
CyGraph: A Reconfigurable Architecture for
Parallel Breadth-first Search

Osama G. Attia, Tyler Johnson, Kevin Townsend, Philip Jones, Joseph Zambreno

Reconfigurable Computing Laboratory
Department of Electrical and Computer Engineering

Iowa State University

21st Reconfigurable Architectures Workshop !
May 20, 2014, Phoenix, USA!

RAW – May 20, 2014 – [2/20] Reconfigurable Computing Laboratory – Iowa State University

Graphs are Everywhere

•  Social Networks
–  Facebook (1.3 Billion user)
–  Twitter (6.5 Million user)

•  2.1 Billion search queries/day

•  Genomics
–  1 gram of soil = 1 Gb data that is represented as graphs

•  Human brain (100 Billion neurons)

•  Road Networks

RAW – May 20, 2014 – [3/20] Reconfigurable Computing Laboratory – Iowa State University

Breadth First Search (BFS)

•  Definition:
–  Systematically traverse the connected nodes in a graph

starting from a given root node
–  Nodes are visited in the order of hop distance from root.
–  Many applications add extra computation during each BFS

iteration and/or post-process the result

•  BFS serves as a fundamental building block for
many graph processing algorithms

RAW – May 20, 2014 – [4/20] Reconfigurable Computing Laboratory – Iowa State University

Graph Representation

•  Most graph processing algorithms use the well-
known compressed sparse row (CSR) format

•  The format contains two vectors:
–  Column-indices array (C)
–  Row-offsets array (R)

3 71

4

8

6 5

2

21 813, 5, 6 42, 3, 4

1087744410

0 1 2 3 4 5 6 7 8

0

0 1 2 3 4 5 6 7 8 9 10

Row-offset array (R)

Column-indices array (C)

RAW – May 20, 2014 – [5/20] Reconfigurable Computing Laboratory – Iowa State University

Level-Synchronous BFS

- Execution time dominated by
memory latency
- Large memory foot print
- Poor locality
- Random access

- Memory read request in blue
- Memory Write requests in red

RAW – May 20, 2014 – [6/20] Reconfigurable Computing Laboratory – Iowa State University

Methodology

•  Custom CSR
•  Optimized BFS algorithm
•  Parallel hardware implementation
•  Multiplexed memory requests
•  Kernel-to-kernel communication

RAW – May 20, 2014 – [7/20] Reconfigurable Computing Laboratory – Iowa State University

Convey HC-2 Computer

•  Four programmable FPGAs, called Application Engines (AEs)
•  Eight FPGAs that are used as memory controllers
•  AEs has access to memory at peak bandwidth 80GB/s
•  Each AE is connected to all memory controllers
•  Two FPGAs bridges the host motherboard and the coprocessor board
•  Operates at 150 Mhz clock
•  AEs are interconnected with full duplex 660 MBps AE-to-AE interface

Historically, there have been two basic approaches for
designing high-performance double precision accumulators.
The first approach is to statically schedule the input data in
order to interleave values and partial sums from different
rows, such that consecutive values belonging to each row are
delivered to the accumulator--which is designed as a simple
feedback adder--at a period corresponding to the pipeline
latency of the adder. This still allows the adder to accept a
new value every clock cycle while avoiding the
accumulation data hazard among values in the same
accumulation set (matrix row). Unfortunately, this method
requires a large up-front cost in scheduling input data and is
not practical for large data sets.

An early example of this approach was the work of
deLorimier and DeHon [3

The second approach is to use a dynamic reduction
technique that dynamically selects each input or partial sum
to send into the adder--dynamically managing the progress
of each active accumulation set using a controller (i.e.
dynamically scheduling the inputs). For the latter case, these
approaches can be divided into two types depending on
whether they use a single adder or multiple adders.

]. Their scheduling technique
leads to the architecture’s performance being highly
dependent on the structure of the matrix, although on average
they were able to achieve 66% of the peak performance in
their simulation-based studies.

An early example using the dynamic reduction technique
was from Prasanna's group at the University of Southern
California [4

A similar implementation from UT-Knoxville and Oak
Ridge National Laboratory used a similar approach but with
a parallel—as opposed to a linear--array of n adders, where n
was the adder depth [

]. In their earliest work, they used a linear array
of adders to create a flattened binary adder tree where each
adder in the array was utilized at half the rate of the previous
adder in the array. This required multiple adders with
exponentially decreasing utilization, had a fixed maximum
set size, and required stalls between matrix rows.

