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Abstract We propose a human avatar representation scheme based on intrinsic coordinates, which are invariant to

isometry and insensitive to human pose changes, and an efficient pose transfer algorithm that can utilize this representation

to reconstruct a human body geometry following a given pose. Such a pose transfer algorithm can be used to control the

movement of an avatar model in virtual reality environments following a user’s motion in real-time. Our proposed algorithm

consists of three main steps. First, we recognize the user’s pose and select a template model from the database who has

a similar pose; then, the intrinsic Laplacian offsets encoded in local coordinates are used to reconstruct the human body

geometry following the template pose; finally, the morphing between the two poses is generated using a linear interpolation.

We perform experiments to evaluate the accuracy and efficiency of our algorithm. We believe our proposed system is a

promising human modeling tool that can be used in general virtual reality applications.

Keywords Human Body Pose Transfer, Local Intrinsic Coordinates, Avatar Control in Virtual Reality

1 Introduction

An important component of Virtual Reality (VR)

environments is the modeling of human body. While

the motion of a human character in virtual scenes

could be generated automatically, a flexible way in its

modeling is still through user’s direct input/control.

In many VR applications, it is desirable to build an

avatar that can automatically mimic a user’s motion

and pose [1, 2, 3]. For example, in multiplayer VR

games, this would allow different users’ avatars to see

others’ behaviors and interact with them. Therefore,

this paper aims to build such a human body avatar,

whose movement is controlled by a user with motion

tracked in real-time.

Human body animations can be defined by three

main components: shape, pose, and motion. The mo-

tion component of human body animation is a sequence

of human geometries in different poses. Hence, we

study how to transfer the pose from a user to a dig-

ital avatar model in the virtual scene in real-time. The

digital avatar may either have a same geometry of the

user (e.g., acquired from body scanning) or have a dif-

ferent, pre-designed geometry (e.g., built by modeling

software or obtained from templates in database).

Performing such a pose transfer efficiently and re-

alistically, is however, challenging. Humans have a re-

markable variety of poses [4]. But having the avatar

reproducing the user’s motion authentically is impor-

tant because this is the main way for the users in the

VR environment to communicate.

A direct way to achieve this is through real-time
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motion capturing, such as the system developed in [5].

It uses a system including multiple RGB and infrared

cameras to capture and transmit the dynamic 3D ge-

ometry of the moving human body and the surround-

ing scene. However, due to the expensive stitching and

reconstruction cost involved in performing such a Holo-

portation, in real-time applications, a trade-off between

geometric accuracy and computational efficiency is in-

evitable.

Another strategy to generate the avatar’s motion

is through animations. Two widely adopted anima-

tion algorithms are direct mesh deformations [6, 7, 8]

and skinning-based animations [9, 10]. The direct de-

formation strategy converts the tracked motion to po-

sitional constraints, following which the deformation

should also preserve local geometric detail as much as

possible. Such a mesh deformation is usually formu-

lated as a nonlinear optimization. While it is capable

of reproducing complex deformation with desirable de-

tails, its solving is usually expensive and hard to finish

in real-time [11].

Skinning-based methods have been widely adopted

as a more efficient character manipulation tool, as it in-

tuitively reduces the deformation to a skeleton subspace

in which the computation can be very quick. However,

skinning-based methods also have their shortcomings

such as the need of tweaking of vertex weights, inca-

pable of describing complex deformation [12], and rely-

ing on accurate skeleton tracking.

In this work, we explore the possibility of a data-

driven deformation approach that can be both efficient

and capable of reproducing deformation details. We

generate avatar’s motion by integrating pose recogni-

tion, template-guided pose transfer and reconstruction,

and inter-pose interpolation, to obtain real-time motion

generation on a given human avatar model.

Our main idea is to design this human avatar

and its interactive control using an intrinsic geometric

encoding that capture the body geometry in a pose-

insensitive manner. The user’s pose is tracked and an-

alyzed to guide the placement of a set of feature points

on the avatar. Then, the geometry of the avatar un-

der the new pose can be reconstructed using the intrin-

sic encoding. Specifically, our pipeline consists of four

main steps. The first step is done offline, where the

intrinsic Laplacian coordinates of the avatar are com-

puted and stored. Then, in the online control phase,

we (1) track then estimate the user’s pose, and use it

to select a reference template pose from the database;

(2) transfer the pose of the template onto the avatar;

and (3) generate the morphing sequence of the avatar

between these key poses. This pipeline is illustrated in

Fig. 1.

The main contributions of this paper are two-

folded. First, we propose to perform a real-time avatar

control through a pose reconstruction (pose recogni-

tion, then pose transfer) algorithm. With the help

of a database containing ever-growing human body

geometries/poses, the algorithm is efficient and effec-

tive. Second, to perform the real-time pose trans-

fer, we adopt the intrinsic Laplacian encoding which

is pose-insensitive, develop an efficient key-pose-frame

recognition and geometric reconstruction algorithm.

