Generate the spherical parameterization of M;

3. Initialize knot positions;
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4. Compute Delaunay configurations by Algorithm 1
and construct basis functions (5); then associate each
basis function with a control point.

5. Optimize control point positions by solving the
linear least-squares problem: min 37~ ¢2.

6. If the current fitting RMSE is less than ¢, then
STOP, otherwise, insert new knots on parametric
regions where fitting errors are big, and go back to

Step 3.

4.3 Spherical Parameterization

The spherical parameterization has been studied as a key
enabling technology in many geometric modeling and
processing tasks such as meshing, morphing, and shape
analysis. Spherical parameterization algorithms shall mini-
mize angle distortions [39], [40], area distortions [41], or a
trade-off between these two indicators [42], [43]. For our
spline fitting purpose, minimizing angle distortion and area
distortion together is most desirable. We discuss our
spherical mapping distortion metric in Section 4.3.1 and
briefly address how to solve it in Section 4.3.2.

4.3.1 Distortion of Spherical Mapping

A spherical mapping ¢ is a function from the unit sphere
domain S? to a genus-0 closed surface M C IR?, ¢ : S — M.
We approximate M and S? using triangular meshes with
the same connectivity of M, denoted as M = {7, X}, S? =
{T,U}, where T ={T},...,Ty,} is the triangular facet set,
and X = {x;},U = {u,;} are vertex sets. We consider the
inverse parameterization ¢ := ¢! to be linear within each
triangle. Then, the mapping ¢ is uniquely determined by its
values on mesh vertices, and for each vertex v; we want to
solve its image u; on the spherical domain. We denote the
position of vertex x; on M as (z},z?,2}), and its
corresponding parameter on S* as w; = (u},u?, u}), where
w; has the unit Ly norm: |ju,||” = 1.

The angle distortion and area distortion of the mapping
can be measured as follows:
T2

Y

T
E()' = Eangle = 2 + (8)
T2

T1

Ey = Eyea = T1iT2 _~_i’ (9)
T1T2
where 71 and 7, are the maximal and minimal singular
value of the Jacobian defined on each triangle under .
Following [44], [45], we discretize the energy on each
triangle Ty (and Ty = ¥(Ts2)) by

_cot Elal® + cot n|b|* + cot ¢|ef?

E
“ 2area(Ts) ’

(10)

where &, ), { are angles on the original triangle Ty and a, b, ¢
are corresponding opposite edges of triangle Ts: on sphere,
respectively, and

_area(Ts)  area(Ty)

(11)

A7 area(Ty) | arca(Ty:)’

We always normalize M so that its area equals to
area(S*) = 4r. Then, in the optimal case, an isometry has
both £, =2 and E4 = 2.
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We want to minimize the following energy:

E= Z area(TM)Ea(TM) . (EA(T]\,j))/\,
TveT

(12)

where ) is the weight balancing the angle and area distortion.
Since E,4 > 2, bigger X indicates larger emphasis on area
preserving, and we will get a more uniform mapping by
sacrificing conformality.

4.3.2 Optimizing Spherical Mapping Distortion

To minimize the piecewise nonconvex energy in (12), we
use a coarse-to-fine optimization to alleviate the local
optima problem. Like [45] and [42], we also use progressive
mesh [46] to get a uniformly sampled coarsest mesh, and
then minimize the distortion upon progressively refined
resolutions.

1. On the coarsest level, compute an initial mapping
¢ : 5% — M using [43] (because of its efficiency).

2. Minimize the spherical parameterization distortion
energy in (12).

3. Progress to a finer level, the newly split vertices are
optimized within its one-ring region on the sphere
by minimizing distortion energy in (12).

The optimization performed over a spherical triangle

mesh can be formulated as

min E(up,uy,...,uy-1),

st. |wlP=1,i=0,...,N—1, (13)

where N is the number of vertices, u; is a point on the unit
sphere parametric domain. This is a nonlinear optimization
subject to quadratic constraints. We develop an efficient
optimizer for this problem on triangular meshes. It makes
good use of the derivative on every spherical point, and
perform curve line search for each vertex by examining the
function value and gradient on that point.

