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Mapping Functions

informally, we’re talking about a RC module f

(  )f sinput output

with two operations

➭ add a key,value pair to f

➭ given a key, find the matching value
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Mapping Functions (cont’d)

Closely related to a number of computing concepts...

➭ associative memory

➭ content-addressable memory

➭ in software, called a dictionary, with variety of implementa-
tions

❏ hashing

❏ trees

❏ et al.
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Network Classification

➭ some applications have stringent constraints (1–5 cycles) on
the search operation

➭ for example, classifying network packets has numerous uses...

❏ IP characterization

❏ flow table and QoS-related router functions

❏ network intrusion detection

➭ all of these problems require either looking at the packet
header (or sometimes payload) and determining
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Network Classification Example

➭ for example, a router might want to know ...

❏ what outgoing port?

(  )f s"130.127.24.101" "port 17"

❏ has the address/port been legally established?

❏ if the payload contain a flagged signature?

➭ hardware solutions can often be prohibitively expensive
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Outline

➭ Preliminaries

❏ online architectures

❏ formal problem statement

➭ Objective

➭ Three RC Implementations

➭ Experiments and Results

❏ measures

❏ platform

❏ results
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Reconfigurable Computing (RC)

➭ using FPGAs, RC realizes a digital hardware circuit (a con-
figuration) at run-time

➭ SRAM-based FPGAs can be reprogrammed repeatedly

➭ modern (larger) FPGAs support partial reconfigurable

➭ form the basis of run-time reconfigurable (RTR) systems where
multiple circuits are cycled through during a single applica-
tion

PARL 7 Preliminaries



�back forw�
Online Architectures

further refinement of RTR systems is an online architecture
where

➭ sequence of configurations
not known a priori

➭ configuration not known a
priori

➭ an online algorithm decides
the next change at run-time

Online
Decision
Algorithm

Logic

Reconfigurable

profile
informationcommands

reconfiguration

or

host
processor

Input/Output
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Arbitrary Mapping Function

We are interested in realizing mapping functions in online archi-
tectures; formally our mapping function is

➭ a partial function

f : S 7→ T

where ...
dom f

Tf

S
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Arbitrary Mapping Function (cont’d)

where

➭ the source set S = {s : Z | 0 ≤ t < 2w • s}
where w is input width (in bits)

➭ the target set T = {t : Z | 0 ≤ t < 2v • t}
where v is output width (in bits)

➭ the capacity, n, is dlog2 ne ≈ v

(  )f s
w v TS

PARL 10 Preliminaries



�back forw�

Arbitrary Mapping Function (cont’d)

➭ two operations; assuming s ∈ S and t ∈ T

❏ SEARCH— given s find t; i.e. calculate f (s)

❏ ASSOC— given (s, t) and f make a new f ′ such that

f = f ′ except f ′(s) = t
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Content-Addressable Memory (CAM)

➭ hardware device that

❏ standard memory mode

❏ match mode

➭ collections of small CAMs are used in

❏ TLB (virtual-to-physical memory translations)

❏ main memory hierarchies (caches)
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CAM device v. Arbitrary Mapping Function

➭ CAMs are similar to arbitrary mapping functions except that
a CAM’s capacity is usually not related to | S | or | T |

➭ recall in our problem, we assume capacity

n � | S | n ≈ | T |

➭ mapping functions can be easily extended to CAMs with a
bank of v × 1 RAMs
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Content-Addressable Memory (cont’d)

arbitrary mapping 

function

f ( s )
w

s
v

  t
ν × 1
RAM

ν × 1
RAM

ν × 1
RAM

ν × 1
RAM

ν × 1
RAM

ν × 1
RAM

x

ν × 1Bank of RAMs (  x  times )
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Objective

➭ replace CAMs and other dictionary structures with mapping
functions implemented in online architectures

➭ for our motivating applications, we can assume

❏ SEARCH is very common and must be very fast

❏ ASSOC is less frequent and can be more costly

➭ The Question: While meeting the tight timing constraints
of the SEARCH operation, what implementation maximizes
capacity and minimizes reconfiguration time (ASSOC opera-
tion)?
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Three Implementations