Our experiments have demonstrated that the proposed

pipeline has promising applications in VR tasks.

2 Related Work

Designing an efficient human avatar with real-time

user-control support is closely related to two technical

components. One is the recognition of user’s pose, and

the other is the deformation of the avatar model ac-

cording to this pose.
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Fig.1. Our main computation pipeline.

2.1 Pose Estimation

The aim of the pose estimation stage is to calcu-

late 2D or 3D positions of joints that characterize a

human pose. In order to control a 3D human avatar,

we need to have coordinates of 3D joints. These 3D po-

sitions can be obtained either directly through tracking

sensors attached on the user, or by calculations from

images captured by camera(s) on the scene.

Image-based pose estimation is a fundamental but

still ongoing research topic in computer vision field. A

challenge in image-based 3D joints estimation is collect-

ing proper dataset [13]. To achieve a high performance

on pose estimation and classification, having sufficient

amount of 3D poses with annotated 2D images (that

2D joints location are determined) is often necessary.

This is, unfortunately, expensive and still difficult even

with the state-of-the-art motion capturing systems and

trained actors [14]. Martinez et al. [15] suggested

to collect and utilize only 2D joint information, and

designed a deep network architecture to estimate 3D

pose from 2D pose data. However, since processing 2D

data to support this estimation is highly non-trivial,

the generalization ability of this algorithm is yet to be

improved. Yasin et al. [13] suggested a method that

uses two independent datasets of 3D pose and 2D im-

ages. With this, it does not require a large amount

of annotated 2D images. The independent 3D poses

are projected to 2D plane to train a pictorial structure

model (PSM) for 2D pose estimation. Final 3D poses

are estimated by minimizing the projection errors from

these 2D poses. This method still requires sufficient

3D pose data in training, which is expensive and some-

times prohibited. To solve this issue, Moreno-Noguer et

al. [16] developed a 2D-to-3D EDM Regression model

with a deep Neural Network that does not rely on 3D

pose dataset.

Another challenge of pose estimation especially for

real-time applications such as human avatar control is

the computation efficiency. The aforementioned meth-

ods [16, 13, 15] are not real-time and insufficient for

interactive avatar control that we need. In [17], a real-

time algorithm is proposed to calculate 2D and 3D joint

positions simultaneously. From single RGB images, a

kinematic skeleton is fitted and then the 3D joints are

calculated through a convolutional neural network.

Although image-based 3D pose estimation has

achieved great advancement in the past few years, ob-

taining reliable and real-time estimation of joints or

markers from the user is still not trivial. In this work,

we directly adopt sensor-based pose estimation using a

tracking vest [18]. With this direct tracking we can

have accurate real-time landmark coordinates on the

user, without the need to label any image dataset.

2.2 Pose Deformation

The goal of pose deformation is to generate the new

body pose and shape for the avatar to match the user’s

real pose. In this paper we categorize the methods pro-

posed for pose deformation in the literature into three

groups: image based, skinning based and intrinsic 3D

coordinates based methods.

Image-based methods use 2D images as inputs to
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generate human body poses. In [19], firstly, twelve 2D

images are captured from a person’s body in different

angles of view. Subsequently, calibration and orienta-

tion processes are done on the 2D images. After finding

the interest points, the matching points are estimated.

Then, the body orientation is calculated based on the

matched points for the pair images. Next, The final

results are calculated by estimating both interior and

exterior orientation. In [20], Seo et al. suggested a

method using a statistical modeling of 2D image shapes.

First, the contour template of the human body image is

determined. The PCA algorithm is applied to param-

eterize the body shape model based on 3D shapes. In

the next stage, the projection of 3D shape is matched

with the 2D contour of body shape. Finally, a 3D shape

is generated by minimizing the matching error.

In [21], Cheng et al. used Kinect images as in-

put to segment body shapes from the 2D images. In

the next phase, some key points are detected based

on a regression approach. The human body pose then

is parametrized using a sparse key point representa-

tion. Although the accuracy reported is high (with

the error of 8.2 mm), the computational. cost for

each frame takes more than 0.5 second that causes the

method not to be suitable for real-time applications

The method proposed in [5] is real-time in reproduc-

ing digital avatar. In this paper, the pose and tex-

ture information are obtained using infrared and RGB

cameras respectively. In this method many conditions

that causes error in real-time human body reconstruc-

tion such as occlusion and topology change are con-

sidered and solved. In addition to body, image-based

approaches can be used for facial expression represen-

tation [22] that is another component of human avatar

animation. Although the image-based methods can re-

construct body pose and geometry, the reconstructed

body pose may have some salient artifacts and missing

parts since the method relies on the visible regions of

the provided image.