Iteratively, we pick a vertex and optimize it on the sphere
when fixing all other points. In other words, for a point
u=1uw;, we shall minimize f(u)= E(uy,uy,..
u, W41, ..,, 1), enforcing Hu||2 =1. We evaluate the
gradient of f(u) at this point u, denoted as V f(u), and check
its magnitude on the tangent plane: let g, = Vf(u)’ u, then
p(w) = |VF(w)](1 - (z¥g7)°)- Note that p(u) is the magni-
tude of V f(u) projected onto u’s tangent plane. Therefore,
during iterations, each time we pick a point having largest
such magnitude to optimize

-, W1,

u= Argma‘xwe{ui,izﬂ ..... n—1} p(W)

Now on u, along its negative gradient direction —V f(u),
we perform a curve line search on the great circle, denoted
as c,, obtained by the intersection of the unit sphere and the
hyperplane passing through the origin, u, and —V f(u).
Furthermore, we can keep the curve line search within the
union of u’s one ring spherical triangles to avoid unne-
cessarily searching region that will cause flip over. Denote
the union of all one-ring spherical arcs as c,, we start the
search from the intersection point of ¢, and c¢,, along ¢,
toward u, and iteratively divide the step length by 2 before
normalization.

(a) bunny (b) sphere (c) sphere (d) sphere
(front) (back) (mesh)

© EZ" (D ET (9 E;TY () ET

() Eq [42] () Ea [42] (k) E4 [42] (D) E4 [42]

(m) E&ZO'Z (1’1) Eé:OQ (O) E&:O.Z (p) E‘%:OQ

Fig. 3. Distortion of spherical parameterization under different weights.
(a-h) Bunny parameterization: (b,c) The front and back of the bunny
mapping (A = 0.5) on the sphere, (d) The mesh on sphere; (e,f) Angle
distortion (red: E, > 4, blue: E, = 2, distortion values in between are
evenly distributed from blue to red) of the mappings under A\ = 0.5 and
A =5; (g,h) Area distortion (red: E4 > 3, blue: E4 = 2) under different
As. (i-p) Gargoyle parameterization: (i,j) Front and back views of the
color-encoded angle distortion of mapping computed using [42], (k)
area distortion color encoded; (m-p) the corresponding models
computed using our method A\ = 0.2, from same views directions. All
the color coding in (i-p) are consistent, (for angle distortion, red: £, > 6,
blue: E, =2, for area distortion, red: E4 > 3, blue: E4 =2). More
statistical results can be found in Table 1.

We demonstrate some mapping results computed using
our algorithm. Fig. 3 shows the spherical parameterization
computed on the Bunny and Gargoyle model. Figs. 3a, 3b,
3¢, 3d, 3e, 3f, 3g, 3h show the mapping of bunny. Figs. 3a,
3b, 3¢, 3d are the mapping computed under A = 0.5, and the
color coding visualizes the area distortion, where red
indicates E, > 4, blue indicates E, = 2 (note that 2 is the
minimal value), and distortion values in between are evenly
distributed from blue to red. Figs. 3e, 3f, 3g, 3h show that
under two different As, two parameterizations lead to
different angle distortion and area distortion (in (Figs. 3g,
3h) red: E4 > 3, blue: E4 = 2). Figs. 3i, 3j, 3k, 31, 3m, 3n, 3o,
3p illustrate the spherical parameterization of gargoyle
model, with a side by side comparison between [42] and our
method. Note that the algorithm introduced in [42]
minimizes the L? stretch [47] which nicely preserves both
angle and area distortions. We show that using different X
we can flexibly control the mapping behavior. For example,
in Figs. 3e, 3f, 3g, 3h, we increase A to improve the area-
preserving1.0 property of the mapping; on the other hand,
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TABLE 1

Spherical Parameterization under Different Weights
Models Methods | maxg, | avgg, | maxg, | avgg,
Igea [42] 11.95 2.06 3.93 2.019
A=02 11.29 2.004 55.7 2.14
A=1 11.40 2.06 3.85 2.019
A=5 13.58 2.06 3.16 2.012

Bunny [42] 19.12 2.76 5.42 2.11
A=02 15.60 2.62 6.16 2.34

A =10 38.66 2.83 4.28 2.08

Gargoyle [42] 16.95 2.89 8.96 2.14
A=02 16.55 2.72 37.67 2.36

Here, max and avg indicate the maximal energy on triangle face and the
average energy (weighted by the face area on M), E, and E4 are angle
and area distortions, respectively.

in Figs. 3m, 3n, 30, 3p, we set A =0.2 to improve the
mapping conformality.