➭ CAM1/CAM2

➭ RCAM

➭ QM-Tab
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CAM1/CAM2

➭ CAM1 — registers each s ∈ S separately, feeds a two-input
comparator

➭ CAM2 — configures constant comparators for each s ∈ S
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RCAM

➭ as described previously∗ aim for a single match (nomatch)
signal using LUTs to store data and matching function

constant
compare
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match3 
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∗Steve Guccione, Delon Levi, and Daniel Dows, “A Reconfigurable Content
Addressable Memory,” RAW 2000
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QM-Tab

➭ applies the multibit Quine-McClusky tabulation method to
the function f to reduce the number of gates and then maps
to LUTs

❏ each output bit in t has a separate function (all functions
share common minterms)

❏ shared minterms lead to larger capacity

❏ ASSOC is a significant software process

❏ the number of cascaded LUTs increases very slowly with
capacity

➭ unlike the others, performance is highly dependent on data
set

PARL 19 Implementations



�back forw�

QM-Tab (cont’d)
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Experiments

➭ first-order effects of technical choices

➭ use Java for software processes

➭ use JHDL for hardware description

➭ use Xilinx tool chain to generate bitfiles

➭ target hardware: XC4085XLA (no partial reconfiguration)

➭ important measures: space, SEARCH latency, ASSOC com-
pute time
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Measures

➭ space — s(n,w) measured in CLBs (imprecise)
➭ SEARCH latency — measured in cycles
➭ ASSOC— total time is reconfigure time plus time to determine

next configuration

❏ for 4085 (no partial reconfiguration), reconfigure time is
constant

❏ we simply report software time-to-compute next configu-
ration

➭ some implementations depend on the data; for the others we
summarize

➭ ultimately, we’d like to know for each implementation a range
of w and capacities n for a device
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Summary Results

Implementation S(n; w) cycles fixed routing? T1(n)

CAM1 3× n × dw/2e 3 y none
CAM2 2× n × dw/8e 2 y O(1)
RCAM 3× n × dw/8e 2 n O(n)

QM Tabulation varies O(1)† n O(2n)

† usually 2–3
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Data Dependent Measures

➭ to complete the comparison, we need data samples for for
QM-Tab ASSOC operation

❏ randomly select various size sets of s ∈ S elements

❏ for each assign a random output t

➭ worked with the range of capacities and a fixed input width
w for QM-Tab ASSOC operation
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Space for a fixed w = 16
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Time to Determine Next Configuration
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Capacity XC4085
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Analysis : Resource Utilization

➭ clearly, CAM1/CAM2 are very wasteful of resources, severely
limiting capacity

➭ RCAM lies in between CAM2 and QM-Tab but is much closer
to CAM2

➭ QM-Tab — clear winner in capacity
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Analysis : Structure

➭ the real story behind time-to-reconfigure is the circuit’s struc-
ture

❏ CAM1/CAM2 — simple structure with easily accessed
(s, t) pairs (none or almost no software process needed)

❏ RCAM — slightly more complicated structure but the re-
programming is not free and may require re-routing

❏ QM-Tab — total loss of structure and we are unaware of
any incremental algorithms
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Conclusion

➭ all implementations meet SEARCH cycle requirements

➭ CAM1/CAM2 and RCAM are of limited use due to their rel-
atively small capacity

➭ QM-Tab delivers desired capacity but existing time-to-reconfigure
algorithm

❏ is costly

❏ not intended to be incremental

➭ results suggest that an incremental algorithm similar to multi-
bit QM-Tab is possible that approaches QM-Tab’s capacity
but with less reconfiguration cost
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Thank You!

For more information, please visit the Parallel Architecture
Research Lab web page:

http://www.parl.clemson.edu/

or email me...
rsass@clemson.edu
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Content-Addressable Memory (CAM)
➭ hardware device that

❏ standard memory mode

❏ match mode

➭ collections of small CAMs are used in

❏ TLB (virtual-to-physical memory translations)

❏ main memory hierarchies (caches)
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