Skinning is another approach to animate human

bodies under different poses. It associates vertices

on the human body skin with certain skeletal nodes

(bones), then deforms vertices according to transforma-

tions of their correlated bones. To adopt skinning ap-

proaches, skeletons need to be extracted and the asso-

ciations need to be computed. However, both real-time

extraction/tracking of the skeleton and estimation of

bone transformations are non-trivial. While the skele-

ton extraction from a 2D or 3D shape (i.e., skeletoniza-

tion) has been widely studied in graphics and vision

fields during the past two decades [23, 24, 25],extracting

skeletons from incomplete/occluded scans [26], or ex-

tracting consistent skeletons on multiple objects [27] (so

that deformation can be transferred from one body to

another [28]) still cannot be solved in real-time. Finally,

while some real-time algorithms such as [17] have been

proposed to track the dynamically changing skeleton

during human’s motion, reliable determination of full

bone transformations, i.e., both rotations and transla-

tions on all bones, is still challenging.

Another approach to model and transfer human

poses is using intrinsic shape representations, or pose-

insensitive descriptors to encode both pose and local

geometry of human body [29]. By separating the in-

trinsic local geometry and human pose, designing such

a pose-invariant representation becomes possible [29].

The first fundamental form of a surface, defined by

the intrinsic metric of the surface, is usually insensitive

to postures. In [4], Pishchulin et al. built a statisti-

cal shape model for human based on such local coordi-

nates, which are pose insensitive. This will allows the

Principle Components Analysis (PCA) to be performed

on human bodies with various poses. Another effec-

tive coordinates are mesh Laplacian, which provides
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a mean to represent surfaces using intrinsic bases. In

[30], the normalized Laplacian operator is used to cal-

culate the Laplacian offsets. These locally encoded off-

sets are isometry-invariant, and are used to encode the

shape and pose information simultaneously. However,

the normalized Laplacian operator is not symmetric nor

full rank. Hence, the reconstructions in [30] reduces to

an iterative optimization, which is slow and not suit-

able for online pose transfer. In this work, we modify

the model of [30] to make it more efficient for real-time

pose transfer.

3 Methodology

Our proposed avatar control pipeline tracks the mo-

tion of a user in the field, and selects templates sequen-

tially from the database to guide the avatar’s deforma-

tion. The algorithm is summarized in Fig. 1. During

the offline stage, the geometry of the avatar is encoded

using locally encoded Laplacian offsets, which are in-

trinsic and pose-insensitive (Section 3.1). Then, during

the online stage, from the input of the user’s pose, de-

scribed by a set of tracked 3D landmarks, we construct

a pose descriptor using the distribution of these land-

mark points (Section 3.2). Then, in a human body

database we find a template model with the most sim-

ilar pose (Section 3.3). The avatar will be deformed

following the template model (Section 3.4). Finally,

we animate the motion of the avatar by interpolating

shapes between every two consecutive key poses (Sec-

tion 3.5).

Overall, the goal of our research is to animate a

human avatar which can be defined as the digital rep-

resentative of the user in a 3D space. A default human

avatar is selected based on the closest 3D geometry to

the user in the dataset that is called source mesh (S)

in this paper.

In the next stage, the source mesh iteratively is de-

formed based on the closest 3D pose to the user in the

dataset which is called the template mesh (T ). This

can be defined by a deformation function (F ). So, we

have: Sn = F (S, T ) where Sn is the deformed source

mesh or new mesh.

3.1 Offline Processing: Intrinsic Encoding us-

ing Local Laplacian Offsets

To support effective pose recognition and avatar de-

formation, we need to encode both the pose informa-

tion and local geometry of a human body shape. The

pose information (insensitive to geometry difference) is

needed to recognize the user’s pose and to match the

poses of different persons. The geometry information

(insensitive to pose difference) is needed to describe the

avatar’s own geometric characteristics during deforma-

tion, so that the avatar won’t deform to another person.

We use the Laplacian offsets, encoded in local coordi-

nate system of each vertex. These intrinsic variables

will not change under isometry transformation.

We define necessary terminologies as follows. We

use S = {VS , E} to denote a source mesh, or the avatar

mesh. It is the mesh we want to deform according to

the user’s pose. The avatar mesh S could come from a

pre-designed avatar model, or from a body scan of the

user. T = {VT , E} denotes a template mesh. It is from

the human body database where a mesh with a similar

geometry and pose is selected. T will guide the defor-

mation of S. Note that we cross-parameterized all the

human bodies, so S and T have the same vertex number

‖VS‖ = ‖VT ‖ = ‖V ‖ and the same connectivity E. We

use M = {m1,m2, . . . ,mk} to denote the (index) set of

marker points tracked from the user. They correspond

to certain vertices on the mesh. By matching vertices

in S with their counterparts in T , we can control the

deformation of S following the tracked user’s motion.

