YIS 3 /) N1 £ computer
&ma soclety

Efficient Software-based Runtime Binary
Translation for Coarse-Grained Reconfigurable
Architectures

21st Reconfigurable Architectures Workshop
May 19-20, 2014, Phoenix, USA

Toan X. Mai Jongeun Lee
UNIST (Ulsan Nat’l Institute of Science & Tech.), Korea
jlee@unist.ac.kr

UANhisST

YIS 3 /) N1 £ computer
Gmg soclety

» Application = kernels + nonkernels

- kernels: highly parallel, throughput oriented

- To exploit higher efficiency of accelerators
e Speed-up using accelerator

- Hardware codecs, FPGA, GPGPU

- Coarse-grained reconfigurable architecture
e Programming paradigm

Heterogeneous Computing

Traditionally, static & manual partitioning based
Need access to application source code

Need kernel information

Need knowledge about accelerator architecture
Manually partition and rewrite code for accelerator & CPU

YIS 3 A N1 £ computer
Gmg soclety

Compilation for CGRAs

e Programming paradigm is a key challenge
o CGRAs

- can be easier to program for than FPGAs
« use of high level language (eg, C)
e runtime reconfiguration

- still many problems

» adoption of new tool flow
 manual code change

» no binary compatibility for different CGRA architectures
(eg, 4x4 array to 6x6 array)

YIS A N1 £ computer
&mma soclety

Our Approach

e Runtime Binary Translation (RBT) Software Dynamic
Translation

- detect and translate kernels for CGRA -
e modifies or translates a

at runtime!
running program’s
» Advantages binary instructions
- Transparent acceleration e eg:JavalJIT, valgrind

- Architecture independence

- Must-have in the world of Java _ Java
architectural diversity source code Javac [pytecode
- Free speedup if you have idle accelerator
developer
- Can hide runtime translation overhead
if SDT is already used HElr
input output
data VM " data

Note: Our current implementation is based on LLVM, not Java.

YIS 3 A N1 £ computer
&mﬁ soclety

Extending JIT for CGRA

Just-In-Time compilation:
* RBT for CG RA Functions are translated
- Discover suitable kernels by when and only if they are
o : called
« monitoring loop execution
e examining loop body Base JIT
- Translate kernels to accelerator configuration }

A. Compile Function IR

e Extract DFG from kernels

» Map DFG to accelerator using fast compiler = Replac; r—
Native Call
e Challenges T
- kernels are different from functions (1 @)
call JIT to jump back
« For functions, translation is a must! oo |0 execute

» For kernels, translation is optional and costly!

Host Execution

- kernels have input/output data

YIS 3 A N1 £ computer
Gmg soclety

Target CGRA Architecture

SPIRA

PE PE PE Sequential
- L Processor 47 47 SPM

I I [] Bank 0
PE PE PE
I I L_ Bank 1
PE PE PE
PE PE PE

Bank 3

e SP integrated CGRA

Sequential Processor (SP)
DMA .
» execute seq code, management Main Memory

4x4 PE array accelerator
e execute kernels

Exclusive execution
Shared scratchpad — simplifies data management problem

Mo (ee| m T
M= |0®]| T

YN 3 A N1 £ computer

Qi soclety
RBT Challenges

e Objective
- Maximize runtime improvement over the original JIT

e First challenge

- Which kernels to translate
« Not all loops are kernels worth translating

o Not all kernels are well-suited for accelerator
- Contains function calls, or nested loops

- Variable number of iterations (depending on the arch.)
- Solution
« Monitor loops to identify kernels

e Analyze kernels’ body to determine the suitability

RBT Virtual Machine (RBTVM) Design

1 1
RBTVM ' '
1 r -
1 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
'~ s i !
(1) (2)
3
call LA-JIT) (5) back to host back to host (4) call Moni‘o?
: jump back execution of the old execution of the for a
to compile to execute functi i i '
function F ¢ unction native function suitable
unction native F bi ini
inary containing L loop L
Host Execution
switch to kernel
() execution on RA back to host "
execution

