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Overview 

•  Motivation 
•  Theoretical Background 
•  Modified Hestenes-Jacobi Approach 
•  Our Hestenes-Jacobi SVD Architecture 
–  Hestenes Preprocessor 
–  Jacobi Rotation Component 
–  Update Operator 
–  The Cyclic Ordering 

•  Implementation and Evaluation 
•  Conclusion and Future Work 
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Singular Value Decomposition (SVD) 

•  SVD is the most popular technique to 
perform Principal Component Analysis 
(PCA) for dimensionality reduction  

•  SVD is widely employed in many scientific 
and engineering applications 

1st 
principal 
component 

2nd 
principal 
component 

Let 𝐴 𝜖 𝑅𝑚×𝑛, then there exist 𝑈  𝜖  𝑅𝑚×𝑚, 𝑉  𝜖  𝑅n×𝑛  and Σ  𝜖  
𝑅𝑚×𝑛  such that  

                              𝐴=𝑈Σ𝑉𝑇 

where Σ  =  𝑑𝑖𝑎𝑔  (𝜎1,  ……,  𝜎𝑟)  𝜖  𝑅𝑚×𝑛 with singular values of 
𝐴, 𝑈 and 𝑉 are orthogonal matrices.  
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Singular Value Decomposition (SVD) 

•  Singular Value Decomposition (SVD) is a computationally-expensive 
procedure with computational complexity of O(n3). 

•  SVD Application: Background modeling from video surveillance [1] 

     (Using Matlab on a desktop PC with a 2.33 GHz Core 2 Duo processor and 2 GB RAM) 

frames resolution SVD time 

200 176x144 43mins 

250 168x120 36mins 
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SVD Algorithms 

•  Householder factorization 
–  Bi-diagonalize the matrix with Householder factorization 
–  Zero out the remaining non-zero off-diagonals with recursive implicit 

QR factorization  
–  Inherent data dependency challenges the parallelism of SVD 
 

•  Two sided Jacobi Rotation 
–  Identify 2x2 Jacobi matrices 
–  Obtain the rotation angles 
–  Perform rotation with Jacobi matrices 
–  Limited with scalability 
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SVD Algorithms (Cont.) 

•  Hestenes-Jacobi approach 
Hestenes discovered the equivalence between zeroing out an off-diagonal 
aij and orthogonalizing the ith and jth vectors through plane rotation 

A11 A12 A13 A14 A15 A16 A17 A18 

A21 A22 A23 A24 A25 A26 A27 A28 

A31 A32 A33 A34 A35 A36 A37 A38 

A41 A42 A43 A44 A45 A46 A47 A48 

A51 A52 A53 A54 A55 A56 A57 A58 

A61 A62 A63 A64 A65 A66 A67 A68 

A71 A72 A73 A74 A75 A76 A77 A78 

A81 A82 A83 A84 A85 A86 A87 A88 

di  = A1i
2 + A2i

2  +  A3i
2 + …… + Ani

2 

dj  = A1j
2 + A2j

2  +  A3j
2 + …… + Anj

2   
cij  = A1i*A1j + A2i*A2j + A3i*A3j + …… + Ani*Anj  
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Modified Hestenes-Jacobi approach 

A11 A12 A13 A14 A15 A16 A17 A18 

A21 A22 A23 A24 A25 A26 A27 A28 

A31 A32 A33 A34 A35 A36 A37 A38 

A41 A42 A43 A44 A45 A46 A47 A48 

A51 A52 A53 A54 A55 A56 A57 A58 

A61 A62 A63 A64 A65 A66 A67 A68 

A71 A72 A73 A74 A75 A76 A77 A78 

A81 A82 A83 A84 A85 A86 A87 A88 

di  = A1i
2 + A2i

2  +  A3i
2 + …… + Ani

2 

dj  = A1j
2 + A2j

2  +  A3j
2 + …… + Anj

2   
cij  = A1i*A1j + A2i*A2j + A3i*A3j + …… + Ani*Anj  
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•  Our modified solution is to directly update the squared norm 
covariance without repetitively calculating the squared norms and 
covariaces 

•  The existing GPU implementation suffered from the iterative thread 
synchronizations, whose performance even worse than the CPU 
designs [2] 

•  The existing FPGA implementation with fixed point computations 
suffered from iterative design with duplicated computations [3] 
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Our Architecture 
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reg 
 
reg 

The Hestenes preprocessor 

•  The Hestenes preprocessor is responsible for calculating the squared 
column 2-norms and the covariances between column vectors, in which 
AT

i ∗ Aj is computed 
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× × × ×
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The Hestenes preprocessor (Cont.) 

•  The Hestenes preprocessor is responsible for calculating the squared 
column 2-norms and the covariances between column vectors, in which 
AT

i ∗ Aj is computed 
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The Jacobi Rotation Component 

•  Jacobi rotation component performs the orthogonal transformation 
between two column vectors through a series of operations on their 
squared column 2-norms and the covariance between them 
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Update Operator 

•  The Update operator is responsible for updating column elements and 
covariance which are affected by the processed rotations 

•  To optimize the use of hardware resources, the Hestenes preprocessor is 
able to be reconfigured to function as multiple update kernels 
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𝐴’ 𝑖 = 𝐴𝑖 × cos −𝐴j×sin ’ 𝑖 = 𝐴𝑖 × cos −𝐴j×sin  = 𝐴𝑖 × cos −𝐴j×sin  × cos −𝐴j×sin 

𝐴’j  = 𝐴𝑖 × sin +  𝐴j×cos ’j  = 𝐴𝑖 × sin +  𝐴j×cos  × sin +  𝐴j×cos 
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Performance analysis 

•  A single Xilinx Virtex-5 XC5VLX330 FPGA on Convey HC-2 system is used 
 
•  The system is tested by executing at 150Mhz for 6 iterations, which is 

believed sufficient for achieving convergence with certain thresholds 

•  The experimental results demonstrate that the execution time grows 
significantly as the number of matrix columns increases, which 
determines the number of covariance, whose computation dominates 
the overall performance 
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Performance analysis (Cont.) 

•  The dimensional speedups that can be achieved range from 3.8x to 
43.6× for matrices with column sizes from 128 to 256 and row 
dimensions from 128 to 2048 
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Performance analysis (Cont.) 

•  The GPU-based implementation, which ran 106.90ms and 1022.92ms to 
decompose a 128×128 and a 256×256 matrix respectively, failed to 
achieve any speedup compared to a conventional software solution [2] 

 

•  The FPGA-based design was devised to perform fixed-point operations, 
which can only analyze the matrices with the size up to 32×128 due to 
the limitation of on-chip memory. It takes 24.3143ms to decompose the 
largest analyzed matrix with the dimensions of 32×127 [3] 
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Convergence Analysis 

•  The mean absolute deviations from zero of the covariance after being 
processed by a number of iterations are analyzed and reasonable 
convergence can be achieved within 6 iterations of operations for 
matrices of dimensions up to 2048 
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Conclusion and Future Work 

•  An FPGA-based hardware architecture is proposed to perform Singular 
Value Decomposition with Hestenes-Jacobi algorithm  

 
•  Dimensional speedups range from 3.8x to 43.6x for matrices with column 

dimensions from 128 to 256 and row sizes from 128 to 2048  
 
•  Our analysis provides direction for potential improved solution and our 

design will be extended to accelerate SVD applications 
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