The Laplacian offset vector ∆ is an (n × 3)-
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dimensional matrix (n = ‖V ‖) that can be considered

as a discrete 3D vector field defined on every vertex,

∆ =


∆1

∆2

·
·

∆n

 = L


x1

x2

·
·

xn

 , (1)

where xi denotes the 3D coordinates of vertex vi. The

Laplacian Operator L can be discretely represented as

an n× n matrix whose component li,j is

li,j =

 deg(vi), if i = j
−1, if j 6= i & vj ∈ N1(vi)
0, otherwise

, (2)

where N1(vi) denotes the one-ring neighborhood of ver-

tex vi, and deg denotes the valence of vertex vi.

This Laplacian offset ∆ encodes the geometry of the

human body shape. But it is not invariant under pose

change. On the other hand, if we encode this offset un-

der local coordinate frame of each vertex, it becomes

intrinsic and is invariant under isometry [30]. There-

fore, we project the Laplacian offset onto each vertex’s

local coordinate system:

∆i = ω1
i f1(vi) +ω2

i f2(vi) +ω3
i f3(vi) = F (vi) ·Wi, (3)

where f1(vi), f2(vi), f3(vi) are the three orthonormal

vectors that define a local coordinates system F (vi) on

vertex vi in S. The new isometry-invariant coordinates

of vertex vi are Wi = {ω1
i , ω

2
i , ω

3
i }.

Fig. 2 illustrates the insensitivity of this local co-

ordinate system with respect to pose changes. For a

same human body under two different poses (a, b), the

coordinates are similar, except on regions that undergo

deformations that are far from isometry. This can be

seen from (c). On the other hand, these coordinates

reflect the geometry difference. Hence, the coordinates

on two different human bodies (even with a same pose)

are quite different, as shown in (d) and (e).

Note that, unlike [30] which uses a normalized

Laplacian operator, we construct the Laplacian off-

sets using the unnormalized Laplacian operator. This

makes the Laplacian matrix symmetric, and it could al-

low us to more efficiently solve the pose transfer through

Cholesky factorization [31] (Section 3.4).

The orthonormal vectors (f1(vi), f2(vi), f3(vi)) can

be constructed using (1) the normal vector n(vi) at each

vertex vi, (2) the normalized projection of xixk onto the

tangent plane of vi where vk is an arbitrary but fixed

neighboring vertex of vi, and (3) the cross product of

these two vectors.

3.2 Pose Modeling

We organized and classified available human body

mesh data according to their poses. To make the pose

estimation consistent with the body tracking, we use

a set of selected landmark points on the body. These

landmarks are consistent with the sensors being tracked

by a wearable body tracker. (Fig. 3(a)). When a user is

performing its control motion, the corresponding 3D co-

ordinates of these landmarks (Fig. 3(b)) will be tracked

and mapped onto the body mesh space instantly, serv-

ing as constraints to guide the avatar deformation.

Using these tracked landmarks, we build a descrip-

tor for pose classification and recognition, using angles

between line segments connecting these markers. From

all the line segments that connect every pair of mark-

ers, we select a subset Ls = {l0, l1, l2, . . . , lk} of line

segments, then build a n-dimensional feature descrip-

tor Fs = {θ0, θ1, θ2, . . . , θn} using angles θk between

some pairs of adjacent line segments.

θk = arccos
lilj
‖li‖‖lj‖

, (4)

where li and lj are a pair of adjacent line segments. We

elaborate the algorithm in selecting line segments and

angles in the following.
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(a) (b) (c) (d) (e) (f)

Fig.2. Pose-insensitivity of Local Laplacian Offsets. (a) and (b) show the two poses belong to one person; (c) shows the colorcoded
point-to-point coordinate difference between (a) and (b) In most body regions the deviation is small, near some joints where the
deformation is farther away from isometry the deviation is bigger. (d) shows another person that has a similar pose to (a). As shown
in (e), the point-to-point coordinate difference is significantly bigger than (c). This indicates that these intrinsic cooridinates are more
sensitive to body shape difference, and insensitive to the pose change.

(a) body tracker vest (b) tracked landmarks

Fig.3. A wearable body tracker vest is used to track feature landmarks on human body (a). 16 corresponding feature points are
extracted on the human body mesh template.
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3.2.1 Building the Pose Feature Descriptor.

We use a decision tree to select the significant line

segments and incident angles to build the pose descrip-

tor. First, the 16 landmarks can form
P 3

16

2 angles. From

all these angles (variables), we build a decision tree to

select the most salient d ones. Considering the sym-

metric property of the human body and motions and

to avoid the imbalance in the training dataset, we “mir-

rored” all the incident angles: suppose we use m(i) to

indicate landmark i’s corresponding landmark on the

other side, when an incident angle θ = ∠(vi, vj , vk)

is observed in the data, we also add an instance of

θ = ∠(vm(i), vm(j), vm(k)). These angles are then se-

lected by a decision tree to pick the most salient k vari-

ables to form the angle descriptor.