Table 1 shows more statistical results of the spherical
mapping. Under different weights, parameterizations have
different angle and area distortions. Large A emphasizes the
area preserving (e.g., see the rows where A = 5,10) while
small A better keeps conformality (e.g., see the rows where
A = 0.2). All models in this table are data provided by [42],
where the Bunny model has 69.6k triangles, Igea has 100k
triangles, and Gargoyle has 200k triangles.

Our optimization is very efficient: when A =1, 10k
iterations usually take only 0.5 second (bigger A makes the
derivative computation slightly slower; e.g., when A = 10,
10k iterations takes about 0.7 second). Note that in each
iteration we move one vertex along its negative gradient to
a locally optimal position within its one-ring neighborhood.

4.4 Adaptive Knot Insertion

Knot sequence is important in recovering the underlying
smooth curve and surface from discretely sampled data
points for any spline-centric representation. In particular,
discrete data points acquired from a physical object have
considerable geometric complexity, and the reconstructed
shape may have significant difference from the actual
physical surface if the knots are not reasonably distributed
according to the geometric shape variation. Despite the fact
that the quality of the reconstructed surface depends
heavily on different strategies for knot placement, there is
no effective and intuitive way to place knots at their best
possible positions according to the minimization of RMSE.
In this section, we introduce a heuristic method to optimize
knot locations and adjust the number of knots adaptively in
a hierarchical fashion: we start with a small number of
knots, and then add more knots adaptively in each
subsequent fitting iteration so that the reconstructed surface
approximates scattered data samples progressively.

In Section 4.4.1, we first introduce a geometric measure-
ment and then define an energy function. Through
minimizing such energy function, we obtain the knots in
the initial fitting step according to the surface geometry.
After the initial fitting step, fitting errors will better guide
the placement of new knots. In Section 4.4.2, a similar
energy function is defined, and by minimizing this new
energy function, we can insert knots in a greedy way: in
each fitting step, more knots will be added to the regions
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Fig. 4. The Bunny model (a) with 35k vertices, its parameterization (b),
and initial knot placement. (c) Color-coded curvedness and 100 initial
knots placed following curvedness distribution.

with larger fitting errors. In Section 4.4.3, the adaptive knot
placement algorithm is described and parameters used in
the energy functions are explained.

4.4.1 Placement for Initial Knots

The number of knots in some regions of the parametric
domain is closely related to the number of control points
over the corresponding surface regions. In principle, more
control points are necessary in order to model sharp
features, ridges, valleys, or prongs [48]. That means, more
knots shall be placed in the parametric domain correspond-
ing to feature regions. Hence, we first introduce a measure-
ment of surface geometry to identify regions with features.

Surface geometry measurement. Curvature is the most
important intrinsic quantity to differentially characterize
the local shape of curves and surfaces. We use the sum of
absolute principal curvatures |k;| + |k2| as the measurement
of how much a surface bends (a.k.a. the “curvedness”) at
any point, and we denote it as . The calculation of the
principal curvature on discrete representation such as
triangular meshes is not trivial. One popular approach is
to first estimate curvature tensor, from which principal
curvatures can be extracted [49], [50], [51]. In this paper, we
compute the curvature tensor on each mesh vertex x; using
the method proposed in [49]. Then, the principal curvatures
and the local “curvedness” can be obtained. We use «; to
denote the curvedness of vertex x;. In Fig. 4c, the normal-
ized curvedness of each vertex is color-coded and visua-
lized on the parametric domain. As shown in the color bar,
the more curved regions are in white and less curved
regions are in orange.

