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ABSTRACT
We present an effective framework to compute the guard-
ing and the star decomposition for 3D volumetric regions
represented by polyhedral meshes. Based on the observa-
tion that curve-skeletons extracted from 3D objects have
good visibility to the object boundary, we compute guard-
ing using skeletal nodes. A hierarchical integer linear pro-
gramming framework is developed to efficiently reduce the
computational complexity in finding a hierarchical approxi-
mation to these NP-complete problems. The decomposition
framework proposed in this work could potentially benefit
many volumetric data processing tasks. One important mo-
tivation for this work is the seeking of bijective harmonic
volumetric parameterization. We demonstrate the applica-
tion of star-shaped decomposition in the non-degenerated
3-manifold mapping by converting the problem to solvable
sub-domains with mathematically guaranteed bijectiveness.

Keywords
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monic Volumetric Mapping, Polyhedron Guarding

1. INTRODUCTION
Shape decomposition is a ubiquitous technique facilitating

various geometric processing and analysis tasks. The rapid
advancement of 3D scanning techniques provides us mas-
sive geometric data sets nowadays with great ease. When
the size of input data are very large, direct computation
can be expensive; and when the topology and geometry of
the input data are very complicated, the processing of the
entire domain can be infeasible. A common approach for
above difficulties is through a divide-and-conquer strategy
that partitions the problem into solvable sub-domains. Also,
many applications such as object recognition, classification,
matching, and etc. need to solve the problem of segmenting
a shape into a set of salient parts.

In this paper, we study the star-shape decomposition that
segments a 3D volumetric region to a set of sub-regions,
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each of which is visible from a guarding point. Such a
sub-region is called a star shape. The motivation for this
work comes from computing lowly distorted volumetric pa-
rameterization which seeks bijective harmonic functions de-
fined on 3D-manifolds that embed in R3. Low-distortion
parameterization facilitates many geometric modeling tasks
in graphics and vision research. For example, in computer
graphics, it is used for texture mapping, texture transfer,
and animation morphing; in geometric processing, it is used
for detail transfer, surface editing, and mesh simplification;
in CAGD, it is used to construct domains for scientific func-
tions such as splines; and in vision and medical imaging, it
has been used for surface matching, data completion. Sur-
face parameterization has been extensively studied (see the
survey papers [10, 34, 16]). Recently, the parameterization
of 3-manifolds has also gained great interests due to its im-
portant applications in volumetric data processing. How-
ever, its study is still in infancy, and mapping techniques
developed are far from adequate. One reason is due to the
much more complicated topological structure and sizes of
volumetric data. Another reason is that the existence of bi-
jective harmonic functions on general volumetric domains is
not theoretically guaranteed. An effective star decomposi-
tion framework could be a solution to tackle both of these
challenges in harmonic volumetric parameterization.

As a commonly used divide-an-conquer strategy, shape
decomposition has been widely studied. For example, sur-
face segmentation has been thoroughly examined, with two
great survey papers given in [1] and [33]. Most decompo-
sition methods define a criterion to measure specific geo-
metric properties of each (sub-)region, so that a complex
objects can be partitioned into small sub-patches satisfy-
ing the given criterion, facilitating the target applications.
Convexity, curvedness, symmetry and many other criteria
have been studied in shape decomposition. However, less
study has been conducted to the decomposition based on
visibility. Art-gallery guarding and star-decomposition have
been studied in computational geometry community on 2D
planar polygonal meshes and in 3D for terrain guarding.
However, very few star-decomposition methods are for 3D
free-form volumetric objects. To our knowledge, the most
related work is from [26], which provides an effective iter-
ative greedy algorithm to compute approximate guarding
on geometric objects represented by point clouds. However,
there are two main reasons that [26] is not enough for our
application: (1) [26] computes the guarding instead of the
star-decomposition on the given point cloud data, while we
also need the star-decomposition on polyhedra meshes, so



that different sub-regions can actually be processed sepa-
rately (see Section 4 for more discussions). (2) The guard-
ing of [26] is an approximate result, bounded by a threshold
ε (since the point-based representation does not have ex-
plicit connectivity), while in our setting, with a watertight
polyhedra mesh, we ask for an exact guarding, so that the
subsequent geometric modeling tasks relaying on the star
property of the sub-domains can proceed.

Main contributions of this work include:

1. We develop an effective hierarchical optimization algo-
rithm in computing the guarding for a 3D volumetric
region represented by a polyhedral mesh.

2. We study the relationship between the region guard-
ing and star-shape decomposition. Within the same
computational framework, an efficient region growing
algorithm, seeded from guarding point set, is devel-
oped.

3. We demonstrate the application of the star-shape de-
composition in harmonic volumetric parameterization.
On each sub-region, our constructed mapping has its
bijectivity guaranteed. A parametric representation is
defined on the guarding skeleton graph.

The rest of this paper is organized as follows: we first dis-
cuss the related work and background in star decomposition
and volumetric parameterization in Section 2. Then we in-
troduce our algorithms for guarding computation (Section 3)
and star-shape decomposition (Section 4). Its application on
volumetric parameterization is discussed in Section 5. We
show the experimental results in Section 6 and conclude the
paper in Section 7.

2. BACKGROUND AND RELATED WORK
As a commonly used divide-an-conquer strategy, shape

decomposition has been widely studied in geometric model-
ing and computer graphics. We studies the decomposition
based on the concept of visibility.

Definition 1 (Visibility). Given a shapeM , two points
p, q ∈M are visible to each other, if and only if

pq◦ ∩ ∂M ≡ ∅.

where ∂ denotes the boundary operator, and the pq◦ denotes
the open line segment (with the boundary removed): pq◦ =
(pq − ∂pq) = pq\{p, q}.