Fig. 4 shows the angle selected when different fea-

ture size d is being considered. These selected line seg-

ments and angles form the feature descriptors which we

used to classify all the pose samples in the dataset.

Fig. 5 illustrates four more example descriptors on

two human bodies, with two different poses, respec-

tively. While the feature graphs for two different per-

sons with the same pose are notably similar, these

graphs are very different for people in different poses.

Therefore, using this graph to describe the pose is ef-

fective. More experimental results demonstrating the

descriptor’s effectiveness are reported in Section 4.

3.3 Pose Recognition and Template Selection

Template Database. The volume of publicly

available human pose database has been rapidly grow-

ing. We integrated multiple datasets: FAUST [32] (in-

cluding 500 human body samples in 30 different poses),

SCAPE [33] (including a human body in 72 different

poses), Human3.6M [34] (including 3.6 million bodies

and poses), K3D-Hub [35], CAESAR [36], SHREC’14

[37], and MPI Stitch [38].

Pose Recognition. Following the method de-

scribed in the previous section, pose descriptors for all

the meshes in this database are pre-computed on all

the template human bodies. When a new pose is given,

we can simply compute its descriptor, then compare it

with all these precomputed descriptors, and report the

most similar template.

To do this comparison efficiently we used Sup-

port Vector Machine (SVM) to classify the poses.

SVM is well-known for its ability of class separa-

tion and low computational cost. Then we used K-

Nearest-Neighbors algorithm to choose the best pose

the matches the user’s body geometry within the clas-

sified pose class.

Fig. 6 shows the pipeline of the pose recognition

stage. From the tracked landmarks, the pose descrip-

tor is created and compared with representatives from

each cluster. A mesh with the most similar pose is se-

lected as the template.

3.4 Geometric Reconstruction

To deform the source mesh S to match the pose of

template mesh T , we shall reconstruct S’s local geom-

etry, using local Laplacian offset coordinates W com-

puted on S, on the local coordinate frames F defined

on T . Specifically, if we recall that

L


x1

x2

. . .
xn

 =


FS(v1)W1

FS(v2)W2

. . .
FS(vn)Wn

 . (5)

Here, we use FS to indicate the local coordinate frames

defined on mesh S and FS(vi) is the local frame (a 3×3

matrix) on vi. Wi is the corresponding local coordi-

nates.

If we denote the deformed source mesh as S∗, then,
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Fig.4. The line segments (angles) selected for constructing the features when different descriptor size is used: d = 20, 40, 60.

Fig.5. Feature graphs of two human bodies in different poses. The feature size is 50. Note that while the feature descriptor is formed
by the incident angles, we plot the these angles’ associated line segments for visualization purpose.

Fig.6. Pose recognition pipeline. (Left): pose from the user; (Middle): the corresponding pose descriptor (incident line segments
visualized as a graph); (Right): matched pose from database.
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we also have

L


x∗1
x∗2
. . .
x∗n

 =


FS∗

(v1)W1

FS∗
(v2)W2

. . .

FS∗
(vn)Wn

 , (6)

where x∗i are final coordinates of each deformed vertex

vi, and FS∗
is the corresponding local frames. Using T

to guide this deformation is to make FS∗
to follow FT

as much as possible. Hence, we first set FS∗
following

FT . And use it to solve X∗, then, update FS∗
accord-

ingly. We repeat these iterations until it converges.

Another issue is that the rank of L is n− 1. There-

fore, linear systems of Equations (5, 5) have infinite so-

lutions. This is why [30] uses an iterative solver to find

a solution near a given initial guess. In our problem,

our tracked landmarks provide with us c× 3 extra con-

straints on mesh S∗. With these constraints, the sys-

tem of Equation (6) becomes over-constrained, and we

can revise L to a full-ranked symmetric positive definite

matrix, and use the more efficient Cholesky decompo-

sition to solve the systems. Furthermore, L will never

change, but we will need to resolve the system under

different boundary conditions. This strategy will allow

us to reuse the decomposition result and get solutions

to all these linear systems instantaneously.

Constrained Laplace Linear System. With

constraints defined by tracked landmarks, we can sim-

plify the Laplace matrix L by removing the correspond-

ing rows and columns. Specifically, if vi is a landmark,

then its coordinates x∗i is known, and we remove the

i-th row and i-th column from L and move the corre-

sponding element lijx
∗
j to the right side of the linear

system. We use bc to denote all these moved com-

ponents. Suppose there are c landmarks, then after

removing all these variables from the system, the coef-

ficient matrix becomes (n− c)× (n− c). We denote it

as Lc. Finally, Equation (6) becomes

Lc


x∗1
x∗2
. . .

x∗n−c

 =


FS∗

(v1)W1

FS∗
(v2)W2

. . .