Suppose we have K knots to be placed over the spherical
domain in this initial step and denote them as 70 = {t;|k =
0,1,... K —1}. Since curvedness is a measurement of the
geometry of input mesh, we hope that more knots are
placed in regions with larger curvedness. We define a
curvedness function x(t),t € S* on the parametric domain
as follows: k(t) = k; if t is the parametric point correspond-
ing to vertex x;; otherwise, x(t) in a triangle formed by
three parametric points is defined by linear interpolation of
its values at the vertices of the triangle. Assume each knot t;,
covers a subregion ), C S2, we compute the accumulated
curvedness in §;’s corresponding surface patch X by

& = / K (t)dO’,
teQy

where o is the area element on sphere and « > 0 is a control
parameter. We shall decompose the parametric domain into
subregions {;|k = 0,1, ... K — 1} with similar accumulated

(14)
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B ——

Fig. 5. Reconstructed Bunny after the first fitting step. (a) Reconstructed surface; (b) Reconstructed surface with 680 control points; (c) Fitting error
(maximum error 2.63 percent and root mean square error 0.376 percent); (d) Mean curvature distribution; (e) Initial knots and color-coded fitting error
map in the parametric domain; (f) Adaptive knot insertion in the second fitting step based on the fitting error.

curvedness ¢, and naturally choose its mass center as a knot.
Notice that, a large o will lead to a finer decomposition of the
region with large curvedness.

However, there are a number of ways to partition the
parametric domain, such that each subpatch has evenly
accumulated curvedness ¢;, evaluated by the discrete
version of (14). It is desirable if each subregion can be as
round as possible, such that a knot t; can be a good
representative of this subregion (2. Therefore, we measure
the distances between t; and other points in €2, and refine
(14) to

fi= [ ROl - o (15)
teQy
from which an energy function is defined as
K
Oy (tr, Uk =0,1,., K = 1) =) &} (16)
k=1

The knot locations {t;|k=0,1,... K — 1}, as well as the
decomposition {Q;|k=0,1,... K — 1}, can be obtained by
minimizing the energy function formulated in (16). Later,
we will show the method on how to minimize the energy
function of (16).

Fig. 4c shows that 100 initial knots are placed by
minimizing the energy function of (16), where « is set to
4. We can see that knots tend to concentrate in the regions
with large curvedness. Given such knots {t;|k=0,1,
...K —1}, the spherical Delaunay configurations can be
obtained by Algorithm 1. Then, the basis functions can be
constructed immediately, followed by the computation of
associated control points to be optimized via solving the
linear least squares problem defined in (7).

Figs. 5a, 5b illustrate the spline surface and control points
constructed from the initial knots, respectively. Meanwhile,
the fitting error at each vertex of the mesh surface can be
evaluated. We denote the maximum and minimum values of
€i,1=0,...,n — 1,as enq, and e,,;,, respectively, and normal-
ize the fitting error at vertex x; by e; = ;“==-. Fig. 5c
visualizes e; of the reconstructed surface after the initial
fitting. The blue and white colors indicate the minimum and
maximum of e;, respectively. The color-coded fitting errors,
as well as the initial knots, are also shown in the parametric
domain in Fig. 5e.

4.4.2 Knot Placement in the Adaptive Fitting Process

After the initial fitting process, the fitting errors will better
guide the placement of new knots. Obviously, on the
parametric domain, regions having larger fitting errors will

need more knots during the refinement process. Without
loss of generality, let us assume that K knots 7V = {t;|k =
0,...K — 1} are going to be placed over the domain in the
jth adaptive fitting iteration (here, j > 1, and if j =0, it is
the initial iteration/process). A fitting error function e(t) in
the jth iteration step can be defined in the same fashion as
k(t): if t is the parameter point corresponding to vertex x;,
e(t) = e;, where fitting error e; is obtained from the (j — 1)th
fitting iteration; otherwise, e(t) in a triangle formed by three
parametric points is defined by linear interpolation of its
values at the vertices of the triangle. Similar to the
placement for initial knots, we replace the curvedness «(t)
in the energy function of (16) with the fitting error e(t) and
minimize function

K-1
q)g(tk,Qk,kZO,l,..,K—l) = Z/ eo"(t)Ht—tkH?da.
k=0 teQy

(17)

By minimizing energy in (17), we can insert new knots
adaptively subject to the fitting error distribution.

