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Heterogeneous Computing
• Application = kernels + nonkernels

– kernels: highly parallel, throughput oriented

– To exploit higher efficiency of accelerators

• Speed-up using accelerator
– Hardware codecs, FPGA, GPGPU

– Coarse-grained reconfigurable architecture

• Programming paradigm
– Traditionally, static & manual partitioning based
– Need access to application source code
– Need kernel information
– Need knowledge about accelerator architecture
– Manually partition and rewrite code for accelerator & CPU

 



Compilation for CGRAs
• Programming paradigm is a key challenge
• CGRAs

– can be easier to program for than FPGAs
• use of high level language (eg, C)
• runtime reconfiguration

– still many problems
• adoption of new tool flow
• manual code change
• no binary compatibility for different CGRA architectures 

(eg, 4x4 array to 6x6 array) 

 



Our Approach
• Runtime Binary Translation (RBT)

– detect and translate kernels for CGRA 
at runtime!

• Advantages

– Transparent acceleration

– Architecture independence

– Must-have in the world of 
architectural diversity

– Free speedup if you have idle accelerator

– Can hide runtime translation overhead
if SDT is already used
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Extending JIT for CGRA
• RBT for CGRA

– Discover suitable kernels by 

• monitoring loop execution

• examining loop body

– Translate kernels to accelerator configuration

• Extract DFG from kernels

• Map DFG to accelerator using fast compiler

• Challenges

– kernels are different from functions

• For functions, translation is a must!

• For kernels, translation is optional and costly!

– kernels have input/output data

 



Target CGRA Architecture

• SP integrated CGRA
– Sequential Processor (SP)

• execute seq code, management

– 4x4 PE array accelerator
• execute kernels

– Exclusive execution
– Shared scratchpad → simplifies data management problem
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RBT Challenges 
• Objective

– Maximize runtime improvement over the original JIT

• First challenge

– Which kernels to translate

• Not all loops are kernels worth translating

• Not all kernels are well-suited for accelerator

– Contains function calls, or nested loops

– Variable number of iterations (depending on the arch.)

– Solution

• Monitor loops to identify kernels

• Analyze kernels’ body to determine the suitability

 



RBT Virtual Machine (RBTVM) Design
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Second Challenge
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❑ Second Challenge: Reducing runtime overheads

▪ Reduce Monitoring overhead

▪ Reduce Recompilation overhead

 



❑ Unnecessary monitoring for unsuitable loops.

Reducing Monitoring Overhead
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❑ Solution: check suitability in L1 instead of in L2

 



RBT Optimization 1 – Reducing Monitoring Overhead
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❑ Check suitability in L1 instead of in L2

 



❑ L2JIT immediately recompiles function after kernel is translated
❑ A function may contain multiple kernels → may be re-compiled 

several times
❑ 2 kernels translated within same invocation → 2 recompilations

Reduce Redundant Recompilation Overhead
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❑ Solution: Lazy recompilation
▪ Delay the recompilation until the end of the function

▪ Do the recompilation just once if multiple kernels are detected within 
one invocation of the function.

 



RBT Optimization 2 – 
Reducing Redundant Recompilation Overhead
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❑ Lazy recompilation

 L2JITCall();

 



Implementation
• Implement RBT based on LLVM JIT

– Application first compiled to LLVM bitcode (=IR)

– lli: LLVM JIT (=baseline) → extended to support CGRA

– CGRA mapping algorithm: modulo scheduling

• Performance simulation

– Modified lli running on QEMU PowerPC full system

– Cycle count: PSIM + DineroIV cache simulator

• Architecture

– SP: PowerPC running at 400MHz

– CGRA: 4x4 PE array at 600MHz

– CGRA cycle count: based on CGRA mapping results

– Input/output DMA overhead is hidden due to the SP-integrated architecture

 



Experimental Setup
• Design parameters

– Kernel Threshold = 50 times execution
• To qualify as a kernel

– Threshold for # Operations of Kernel = 80 ops
• To determine if a kernel should be translated

• Otherwise too much time on kernel translation

• Benchmarks
– MiBench (cjpeg, djpeg, blowfish e/d, gsm)

– MediaBench (mpeg2dec)

– Compiled using Clang (-loop-simplify, -indvars, etc.)

• Evaluation criteria
– Runtime improvement

– Overheads evaluation (effectiveness of our optimizations)

– Vary # of app. runs (nruns)  for each app to {100, 500, 1000}

 



Runtime Improvement
❑ 4 cases

▪ BaseJIT (baseline): original JIT, without accelerator support

▪ RBT-l2imm: RBTVM without any optimization

▪ RBT-l1imm: RBTVM + 1st optimization (checking suitability in L1 instead of in L2)

▪ RBT-l1lazy: RBTVM + 1st + 2nd optimization (lazy recompilation instead of immediate)
❑ Better runtime improvement as nruns increases
❑ RBT-l1lazy gives best average improvement: 1.44 times over BaseJIT

▪ across all benchmarks and different values of nruns

 



Runtime Breakdown
❑ 4 cases: BaseJIT, RBT-l2imm, RBT-l1imm, and RBT-l1lazy
❑ Runtime = Seq. Exec + Kernel Exec + Overheads
❑ BaseJIT runtime represents 100%

❑ Kernel Speedup is the main factor leading to Runtime improvement

❑ Average Kernel Speedup (for all three RBT cases): 5.88 times

❑ Three RBT cases differ in the overheads

 



Overhead Breakdown
❑ Overheads = Kernel Translation + Recompilation + Other Overheads
❑ Other Overheads = Monitoring + Context Switching
❑ 4 cases: BaseJIT, RBT-l2imm, RBT-l1imm, and RBT-l1lazy
❑ BaseJIT runtime represents 100%

❑ + 1st optimization: RBT-l2imm → RBT-l1imm: 

▪ 75.00% reduction in Monitoring & Context Switching overheads are reduced 

❑ + 2nd optimization: RBT-l1imm → RBT-l1lazy: 

▪ 31.94% reduction in Recompilation Overhead

 



Related Work
• Transparent Reconfigurable Acceleration for Heterogeneous 

Embedded Applications (Beck et al., DATE’08)

• Application of Binary Translation to Java Reconfigurable 
Architectures (Beck et al., IPDPS’05)

– Require additional hardware for binary translation and analyzing 
instruction sequence

– Very different accelerator architecture

• A Java Virtual Machine for Runtime Reconfigurable Computing 
(Greskamp et al, FCCM’05)

– Targeting FPGA accelerators

• Differences compared with the previous work
– Pure software solution (JIT-based VM only)
– Target architecture: equipped with CGRA accelerator (2D array of PEs)

 



Conclusion
• New programming paradigm: runtime translation

– Can greatly enhance usability of reconfigurable processors
– Also enables exploiting smaller kernels 
– Shared scratchpad memory is essential

• In this paper
– Propose RBT VM design
– Optimizations and implementation for RBT VM
– Over 50% speedup at application level can be achieved

• Future Work
– Investigate tradeoff between translation time vs. mapping quality
– Compare with other runtime compilation approach (eg, OpenCL)
– Extension for more general architecture (without shared memory)

 


