
An FPGA Implementation of the Hestenes-Jacobi
Algorithm for Singular Value Decomposition

Xinying Wang, Joseph Zambreno
Reconfigurable Computing Lab

Department of Electrical and Computer Engineering
Iowa State University

21st Reconfigurable Architectures Workshop

May 19-20, 2014, Phoenix, USA

RAW-21 :: 20-May-14 :: [2/18] X. Wang and J. Zambreno :: Iowa State University

Overview

•  Motivation
•  Theoretical Background
•  Modified Hestenes-Jacobi Approach
•  Our Hestenes-Jacobi SVD Architecture
–  Hestenes Preprocessor
–  Jacobi Rotation Component
–  Update Operator
–  The Cyclic Ordering

•  Implementation and Evaluation
•  Conclusion and Future Work

RAW-21 :: 20-May-14 :: [3/18] X. Wang and J. Zambreno :: Iowa State University

Singular Value Decomposition (SVD)

•  SVD is the most popular technique to
perform Principal Component Analysis
(PCA) for dimensionality reduction

•  SVD is widely employed in many scientific
and engineering applications

1st
principal
component

2nd
principal
component

Let 𝐴 𝜖 𝑅𝑚×𝑛, then there exist 𝑈 𝜖 𝑅𝑚×𝑚, 𝑉 𝜖 𝑅n×𝑛 and Σ 𝜖
𝑅𝑚×𝑛 such that

 𝐴=𝑈Σ𝑉𝑇

where Σ = 𝑑𝑖𝑎𝑔 (𝜎1, ……, 𝜎𝑟) 𝜖 𝑅𝑚×𝑛 with singular values of
𝐴, 𝑈 and 𝑉 are orthogonal matrices.

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [4/18] X. Wang and J. Zambreno :: Iowa State University

Singular Value Decomposition (SVD)

•  Singular Value Decomposition (SVD) is a computationally-expensive
procedure with computational complexity of O(n3).

•  SVD Application: Background modeling from video surveillance [1]

 (Using Matlab on a desktop PC with a 2.33 GHz Core 2 Duo processor and 2 GB RAM)

frames resolution SVD time

200 176x144 43mins

250 168x120 36mins

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [5/18] X. Wang and J. Zambreno :: Iowa State University

SVD Algorithms

•  Householder factorization
–  Bi-diagonalize the matrix with Householder factorization
–  Zero out the remaining non-zero off-diagonals with recursive implicit

QR factorization
–  Inherent data dependency challenges the parallelism of SVD

•  Two sided Jacobi Rotation
–  Identify 2x2 Jacobi matrices
–  Obtain the rotation angles
–  Perform rotation with Jacobi matrices
–  Limited with scalability

x x x x

x x x x

x x x x

x x x x

x x x x

0 x x x

0 x x x

0 x x x

x x x x

0 x x x

0 0 x x

0 0 x x

x x 0 x

0 x x x

0 0 x x

0 0 0 x

x x 0 0

0 x x 0

0 0 x x

0 0 0 x

x x 0 0

0 x x 0

0 0 x x

0 0 0 x

x 0 0 0

0 x 0 0

0 0 x 0

0 0 0 x

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [6/18] X. Wang and J. Zambreno :: Iowa State University

SVD Algorithms (Cont.)

•  Hestenes-Jacobi approach
Hestenes discovered the equivalence between zeroing out an off-diagonal
aij and orthogonalizing the ith and jth vectors through plane rotation

A11 A12 A13 A14 A15 A16 A17 A18

A21 A22 A23 A24 A25 A26 A27 A28

A31 A32 A33 A34 A35 A36 A37 A38

A41 A42 A43 A44 A45 A46 A47 A48

A51 A52 A53 A54 A55 A56 A57 A58

A61 A62 A63 A64 A65 A66 A67 A68

A71 A72 A73 A74 A75 A76 A77 A78

A81 A82 A83 A84 A85 A86 A87 A88

di = A1i
2 + A2i

2 + A3i
2 + …… + Ani

2

dj = A1j
2 + A2j

2 + A3j
2 + …… + Anj

2
cij = A1i*A1j + A2i*A2j + A3i*A3j + …… + Ani*Anj

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [7/18] X. Wang and J. Zambreno :: Iowa State University

Modified Hestenes-Jacobi approach

A11 A12 A13 A14 A15 A16 A17 A18

A21 A22 A23 A24 A25 A26 A27 A28

A31 A32 A33 A34 A35 A36 A37 A38

A41 A42 A43 A44 A45 A46 A47 A48

A51 A52 A53 A54 A55 A56 A57 A58

A61 A62 A63 A64 A65 A66 A67 A68

A71 A72 A73 A74 A75 A76 A77 A78

A81 A82 A83 A84 A85 A86 A87 A88

di = A1i
2 + A2i

2 + A3i
2 + …… + Ani

2

dj = A1j
2 + A2j

2 + A3j
2 + …… + Anj

2
cij = A1i*A1j + A2i*A2j + A3i*A3j + …… + Ani*Anj

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

•  Our modified solution is to directly update the squared norm
covariance without repetitively calculating the squared norms and
covariaces