In Fig. 5f, 100 new knots are inserted after the initial
fitting step by minimizing energy function of (17). It can be
seen that the newly added knots are concentrated at the
regions with large fitting errors. More knots are inserted
progressively until the fitting RMSE satisfies the given
threshold.

4.4.3 Energy Minimization and Parameter Selection

It may be noted that, the energy functions in (16) and (17)
also occur during calculation of centroidal Voronoi tessella-
tions (CVT) constrained on sphere, which was introduced
in [52]. Both energy functions in (16) and (17) are the so-
called CVT energy functions

K-1
B(ty, Y k= 0,1, K —1) = Z/ (6|6 — ti]|do,
- teQy

(18)

with density function p(t) being x«*(t) and e®(t), respec-
tively. Hence, (16) and (17) can be minimized in the same
way as (18). A widely used method for minimizing (18) is
an iterative method proposed by Lloyd [53]. By incorporat-
ing a quasi-Newton method to compute centroidal Voronoi
tessellations proposed in [54], Yan et al. [55] introduced a
more efficient algorithm to minimize the energy function of
(18). In this paper, we adopt the optimization scheme in [55]
to compute the tessellation and the projections of centroids
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Fig. 6. Reconstructed Bunny after seven fitting steps. (a) Reconstructed quartic surface; (b) Reconstructed surface with 5,315 control points;
(c) Fitting error (maximum error 0.47 percent and root mean square error 0.067 percent); (d) Mean curvature distribution.

to the sphere. For more details about the theory of CVT and
its computational method, please refer to [52], [54], [55].

It has been shown that a minimizer of (18) is a special
tessellation, where €, is the Voronoi region, and each knot
t; is the projection of the centroid of €, to the sphere.
According to Gersho’s conjecture [56], upon convergence,
the energy defined in (18) evenly distributes in each patch.
The knots are equally distant from each other as much as
possible, and the knot distribution faithfully respects certain
density functions, i.e., curvedness function or fitting error
functions in this paper. Hence, knots obtained by minimiz-
ing (16) and (17) are very suitable for the application of
surface fitting.

As discussed above, it is almost impossible to determine
the right number of knots in either initial step or later
adaptive fitting steps such that the reconstructed surface
can reach the preassigned error tolerance. Fewer knots
inserted in each step means more iteration steps and slower
fitting processes, while more newly inserted knots in each
step means fewer steps but can lead to a larger number of
total knots at the end of surface fitting. Therefore, we
empirically place 100 knots during the initialization stage
and add 100 more knots during each refinement. As
mentioned, larger o will force knots to be more concen-
trated on the region with large density. In all of our
experiments, we use parameter o =4 in (16) and (17),
which usually affords the fitting process to reach the
tolerance with a good balance between the number of
refinement steps and the number of knots. The algorithm
for adaptive knot insertion is illustrated in Algorithm 2.

Algorithm 2. Adaptive knot placement algorithm for
degree-k spherical DCB-spline surface fitting.
Input: mesh M = {x;} with parameterization mesh
P = {u;}, threshold of root mean square fitting error .

Output: degree-k spherical DCB-spline surface.

1: j + 0O {fitting iteration number}

2: density function p(t) < 0

3: K « 100 {the number of knots added in each step}

4: T «— () {knot set for surface reconstruction}

5: while RMSE > ¢ do

6: if j =0 then
7: calculate the curvedness function x(t)
8 plt) — m(t)
9: else
10: calculate the fitting error function e(t)
11: p(t) — e(t)
12:  end if

13:  obtain knot set 7V of K new knots by minimizing
Equation (18) with density p(t)

14: T—TUT

15:  fit mesh M based on knot set T" and update fitting
error ¢; of each vertex x;

16: j—j+1

17: end while

18: return spline surface

Note that, in the later adaptive fitting steps, already
existed knots are all fixed, and the new knots are placed in
regions with large fitting errors. Namely, in the jth fitting
iteration, we construct a spline surface on the knot set
UL, T" (see Step 14 of Algorithm 2). This may not be the
best strategy for the placement of the entire set of knots.
Nonetheless, 1) it usually leads to the monotonic decrease of
the fitting error, which is crucial to the convergence of our
refinement strategy; and 2) for each new insertion, we only
need to minimize (17) subject to the newly added knots
locally, and it is much more efficient than running function
minimization on (17) again with respect to all the currently
available (existing plus new) knots for each iteration.