5

Prasanna's group later developed two improved reduction
circuits, called the double- and single-strided adders (DSA,
SSA), that solved many of the problems of earlier
accumulator design [

]. This implementation striped each
consecutive input across each adder in turn, achieving a fixed
utilization of 1/n for each adder.

6

An improved single-adder streaming reduction
architecture was later developed at the University of Twente
[

]. These new architectures required
only two and one adders, respectively. In addition, they did

not limit the maximum number of values that can be
accumulated and did not need to be stalled between
accumulation sets. However, these designs required a
relatively large amount of buffer memory and extremely
complex control logic which limited their clock speed.

7

In each of the above discussed work, pre-made adders
(usually generated with Xilinx Core Generator) have been
used as the core of the accumulator. Another approach is to
modify the adder itself such that the de-normalization and
significand addition steps have a single cycle latency, which
makes it possible to use a feedback without scheduling. To
minimize the latency of denormalize portion, which includes
an exponent comparison and a shift of one of the
significands, both inputs are base-converted to reduce the
width of exponent while increasing the width of the mantissa
[

]. This design is the current state-of-the-art, as it requires
less memory and less complex control than Prassanna’s SSA
design. In this paper we describe a new streaming reduction
technique that requires even less memory and simpler
control logic than this design.

8]. This reduces the latency of the denormalize while
increasing the adder width. Since wide adders can be
achieved cheaply with carry-chained DSP48 components,
these steps can sometimes be performed in one cycle. This
technique is best suited for single precision operands but can
be extended to double precision as well [9

III. BACKGROUND: CONVEY HC-1

]. However, in
general this approach requires an unacceptably long clock
period.

At Supercomputing 2009, Convey Computer unveiled
the production version of the HC-1, their contribution to the
space of socket-based reconfigurable computers. The HC-1
is unique in several ways. Unlike in-socket coprocessors
from Nallatech [10], DRC [11], and XtremeData [12

The design of the coprocessor board is depicted in Figure
1. There are four user-programmable Virtex-5 LX 330s,

]—all
of which are confined to a footprint matching the size of the
socket--Convey uses a mezzanine connector to bring the
front side bus (FSB) interface to a large coprocessor board
roughly the size of an ATX motherboard. This coprocessor
board is housed in a 1U chassis that is fused to the top of
another 1U chassis containing the host motherboard.

Figure 1. The HC-1 coprocessor board. Four application engines connect to eight memory controllers through a full crossbar.

2

RAW – May 20, 2014 – [8/20] Reconfigurable Computing Laboratory – Iowa State University

Convey HC-2 Coprocessor

RAW – May 20, 2014 – [9/20] Reconfigurable Computing Laboratory – Iowa State University

CyGraph Top Level

•  Each AE has access to 16 memory ports through full-crossbar
•  4 AEs = 4 × 16 Kernels = 64 kernels total
•  CyGraph uses AE-to-AE interface to scale implementation among

different AEs (through Kernel-to-Kernel communication)

Convey HC-2 Coprocessor

K1 K2 K16

MC1 MC2 MC16

Master

Shared Memory (64 GB)

AE 0

K1 K2 K16

MC1 MC2 MC16

Master

AE 1

K1 K2 K16

MC1 MC2 MC16

Master

AE 2

AE-to-AE interface (668 MB/s)

K1 K2 K16

MC1 MC2 MC16

Master

AE 3

RAW – May 20, 2014 – [10/20] Reconfigurable Computing Laboratory – Iowa State University

Kernel-to-kernel Communication
•  Behaves as a token ring network
•  Allows multiple kernels to write to the next queue
•  Makes CyGraph scalable through multiple FPGAs

–  Master Kernel initiates the interface by sending an empty token to the
first kernel in the ring

–  Token starts circulating, each kernel gets the token for one cycle
–  Kernel with token, reserves how many items it wants to write to

memory and passes the token to next kernel
–  Token = Received token + space to be reserved
–  When a level is finished, token will equal how many nodes were

written to memory

Time Ti Ti+1 Ti+2 Ti+3 Ti+4 Ti+5 Ti+6

K0 Send 0 * * Send 5
K1 * Send 1 Send 5
K2 * * Send 3 * Send 6

RAW – May 20, 2014 – [11/20] Reconfigurable Computing Laboratory – Iowa State University

Custom CSR

•  With massive large-scale graph, it is hard to implement visited bitmaps on
FPGA’s BlockRAM