Definition 2 (Star Shape). A region M is a star
shape if and only if ∃p ∈ M such that ∀q ∈ M , q is visible
to p. p is called a guard of M .

Definition 3 (Star Decomposition). Given a region
M , a decomposition d(M) is defined as:

d(M) = {Mi|
⋃

i

Mi = M and ∀i 6= j,M◦

i ∩M◦

j = ∅}

A star decomposition is a decomposition such that every
subregion Mi is a star shape. We say a region M admits a
star-decomposition of size n, if it has a star decomposi-
tion composed by n star subregions.

Decomposition and Region Guarding. Many differ-
ent decomposition methods (e.g. Voronoi decomposition,
convex decomposition, etc.) have been proposed. A thor-
ough review on these topics is beyond the scope of this work
and we refer the readers to surveys [3] and [23]. In com-
puter graphics and visualization, surface segmentation has
been studied for different applications such as object recog-
nition, meshing, skeleton extraction, and many others. Two
thorough surface segmentation surveys were given in [1] and
[33], in both of which, segmentation techniques are classi-
fied as surface-based methods (in which surface properties
of sub-surface-patches are used as the segmentation criteria)
and part-based methods (in which volumetric properties of
sub-solid-regions are the criteria).

Star-shaped decomposition is related to guarding an art
gallery [4]. A region is considered to be guarded if all its in-
terior points are visible to some guard point. In the 2D case,
guarding a general polygon is known to be NP-complete, and
even the approximate approaches also have high complexi-
ties. In the 3D case, [2] proposed an approximate approach
to guard terrains. Decomposing simple 2D polygons into
star shapes is well studied (see [23]), but when polygons
have holes, the star decomposition is again NP-complete
([22]). 3D star decomposition, in contrast, has been lit-
tle explored. To our knowledge, the only closely related
work that deals with general 3D free-form shapes is from
Lien [26], which computes the approximated guarding on
3D point cloud data using the octree structure.

Volumetric Parameterization. Surface parameteriza-
tion computes a one-to-one continuous map between a 2-
manifold and a target domain with low distortions. It plays
a critical role in various applications in graphics, CAGD, vi-
sualization and vision. A thorough survey of surface param-
eterization techniques is beyond the scope of this work, and
we refer readers to surveys ([10, 34, 16]) for details. Many
effective surface manipulation techniques and parameteriza-
tion paradigms can be generalized onto 3-manifolds. When
volumetric data are to be processed, volumetric parame-
terization has been studied for various applications such
as shape registration ([36, 25]), volume deformation ([19,
18, 28]), and trivariate spline construction ([30]). Wang et
al. [36] parameterized solid shapes over solid sphere by a
variational algorithm that iteratively reduces the discrete
harmonic energy defined over tetrahedral meshes, the har-
monic energy is rigorously derived but the optimization is
prone to getting stuck on local minima and it only focuses
on spherical like solid shapes such as human brain data sets.
Ju et al. generalized the mean value coordinates [9] from
surfaces to volumes for a smooth volumetric interpolation,
Joshi et al. [18] presented harmonic coordinates for volumet-
ric interpolation and deformation purposes, their method
guaranteed the non-negative weights and therefore led to a
more pleasing interpolation result in concave regions com-
pared with that in [19]. Li et al. [25] used the method of
fundamental solutions to map solid shape onto general tar-
get domains. Later, Lipman et al. [28] designed the Green
coordinates based on the same kernel functions for Laplace
fundamental solutions, and applied it to cage-based defor-
mation. Martin et al. [30] parameterized genus-0 tetrahe-
dral mesh onto a cylinder with two singularity points, and
used it for trivariate spline construction. However, none the-
oretic guarantee on bijectiveness of the volumetric mapping
has been provided in aforementioned mapping computation



methods. In fact, the Radó theorem that lays down the
foundation of surface harmonic mapping does not hold on
general volumetric domain M even when M has the trivial
topology.

3. GUARDING VOLUMETRIC OBJECTS
Given a volumetric region M , finding suitable positions of

its optimal guarding points is a challenging problem. Under
the discrete triangulation setting, one common approxima-
tion is to tetrahedralize (densely enough) the D and select
guards from all the vertices. However, even in 2D, finding
the optimal vertex set to guard a general polygonal domain
is NP hard. A common 3D scanned object or CAD model
usually has more than 20K sampling vertices on its bound-
ary triangle mesh, whose tetrahedral mesh could then have
the vertices number reaches 3M easily, which is way too
large to solve for an NP problem. Effective approximation
schemes, such as randomly seeded iteration methods such
as [26] has been proposed for point cloud data. However,
decomposition computed via the approach like [26] may de-
pend on initial selection; and the guarding skeleton could
change globally due to local shape perturbations. In real ge-
ometric applications such as shape matching, although local
geometric noise usually exists in scanned 3D data, we would
prefer the shape decomposition is globally stabled. There-
fore, we want to seek a deterministic scheme that has con-
trollable complexity and is less sensitive to local geometric
noise. Our algorithm is based on the following observations:

• As demonstrated in several medical visualization and
virtual navigation applications [13, 20], curve skeletons
usually have desirable visibility to boundary points
(referred as the “reliability” of skeletons in these lit-
eratures). Skeletons based on medial axes are usually
computed to ensure that the interior organ surface is
fully examined (visibly covered).

• Hierarchical skeletons or skeletons for a progressively
simplified mesh, can be effectively computed and used
for reducing the size of the optimization problem, lead-
ing to a computation of not only better numerical ef-
ficiency but also better robustness.

