
Efficient Software-based Runtime Binary
Translation for Coarse-Grained Reconfigurable

Architectures

Toan X. Mai Jongeun Lee
UNIST (Ulsan Nat’l Institute of Science & Tech.), Korea

jlee@unist.ac.kr

21st Reconfigurable Architectures Workshop
May 19-20, 2014, Phoenix, USA

Heterogeneous Computing
• Application = kernels + nonkernels

– kernels: highly parallel, throughput oriented

– To exploit higher efficiency of accelerators

• Speed-up using accelerator
– Hardware codecs, FPGA, GPGPU

– Coarse-grained reconfigurable architecture

• Programming paradigm
– Traditionally, static & manual partitioning based
– Need access to application source code
– Need kernel information
– Need knowledge about accelerator architecture
– Manually partition and rewrite code for accelerator & CPU

Compilation for CGRAs
• Programming paradigm is a key challenge
• CGRAs

– can be easier to program for than FPGAs
• use of high level language (eg, C)
• runtime reconfiguration

– still many problems
• adoption of new tool flow
• manual code change
• no binary compatibility for different CGRA architectures

(eg, 4x4 array to 6x6 array)

Our Approach
• Runtime Binary Translation (RBT)

– detect and translate kernels for CGRA
at runtime!

• Advantages

– Transparent acceleration

– Architecture independence

– Must-have in the world of
architectural diversity

– Free speedup if you have idle accelerator

– Can hide runtime translation overhead
if SDT is already used

developer

user

Extending JIT for CGRA
• RBT for CGRA

– Discover suitable kernels by

• monitoring loop execution

• examining loop body

– Translate kernels to accelerator configuration

• Extract DFG from kernels

• Map DFG to accelerator using fast compiler

• Challenges

– kernels are different from functions

• For functions, translation is a must!

• For kernels, translation is optional and costly!

– kernels have input/output data

Target CGRA Architecture

• SP integrated CGRA
– Sequential Processor (SP)

• execute seq code, management

– 4x4 PE array accelerator
• execute kernels

– Exclusive execution
– Shared scratchpad → simplifies data management problem

Main Memory

Sequential
Processor

RA

P
E

Bank 0

Bank 1

Bank 2

Bank 3

P
E

P
E

P
E

SPIRA

SPM

DMA

RBT Challenges
• Objective

– Maximize runtime improvement over the original JIT

• First challenge

– Which kernels to translate

• Not all loops are kernels worth translating

• Not all kernels are well-suited for accelerator

– Contains function calls, or nested loops

– Variable number of iterations (depending on the arch.)

– Solution

• Monitor loops to identify kernels

• Analyze kernels’ body to determine the suitability

RBT Virtual Machine (RBTVM) Design

no
yes

back to host
execution

switch to kernel
execution on RA

Accelerator Execution

back to host
execution of the

function
containing L

back to host
execution of the old

function native
binary

L2-JIT

yes

call Monitor
for a

suitable
loop L

no

jump back
to execute
native F

call L1-JIT
to compile
function F

L1-JIT

Host Execution

A. Identify Loops in possible
callees of F

C. Compile Function IR

D. Replace Stub with
Native Call

Monitor

A. Increase Loop Counter

= Threshold?

A. Extract DFGs of Kernels

B. Map DFGs to Accelerator

C. Insert Accelerator Control Callback

D. Remove Monitor Calls

E. Recompile Function IR

F. Update Function Native Address

(1) (2) (3)(4)(5)

(6) (7)

B. Insert Per-Loop Monitor
Call

Suitable?
RBTVM

Second Challenge

no
yes

back to host
execution

switch to kernel
execution on RA

Accelerator Execution

back to host
execution of the

function
containing L

back to host
execution of the old

function native
binary

L2-JIT

yes

call Monitor
for a

suitable
loop L

no

jump back
to execute
native F

call L1-JIT
to compile
function F

L1-JIT

Host Execution

A. Identify Loops in possible
callees of F

C. Compile Function IR

D. Replace Stub with
Native Call

Monitor

A. Increase Loop Frequency

= Threshold?

