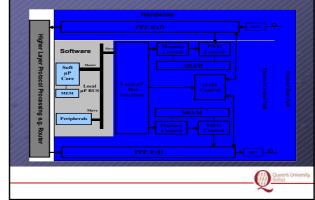


The Point-to-Point Protocol

- The most efficient layer 2 protocol for encapsulating IP datagrams
- Key applications include ADSL, dialup modems, encapsulated Ethernet, Virtual Local Area Networks (VLAN), Virtual Privet Networks (VPN) etc.
- Key functions:
 - Framing and Error Control method for encapsulating data over physical layer point-to-point links.
 - Link Control Protocol (LCP) functions to establishes, negotiate configure and terminate PPP links between two network nodes.
 - Network Control Protocol (NCP) function for upper network protocols, optional for ATM, IP, Ethernet etc.


Programmable SoPC System Architecture for PPP processing

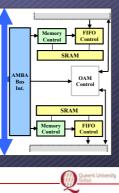
The Programmable SoPC Architecture for PPP processing is composed of three architectural independent units.

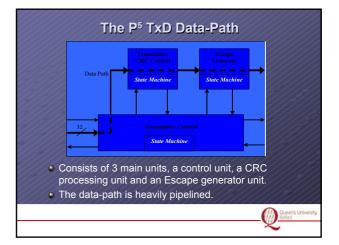
This includes :

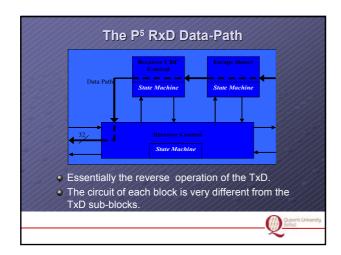
- Protocol Data-Path Unit
 A highly pipelined and parallel frame processing circuit
- Protocol Control-Path Unit
 Data path control, Register and control protocol FIFO circuit
- Embedded Microcontroller Unit Responsible for Control and management protocol processing and Data-Path configuration.

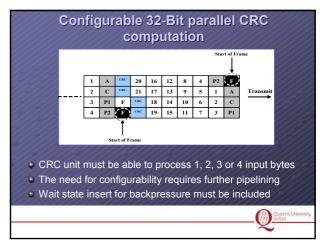
PPP SoPC System Architecture

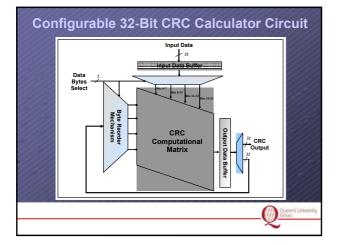
P⁵ Protocol Data-Path Units

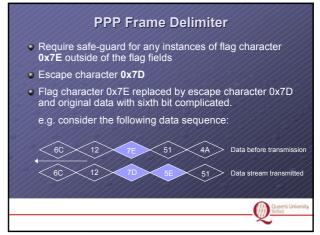

- 32-bit wide circuit. Complete implementation in hardware
- operating at 78.125 Mhz offering a data transfer rate of 2.5 Gbps
- TxD and RxD units are independent, parallel and pipelined
- Focus of presentation is on this unit. 8-bit version has also been implemented

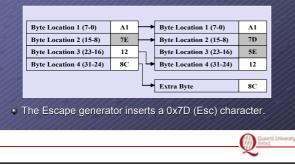

Data Path	Transmitter CRC Control State Machine	Escape Generate
32	Transmitter Contro State Machine	
Data Path	Receiver CRC Control State Machine Receiver Control State Machine	Escape Detect
/////		Queen's Universit Boliast

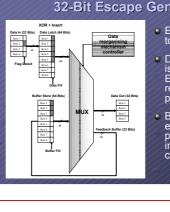

Embedded Microprocessor Unit Based on a soft IP core processor (e.g. Nios Microblaze or Leon). Processes the majority of the control and management protocols and control lLeon μP housekeeping functions. AMB BUS Interfaced to a local bus via a standard MEM embedded bus architecture e.g. AMBA All implemented functions are software Peripherals based and can be reprogrammed without interrupting the data transmission path.