FS∗
(vn)Wn−c

 + bc. (7)

When we have more than 2 landmarks, Lc is full-ranked

(i.e., positive definite). We can use Cholesky decompo-

sition [31] to decompose Lc into Lc = TT ∗ where T is

a lower triangular matrix with positive diagonal entries

and T ∗ denotes the conjugate transpose of T . Then, we

can efficiently reuse T and T ∗ to solve the linear sys-

tems of Eqn. (7) under different boundary constraints

when Lc does not change.

Final Algorithm. We summarize our proposed

reconstruction algorithm as follows,

1) Initialization: Set FS∗
= FT ;

2) Solve Equation (7) and get X∗;

3) Update FS∗
by re-calculating the local frames;

4) If during the last iteration, both X∗ and FS∗
do

not change much, STOP; otherwise, go back to

Step 2).

An example of reconstruction (pose transfer) result

is illustrated in Fig. 7. The source meshes (a, d, g, j) are

deformed following the poses of the template meshes.

The pose transfer results (c, f, i, l), respectively, have

the geometry of each source mesh but its pose mimicks

the template’s pose.

3.5 Morphing from Source to Target Poses

To generate a sequence of meshes, we only process

a few key pose frames.

For every k seconds, its pose is captured and recog-

nized. Suppose the current frame is the i-th capture.

With the recognized pose a template Ti×k is selected

and used to guide the deformation and obtained a new
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(a) source (b) template (c) new pose (d) source (e) template (f) new pose

(g) source (h) template (i) new pose (j) source (k) template (l) new pose

Fig.7. Four Pose Transfer Examples. The source meshes (a, d, g, j), following template meshes (b, e, h, k), are deformed to the new
poses (c, f, i, l), respectively.

Pose 1 Pose 2

Fig.8. Morphing based on linear interpolation between two key-frames.
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deformed mesh Si×k from the last key frame S(i−1)×k.

Between these two key frames S(i−1)×k and Si×k, we

simply do a linear interpolation to generate the morph-

ing sequence

Key frame interval selection. The interval pa-

rameter k balances the quality and computational cost.

When k decreases, more intermediate poses are cap-

tured, and less interpolation is used. This in gen-

eral increases the quality of generated motion sequence.

However, the computation of pose recognition and re-

construction needs to be finished within this interval.

When k increases, we reconstruct fewer poses and rely

more on interpolation. The reconstructed motion could

be less accurate but the computation is much faster.

However, the suitable value for k depends on user’s

motion. Slower motions can be reconstructed with big-

ger k, while rapid or drastic motions need smaller k to

reproduce. Adaptively selecting k would be ideal; but

during the online user-avatar synchronization, perform-

ing a real-time prediction then adaptively adjusting k

is technically challenging. Therefore, based on multi-

ple experiments and our current implementation on our

machine, we select a relatively small interval k = 1 for

which the computation can always be finished and the

reproduced sequence is acceptable for common motions.

Fig. 8 illustrates poses linearly interpolated between

two key poses. Fig. 9 illustrates another pose track-

ing and transfer example in our experiment. The first

row shows the sampled pose tracking on the user, and

the corresponding computation is finished within such

a time interval. The transferred pose on the avatar is

rendered in the second row.

4 Experimental Results

In this section, we will describe our experimental

setup and demonstrate our results on feature selection,

pose classification, and pose transfer.

4.1 Dataset

Human bodies collected in different datasets usually

have difference resolutions and connectivities. Fusing

all these data and generating a consistently parame-

terized human body model is necessary for us to use

them as templates to guide the pose transfer. How-

ever, automatically finding the dense point-to-point

correspondences between these human bodies is non-

trivial [39, 40]. In this work, we utilize the parametric

model, SMPL [41], and perform a fitting on each human

body geometry in the database. With this modeling

fitting, we obtain the model parameters and use them

to reconstruct the consistently parameterized meshes.

Every human body in the database is processed this

way, and converted into models with the same connec-

tivity. In practice, models within a same database are

often registered and consistently parameterized. Then

among these models, we only need to perform the above

fitting on one representative model; and the cross-shape

parameterization can be propagated to all other models

in the same database Inspired by [41, 42], to perform

a SMPL fitting, we use the 14 landmarks that we are

tracking during the motion capturing. Fortunately, hu-

man poses can be appropriately encoded by these land-

marks because the significant variation in human pose

can be defined by these few moving joints.

Fig. 10 shows some examples of FAUST and SCAPE

datasets. Fig. 11 illustrates an example of consis-

tently parameterized two human bodies from different

datasets. (a, b) are two meshes, from SCAPE and

FAUST, respectively, and their zoomed-in wireframe

view of the head. (c, d) are their re-parameterized

meshes, which now have the same sampling and con-

nectivity.
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Fig.9. UP, shows a sequence of real-time captured key-frames and associated run-time between two key-frames; Down, shows the
reconstructed body geometries for each captured key-frame and associated run-time between two key-frames. .