5 EXPERIMENTAL RESULTS

This section presents the experimental results of our surface
fitting framework. We perform all our fitting experiments
on a laptop PC with a 2.2 GHz Intel Duo-Core processor
and 2 GB memory. We apply our surface fitting algorithm
to several discrete models. All these data sets are uniformly
scaled to fit within a unit cube in order to normalize fitting
errors across different models. A perturbation method is
used to avoid knot degeneracy.

In Fig. 6, a quartic spline surface, its control points, the
normalized fitting error map, and the mean curvature of
Bunny obtained after seven rounds of refinement are shown
in Figs. 6a, 6b, 6¢c, and 6d, respectively. Figs. 7a, 7c, 7e
illustrate more quartic spline surfaces reconstructed from
models of Brain, Gargoyle, and Pierrot. Their mean
curvature distributions are shown in Figs. 7b, 7d, and 7f,
respectively. The convergence speed is plotted in Fig. 11a.

Fig. 8 illustrates an example of Fandisk model recon-
structed by cubic splines. We can see in Fig. 8a, computed
knots automatically locate near the region that corresponds
to the model’s sharp feature in the initial step. The
reconstructed surface, however, does not show sharp
edges/corners at the initial stage Fig. 8b. During subse-
quent fitting iterations, new knots are inserted into the
region with large fitting error progressively, and the surface
rounding effect in Figs. 8e, 8f, 8g, has almost been
eliminated.
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Fig. 7. Examples of degree-4 spherical DCB-splines. From left to right: the fitted spline surfaces followed with mean curvature distribution: Brain,
Gargoyle, and Pierrot. Their maximum fitting error/root mean square error are: Brain (0.493%/0.090%), Gargoyle (0.636%/0.065%), and Pierrot

(0.574%/0.058%).
. a

Fig. 8. Sharp feature modeling of Fandisk model using cubic splines. (a) Knot distribution according to the curvedness in the initial fitting step;
(b) Reconstructed surface in the initial fitting iteration; (c) Control points (the number is 582) of surface in (b); (d) Color-coded fitting error map over
surface in (b), with maximum error 9.56 percent and root mean square error 1.163 percent; (e) Reconstructed surface obtained in the eighth iteration;
(f) Control points (the number is 4,994) of surface in (e); (g) Color-coded fitting error map on surface in (e), with maximum error 0.866 percent and

root mean square error 0.028 percent.

If knots are placed in general positions, i.e., locally no
more than three knots lie on the same great circle, then the
reconstructed spline surface is globally C*~! continuous. On
the other hand, if the knots are cocircular, then the
reconstructed surface can have lower degrees of continuity
in the corresponding region. Certainly, modeling sharp
features is possible if we intentionally place multiple knots
or cocircular knots along feature lines on the parametric
domain. Using a similar strategy to [22], we can detect
sharp features and apply additional constraints to enforce
relevant knots to be cocircular. In our framework, we can
also integrate a feature extraction preprocessing step and
apply knot positional constraints in the adaptive knot
placement stage to enforce some knots to be cocircular.

On the other hand, in this Fandisk experiment, benefited
from our CVT method which uses curvedness and fitting
errors as density functions, knots tend to be placed
automatically on the parametric region with large density.
The Fandisk model has clear feature lines on the parametric
domain, so even though we do not intentionally place
relevant knots cocircularly, we see that knots are auto-
matically placed close to sharp curves on the parametric
domain. As a result, the reconstructed surface has recov-
ered sharp features elegantly.