A. Extract DFGs of Kernels

B. Map DFGs to Accelerator

C. Insert Accelerator Control Callback

D. Remove Monitor Calls

E. Recompile Function IR

F. Update Function Native Address

(1) (2) (3)(4)(5)

(6) (7)

B. Insert Per-Loop Monitor
Call

Suitable?
RBTVM

❑ Second Challenge: Reducing runtime overheads

▪ Reduce Monitoring overhead

▪ Reduce Recompilation overhead

❑ Unnecessary monitoring for unsuitable loops.

Reducing Monitoring Overhead

no
yes

back to host
execution

switch to kernel
execution on RA

Accelerator Execution

back to host
execution of the

function
containing L

back to host
execution of the old

function native
binary

L2-JIT

yes

call Monitor
for a

suitable
loop L

no

jump back
to execute
native F

call L1-JIT
to compile
function F

L1-JIT

Host Execution

A. Identify Loops in possible
callees of F

C. Compile Function IR

D. Replace Stub with
Native Call

Monitor

A. Increase Loop Counter

= Threshold?

A. Extract DFGs of Kernels

B. Map DFGs to Accelerator

C. Insert Accelerator Control Callback

D. Remove Monitor Calls

E. Recompile Function IR

F. Update Function Native Address

(1) (2) (3)(4)(5)

(6) (7)

B. Insert Per-Loop Monitor
Call

Suitable?
RBTVM

❑ Solution: check suitability in L1 instead of in L2

RBT Optimization 1 – Reducing Monitoring Overhead

back to host
execution

switch to kernel
execution on RA

Accelerator Execution

back to host
execution of the

function
containing L

back to host
execution of the old

function native
binary

L2-JIT

yes

call Monitor
for a

suitable
loop L

no

jump back
to execute
native F

call L1-JIT
to compile
function F

L1-JIT

Host Execution

A. Identify Suitable Loops in
possible callees of F

C. Compile Function IR

D. Replace Stub with
Native Call

Monitor

A. Increase Loop Counter

= Threshold?

A. Extract DFGs of Kernels

B. Map DFGs to Accelerator

C. Insert Accelerator Control Callback

D. Remove Monitor Calls

E. Recompile Function IR

F. Update Function Native Address

(1) (2) (3)(4)(5)

(6) (7)

B. Insert Per-Loop Monitor
Call

RBTVM

❑ Check suitability in L1 instead of in L2

❑ L2JIT immediately recompiles function after kernel is translated
❑ A function may contain multiple kernels → may be re-compiled

several times
❑ 2 kernels translated within same invocation → 2 recompilations

Reduce Redundant Recompilation Overhead

back to host
execution

switch to kernel
execution on RA

Accelerator Execution

back to host
execution of the

function
containing L

back to host
execution of the

old function native
binary

L2-JIT

yes

call
Monitor

for a
suitable
loop L

no

jump back
to execute
native F

call L1-JIT
to compile
function F

L1-JIT

Host Execution

A. Identify Suitable Loops
in possible callees of F

C. Compile Function IR

D. Replace Stub with
Native Call

Monitor

A. Increase Loop Counter

=
Threshold?

A. Extract DFGs of Kernels

B. Map DFGs to Accelerator

C. Insert Accelerator Control Callback

D. Remove Monitor Calls

E. Recompile Function IR

F. Update Function Native Address

(1) (2) (3)(4)(5)

(6) (7)

B. Insert Per-Loop
Monitor Call

RBTVM

…
…
…
…

…

…

…
 for (…)
 …

 for (…)
 …

❑ Solution: Lazy recompilation
▪ Delay the recompilation until the end of the function

▪ Do the recompilation just once if multiple kernels are detected within
one invocation of the function.

RBT Optimization 2 –
Reducing Redundant Recompilation Overhead

yes

no

call L2-JIT at
the end of
function F

back to host
execution

switch to kernel
execution on RA

Accelerator Execution

back to host
execution of the

function containing
L

back to host
execution of the old

function native
binary

L2-JIT

yes

call Monitor
for a

suitable
loop L

no

jump back
to execute
native F

call L1-JIT
to compile
function F

L1-JIT

Host Execution

A. Identify Suitable Loops in
possible callees of F

D. Compile Function IR

E. Replace Stub with
Native Call

Monitor

A. Increase Loop Counter

= Threshold?

A. Extract DFGs of Kernels

B. Map DFGs to RA

C. Insert Accelerator Control Callback

D. Remove Monitor & L2-JIT Calls

E. Recompile Function IR

F. Update Function Native Address

(1) (2) (3)(4)(6)

(7) (8)

B. Insert Per-Loop Monitor
Call

C. Insert Per-Function
L2-JIT Call in callees

B. Add L to To-Be-Translated
Loop List (Kernel List)

(5)

some
kernels?