•  We use off-chip memories instead

•  In order to optimize the performance, we modified the R array in CSR
format as follows:
–  Start address of node (as original implementation)
–  Count of neighbors if visited flag is ’0’ or node’s level if visited flag is ’1’
–  Visited flag

Neighbors' start address Neighbors' count V = 0

32-bit 31-bit 1-bit

Node level V = 1

63-bit 1-bit

RAW – May 20, 2014 – [12/20] Reconfigurable Computing Laboratory – Iowa State University

CyGraph Kernel Algorithm

RAW – May 20, 2014 – [13/20] Reconfigurable Computing Laboratory – Iowa State University

Pipelined Design

•  The kernel could be implemented as a pipeline of four stages/processes
•  CyGraph Kernel will serve as processing element (PE) in the Parallel

CyGraph implementation

Process 1
Request from
current queue

Process 2
Request Neighbors

Process 3
Request Neighbors

Information

rd MC currentrsp rd MC

rsp

rdMCrspProcess 4
If not visited, visit
and push to next

queue

neigh CSR

neighbors
MC wr

RAW – May 20, 2014 – [14/20] Reconfigurable Computing Laboratory – Iowa State University

CyGraph Kernel

Process 1
Request from
current queue

Process 2
Request Neighbors

Process 3
Request Neighbors

Information

Process 4
If not visited, push

to next queue

Requests Multiplexer

Process 5

q3q2q1

Responses Decoder

To Next
Kernel

From Prev.
Kernel

M
em

ory C
ontroller

rsp

req

RAW – May 20, 2014 – [15/20] Reconfigurable Computing Laboratory – Iowa State University

Experimental Results (R-MAT Graphs)

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3
B

ill
io

n
 e

d
g
e
s

p
e
r

se
co

n
d
 (

G
T

E
P

s)

Number of vertices per graph

(a) Average degree = 8

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(b) Average degree = 16

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(c) Average degree = 32

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(d) Average degree = 64

Betkaoui et al. [20] CyGraph (1 AE) CyGraph (4 AEs)

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

B
ill

io
n

 e
d

g
e

s
p

e
r

se
co

n
d

 (
G

T
E

P
s)

Number of vertices per graph

(a) Average degree = 8

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(b) Average degree = 16

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(c) Average degree = 32

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(d) Average degree = 64

Betkaoui et al. [20] CyGraph (1 AE) CyGraph (4 AEs)

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

B
ill

io
n

 e
d

g
e

s
p

e
r

se
co

n
d

 (
G

T
E

P
s)

Number of vertices per graph

(a) Average degree = 8

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(b) Average degree = 16

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(c) Average degree = 32

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(d) Average degree = 64

Betkaoui et al. [20] CyGraph (1 AE) CyGraph (4 AEs)

RAW – May 20, 2014 – [16/20] Reconfigurable Computing Laboratory – Iowa State University

Experimental Results (Random Graphs)

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5
B

ill
io

n
 e

d
g

e
s

p
e

r
se

co
n

d
 (

G
T

E
P

s)

Number of vertices per graph

(a) Average degree = 8

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

Number of vertices per graph

(b) Average degree = 16

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

Number of vertices per graph

(c) Average degree = 32

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

Number of vertices per graph

(d) Average degree = 64

Betkaoui et al. [20] CyGraph (1 AE) CyGraph (4 AEs)

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

B
ill

io
n
 e

d
g
e
s

p
e
r

se
co

n
d
 (

G
T

E
P

s)

Number of vertices per graph

(a) Average degree = 8

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

Number of vertices per graph

(b) Average degree = 16

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

Number of vertices per graph

(c) Average degree = 32

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

Number of vertices per graph

(d) Average degree = 64

Betkaoui et al. [20] CyGraph (1 AE) CyGraph (4 AEs)

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

B
ill

io
n

 e
d

g
e

s
p

e
r

se
co

n
d

 (
G

T
E

P
s)

Number of vertices per graph

(a) Average degree = 8

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(b) Average degree = 16

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(c) Average degree = 32

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(d) Average degree = 64

Betkaoui et al. [20] CyGraph (1 AE) CyGraph (4 AEs)

RAW – May 20, 2014 – [17/20] Reconfigurable Computing Laboratory – Iowa State University

Analysis

8 16 32 64 Average
0

0.5

1

1.5

2

2.5

3

Average vertex degree

B
il

li
o

n
 e

d
g

e
s

 p
e

r
s

e
c

o
n

d
 (

G
T

E
P

s
)