Many effective skeletonization algorithms (see the nice
survey paper of [6]) have been developed for given 3D shapes.
We use the algorithm of [7] since it efficiently generates skele-
tons on medial-axis surfaces of the 3D shapes. Suppose the
boundary surface ∂M of a volumetric region M is repre-
sented by a triangle mesh (also denoted as ∂M) with n ver-
tices, and the output skeleton has k nodes, the guarding
problem is then converted to finding a minimal-size point
set G from this k points, such that all n boundary vertices
are visible to G.

3.1 Visibility Detection
Suppose we want to detect the visibility of a (skeleton)

point p on a triangle mesh ∂M = {T, V } with n vertices
V = {v1, v2, . . . , vn}. We shall check intersection points of
the each line segment pvi and ∂M . If an intersection point
q ∈ ∂M exists other than vi (which indicates the Euclidean
distance |pq| < |pvi|), then vi is not visible from p. Simply
enumerating every pvi then detecting its intersections with
each triangle t ∈ T is time consuming: for a single skele-
ton point p, it costs O(nV · nT ) = O(n2) time to check its

visibility on all n vertices. We develop the following sweep
algorithm to improve the efficiency.

input : A point p and a triangle mesh ∂M = {T, V }
output: The visibility of p on {vi}, vi ∈ V
For ∀vi ∈ V , compute θ(Ovi) and the ϕ(Ovi);
Compute min and max of θ(ti) and ϕ(ti), ∀ti ∈ T ,
conduct necessary duplication;
Sort all Ovi to a queue Q = {Ovi}, following the
ascending order of (θ, ϕ)
Let the active triangle list L = ∅;
foreach Ovi ∈ Q do

cj ← cj + 1 for all tj incident to vi;
if cj = 1 then

Insert tj to L;
end

Detect intersections between Ovi and triangles in L
if ∃ intersection point q 6= vi then

vi is invisible from p;
else

vi is visible from p;
end
If cj = 3, remove tj from L.

end

Algorithm 1: Sweep Algorithm for Visibility Detection.

For every skeleton point p, we create a spherical coordi-
nate system, making p the origin o. Each vertex vi ∈ V can
be represented as pvi = ovi = (r(vi), θ(vi), ϕ(vi)), where
r(vi) ≥ 0,−π < θ(vi), ϕ(vi) ≤ π. For every triangle ti ∈
T, 1 ≤ i ≤ nT , we define:

θmax(ti) = max{θ(vi,j)}, 1 ≤ j ≤ 3

θmin(ti) = min{θ(vi,j)}, 1 ≤ j ≤ 3

ϕmax(ti) = max{ϕ(vi,j)}, 1 ≤ j ≤ 3

ϕmin(ti) = min{ϕ(vi,j)}, 1 ≤ j ≤ 3

where vi,j are three vertices of the triangle ti. The segment
ovk cannot intersect with a triangle t unless

{
θmin(t) ≤ θ(vk) ≤ θmax(t)
ϕmin(t) ≤ ϕ(vk) ≤ ϕmax(t),

(1)

and therefore we can ignore many triangles that do not sat-
isfy this condition.

The angle function θ is not continuously defined on a
circle. When a triangle t spans θ = π, it needs special
handling. In our algorithm, we find all such triangles t by
checking whether θmax(t) − θmin(t) ≥ π. Then we dupli-
cate these triangles to ensure that each θ of the original t
is between [θmin(t), θmin(t) + 2π) and θ of its duplicate is
between [θmax(t), θmax(t) + 2π), by adding or subtracting
θ by 2π. For each triangle t spans ϕ = π, we detect and
duplicate it in the same way.

Using θ(vi) as the primary key and ϕ(vi) as the secondary
key, we then sort all line segments ovi that we need to check.
Then we sweep all segments one by one: for each segment, we
filter out triangles not satisfying condition (1). Specifically,
we use a counter ci on every triangle ti. Initially, ci = 0;
when the segment ov, v ∈ ti is being processed, ci ← ci +
1. The following two cases indicate that the sweep has not
reached the neighborhood of the triangle ti, and we do not
need to check its intersection with line segment ov:



ci = 0 : i.e. θmin(ti) > θ(ov), or ϕmin(ti) > ϕ(ov).

ci > 3 : i.e. θmax(ti) < θ(ov), or ϕmax(ti) < ϕ(ov).

Therefore we maintain a list L of neighboring triangles {ti}
whose counters have 1 ≤ ci ≤ 3. When the sweep segment
hits a new triangle tj , we have cj = 1 and add tj into L;
when a counter cj = 3, then after processing the current
segment we remove tj from L.

Algorithm 1 describes the above pipeline. Given a skele-
ton point p, for a boundary triangle mesh with n vertices it
takes O(n log n) to compute and sort angles of all segments.
For each segment, if the size of the active triangle list L is
m, it takes O(m) intersection-detecting operations. There-
fore, the total complexity is O(logn + nm). The incident
triangles around a vertex vi is usually very small, usually
we have m < log n. Therefore the algorithm computes the
visibility of p in O(n log n) time. On a skeleton containing
k nodes, it takes O(kn log n) pre-computation time to know
the visible region for all nodes.

3.2 Greedy and Optimal Guarding
Once we have the visibility information for all skeletal

nodes, we want to pick a minimum sized point set that can
cover all mesh vertices. This now can be converted to a clas-
sical set-covering problem, shown to be NP-complete [21]:
given the universe V = {vi}, and a family S of subsets
Sj = {sj,k}, sj,k ∈ V , a cover is a subfamily C ⊂ S of sets
whose union is V . We want to find a covering C that uses
the fewest subsets in S. Here V is the set of all mesh ver-
tices, S contains the visibility to V from each skeletal node.
C indicates a subset of skeletal nodes that can guard the
entire region. Skeletons generated using medial-axis based
methods with dense enough nodes usually ensure S itself is
a covering. This holds for all our experiments. If a coarsely
sampled skeleton can not cover the entire V , we can include
all those invisible vertices into the skeleton point set.

