
�back forw�

Reconfigurable Mapping Functions for
Online Architectures

Clemson University

Shyamnath Harinath and Ron Sass
May 15, 2003

PARL 1 RCC

�back forw�

Mapping Functions

informally, we’re talking about a RC module f

()f sinput output

with two operations

➭ add a key,value pair to f

➭ given a key, find the matching value

PARL 2 RCC

�back forw�

Mapping Functions (cont’d)

Closely related to a number of computing concepts...

➭ associative memory

➭ content-addressable memory

➭ in software, called a dictionary, with variety of implementa-
tions

❏ hashing

❏ trees

❏ et al.

PARL 3 RCC

�back forw�

Network Classification

➭ some applications have stringent constraints (1–5 cycles) on
the search operation

➭ for example, classifying network packets has numerous uses...

❏ IP characterization

❏ flow table and QoS-related router functions

❏ network intrusion detection

➭ all of these problems require either looking at the packet
header (or sometimes payload) and determining

PARL 4 RCC

�back forw�

Network Classification Example

➭ for example, a router might want to know ...

❏ what outgoing port?

()f s"130.127.24.101" "port 17"

❏ has the address/port been legally established?

❏ if the payload contain a flagged signature?

➭ hardware solutions can often be prohibitively expensive

PARL 5 RCC

�back forw�
Outline

➭ Preliminaries

❏ online architectures

❏ formal problem statement

➭ Objective

➭ Three RC Implementations

➭ Experiments and Results

❏ measures

❏ platform

❏ results

PARL 6 RCC

�back forw�

Reconfigurable Computing (RC)

➭ using FPGAs, RC realizes a digital hardware circuit (a con-
figuration) at run-time

➭ SRAM-based FPGAs can be reprogrammed repeatedly

➭ modern (larger) FPGAs support partial reconfigurable

➭ form the basis of run-time reconfigurable (RTR) systems where
multiple circuits are cycled through during a single applica-
tion

PARL 7 Preliminaries

�back forw�
Online Architectures

further refinement of RTR systems is an online architecture
where

➭ sequence of configurations
not known a priori

➭ configuration not known a
priori

➭ an online algorithm decides
the next change at run-time

Online
Decision
Algorithm

Logic

Reconfigurable

profile
informationcommands

reconfiguration

or

host
processor

Input/Output

PARL 8 Preliminaries

�back forw�

Arbitrary Mapping Function

We are interested in realizing mapping functions in online archi-
tectures; formally our mapping function is

➭ a partial function

f : S 7→ T

where ...
dom f

Tf

S

PARL 9 Preliminaries

�back forw�
Arbitrary Mapping Function (cont’d)

where

➭ the source set S = {s : Z | 0 ≤ t < 2w • s}
where w is input width (in bits)

➭ the target set T = {t : Z | 0 ≤ t < 2v • t}
where v is output width (in bits)

➭ the capacity, n, is dlog2 ne ≈ v

()f s
w v TS

PARL 10 Preliminaries

�back forw�

Arbitrary Mapping Function (cont’d)

➭ two operations; assuming s ∈ S and t ∈ T

❏ SEARCH— given s find t; i.e. calculate f (s)

❏ ASSOC— given (s, t) and f make a new f ′ such that

f = f ′ except f ′(s) = t

PARL 11 Preliminaries

�back forw�

Content-Addressable Memory (CAM)

➭ hardware device that

❏ standard memory mode

❏ match mode

➭ collections of small CAMs are used in

❏ TLB (virtual-to-physical memory translations)

❏ main memory hierarchies (caches)

PARL 12 Preliminaries

�back forw�

CAM device v. Arbitrary Mapping Function

➭ CAMs are similar to arbitrary mapping functions except that
a CAM’s capacity is usually not related to | S | or | T |

➭ recall in our problem, we assume capacity

n � | S | n ≈ | T |

➭ mapping functions can be easily extended to CAMs with a
bank of v × 1 RAMs

PARL 13 Preliminaries

�back forw�

Content-Addressable Memory (cont’d)

arbitrary mapping

function

f (s)
w

s
v

 t
ν × 1
RAM

ν × 1
RAM

ν × 1
RAM

ν × 1
RAM

ν × 1
RAM

ν × 1
RAM

x

ν × 1Bank of RAMs (x times)