Accelerator Execution

Second Challenge

oo e e e e =

C. Compile Function IR

l

D. Replace Stub with

e e e e I T R

Native Call
e U N S L
(1) (2)
. ®) back to host back to host) call Moni‘g?
call L1-JIT jump back execution of the old execution of the fora
to compile to execute function native function suitable
function F native F binary containing L loop L

Host Execution

(6)

switch to kernel
execution on RA

back to host (7)
execution

Accelerator Execution

Reducing Monitoring Overhead

d Unnecessary monitoring for unsuitable loops.

RBTVM

C. Compile Function IR

l

D. Replace Stub with
Native Call

(3
back to host back to host “) call Monl‘o?

RBT Optimization 1 - Reducing Monitoring Overhead

d Check suitability in L1 instead of in L2

1 1
1
RBTVM : i
1
: |
1 1
1 1
1 1
C T TTTTTTT T T T T ! A. Extract DFGsS\of Kernels [Fmm T s !
U L-JIT | 1 1! Monitor I
1 ' 1y 1
o o . 1
! A. Identify Suitable Loopsin |, ! B. Map DFGs to Accele%m\ ' ! !
! FeEEDEEEED ErlF : ! 1 P! A. Increase Loop Counter !
1 l ! : 1 : 1
E B. Insert Per-Loop Monitor | | E C. Insert Accelerator Control Callback ! i i
. Call L . \
1 1 1 1
! P! L = Threshold? !
' _) [D. Remove Monitor Calls ' .
| C. Compile Function IR : | I 1, .
1 1 1y 1
1 L 1
| l P E. Recompile Function IR = no :
| D. Replace Stub with ' T \ ! '
1 Native Call : 1 1y 1
! vl F. Update Function Native Address ' ! !
e o - 1 1 L -
(1) 2) 3
) ®) back to host back to host) call Moni{02
call L1-JIT jump back execution of the old execution of the fora
to compile to execute function native function suitable
function F native F binary containing L loop L

Host Execution

switch to kernel
execution on RA

(6)

back to host (7)

execution

Accelerator Execution

Reduce Redundant Recompilation Overhead

4
Jd

L2JIT immediately recompiles function after kernel is translated

A function may contain multiple kernels — may be re-compiled
several times

[2 kernels translated within same invocation — 2 recompilations

C. Compile Function IR

|

D. Replace Stub with .
Native Call . :
1

RBT Optimization 2 -
Reducing Redundant Recompilation Overhead

d Lazy recompilation

@

Function F() {
//.....

= e = e e = e =

L1-JIT

D. Compile Function IR

l

E. Replace Stub with

Native Call
PO .
1 2
U @) (5) (6) back to host 4) back to host call MonitS?
call L1-JIT jump back call L2-JIT at execution of the old execution of the for a
to Cofnplle to execute the end of function native function containing suitable
function F native F function F binary L loop L

Host Execution

switch to kernel
(7 execution on RA

back to host
execution

®)

Accelerator Execution

YIS 3 A N1 £ computer
&mﬁ soclety

Implementation

e Implement RBT based on LLVM JIT
- Application first compiled to LLVM bitcode (=IR)
- lli: LLVM JIT (=baseline) — extended to support CGRA
- CGRA mapping algorithm: modulo scheduling
e Performance simulation
- Modified lli running on QEMU PowerPC full system
- Cycle count: PSIM + DinerolV cache simulator
e Architecture
- SP: PowerPC running at 400MHz
- CGRA: 4x4 PE array at 600MHz
- CGRA cycle count: based on CGRA mapping results
- Input/output DMA overhead is hidden due to the SP-integrated architecture