A simple greedy strategy for the set covering is as fol-
lows: we iteratively pick the skeletal nodes that can cover
the largest number of unguarded vertices in V , then remove
all guarded vertices from V (and update S accordingly since
the universe becomes smaller), until V = ∅. Greedy strate-
gies have been shown effective, and they yield O(log n) ap-
proximation [17].

An optimal selection can be computed by 0−1 program-
ming, also called Integer Linear Programming (ILP). For
every skeleton point pi, i = 1, . . . ,m, we assign a variable xi

such that

xi =

{
1 if pi is chosen;
0 otherwise.

The objective function to minimize is then
∑m

i=1 xi

Since V should be covered (i.e. all vertices should be visi-
ble), for ∀vi ∈ V , visible to skeletal nodes Pi = {p(i,1), . . . , p(i,k)},
at least one node in Pi should be chosen to ensure vi guarded.

Therefore, we minimize
∑m

i=1 xi, subject to

xi = 0, 1, (i = 1, . . . , n), and

∑

j∈J(i)

xj ≥ 1, (i = 1, . . . , n)

where J(i) is the index set of skeletal nodes pj that is visible
to vertex vi.

The above optimization can be solved using branch-and-
bound algorithms. When the dimension is smaller enough,
we can use the TomLab Optimization package [?] to solve
it efficiently.

3.3 Hierarchical Guarding

(a) Greedy Guarding (b) HILP Guarding

Figure 1: Greedy and HILP Guarding. On a volu-

metric Armadillo model, comparison between guarding

by greedy algorithm (a) and by HILP algorithm (b).

To compute the optimal guarding based on ILP we need to
solve a nonlinear optimization. This limits the size of prob-
lems that we can handle. General 3D volumetric shapes can
easily have a number of 20k to 200k vertices on its boundary
surface, which is too large for such a nonlinear optimization.
On the other hand, greedy algorithm generates the guards in
a locally optimal manner. Furthermore, the greedy strategy
is not robust against local geometric perturbations. For ex-
ample, a small bump could lead to global structural variance
of the guarding points. We propose a hierarchical guarding
computation framework based on the progressive mesh [?],
combining the 0−1 programming optimization and the adap-
tive greedy refinement.

We simplify the boundary mesh ∂M into several resolu-
tions ∂M i = {T i, V i}, i = 0, . . . ,m using progressive mesh
[15]. In the coarsest level i = m, ILP optimization is con-
ducted on all vertices v ∈ ∂Mm and we get the coarsest level
guard set Gi = {gik}. Then we progress to i = m − 1 level
∂Mm−1 = (Tm−1, V m−1), we first conduct a local greedy
adjustment on existing guards. Since the skeleton Si varies,
we adjust {gi+1} to local skeletal nodes that cover largest
number of vertices in V i; and then we remove these already
covered vertices from current level V i.

Current guards {gi} (refined from the coarser level {gi+1}
might not be enough to guard all boundary vertices in the
current level. We conduct four reduction (see below) op-
erations, then apply the ILP optimization on uncovered re-
gions for necessary insertion of new guards, and include them
into Gi. This progressive refinement adds necessary new
guards when the detail on boundary surface increases, and
ends when all boundary vertices are covered on the finest
level i = 0.

Reduction. The size of the ILP optimization can be sig-
nificantly reduced in our hierarchical framework. Suppose
we store the visibility information in an incidence matrix A.
If the skeletal node pi can see the vertex vj , aij = 1, other-
wise aij = 0. Originally the A is |S| × |V |. The following
four rules are applied to reduce the size of A:

1. If column j has only one non-zero element at row i, we
must take pi in order to see vj . Therefore, add pi into



G, remove column j. Also, for all non-zero element
aik, remove column k (we take pi, all points it sees are
guaranteed to be covered, thus now can be removed).

2. If row i1 has all its non-zero elements non-zero in row
i2, i.e. ai1,j = 1→ ai2,j = 1, then pi2 sees all vertices
that pi1 can see, and we can remove the entire row i1.

3. If column j1 has all its non-zero elements non-zero in
column j2, i.e. ai,j1 = 1 → ai,j2 = 1, then guarding
vj1 guarantees the guarding of vj2 , and we can remove
the entire column j2.

4. If the matrix A is composed by several blocks, we par-
tition A to several small matrixes {Ak}.

In step 4, since we remove vertices that have been seen by
the adjusted guards from a coarser level, remaining bound-
ary vertices could be partitioned to several connected-components
far away from each other. And these sub-components may
be optimized separately. This significantly reduces the size
of the optimization.

In our experiments, we simplify the boundary mesh to
the coarsest level with 5k vertices for the first round ILP
optimization. Generally, we make each iteration adding in
another 10k vertices. When the size of constraints is around
5k, and the size of variables (skeletal nodes) is around 1k,
the optimization usually takes 10-50 seconds to solve.

Our hierarchical scheme together with the reduction pro-
cessing, has the following important advantages over both
the pure greedy strategy and the pure 0 − 1 optimization:

• It is much faster than the non-linear ILP optimiza-
tion. The current framework can handle large-size ge-
ometric shapes.

• With similar performance, it usually provides better
guarding solutions than pure greedy strategy. Espe-
cially when the boundary geometric details are not
complicated, HILP computes better global guarding
in comparison to greedy algorithms.