•  The existing GPU implementation suffered from the iterative thread
synchronizations, whose performance even worse than the CPU
designs [2]

•  The existing FPGA implementation with fixed point computations
suffered from iterative design with duplicated computations [3]

RAW-21 :: 20-May-14 :: [8/18] X. Wang and J. Zambreno :: Iowa State University

Our Architecture

Hestenes	
 preprocessor	
 (AiAj
T,	
 	
 	
 	
 i=1,…,n,	
 	
 	
 	
 j=i,i+1,….,n)	
 	
 	
 /	
 	
 	
 	

Update	
 operator	

Jacobi	
 rota=on	
 component	

FIFOs	

Update	
 operator	

Input	
 FIFOs	

RAM(cos/sin)	

Output	
 FIFOss	

Ai	

2-­‐norm(Ai)	

2-­‐norm(Aj)	

cov(Ai,	
 Aj)	

cos	
 θ	

sin	
 θ	

A	

cov(Am,	
 An)	
 Ai	

cov(Am,	
 An)	
 Ai	

cos	
 θ	

sin	
 θ	

cos	
 θ	

sin	
 θ	

2-­‐norm(Ai)	

2-­‐norm(Aj)	

cov(Ai,	
 Aj)	

2-­‐norm(Ai)	

2-­‐norm(Aj)	

cov(Ai,	
 Aj)	

2-­‐norm(Ai)	

2-­‐norm(Aj)	

cov(Ai,	
 Aj)	

Ai	

2-­‐norm(Ai)	

2-­‐norm(Aj)	

cov(Ai,	
 Aj)	

cov(Am,	
 An)	
 Ai	

cov(Am,	
 An)	

Ai	

Ai	

cov(Am,	
 An)	

RAM(cov(Am,	
 An))	

cov(Am,	
 An)	
 cov(Am,	
 An)	

cov(Am,	
 An)	

Ai,i	

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [9/18] X. Wang and J. Zambreno :: Iowa State University

reg

reg

The Hestenes preprocessor

•  The Hestenes preprocessor is responsible for calculating the squared
column 2-norms and the covariances between column vectors, in which
AT

i ∗ Aj is computed

× × × ×

×× × ×

× × × ×

× × × ×

+

+
+ +

+

+

+
+

+

+
+

+

Ai,j Ai,j Ai,j Ai,j+1 Ai,j Ai,j+2 Ai,j Ai,j+3

Ai+1,j

Ai+2,j

Ai+3,j

reg

reg

reg

reg

+

reg

reg

reg

reg

reg

reg reg

reg reg

+++

reg

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [10/18] X. Wang and J. Zambreno :: Iowa State University

× × × ×

A11 A11 A11 A11 A11 A12 A13 A14

A12 A12 A12 A13 A12 A12 A14 A15

A13 A13 A13 A14 A13 A15 A13 A16

A14 A14 A14 A14 A14 A15 A16 A17

A15 A15 A15 A15 A15 A16 A17 A18

A16 A16 A16 A17 A16 A18 A15 A11

A17 A17 A17 A18 A16 A11 A15 A12

A18 A18 A17 A11 A16 A12 A15 A13

A18 A11 A17 A16 A15 A12 A13 A14

The Hestenes preprocessor (Cont.)

•  The Hestenes preprocessor is responsible for calculating the squared
column 2-norms and the covariances between column vectors, in which
AT

i ∗ Aj is computed

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [11/18] X. Wang and J. Zambreno :: Iowa State University

The Jacobi Rotation Component

•  Jacobi rotation component performs the orthogonal transformation
between two column vectors through a series of operations on their
squared column 2-norms and the covariance between them

 var1=|n2	
 –	
 n1|	
 	
 var2=cov	
 ×	
 cov	
 	

var4	
 =	
 var1	
 ×	
 var1	
 	
 var5	
 =	
 4	
 ×	
 var2	
 	
 var6	
 =	
 2	
 ×	
 var2	
 	

var7	
 =	
 var4	
 +	
 var5	
 	
 var8	
 =	
 var4	
 +	
 var6	
 	

var9	
 =√	
 var7	

var10	
 =	
 var1	
 ×	
 var9	
 	

var11	
 =	
 var7	
 +	
 var10	
 	
 var12	
 =	
 var8	
 +	
 var10	
 	

var13	
 =	
 var12	
 /	
 var11	
 	
 var14	
 =	
 var6	
 /	
 var11	
 	

sin	
 =√	
 var14	
 cos	
 =√	
 var13	

×	
 +	
 +	

÷	
 √	

FS
M
	
 C
on

tr
ol
	
 L
og
ic
	

norm1

cos/sin

norm2 cov

norm1
’/norm2

’