PARL 14 Preliminaries

�back forw�

Objective

➭ replace CAMs and other dictionary structures with mapping
functions implemented in online architectures

➭ for our motivating applications, we can assume

❏ SEARCH is very common and must be very fast

❏ ASSOC is less frequent and can be more costly

➭ The Question: While meeting the tight timing constraints
of the SEARCH operation, what implementation maximizes
capacity and minimizes reconfiguration time (ASSOC opera-
tion)?

PARL 15 Objective

�back forw�

Three Implementations

➭ CAM1/CAM2

➭ RCAM

➭ QM-Tab

PARL 16 Implementations

�back forw�
CAM1/CAM2

➭ CAM1 — registers each s ∈ S separately, feeds a two-input
comparator

➭ CAM2 — configures constant comparators for each s ∈ S

2−input
compare

2−input
compare

E

N

C

O

D

E

R
2−input

compare

Reg

Reg

t

t

t

0

1

v−1

s

Reg

1

2

w

CAM1

constant
compare

E

N

C

O

D

E

R

constant
compare

constant
compare

t

t

t

0

1

v−1

s
CAM2

PARL 17 Implementations

�back forw�
RCAM

➭ as described previously∗ aim for a single match (nomatch)
signal using LUTs to store data and matching function

constant
compare

E

N

C

O

D

E

R

t0

match3

s
RCAM

s

s

s

4−7

0−3 LUT
(16x1 RAM)

s8−11

12−15

v

match1

t

t

1

−1

match2

∗Steve Guccione, Delon Levi, and Daniel Dows, “A Reconfigurable Content
Addressable Memory,” RAW 2000

PARL 18 Implementations

�back forw�
QM-Tab

➭ applies the multibit Quine-McClusky tabulation method to
the function f to reduce the number of gates and then maps
to LUTs

❏ each output bit in t has a separate function (all functions
share common minterms)

❏ shared minterms lead to larger capacity

❏ ASSOC is a significant software process

❏ the number of cascaded LUTs increases very slowly with
capacity

➭ unlike the others, performance is highly dependent on data
set

PARL 19 Implementations

�back forw�

QM-Tab (cont’d)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I0−3

I4−7

I8−11

I12−15

I0−3

I12−15

I8−11

I4−7

Array of Common Patterns

Minterm

Minterm 1

k

(16 bits)

(16 bits)

RAM RAM RAM

RAMRAM

RAM

RAM

RAM

RAM RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

RAM

PARL 20 Implementations

�back forw�

Experiments

➭ first-order effects of technical choices

➭ use Java for software processes

➭ use JHDL for hardware description

➭ use Xilinx tool chain to generate bitfiles

➭ target hardware: XC4085XLA (no partial reconfiguration)

➭ important measures: space, SEARCH latency, ASSOC com-
pute time

PARL 21 Experiments

�back forw�
Measures

➭ space — s(n,w) measured in CLBs (imprecise)
➭ SEARCH latency — measured in cycles
➭ ASSOC— total time is reconfigure time plus time to determine

next configuration

❏ for 4085 (no partial reconfiguration), reconfigure time is
constant

❏ we simply report software time-to-compute next configu-
ration

➭ some implementations depend on the data; for the others we
summarize

➭ ultimately, we’d like to know for each implementation a range
of w and capacities n for a device

PARL 22 Experiments

�back forw�

Summary Results

Implementation S(n; w) cycles fixed routing? T1(n)

CAM1 3× n × dw/2e 3 y none
CAM2 2× n × dw/8e 2 y O(1)
RCAM 3× n × dw/8e 2 n O(n)

QM Tabulation varies O(1)† n O(2n)

† usually 2–3

PARL 23 Experiments

�back forw�

Data Dependent Measures

➭ to complete the comparison, we need data samples for for
QM-Tab ASSOC operation