YIS 3 A N1 £ computer
&mﬁ soclety

Experimental Setup

e Design parameters
- Kernel Threshold = 50 times execution

« To qualify as a kernel
- Threshold for # Operations of Kernel = 80 ops

e To determine if a kernel should be translated
e Otherwise too much time on kernel translation

e Benchmarks
- MiBench (cjpeg, djpeg, blowfish e/d, gsm)
- MediaBench (mpeg2dec)
- Compiled using Clang (-loop-simplify, -indvars, etc.)
e Evaluation criteria
- Runtime improvement
- Overheads evaluation (effectiveness of our optimizations)
- Vary # of app. runs (n_,_) for each app to {100, 500, 1000}

Runtime Improvement

d 4 cases
= BaseJIT (baseline): original JIT, without accelerator support
= RBT-12imm: RBTVM without any optimization
= RBT-l1imm: RBTVM + 1st optimization (checking suitability in L1 instead of in L2)

= RBT-l1lazy: RBTVM + 1st + 2nd optimization (lazy recompilation instead of immediate)
d Better runtime improvement as n_ _increases
J RBT-l1lazy gives best average improvement: 1.44 times over BaseJIT

= across all benchmarks and different values of n_]

M BaselIT
B RBT-12imm
B RBT-I1imm

H RBT-I1llazy

Runtime Improvement (times)

100 | 500 | 1000 100 | 500 1000 100 | 500 | 1000 100 | 500 | 1000 100 | 500 | 1000 100 | 500 | 1000 100 | 500 | 1000

cjpeg djpeg mpeg2dec blowfish_e blowfish_d gsm average

Number of application runs n,,,. € {100, 500, 1000}

Runtime Breakdown

Relative Runtime Breakdown (%)

O 00 L0CC0CCOC

140%

120% -

100% -

80%

60%

40%

20%

0%

4 cases: BaseJIT, RBT-12imm, RBT-l1imm, and RBT-l1lazy
Runtime = Seq. Exec + Kernel Exec + Overheads
BaseJIT runtime represents 100%

Kernel Speedup is the main factor leading to Runtime improvement
Average Kernel Speedup (for all three RBT cases): 5.88 times

Three RBT cases differ in the overheads

M Overheads
m Kernel Execution

M Sequential Execution

imm |
I;

S
put
=
2

g Rer
2 8 wer

-3
=

Number of application runs n_,,. € {100, 500, 1000}

Overhead Breakdown

Relative Overhead Breakdown (%)

3

d
d
d

Overheads = Kernel Translation @ion + Other @

Other Overheads = Monitoring + Context Switching
4 cases: BaseJIT, RBT-12imm, RBT-l1imm, and RBT-l1lazy
BaseJIT runtime represents 100%

ompilation

m Other Overheads

= E &

3|5|3|= EER 1= | 3| : HER

ot | [

YIS 3 A N1 £ computer
&mﬁ soclety

Related Work

o Transparent Reconfigurable Acceleration for Heterogeneous
Embedded Applications (Beck et al., DATE’08)

e Application of Binary Translation to Java Reconfigurable
Architectures (Beck et al., IPDPS’05)

- Require additional hardware for binary translation and analyzing
instruction sequence

- Very different accelerator architecture

e A Java Virtual Machine for Runtime Reconfigurable Computing
(Greskamp et al, FCCM’05)

- Targeting FPGA accelerators

o Differences compared with the previous work
- Pure software solution (JIT-based VM only)
- Target architecture: equipped with CGRA accelerator (2D array of PEs)

YIS 3 A N1 £ computer
Gmg soclety

Conclusion

« New programming paradigm: runtime translation
- Can greatly enhance usability of reconfigurable processors
- Also enables exploiting smaller kernels
- Shared scratchpad memory is essential
e In this paper
- Propose RBT VM design
- Optimizations and implementation for RBT VM
- Over 50% speedup at application level can be achieved
e Future Work
- Investigate tradeoff between translation time vs. mapping quality
- Compare with other runtime compilation approach (eg, OpenCL)
- Extension for more general architecture (without shared memory)