Fig.10. Some examples of body shapes from FAUST [32] (first row) and SCAPE [33] (second row) datasets.
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(a) 12500 vertices (b) 6890 vertices (c) 10000 vertices (d) 10000 vertices

Fig.11. Cross-body Registration and Parameterization using the SMPL model. (a) is a mesh from the SCAPE database and the
wireframe view of the head; (b) is a mesh from the FAUST database. (c) and (d) are their re-parameterized meshes after the SMPL
fitting, respectively. The re-parameterized meshes have the same resolution and connectivity.

4.2 Results

We demonstrate the experimental results on differ-

ent phases of the proposed pipeline: feature construc-

tion, pose classification, and pose transfer.

4.2.1 Feature Construction

We found that the feature selection by the decision

tree results in angles that are from joint markers and

have high variance. Table 1 shows an example of se-

lected angles and their variance values (the marker in-

dexes of the line segments can be found in Fig. 3). In-

terestingly, all the selected angles are on joints following

the natural skeletal structure of the human model, in-

dicating that these joint angles are significantly more

informative and sensitive to the pose change than the

rest.

4.2.2 Pose Estimation

We used a tracking vest which has low noise error

compared to image-based approaches. To estimate the

user’s pose to obtain the appropriate template mesh, we

use the aforementioned feature descriptor derived from

the corresponding tracked markers. Fig. 12 visualizes

the distribution/clustering of different poses described

by our pose descriptors.

For this visualization, we reduce the dimension of

the descriptor space to 2 simply using the PCA algo-

rithm. As can be seen in the figure, except for class

1 and class 8 which are remarkably similar poses, all

the other classes are appropriately separated. We ob-

tained these results as conceptual experiments to test

how our pose classification algorithm is robust. How-

ever, in the reality, the number of classes needed for a

real-time pose animation is significantly more than 10.

We used SVM to classify the poses on the FAUST

dataset. We achieved the average accuracy of 0.98 in

this dataset

The classification accuracy is defined by

accuracy = (TP +TN)/(TP +TN +FP +FN), (8)

where TP , TN , FP , and FN are True Positive, True

Negative, False Positive and False Negative, respec-

tively. Pose classification accuracy regarding the di-

mension of feature descriptors. When the descriptor di-

mension is 60 and 70, the classification accuracy reaches

1.0.

4.2.3 Pose Transfer

Fig. 13 shows a demo of the pose transferring

pipeline. As can be seen in the figure, body is tracked

using a body tracker. Subsequently, in the pose esti-

mation stage, the template mesh is chosen using the

pose feature descriptors. Finally, the pose is transfered

based on the template and source mesh.
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Table 1. Selected Feature (Angles) for Descriptor Construction. They interestingly correspond with joint angles with big variance,
following the skeleton structure. Seg-1 and Seg-2 indicate the two line segments forming the angle. The listed indexes for these line
segments and markers follow the definition in Fig. 3.

Rank Seg-1 Seg-2 Marker

1 (0,11) (11,2) 11

2 (0,10) (10,2) 10

3 (6,10) (10,4) 10

4 (6,11) (11,4) 11

5 (0,12) (12,2) 12

6 (7,11) (11,5) 11

7 (4,10) (10,2) 10

8 (5,11) (11,7) 11

Fig.12. Visualizing the pose estimation, clustered by constructed pose descriptors.

Fig.13. A demo of pose transferring pipeline .
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Fig. 14 show animations under different sampling

densities, where k = 2 (images with green bounding

box) and k = 3 (images with red bounding boxes), re-

spectively where the poses in the same rows are cap-

tured from the same frame. The figure also show the

zoomed region obtained by two k = 2 and k = 3. As

can be seen, the hands when k is set to 2 is shrunk and

is less natural than when k is set to 3. Generally, as

we can see from the figure, with smaller k, the morph-

ing looks smoother and more natural. Naturally, if we

keep tracking the user’s pose more frequently, we can

reproduce the motion more accurately.

Algorithm Efficiency. The runtime statistics (for

every computation component) of our pose transfer al-

gorithm is reported in Table. 2. Following the pose

transfer algorithm formulated in Section 3.4, we can use

a threshold to check the convergence of the pose update.

Meanwhile, to ensure the efficiency of the algorithm, we

can also limit the iteration number to be smaller than k.

In our experiments, we found that the iteration usually

converges within 10 steps, and setting k = 10 produces

good enough result. The linear system solving time in

Table. 2 consists of the time in solving three linear sys-

tems (for x, y, and z coordinates respectively). The

linear interpolation between consecutive key poses is

instantaneous. Therefore, the total online computation

usually finishes within 12 + 0.8 + 1.9 ∗ 10 < 32 millisec-

onds.