Betkaoui et al
CyGraph 1 AE
CyGraph 4 AEs

8 16 32 64 Average
0

0.5

1

1.5

2

2.5

3

Average vertex degree

B
il
li
o

n
 e

d
g

e
s
 p

e
r

s
e
c
o

n
d

 (
G

T
E

P
s
)

Betkaoui et al
CyGraph 1 AE
CyGraph 4 AEs

R-MAT Graphs Random Graphs

RAW – May 20, 2014 – [18/20] Reconfigurable Computing Laboratory – Iowa State University

Resource Utilization

•  CyGraph uses less resources
•  Remaining resources could be used for adding

extra computations through traversal

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

B
ill

io
n
 e

d
g
e
s

p
e
r

se
co

n
d
 (

G
T

E
P

s)

Number of vertices per graph

(a) Average degree = 8

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

Number of vertices per graph

(b) Average degree = 16

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

Number of vertices per graph

(c) Average degree = 32

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

3.5

Number of vertices per graph

(d) Average degree = 64

Betkaoui et al. [20] CyGraph (1 AE) CyGraph (4 AEs)

Fig. 7: BFS execution time for CyGraph against [20] using random graphs

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

B
ill

io
n
 e

d
g
e
s

p
e
r

se
co

n
d
 (

G
T

E
P

s)

Number of vertices per graph

(a) Average degree = 8

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(b) Average degree = 16

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(c) Average degree = 32

2^20 2^21 2^22 2^23
0

0.5

1

1.5

2

2.5

3

Number of vertices per graph

(d) Average degree = 64

Betkaoui et al. [20] CyGraph (1 AE) CyGraph (4 AEs)

Fig. 8: BFS execution time for CyGraph against [20] using RMAT graphs

interfaces (e.g. dispatch interface, and MC interface). For our
CyGraph kernel, the depth of the FIFOs used is set to 512.

Slice LUTs BRAM Slice LUT-FF

CyGraph 1 AE 53% 55% 74%

CyGraph 4 AEs 55% 55% 74%

Betkaui et al. [20] 80% 64% n/a

TABLE I: Resource Utilization

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel FPGA-based graph
traversal implementation, namely CyGraph. Our implementa-
tion outperformed a state-of-the-art FPGA implementation up
to factor of 5. CyGraph performed better for graphs of medium
average vertex degrees. We have shown that application-
specific data structures significantly improve performance for
the target platform. We have introduced a kernel-to-kernel
interface that enables multiple processing elements to collab-
orate writing to the same memory data-structure. Finally, we
have followed a design approach that could be carried out to
design other hardware reconfigurable architectures for graph
processing algorithms.

The suggested future work is twofold. The first direction
is to enhance our implementation by load balancing among
kernels. This will keep all CyGraph kernels busy for equal

processing times, resulting in a better utilization of memory
bandwidth. One idea is to split the large CSRs into multiple
CSRs before pushing them to the next queue. In the next
level, due to the fact that kernels interleave reading, kernels
will have to process a relatively equal number of neighbors.
The second direction is to develop a full framework for graph
algorithms using the Convey HC-2. Other graph problems (e.g.
shortest path, Eulerian path, maximum flow, maximum clique)
are known to be difficult problems. Such a framework can
serve as a base and useful tool for researchers to build upon
it.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science
Foundation (NSF) under awards CNS-1116810 and CCF-
1149539.

REFERENCES

[1] O. Mason and M. Verwoerd, “Graph theory and networks in biology,”
in IET Systems Biology, vol. 1, no. 2, 2007, pp. 89–119.

[2] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Walking in
Facebook: A case study of unbiased sampling of OSNs,” in IEEE 30th
International Conference on Computer Communications (INFOCOM),
2010.

[3] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read
assembly using de Bruijn graphs,” in Genome research, vol. 18, no. 5,
2008, pp. 821–829.

[4] C. B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck, and
W. L. Ruzzo, “Hardware acceleration of short read mapping,” in IEEE
20th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2012, pp. 161–168.

RAW – May 20, 2014 – [19/20] Reconfigurable Computing Laboratory – Iowa State University

•  Conclusion
–  A reconfigurable hardware for accelerating BFS algorithm

•  Scalable solution for multiple-FPGAs
•  Outperformed pervious state-of-the-art implementation

•  Future Work
–  Design approach could be leveraged for other graph

processing algorithms
–  Customizing and building upon the CyGraph kernel for

real-world applications

Questions

www.rcl.ece.iastate.edu
Reconfigurable Computing Laboratory