❏ randomly select various size sets of s ∈ S elements

❏ for each assign a random output t

➭ worked with the range of capacities and a fixed input width
w for QM-Tab ASSOC operation

PARL 24 Experiments

�back forw�
Space for a fixed w = 16

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000

of

 C
LB

s

number of associations

Space (with w=16)

CAM1
CAM2
RCAM

Q-M Tab

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000 35000 40000

of

 C
LB

s

number of associations

Space (with w=16)

Q-M Tab

PARL 25 Experiments

�back forw�
Time to Determine Next Configuration

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5000 10000 15000 20000 25000 30000 35000 40000

T
im

e
(s

ec
)

of Mappings

Runtime results for 16bit implicants

"16runtime.txt"

PARL 26 Experiments

�back forw�
Capacity XC4085

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000

W
id

th
 (

w
)

number of associations

XILINX 4085

CAM1
RCAM
CAM2

Q-M Tab

PARL 27 Experiments

�back forw�

Analysis : Resource Utilization

➭ clearly, CAM1/CAM2 are very wasteful of resources, severely
limiting capacity

➭ RCAM lies in between CAM2 and QM-Tab but is much closer
to CAM2

➭ QM-Tab — clear winner in capacity

PARL 28 Conclusions

�back forw�

Analysis : Structure

➭ the real story behind time-to-reconfigure is the circuit’s struc-
ture

❏ CAM1/CAM2 — simple structure with easily accessed
(s, t) pairs (none or almost no software process needed)

❏ RCAM — slightly more complicated structure but the re-
programming is not free and may require re-routing

❏ QM-Tab — total loss of structure and we are unaware of
any incremental algorithms

PARL 29 Conclusions

�back forw�
Conclusion

➭ all implementations meet SEARCH cycle requirements

➭ CAM1/CAM2 and RCAM are of limited use due to their rel-
atively small capacity

➭ QM-Tab delivers desired capacity but existing time-to-reconfigure
algorithm

❏ is costly

❏ not intended to be incremental

➭ results suggest that an incremental algorithm similar to multi-
bit QM-Tab is possible that approaches QM-Tab’s capacity
but with less reconfiguration cost

PARL 30 Conclusions

�back forw�

Thank You!

For more information, please visit the Parallel Architecture
Research Lab web page:

http://www.parl.clemson.edu/

or email me...
rsass@clemson.edu

PARL 31 Conclusions

http://www.parl.clemson.edu/

List of Slides

Reconfigurable Mapping Functions for On-
line Architectures .1

Introduction . 2

Formally . 3

Content Addressable Memory (CAM)4

CAM and Arbitrary Mapping Function5

Reconfigurable Computing 6

Online Architecture . 7

Objective .8

Techniques: CAM .. 9

Techniques: Reconfigurable CAM 11

Techniques: Q-M Multibit Tabulation Method
13

Comparison of Techniques: Resource Utiliza-
tion .15

Comparison of Techniques: Structure . . . 16

Hardware Architecture . 17

Results . 18

Results: Reconfiguration time graph for Q-M
Tab . 19

Summary of Results .20

n vs w tradeoff on Xilinx 4085 21

VirtexII Family . 22

Conclusion . 23

Conclusion (cont’d) . 24

�back forw�

Content-Addressable Memory (CAM)
➭ hardware device that

❏ standard memory mode

❏ match mode

➭ collections of small CAMs are used in

❏ TLB (virtual-to-physical memory translations)

❏ main memory hierarchies (caches)

PARL 32 Conclusions

	Mapping Functions
	Mapping Functions (cont'd)
	Network Classification
	Network Classification Example
	Outline
	Reconfigurable Computing (RC)
	Online Architectures
	Arbitrary Mapping Function
	Arbitrary Mapping Function (cont'd)
	Arbitrary Mapping Function (cont'd)
	Content-Addressable Memory (CAM)
	CAM device v. Arbitrary Mapping Function
	Content-Addressable Memory (cont'd)
	Objective
	Three Implementations
	CAM1/CAM2
	RCAM
	QM-Tab