Table 2 summarizes the statistics of our surface fitting
procedure on the aforementioned models, where N, denotes
the vertex number of the discretized models, Deg denotes the
degree of spherical DCB-splines used for surface reconstruc-
tion, and N, is the number of control points. The maximum
fitting error is denoted as m.e. while the root-mean-square
error is denoted as rms. For each of these models, 100 new
knots are inserted during each refinement step to improve the
surface quality, and the entire process of knot placement and
optimization takes 12-37 seconds throughout the surface
fitting process. Note that, the subsequent process of basis
function updating and control point optimization is the most

time-consuming step, which can usually be finished in less
than 1 minute for all the test models. For example, the smallest
Bunny model (35K vertices) takes seven iterations to reach
root-mean-square error of 0.067 percent, and in each iteration
process, the basis function updating takes from 11.556 to
14.308 seconds and the control point optimization process
takes from 4.354 to 7.296 seconds. The largest Dog model
(180K vertices) takes nine iterations to reach root-mean-
square error of 0.021 percent, in each iteration process, the
basis function updating takes from 22.352 to 26.093 seconds
and the control point optimization process takes from 14.266
to 17.689 seconds. There exist many effective methods for
solving linear least squares problems, and in this paper, we
use the Singular Value Decomposition (SVD) method because
of its stability.

Our proposed framework is also suitable for reconstruct-
ing surfaces with C*~! continuity. Compared with lower
degree spline surfaces, higher degree spline surfaces 1) in-
herently have higher order continuity, 2) usually take less
iteration steps for better fitting, but 3) require more
computation time to satisfy the same threshold requirement.

TABLE 2
Statistics of Surface Fitting Experiments
Model N, Deg Nit Ne m.e.(%) rms(%)
Bunny 35K 4 7 5315 0470  0.067
Brain 100K 4 11 8267 0.493  0.090
Gargoyle 100K 4 8 6040 0.636  0.065
Pierrot 93K 4 4 3001 0.574  0.058
Igea 50K 3 8 5556 0.378  0.042
Igea 50K 4 7 5304 0461  0.042
Igea 50K 5 6 5286 0.559  0.040
Fandisk 56K 3 8 4994 0.866  0.028
Dog 180K 5 9 7790 0.344  0.021




12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. X, XXX 2012

Fig. 9. Reconstructed Igea Surfaces by Quintic Splines using different methods. (a) Reconstructed quintic DMS-spline surface in [27] and its mean
curvature distribution (b); (c) DMS-spline surface of (a) after fairing, whose mean curvature distribution is shown in (d); () Our quintic spherical DCB-

spline surface and its (f) mean curvature distribution.

The convergence speed of cubic, quartic, and quintic
spline surfaces reconstructed from Igea model are shown in
Fig. 11b. It can be seen that, to reach the same root mean
square error, splines with higher degree will take fewer
iteration steps. For example, cubic, quartic, and quintic spline
surfaces take eight, seven, and six iterations to satisfy the
requirement of the same root mean square error 0.042 percent,
respectively (see Table 2).

6 COMPARISON AND CONCLUSION

In this paper, we have articulated a surface reconstruction
scheme for fitting genus-0 closed surfaces based on the
spherical generalization of Delaunay configuration B-spline
(DCB-spline). The reconstructed genus-0 closed spline
surface is smooth, C* continuous everywhere, and has
analytic representation. Furthermore, the continuity is
naturally preserved without enforcing any additional
constraints.

Comparison with previous DCB-splines. In comparison
with our previous work [31], the current framework has
three significant improvements: 1) To define the spherical
counterpart of planar DCB-splines in [31], we generalize the
definition of Delaunay configurations from planar to
spherical domain. We also articulate an efficient method
for spherical Delaunay configuration computation to make
this spline formulation more useful in practical applications;
2) In [31], to reconstruct a closed genus-0 surface, spline
patches defined over planar disks are stitched together by
o blending functions; hence, the final representation has
only C° continuity across the patches’ boundaries. In this