• More importantly, it is hierarchical and therefore is
robust against geometric noise. Figure 1 shows an
example. In our HILP framework, refined local details
will not change the global structure of the previously
optimized guarding graph in coarser levels.

The optimization algorithm discussed in this section is
now used to efficiently compute the guarding for large-size
3D volumetric regions and generate a hierarchical guarding
graph. The entire pipeline is fully automatic.

4. STAR-SHAPE DECOMPOSITION
The process of decomposing a 3D region into star shapes

is usually discussed as the guarding problem and oftentimes
when we get the guards, we directly go on and partition re-
gions apart based on these seeds (guards). However, it can
be shown that guarding and decomposing a region could
be different. A region M that can be guarded by n points
not necessarily admits a star-decomposition of size n. Fig-
ure 2 illustrates an example in 2D. The left figure shows
that two guards are enough to see the entire region (P sees
red, white and orange regions, and Q sees green, white, and
brown regions). However, we cannot find a decomposition

Figure 2: Guarding versus Decomposition. (Left)

P and Q are enough to guard the entire region. But

star-decomposition of size-2 does not exist. (Right) Star

decomposition computed by our algorithm.

with just 2 star regions. The shared white region can’t be
included in both sub-parts, each of which has to be a 1-
connected-component and visible from one point. A possible
star-decomposition is shown in the right figure.

There are generally two categories of approaches for de-
composition algorithms. One is top-down, by iteratively
segmenting sub-parts to finer components. And the other is
bottom-up, by iteratively gluing small elements/components
to larger parts. For example, the Approximate Convex De-
composition [27] is a top-down approach. It iteratively mea-
sures the convexity of each (sub-)region M ; if it fails to sat-
isfy the convexity criterion, it shall be further cut into two
sub parts M1 andM2. The algorithm continues until all sub-
regions are convex enough. A difficult issue in top-down
methods is to find the suitable cut so that shapes of smaller
regions become nice in a few steps. On the other hand, pop-
ular surface segmentation techniques such as region grow-
ing ([5],[24]), watershed ([29]), or clustering ([35],[11]) algo-
rithms are bottom-up approaches. These approaches start
from a set of seeds, then expand to include neighboring prim-
itives (vertices, faces, tetrahedra) until their unions cover the
entire region.

4.1 Region Growing and the Dual Graph
We choose to use a region growing algorithm for the star

decomposition. There are mainly two reasons. (1) It seems
very difficult to find a suitable and robust cutting surface
for top-down volumetric decomposition algorithms, yet mak-
ing it efficient. (2) We can generalize the sweep algorithm
discussed previously to tetrahedral mesh vertices for the
efficient pre-computation on the visibility from any tetra-
hedral vertex to each guard. The pre-computation takes
O(m logm) time, where m is the total number of vertices of
the tetrahedral mesh. We can simultaneously preserve the
star-property for all growing regions.

Suppose we have a star region M , guarded by Kg guard
points G = {gi}, i = 1, . . . , Kg, each gi has a specific color
ci. We grow outward from these seeds simultaneously. Re-
gion growing becomes a iterative procedure that assigns a
unique color ci to each tetrahedron, so that at the end, the
connected component in color ci is a star shape guarded by
gi. It can be easily shown that if M needs Kg guards to
cover, then a star decomposition of M is at least of size Kg

(i.e. Kg separate sub-regions). Therefore, starting from Kg

seeds and starting from these guards is a nice choice (we
might need to grow new sub-regions when necessary, details



discussed in Section 4.2). We conduct the region growing of
the tetrahedral mesh on its dual graph. We first define the
dual graph with necessary notations and operations.

Definition 4 (Visibility Dependency). We say that
a tetrahedron is visible from a point g if all its four
vertices are visible from g. With respect to g, we say a
tetrahedron t is visibly dependent on a set of tetrahe-
dra T (g, t) = {ti}, if that t is visible to g if and only if
∀t ∈ T (g, t) is visible to g.

Intuitively, T (g, t) contains all tetrahedra that the four
ray segments gvj , vj ∈ t from g pass through. If we de-
note Fn(v) as the one-ring faces surrounding a vertex
v (i.e. Fn(v) = {f |∀t, v ⊂ t, f ⊂ t, v 6⊂ f}); and de-
note Tn(t) = {∪vj∈tt

′|Fn(vj) ⊂ t′}; then we can define

T̃ (g, t) = T (g, t) ∩ Tn(t). Intuitively, including tetrahedra
in the same sub-region prevents triangles in Fn(vj) (which
could block the visibility of t) from becoming the boundary
of the sub-region. It is not difficult to further show that

(a) t is visible if and only if ∀t′ ∈ T̃ (g, t) are visible.

(b) t can be safely added into a sub-region Mg seeded in
g without violating its star-property, if and only if all

t′ ∈ T̃ (g, t) are in Mg .

Following (b), if a tetrahedron t is visibly dependent on

several tetrahedra T̃ (gi, t) with respect to gi, but one t′ ∈

T̃ (gi, t) has been included to another sub-region (seeded on
gj , j 6= i), then t will be no longer visible to gi and cannot
be included into Dgi during its growing.

Now we define the dual graph of the given tetrahedral
mesh D. A node ni is defined for each tetrahedron ti. For
a node ni visible from gk (with the color ck), we connect a
directed edge in color ck to ni from another node nj if

tj ∈ T̃ (gk, ti); and we call here nj is a color-ck predecessor

of ni. Since recursively, T (gk, ti) = T̃ (gk, ti) ∪ T (gk, tj), we
only need to store each node’s visibility dependency relation-
ship. T̃ (gk, ti) can be computed in O(1) time by checking
the intersections of gk, v and Fn(v) for each v ∈ ti.

