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Graphs are Everywhere 

•  Social Networks 
–  Facebook (1.3 Billion user) 
–  Twitter (6.5 Million user) 

•  2.1 Billion search queries/day 

•  Genomics 
–  1 gram of soil = 1 Gb data that is represented as graphs 

•  Human brain (100 Billion neurons) 

•  Road Networks 
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Breadth First Search (BFS) 

•  Definition: 
–  Systematically traverse the connected nodes in a graph 

starting from a given root node 
–  Nodes are visited in the order of hop distance from root. 
–  Many applications add extra computation during each BFS 

iteration and/or post-process the result 
 

•  BFS serves as a fundamental building block for 
many graph processing algorithms 
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Graph Representation 

•  Most graph processing algorithms use the well-
known compressed sparse row (CSR) format 

•  The format contains two vectors: 
–  Column-indices array (C) 
–  Row-offsets array (R) 
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Level-Synchronous BFS 

- Execution time dominated by 
memory latency 
- Large memory foot print 
- Poor locality 
- Random access 
 
- Memory read request in blue 
- Memory Write requests in red 
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Methodology 

•  Custom CSR 
•  Optimized BFS algorithm 
•  Parallel hardware implementation 
•  Multiplexed memory requests 
•  Kernel-to-kernel communication 



RAW   –   May 20, 2014   –   [7/20] Reconfigurable Computing Laboratory – Iowa State University 

Convey HC-2 Computer 

•  Four programmable FPGAs, called Application Engines (AEs) 
•  Eight FPGAs that are used as memory controllers 
•  AEs has access to memory at peak bandwidth 80GB/s 
•  Each AE is connected to all memory controllers 
•  Two FPGAs bridges the host motherboard and the coprocessor board 
•  Operates at 150 Mhz clock 
•  AEs are interconnected with full duplex 660 MBps AE-to-AE interface 

Historically, there have been two basic approaches for 
designing high-performance double precision accumulators.  
The first approach is to statically schedule the input data in 
order to interleave values and partial sums from different 
rows, such that consecutive values belonging to each row are 
delivered to the accumulator--which is designed as a simple 
feedback adder--at a period corresponding to the pipeline 
latency of the adder.  This still allows the adder to accept a 
new value every clock cycle while avoiding the 
accumulation data hazard among values in the same 
accumulation set (matrix row).  Unfortunately, this method 
requires a large up-front cost in scheduling input data and is 
not practical for large data sets. 

An early example of this approach was the work of 
deLorimier and DeHon [ 3

The second approach is to use a dynamic reduction 
technique that dynamically selects each input or partial sum 
to send into the adder--dynamically managing the progress 
of each active accumulation set using a controller (i.e. 
dynamically scheduling the inputs).  For the latter case, these 
approaches can be divided into two types depending on 
whether they use a single adder or multiple adders. 

].  Their scheduling technique 
leads to the architecture’s performance being highly 
dependent on the structure of the matrix, although on average 
they were able to achieve 66% of the peak performance in 
their simulation-based studies. 

An early example using the dynamic reduction technique 
was from Prasanna's group at the University of Southern 
California [4

A similar implementation from UT-Knoxville and Oak 
Ridge National Laboratory used a similar approach but with 
a parallel—as opposed to a linear--array of n adders, where n 
was the adder depth [

].  In their earliest work, they used a linear array 
of adders to create a flattened binary adder tree where each 
adder in the array was utilized at half the rate of the previous 
adder in the array.  This required multiple adders with 
exponentially decreasing utilization, had a fixed maximum 
set size, and required stalls between matrix rows. 

5

Prasanna's group later developed two improved reduction 
circuits, called the double- and single-strided adders (DSA, 
SSA), that solved many of the problems of earlier 
accumulator design [

].  This implementation striped each 
consecutive input across each adder in turn, achieving a fixed 
utilization of 1/n for each adder. 

6

An improved single-adder streaming reduction 
architecture was later developed at the University of Twente 
[

].  These new architectures required 
only two and one adders, respectively.  In addition, they did 

not limit the maximum number of values that can be 
accumulated and did not need to be stalled between 
accumulation sets.  However, these designs required a 
relatively large amount of buffer memory and extremely 
complex control logic which limited their clock speed. 

7

In each of the above discussed work, pre-made adders 
(usually generated with Xilinx Core Generator) have been 
used as the core of the accumulator.  Another approach is to 
modify the adder itself such that the de-normalization and 
significand addition steps have a single cycle latency, which 
makes it possible to use a feedback without scheduling.  To 
minimize the latency of denormalize portion, which includes 
an exponent comparison and a shift of one of the 
significands, both inputs are base-converted to reduce the 
width of exponent while increasing the width of the mantissa 
[

].  This design is the current state-of-the-art, as it requires 
less memory and less complex control than Prassanna’s SSA 
design.  In this paper we describe a new streaming reduction 
technique that requires even less memory and simpler 
control logic than this design. 

8 ].  This reduces the latency of the denormalize while 
increasing the adder width.  Since wide adders can be 
achieved cheaply with carry-chained DSP48 components, 
these steps can sometimes be performed in one cycle.  This 
technique is best suited for single precision operands but can 
be extended to double precision as well [9

III. BACKGROUND:  CONVEY HC-1 

].  However, in 
general this approach requires an unacceptably long clock 
period. 