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [12/18] X. Wang and J. Zambreno :: Iowa State University

Update Operator

•  The Update operator is responsible for updating column elements and
covariance which are affected by the processed rotations

•  To optimize the use of hardware resources, the Hestenes preprocessor is
able to be reconfigured to function as multiple update kernels

×

-­‐	

× ×

+

×

Ai

Ai’

Aj

Aj’

cos sin

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

𝐴’ 𝑖 = 𝐴𝑖 × cos −𝐴j×sin ’ 𝑖 = 𝐴𝑖 × cos −𝐴j×sin = 𝐴𝑖 × cos −𝐴j×sin × cos −𝐴j×sin

𝐴’j = 𝐴𝑖 × sin + 𝐴j×cos ’j = 𝐴𝑖 × sin + 𝐴j×cos × sin + 𝐴j×cos

RAW-21 :: 20-May-14 :: [13/18] X. Wang and J. Zambreno :: Iowa State University

The Cyclic Order for Vector Pairing
Motivation

Theoretical Background
Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [14/18] X. Wang and J. Zambreno :: Iowa State University

Performance analysis

•  A single Xilinx Virtex-5 XC5VLX330 FPGA on Convey HC-2 system is used

•  The system is tested by executing at 150Mhz for 6 iterations, which is

believed sufficient for achieving convergence with certain thresholds

•  The experimental results demonstrate that the execution time grows
significantly as the number of matrix columns increases, which
determines the number of covariance, whose computation dominates
the overall performance

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [15/18] X. Wang and J. Zambreno :: Iowa State University

Performance analysis (Cont.)

•  The dimensional speedups that can be achieved range from 3.8x to
43.6× for matrices with column sizes from 128 to 256 and row
dimensions from 128 to 2048

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [16/18] X. Wang and J. Zambreno :: Iowa State University

Performance analysis (Cont.)

•  The GPU-based implementation, which ran 106.90ms and 1022.92ms to
decompose a 128×128 and a 256×256 matrix respectively, failed to
achieve any speedup compared to a conventional software solution [2]

•  The FPGA-based design was devised to perform fixed-point operations,
which can only analyze the matrices with the size up to 32×128 due to
the limitation of on-chip memory. It takes 24.3143ms to decompose the
largest analyzed matrix with the dimensions of 32×127 [3]

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [17/18] X. Wang and J. Zambreno :: Iowa State University

Convergence Analysis

•  The mean absolute deviations from zero of the covariance after being
processed by a number of iterations are analyzed and reasonable
convergence can be achieved within 6 iterations of operations for
matrices of dimensions up to 2048

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

RAW-21 :: 20-May-14 :: [18/18] X. Wang and J. Zambreno :: Iowa State University

Conclusion and Future Work

•  An FPGA-based hardware architecture is proposed to perform Singular
Value Decomposition with Hestenes-Jacobi algorithm

•  Dimensional speedups range from 3.8x to 43.6x for matrices with column

dimensions from 128 to 256 and row sizes from 128 to 2048

•  Our analysis provides direction for potential improved solution and our

design will be extended to accelerate SVD applications

Motivation
Theoretical Background

Employed Approach

Proposed Architecture
Experimental Results
Wrap Up

An FPGA Implementation of the Hestenes-Jacobi
Algorithm for Singular Value Decomposition

Xinying Wang, Joseph Zambreno
Reconfigurable Computing Lab

Department of Electrical and Computer Engineering
Iowa State University

21st Reconfigurable Architectures Workshop

May 19-20, 2014, Phoenix, USA

RAW-21 :: 20-May-14 :: [20/18] X. Wang and J. Zambreno :: Iowa State University

References

•  [1] E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” The Computing Research Repository, vol. 0912.3599, 2009.

•  [2] C. Kotas and J. Barhen, “Singular Value Decomposition utilizing parallel
algorithms on graphical processors,” in Proceedings of OCEANS 2011, Sept. 2011,
pp. 1–7.

•  [3] L. Ledesma-Carrillo, E. Cabal-Yepez, R. de J Romero-Troncoso, A. Garcia-
Perez, R. Osornio-Rios, and T. Carozzi, “Reconfigurable FPGA-Based unit for
Singular Value Decomposition of large m x n matrices,” in Proceedings of
International Conference on Reconfigurable Computing and FPGAs (ReConFig),
Nov.-Dec. 2011, pp. 345–350.