For each guard gk we generate a virtual node in the dual
graph and connect it to nodes corresponding to all its one-
ring tetrahedra. Then each guard gk and its visible region
defines a direct acyclic graph Rk. The entire 3D region
guarded by Kg points {gi} corresponds to a big graph with
Kg sources. Each source gi has an individual color ci, the
region glowing assigns each node a unique color. A node
nj can be assigned by a color c only when all its color-c
predecessors (on which nj is visible dependent) are already
assigned by color-c.

To conduct region growing in the dual graph, we take
the operation of node-merging. When there is a color-c
edge from a color-c node ni to an uncolored node nj , and
all edges entering nj are leaving from color-c nodes, then
nj can be safely colored by c, and included into the same
region. Therefore we can merge them together to one node,
in color-c, preserving all distinct outgoing edges. The region
growing procedure is converted to iteratively merging each
uncolored node to one of the “growing” Kg colored nodes.
The entire procedure finally results in Kg colored nodes, and
some nodes/components that can not be colored. Note that
according to the visibility dependency relationship, if for a

node nk, one of its color-ci predecessors has been assigned a
different color cj , then nk can no longer be given the color
ci. If a node cannot be assigned to any color appeared on
its entering edges, then it can not be colored and is not
classified to any growing region.

(a) Bimba (b) Hand-1 (c) Hand-2

(d) Horse (e) Bunny

(f) David (g) Greek (h) Male (i) Female

Figure 3: Guarding Computed using our HILP
Framework. The upper row, from left to right: the vol-

umetric Bimba, Hand and Hand(2) models. Boundary

regions are colorized according to closest guards respec-

tively. The bottom row, from left to right: the volumet-

ric Michelangelo David, Greek, Cyberware Male, and

Female. Small spheres show the guards, where green

nodes are the newly inserted guards on the finest level.

4.2 Iterative Nodes-merging
We propose the following greedy strategy to merge nodes

and simulate the seeds-growing.
Pre-processing Merging. Starting from Kg virtual

source nodes, for each gi, we first merge its one ring tetrahe-
dra nodes. Then we iteratively collect and merge all neigh-
boring nodes that only have color-ci edges enter them (i.e.
they are only visible by gi exclusively), since they can be
safely merged.

Pre-computing Cost Function. For each node ni, we
can compute how many nodes are directly or indirectly vi-
sually dependent on ni with respect to gk. This can be pre-



computed in linear time: after the dependency graph Rk is
created from the source gk to leafs, inversely the dependency
cost can be accumulated and stored as f(gk, ni).

Nodes Merging. After the preprocessing, we can con-
duct the region growing based on the cost function f(g, n).
For example, for an uncolored node ni, if it has all red edges
entering it come from the growing red node g, and it also
has all green edges entering it come from the growing green
node g′. Then at this stage, ni can either be colored as
red or green, i.e. merged to either g or g′. We then check
f(g, ni) and f(g′, ni), finding how many nodes are visibly
dependent on ni for g and for g′ respectively. We merge ni

to the node whose corresponding cost function is larger.
Iterative Region Growing. During the region growing,

each step we select the uncolored nodes with largest cost dif-
ference and colorize/merge it, we repeat this until no more
node can be merged. If a node cannot be colorized to any
color appeared on its entering edges, it is left unclassified af-
ter the region growing. We collect each uncolored connected
components, and respectively compute their guarding and
re-apply the region growing until all tetrahedra are colored.
Figure 2 (right) illustrates an example. When we start the
region growing from two seeds p and q, the blue region is
left unclassified. We computes its guarding, and grow the
region again to obtain the final star-decomposition of size 3.
More decomposition examples in general volumetric models
using this algorithm are shown in Figure 4.

Figure 4: Decomposing volumetric Rocker-arm,
Torus-cone, David, Cyberware ware Male, Female,
David, and Greek into star-shaped solid sub-regions.
Different parts are rendered by different colors.

5. HARMONIC VOLUMETRIC PARAME-
TERIZATION

After the decomposition of a given object M , we get a set
of star shapes {Mi}, each region being guarded by a point
gi. Then we can parameterize each sub-region onto a solid
sphere. A key property that we will show shortly is that such
a harmonic map is guaranteed to be bijective. The harmonic

Figure 5: Parameterizing a Star Shape onto a Solid
Sphere. (Left) Initial u and v coordinates can be pro-

jected from the boundary surface to the inscribed sphere.

(Right) The w coordinate (depth) can be computed using

methods of fundamental solutions [25].

map can be computed using the method of fundamental
solutions (MFS) [25], by setting the boundary condition
of the volumetric map to be the spherical parameterization
of ∂Mi. We use the harmonic spherical parameterization
[12] to get the harmonic surface map f ′ : ∂Mi → S2. [12]
takes the normal map as the initial mapping and conduct the
optimization on local tangential plane before projecting the
adjusted position back to the sphere. If the initial map (like
the normal map) has large flip-over regions, the optimization
will be slow and could trap locally. Since each Mi now is a
star shape, the following approach efficiently gets a bijective
initial spherical mapping. Figure 5 illustrates our idea. In
the left picture, full visibility of the local region guarantees
a bijective projection from the boundary points onto the
sphere. When the boundary mapping is decided, we only
need to compute the third dimensional coordinate w of the
parameter. Figure 5 (Right) illustrates the concept of the
different iso-w level sets. Such a harmonic function w can
be computed using the MFS method. We refer to [25] for
technical details, and only briefly recap the idea as follows.