At Supercomputing 2009, Convey Computer unveiled 
the production version of the HC-1, their contribution to the 
space of socket-based reconfigurable computers.  The HC-1 
is unique in several ways.  Unlike in-socket coprocessors 
from Nallatech [10], DRC [11], and XtremeData [12

The design of the coprocessor board is depicted in Figure 
1.  There are four user-programmable Virtex-5 LX 330s, 

]—all 
of which are confined to a footprint matching the size of the 
socket--Convey uses a mezzanine connector to bring the 
front side bus (FSB) interface to a large coprocessor board 
roughly the size of an ATX motherboard.  This coprocessor 
board is housed in a 1U chassis that is fused to the top of 
another 1U chassis containing the host motherboard. 

 
Figure 1.  The HC-1 coprocessor board.  Four application engines connect to eight memory controllers through a full crossbar. 

2
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Convey HC-2 Coprocessor 
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CyGraph Top Level  

•  Each AE has access to 16 memory ports through full-crossbar 
•  4 AEs = 4 × 16 Kernels = 64 kernels total 
•  CyGraph uses AE-to-AE interface to scale implementation among 

different AEs (through Kernel-to-Kernel communication) 

Convey HC-2 Coprocessor
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Master
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MC1 MC2 MC16

Master

AE 1
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Kernel-to-kernel Communication 
•  Behaves as a token ring network 
•  Allows multiple kernels to write to the next queue 
•  Makes CyGraph scalable through multiple FPGAs 

–  Master Kernel initiates the interface by sending an empty token to the 
first kernel in the ring 

–  Token starts circulating, each kernel gets the token for one cycle 
–  Kernel with token, reserves how many items it wants to write to 

memory and passes the token to next kernel 
–  Token = Received token + space to be reserved 
–  When a level is finished, token will equal how many nodes were 

written to memory 

Time Ti Ti+1 Ti+2 Ti+3 Ti+4 Ti+5 Ti+6 

K0 Send 0 * * Send 5 
K1 * Send 1 Send 5 
K2 * * Send 3 * Send 6 
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Custom CSR 

•  With massive large-scale graph, it is hard to implement visited bitmaps on 
FPGA’s BlockRAM 

•  We use off-chip memories instead 

•  In order to optimize the performance, we modified the R array in CSR 
format as follows: 
–  Start address of node (as original implementation) 
–  Count of neighbors if visited flag is ’0’ or node’s level if visited flag is ’1’ 
–  Visited flag 

Neighbors' start address Neighbors' count V = 0

32-bit 31-bit 1-bit

Node level V = 1

63-bit 1-bit
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CyGraph Kernel Algorithm 
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Pipelined Design 

•  The kernel could be implemented as a pipeline of four stages/processes 
•  CyGraph Kernel will serve as processing element (PE) in the Parallel 

CyGraph implementation 

Process 1
Request from 
current queue

Process 2
Request Neighbors

Process 3
Request Neighbors 

Information

rd MC currentrsp rd MC

rsp

rdMCrspProcess 4
If not visited, visit 
and push to next 

queue

neigh CSR

neighbors
MC wr
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CyGraph Kernel 

Process 1
Request from 
current queue

Process 2
Request Neighbors

Process 3
Request Neighbors 

Information

Process 4
If not visited, push 

to next queue

Requests Multiplexer

Process 5

q3q2q1

Responses Decoder
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Kernel
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Experimental Results (R-MAT Graphs) 
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Experimental Results (Random Graphs) 
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Analysis 
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Resource Utilization 

•  CyGraph uses less resources 
•  Remaining resources could be used for adding 

extra computations through traversal 
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Fig. 7: BFS execution time for CyGraph against [20] using random graphs
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Fig. 8: BFS execution time for CyGraph against [20] using RMAT graphs

interfaces (e.g. dispatch interface, and MC interface). For our
CyGraph kernel, the depth of the FIFOs used is set to 512.

Slice LUTs BRAM Slice LUT-FF

CyGraph 1 AE 53% 55% 74%

CyGraph 4 AEs 55% 55% 74%

Betkaui et al. [20] 80% 64% n/a

TABLE I: Resource Utilization

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel FPGA-based graph
traversal implementation, namely CyGraph. Our implementa-
tion outperformed a state-of-the-art FPGA implementation up
to factor of 5. CyGraph performed better for graphs of medium
average vertex degrees. We have shown that application-
specific data structures significantly improve performance for
the target platform. We have introduced a kernel-to-kernel
interface that enables multiple processing elements to collab-
orate writing to the same memory data-structure. Finally, we
have followed a design approach that could be carried out to
design other hardware reconfigurable architectures for graph
processing algorithms.

The suggested future work is twofold. The first direction
is to enhance our implementation by load balancing among
kernels. This will keep all CyGraph kernels busy for equal

processing times, resulting in a better utilization of memory
bandwidth. One idea is to split the large CSRs into multiple
CSRs before pushing them to the next queue. In the next
level, due to the fact that kernels interleave reading, kernels
will have to process a relatively equal number of neighbors.
The second direction is to develop a full framework for graph
algorithms using the Convey HC-2. Other graph problems (e.g.
shortest path, Eulerian path, maximum flow, maximum clique)
are known to be difficult problems. Such a framework can
serve as a base and useful tool for researchers to build upon
it.
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•  Conclusion 
–  A reconfigurable hardware for accelerating BFS algorithm 

•  Scalable solution for multiple-FPGAs 
•  Outperformed pervious state-of-the-art implementation 
 

•  Future Work 
–  Design approach could be leveraged for other graph 

processing algorithms 
–  Customizing and building upon the CyGraph kernel for 

real-world applications 
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