Protocol Control-Path Unit

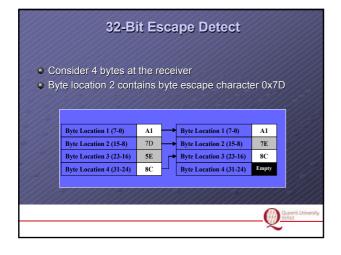

- Handles the interaction between the embedded processor and the Layer 2 protocol data path
- Composed of an Operation Administration and Maintenance (OAM) unit,
- Accommodates a transmitter and a receiver FIFO for temporary storage of control protocols.

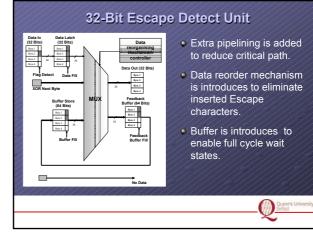






32-Bit Escape Generate

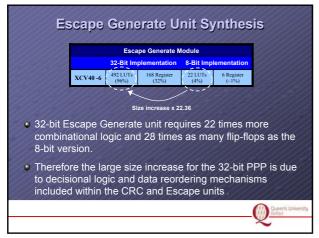

- Consider 4 bytes of data to be processed
- Byte location 2 contains a flag character 0x7E



32-Bit Escape Generate Circuit

- Extra pipelining is added to reduce critical path.
- Data reorder mechanism is introduces to insert Escape characters and to rearrange the 4 byte data-path frame data.
- Buffer is introduces to enable full cycle back-pressure mechanism after inserting 4 Escape characters.

		8 -	Bit Syste	m		
	P re -la	iyout Sy	nthesis	Pos	t-layout	Synthesis
CV50-4	95.3 M H z	184 LUTs	84 Register	79.5 M H z	130 Slices	191 LUTs
C2V40-6	128.4 MHz	179 LUTs	84 Register	91.5 MHz	124 Slices	185 LUTs


- 8-bit PPP meets required speed of 78.125 Mhz with Virtex and Virtex II technology
- Virtex II enables considerable speed-up over Virtex.
- Critical paths analysis revealed the same number of LUTs for both technologies. Thus speed-up is achieved because of the technological advantage of Virtex II

	Outer's University
	Bellast
X	

32-Bit System Synthesis Results

			32-Bit System			
	Pre	Pre-layout Synthesis		Post-layout Synthesis		
XCV600	4 73 MHz	2641 LUTs	841 Register	65 MHz	1208 Slices	2563 LUTs
XC2V1000	-6 125.9 MHz	2230 LUTs	689 Register	78.66 MHz	1144 Slices	2157 LUTs

- The 32-bit PPP implementation meets the required speed of 78.125 Mhz with Virtex II technology only.
- Again, critical paths analysis revealed the same number of LUTs for both technologies.
- The 32-bit implementation is ×11 times larger than the 8-bit implementation.

Conclusions

- We have shown that a programmable Layer 2 network processing for 2.5 Gbps throughput rate, including control protocol processing is feasible using the latest SoPC technology.
- The circuit study has revealed that the 32-bit PPP implementation is 11 times larger than 8-bit version.
- Further analysis has shown that this increase is mainly due to the byte sorter and buffering mechanisms included in the 32-bit design which are heavy in combinational logic.
- Programmability of PPP processing is achieved by reconfiguring the programmable logic blocks and by reprogramming the firmware of the embedded processor.

Future Work

- ASIC Implementation of the current PPP SoPC architecture as a complete SoC (System on a Chip) solution.
- Investigating new technologies and systems architectures for programmable / configurable network processing.
- Investigating trade-offs using off-the-shelf embedded processor and FPGA technology for network processing.
- Development of a new generation of programmable packet processing elements by combining configurable logic with custom processing technology.