MFS for Volumetric Parameterization. Based on
the Green’s function and the maximum principle of har-
monic functions, the harmonic function w defined on a re-
gion D never reaches maximal or minimal values in the inte-
rior of D, and w is fully determined by the boundary condi-
tion and can be computed by fundamental solutions of the
3D Laplace equation. The kernel function for the 3D Laplace
equation coincides with the electric potential produced by
point charges. Therefore, its intuitive physical explanation
is to design a potential field that approximates the boundary
condition. The potential field, guaranteed to be harmonic
by the fundamental solutions, is the function w that we seek
for. The parameterization therefore is converted to a bound-
ary fitting problem for the potential field, and can be solved
using a linear system effectively.

5.1 Bijectiveness of Harmonic Mapping on Star
Regions

In the surface case, a harmonic map is a minimizer of the
Dirichlet energy and indicates a minimal surface [32]. It can
be effectively approximated through FEM analysis of har-
monic energy [8]. The theoretic foundation for harmonic
surface mapping is built upon the Radó Theorem, which
states that, on a simply connected surface M with a Rieman-
nian metric, suppose a harmonic function f : M → D ⊂ R

2

maps M to a convex planar domain D, if f on the boundary



is a homeomorphism then f in the interior of M is also a
diffeomorphism.

FEM analysis of harmonic energy can also be conducted
[36] on 3-manifolds using tetrahedral meshes. However, the
Radó theorem does not hold for 3-manifolds. Therefore,
fundamental theoretic obstacles remain for volumetric har-
monic mapping. We tackle this fundamental parameter-
ization problem for volumetric data through star decom-
position. It can be proved that for specific domains such
as convex shapes, bijective harmonic parameterization ex-
ists. Then in order to compute a bijective mapping, we can
first decompose volumetric data into a set of solvable sub-
domains for local piecewise mapping computation. We show
([14] gives a rigorous mathematic proof through analyzing
the induced foliation) the existence of harmonic volumetric
parameterization on a star-shaped region and that the bi-
jective map can be constructed using the MFS-based frame-
work effectively. The idea is as follows.

Lemma 1. In a star-shaped domain M guarded by a
point g, the harmonic function w : M → [0, 1] has its only
critical point at g.

When M is visible to a guard g and a harmonic function w
is defined over M , with w|∂M = 1 and w|g = 0. We can
use g as the origin O and create a local coordinate system.
Then we analyze the gradient of the harmonic function ∇w
within this local coordinate system. At p(x1, x2, x3), we can
define another harmonic function h(p) =< p,∇w >, where
<,> denotes the dot product. Since w is harmonic, ∂w

∂xi
is

also harmonic, then we can verify h(p) is harmonic by:

∆h = (
∑

k

∂2

∂x2
k

)(
∑

i

xi
∂w

∂xi

) = 2∆w +
∑

i

xi∆(
∂w

∂xi

) = 0.

The maximum principle of harmonic map guarantees h
reaches its max and min values only on the boundary of the
harmonic field, i.e. surface boundary ∂M and the infinitely
small ball bounding O, ∂B(O, ε). ∇w has same direction of
p so it is easy to see that f > 0 in all the region bounded
by ∂B(O, ε) and ∂M . Therefore, for arbitrary ε, f 6= 0, we
have ∇w 6= 0 in M/{O}, the harmonic potential is proved
to have no critical point in M except O.

Theorem 1. Given a potential value r, the level set
w−1(r) is a topological sphere.

This is guaranteed by Morse theory [31], which says that
two level sets share the same topology if there does not exist
critical point between these two layers. Therefore, based on
Lemma 1, all interior iso-layer w−1(r) has the same topology
with the region boundary. This demonstrates the harmonic
function w computed using MFS, together with the other
two coordinates u, v defined by surface mapping, induce a
bijective spherical map M → S2, which is also a diffeomor-
phism.

We conduct our harmonic volumetric parameterization
on decomposed sub-regions. And verify the signed volume
of each tetrahedron when mapped onto the target object.
Under the mapping, all the deformed tetrahedra still pre-
serve the positive volume. Which demonstrates the non-
degeneracy of our parameterization. In the interest of space,
we do not show the improvement in the mapping distortion
(where the quasi-conformality of the harmonic mapping also
effectively increases), which will be further discussed in our
future work (see Section 7).

(a) Parameterization of the volumetric Rocker-arm

(b) Torus-cone (4-parts) (c) Spherical level set

Figure 6: Harmonic Parameterization of Rocker-
arm and Torus-cone. (a) The volumetric rocker-arm

model, its spherical parametric domain, and the volu-

metric parameterization visualized in one cross-section.

(b) The volumetric torus-cone model is decomposed to

4 star regions, also, the color-encoded w distance field

is visualized in one cross-section. (c) Each sub-region is

parameterized onto a solid sphere, whose color-encoded

level set is visualized.

Models Size (#(Tet)) Time (s) Parts
Rocker-Arm 130,069 72.3 7
Torus-Cone 112,930 30.1 4

David 76,170 51.6 24
Greek 79,951 62.1 25
Female 81,067 49.5 21

Table 2: Star-Decomposition Runtime Table. The

size (number of tetrahedra) of each mesh, and the com-

putational time (in seconds) for iterative region growing

(initially seeded on guards) are shown.