Fig. 10. Mean curvature distribution comparison of DMS-spline and
spherical DCB-spline for Dog model. (a) Mean curvature of degree-5
DMS-spline surface in [25]; (b) Mean curvature of degree-5 spherical
DCB-spline surface.

paper, the reconstructed degree-k spherical DCB-spline
surfaces are C*~! continuous across the entire domain
without any segmentation and stitching process, high-order
continuity is obtained elegantly; 3) In [31], we use the k-
mean cluster method to insert only one new knot in each
fitting iteration. We now generate knots by minimizing a
CVT energy function with adaptive density functions. A
larger set of knots are simultaneously inserted to regions
with sharp geometric features or large fitting errors. The
fitting efficiency has, therefore, greatly improved.
Comparison with DMS-splines. Degree-k spline sur-
faces typically have continuity of order k — 1; hence, their
(k— 1)th order derivatives will have discontinuities along
the so called “knot lines,” i.e., line segments between two
knots used for spline reconstruction. In case of DMS-
splines, a “cloud” of auxiliary knots with size of k are
associated with each original knot in order to reconstruct a
degree-k spline surface. Since the knot lines are intensively
distributed near edges of the domain triangular mesh (from
the triangulation of original knots), the mean curvature
distributions of the surface along the curved triangular
boundaries (corresponding to the edges of the domain
triangulation) become much worse than other regions (see
[27, Fig. 10a] and [25, Fig. 9b]). To generate a visually
smooth high-quality surface, postprocessing procedures
[25], [27] are necessary. Unfortunately, the fairing process
unavoidably eliminate some fine details of the fitted surface
as well (see Figs. 9¢, 9d). In contrast, spherical DCB-splines

—v— Pierrot —eo—degree 3
5 —>—Gargoyle 5 —=—degree 4
5 —~—Brain @ —o—degree 5
o —<—Bunny ST
© ©
3 . =]
31 g
c c
[ I
(9] o
£ €
s} B
] o
o oo
107 107
1 5 10 15 5 10 15
Fitting iteration number Fitting iteration number
(a) (b)

Fig. 11. Root mean square errors of surface fittings. (a) The log of
RMSEs (y-axis) versus the number of fitting iterations (z-axis) for quartic
surfaces reconstructed from models of Bunny, Brain, Gargoyle, and
Pierrot, with 100 knots being added in each fitting step. (b) The log of
RMSEs versus the number of fitting iterations for cubic, quartic, and
quintic surfaces reconstructed from Igea model with 100 knots being
added in each fitting step.



CAO ET AL.: SPHERICAL DCB-SPLINE SURFACES WITH HIERARCHICAL AND ADAPTIVE KNOT INSERTION 13

are free of auxiliary knots, so the “knot lines” evenly
distribute over the entire parametric domain, and the
curvature changes smoothly. As shown in Figs. e, 91, the
degree-5 spherical DCB-spline surface is visually smooth
with many fine geometric details preserved.

Limitation and future work. One limitation of our
current scheme is that, we only focus on closed genus-0
surfaces in this paper. It is much more desirable if our
scheme could handle general surfaces with higher genus.
One necessary step of improving our scheme is to general-
ize spherical mapping for high genus models, and such
spherical mapping for models of complicated topology is
theoretically possible. According to Riemann surface
theory, a conformal map between a surface and the sphere
is equivalent to a meromorphic function defined on the
surface. Intuitively speaking, this map wraps the surface
onto the sphere with several layers while having branch
points. The number of layers and branch points are solely
determined by the surface topology and Riemann-Hurwitz
theorem. Different layers can be considered as different
spherical domains, sharing at most two common points
between each other. Upon such parameterization, C*~!
continuous surfaces could therefore be reconstructed every-
where except at these 2¢g + 2 branch points (here g is the
genus number). We plan to explore its effective computa-
tion in surface fitting procedures.

Although we only focus our research endeavors on
surface fitting in this paper, potential applications of
spherical splines are much broader and not limited to
shape modeling and graphics. In geophysical applications,
high-order splines with data interpolation are often desir-
able. We plan to further refine our algorithm by integrating
an effective interpolation constraint and apply it in geology,
geography, and geophysics tasks.
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