RBTVM

…
…
…
…

…

…

…
 for (…)
 …

 for (…)
 …

 L2JITCall();

❑ Lazy recompilation

 L2JITCall();

Implementation
• Implement RBT based on LLVM JIT

– Application first compiled to LLVM bitcode (=IR)

– lli: LLVM JIT (=baseline) → extended to support CGRA

– CGRA mapping algorithm: modulo scheduling

• Performance simulation

– Modified lli running on QEMU PowerPC full system

– Cycle count: PSIM + DineroIV cache simulator

• Architecture

– SP: PowerPC running at 400MHz

– CGRA: 4x4 PE array at 600MHz

– CGRA cycle count: based on CGRA mapping results

– Input/output DMA overhead is hidden due to the SP-integrated architecture

Experimental Setup
• Design parameters

– Kernel Threshold = 50 times execution
• To qualify as a kernel

– Threshold for # Operations of Kernel = 80 ops
• To determine if a kernel should be translated

• Otherwise too much time on kernel translation

• Benchmarks
– MiBench (cjpeg, djpeg, blowfish e/d, gsm)

– MediaBench (mpeg2dec)

– Compiled using Clang (-loop-simplify, -indvars, etc.)

• Evaluation criteria
– Runtime improvement

– Overheads evaluation (effectiveness of our optimizations)

– Vary # of app. runs (nruns) for each app to {100, 500, 1000}

Runtime Improvement
❑ 4 cases

▪ BaseJIT (baseline): original JIT, without accelerator support

▪ RBT-l2imm: RBTVM without any optimization

▪ RBT-l1imm: RBTVM + 1st optimization (checking suitability in L1 instead of in L2)

▪ RBT-l1lazy: RBTVM + 1st + 2nd optimization (lazy recompilation instead of immediate)
❑ Better runtime improvement as nruns increases
❑ RBT-l1lazy gives best average improvement: 1.44 times over BaseJIT

▪ across all benchmarks and different values of nruns

Runtime Breakdown
❑ 4 cases: BaseJIT, RBT-l2imm, RBT-l1imm, and RBT-l1lazy
❑ Runtime = Seq. Exec + Kernel Exec + Overheads
❑ BaseJIT runtime represents 100%

❑ Kernel Speedup is the main factor leading to Runtime improvement

❑ Average Kernel Speedup (for all three RBT cases): 5.88 times

❑ Three RBT cases differ in the overheads

Overhead Breakdown
❑ Overheads = Kernel Translation + Recompilation + Other Overheads
❑ Other Overheads = Monitoring + Context Switching
❑ 4 cases: BaseJIT, RBT-l2imm, RBT-l1imm, and RBT-l1lazy
❑ BaseJIT runtime represents 100%

❑ + 1st optimization: RBT-l2imm → RBT-l1imm:

▪ 75.00% reduction in Monitoring & Context Switching overheads are reduced

❑ + 2nd optimization: RBT-l1imm → RBT-l1lazy:

▪ 31.94% reduction in Recompilation Overhead

Related Work
• Transparent Reconfigurable Acceleration for Heterogeneous

Embedded Applications (Beck et al., DATE’08)

• Application of Binary Translation to Java Reconfigurable
Architectures (Beck et al., IPDPS’05)

– Require additional hardware for binary translation and analyzing
instruction sequence

– Very different accelerator architecture

• A Java Virtual Machine for Runtime Reconfigurable Computing
(Greskamp et al, FCCM’05)

– Targeting FPGA accelerators

• Differences compared with the previous work
– Pure software solution (JIT-based VM only)
– Target architecture: equipped with CGRA accelerator (2D array of PEs)

Conclusion
• New programming paradigm: runtime translation

– Can greatly enhance usability of reconfigurable processors
– Also enables exploiting smaller kernels
– Shared scratchpad memory is essential

• In this paper
– Propose RBT VM design
– Optimizations and implementation for RBT VM
– Over 50% speedup at application level can be achieved

• Future Work
– Investigate tradeoff between translation time vs. mapping quality
– Compare with other runtime compilation approach (eg, OpenCL)
– Extension for more general architecture (without shared memory)