6. EXPERIMENTAL RESULTS
We conduct experiments on several volumetric objects.

The computation are run on an AMD Athlon(tm) 64 X2
Dual Core Processor 5000+, 2.60GHz, with 2.0G memory.
The statistics for guarding computation are illustrated in
Table 1. We compare our framework with the pure Inte-
ger Linear Programming and the pure Greedy Algorithm.
Although the ILP provides the optimal guarding, it is too
time-consuming for large data. Large models like Amadilo,
with 20k vertices on the boundary triangle mesh, could not
be handled. The Greedy Algorithm and our Hierarchical
Integer Linear Programming (HILP) has similar computa-
tion performance. However, HILP generally provides better
guarding. Specifically, due to its ILP optimization compo-
nent, it usually guards the region using less points glob-
ally. When the object has complex boundary details, the
multi-resolution refinement in HILP might introduce more
points for these refining details and result in more guarding
points than greedy algorithms (e.g. David and Cyberware
Male). However, even in such situations, a hierarchical re-
sult is still desirable, by providing better global robustness
on the guarding skeleton structure and shape against geo-
metric noise on the boundary shape.

For star decomposition, the region growing runtime table



Model Size Number of Guards Needed Computation Time (Second)
Models #(Tet) #(B-Vert) Gk(ILP) Gk(Greedy) Gk(HILP) t(ILP) t(Greedy) t(HILP)

Armadillo 192,142 20,002 – 38 33 – 590.8 593.5
Female 81,067 10,002 13 18 18 2,046.2 279.1 286.1
Male 83,313 10,002 14 16 18 3,074.3 312.6 316.2
Greek 79,951 9,994 15 22 21 4,122.4 307.4 305.4
David 76,170 9,996 16 20 22 107,391.2 245.1 254.9
Hand 126,920 10,002 – 6 5 – 196.1 206.2
Hand-2 130,964 10,000 – 7 5 – 223.7 223.8
Bimba 226,126 10,002 – 5 4 – 198.2 210.1

Rocker-arm 130,069 11,350 – 7 5 – 251.5 274.3
Bunny 194,111 10,002 – 5 5 – 229.5 231.5
Horse 227,781 19,850 – – 19 – – 523.2

Table 1: Statistics for the Guarding of Different Volumetric Objects. #(Tet) and #(B-Vert) are the number

of tetrahedra in tet-meshes and the number of vertices on the boundary triangle mesh. Gk indicates the number of

guards necessary computed by different computation methods. t shows the computational time in seconds.

is shown in Table 2, excluding the initial guarding computa-
tion. As we can see the iterative region growing conducted
on the dual graph of the tetrahedral mesh are very efficient
(the necessary consecutive guarding computation time on
the unassigned region is also included).

Figure 3 illustrates guarding results on the volumetric ob-
jects such as volumetric Bimba, Hands, horse, and bunny
models. In the first two rows, we visualize the guarding by
colorizing differently the boundary regions that are guarded
by different points. When a region is guarded by more than
one point, we simply use the color of the guard with closest
Euclidean distance. In the last row, Michelangelo David,
Greek, Cyberware male and female models and their guards
are shown.

Figure 4 illustrates the star decomposition results on Vol-
umetric Torus-cone, Rocker-arm, Cyberware Male, Female,
David and Greek models. Different sub-regions are rendered
in different colors, each sub-region is guaranteed to be a star-
shape.

Figure 6 illustrates the harmonic parameterization of vol-
umetric objects. The volumetric Torus-Cone and Rocker-
Arm models are decomposed into 4 and 7 star-regions, re-
spectively. They are parameterized to a set of solid spheres
using the MFS method. (a) shows the parameterization of
the rocker-arm. The original model and the sphere paramet-
ric domain are shown. The graph encodes the structure and
adjacency relationship of different nodes. The color-encoded
harmonic field is visualized in a cross-section. On each in-
terior point, such a color-coded level set is transferred from
each corresponding point (induced by the computed volu-
metric map) at the spherical parametric domain as shown
in (c). A parameterization of the Torus-Cone model is visu-
alized in (b).

7. CONCLUSION
In this paper we studies the guarding problem for 3D vol-

umetric regions represented by polyhedra meshes. We pro-
pose an effective hybrid framework that progressively con-
duct optimization. Important advantages of our algorithms
includes that (1) it effectively breaks down the optimiza-
tion problem to a solvable size so that guarding can be effi-
ciently computed; and (2) it provides the hierarchical struc-
ture and robustness against local geometric perturbations.
Therefore, subsequent shape matching or multi-resolutional

geometric modeling could potentially benefit from such a
hierarchical and robust decomposition. From the guarding
results, we compute the star decomposition of the 3D re-
gion. The region growing algorithm is conducted on the
dual graph of the tetrahedral mesh, using the visibility de-
pendency cost function as the guidance. The region growing
has O(n log n) (coming from the sweep algorithm) complex-
ity for n being the number of tetrahedra in the mesh. Fi-
nally, we compute the harmonic spherical parameterization
on decomposed star sub-regions, which is shown to have the
guaranteed bijectiveness.

Limitations and Future Work. The current decomposition-
based parameterization treats each subregion separately and
the resultant parametric representation is not smooth along
the cutting boundary. Although it is not difficulty to as-
sure C0 continuity along the boundary by enforcing coher-
ent boundary condition on parameterization, it will be in-
terested to apply stronger boundary constraints in order to
obtain higher continuity across inter-subregions. We plan to
explore along this direction in the near future.

Also, the effectiveness of our guarding and decomposition
computation could rely on the quality of the skeletonization.
How exactly low-quality skeletons could affect our computa-
tion deserves more study. Also, it might be interesting to see
if inversely, checking the intersection of the visibility regions
from the boundary vertices can suggest local movement of
the guarding point candidates (no longer on the skeleton).
A better solution might be provided.

The decomposition framework proposed in this paper is
general, and we will also explore more applications for the
guarding and star-shape decomposition of 3D regions in our
future work.
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