Linear Interpolation versus More Advanced

Morphing Algorithm. When the interval between

captured key poses is big, e.g., k = 3 in Fig. 14, mor-

phing generated by the simple linear interpolation can

have undesirable artifacts. More advanced morphing

strategies [43, 44] could be used to generate the inter-

polation. However, advanced algorithms for animation

morphing through calculating more natural animation

paths could be noticeably more expensive, and might

delay the online synchronization.

4.3 Discussions and Comparisons

We compare our method with the direct surface de-

formation method, especially, the direct Laplacian de-

formation. We also compare with the widely adopted

skinning-based character manipulation methods

Laplacian coordinates were used to perform direct

surface deformation in [6]. The idea can be summarized

as minimizing

E(V ′) =

n∑
i=1

‖Ti(L(vi))− L(v′i)‖+
n∑

i=m

‖v′i − ui‖, (9)

where vi and v′i indicate the coordinates of the original

and deformed vertices, ui is vi’s target position (given

as user’s control), L is the Laplacian operator, Ti is

a transformation matrix defined on vi (which needs to

be solved) that consists of rotation, translation, and

isotropic scaling. The first term penalizes the deviation

of Laplacian coordinates caused by the surface deforma-

tion. Solving Ti makes the Laplacian based representa-

tion invariant to rigid and iso-scaling transformations.

The second term is a soft constraint to attract mesh

vertices toward their target positions.

In our method, we perform a pose recognition and

then directly use the local frames Fi from a model with

similar pose. We minimize

E(V ′) =

n∑
i=1

‖Fi(L(vi))−L(v′i)‖, s.t. v′j = uj , j = 1, . . . ,m,

where ui are a set of tracked landmarks on human

body surface. The key difference is that without the

need to compute transformations Ti, we can reduce the

problem to solving linear systems rather than perform-

ing a non-linear optimization. Therefore, our approach

is significantly faster and can be used in real-time avatar

synchronization

Skinning-based methods: Skinning-based ani-

mation methods [28, 10] have been widely adopted in
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Table 2. Runtime Table for our Pose Transfer Algorithm.

Components offline/online runtime (ms)

Laplacian matrix construction offline 2.1

Cholesky decomposition offline 3.9

Pose recognition online 12.0

Local frames calculation online 0.8

Linear system solving (per iteration) online 1.9

Fig.14. Comparisons of interpolated poses with different key pose intervals: k = 2 (green bounding box) and k = 3 (red bounding
box). A zoomed-in figure is put to the right of each pose for clearer comparison.
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generating animations. They usually first do the skin-

ning by extracting skeletal bones and computing bone-

vertex association from a sequence of animated meshes,

then use the deformation of the skeleton to drive the

deformation of surface vertices.

One difficulty for skeleton-driven body deformation

is the accurate skeleton tracking from the field. Al-

though commercial APIs from the RGB-D sensors like

Kinects have been developed to support skeleton ex-

traction from the field, and recent research on pose es-

timation from RGB cameras has also made great perfor-

mance improvement [17], the skeleton tracking is still

not always reliable. When the motion is uncommon,

dramatic, or there is salient occlusion, tracked skeletons

could have missing nodes or incorrect topology. This

could affect subsequent animations. Therefore, we use

the tracking vest which can more accurately and reli-

ably track a set of landmarks on the body surface, and

avoid this problem.

5 Conclusions

We designed a human avatar representation ap-

proach for avatar control in virtual reality environments

using a wearable body tracking vest. The suggested

method consists of two main phases of pose recogni-

tion and pose transfer. We developed a pose descriptor

which the pose can be effectively estimated. For pose

transfer, we adopted an intrinsic coordinates using lo-

cally encoded Laplacian offsets. The transfer reduces to

solving of sparse linear systems and can be computed

rapidly. Using interpolation between the key-poses ob-

tained from previous step, a fast human avatar anima-

tion can be achieved.

Limitations and Future Work. Currently, we

generate the morphing sequence using the simple lin-

ear interpolation. This could lead to artifacts, espe-

cially when the two consecutive poses change dramat-

ically. With a denser sampling of the human poses,

this could become less an issue. However, processing

densely sampled poses requires a big database that con-

tains many more poses. Without sufficient classification

of different poses, selected templates for different key

poses could be the same, and hence, their interpolation

does not help refine the morphing. But with the col-

lection/integration of more human body datasets, this

issue will be alleviated gradually.

Skinning-based body deformation is a widely

adopted strategy for human motion animation. In gen-

eral, if the skeleton tracking is accurate, skinning-based

methods could better handle the non-isometry deforma-

tion than our Laplacian-based deformation. In our fu-

ture work, we will explore more reliable real-time skele-

ton tracking algorithm, and also study avatar synchro-

nization through skinning-based deformation for noisy

or incomplete skeletons
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