
Report on

Workshop on using Digital Logic Instruction to

Introduce Computing Concepts

Award no. 1550985

Ramachandran Vaidyanathan
Jerry L. Trahan

Suresh Rai

Louisiana State University, Baton Rouge

Summary

The purpose of this project is to address ways to thread the coverage of important topics,
a little at a time, through a sequence of courses. The idea is to introduce key concepts
early on, starting from lower-level courses (such as digital logic and first programming), with
the purpose of reinforcing the concepts in higher-level courses throughout the curriculum.
To address this objective, “The Workshop on Connecting Concepts Across the Curriculum”
was held on February 4–5, 2016 at the Cook Hotel and Conference Center, Louisiana State
University, Baton Rouge.

Three broad questions were addressed during the workshop:

1. Which topics are both important and difficult for students to understand?

2. Can these topics be captured through broad “concept-threads” that can be woven
through a course sequence? Can these threads serve to introduce and strengthen the
comprehension and retention of these concepts?

3. Are there course/level-specific ways to introduce these concept-threads in a typical
curriculum?

The “target” courses/areas that were considered are Digital Logic, Programming and Algo-
rithms, Embedded Systems, Computer Organization and Architecture and Computer Net-
works.

The most important computing concepts (that students also find difficult to grasp) that
were identified at the workshop include: (a) Abstraction, (b) the idea of “State,” (c) Ad-
dressing, (d) Trade-Offs and Optimization, (e) the difference between Data and Control, (f)
the Design Process (particularly Modularity), and (f) Asymptotic Thinking and Scalability.
For each of these concepts and each of the target courses, a thread of topics was identified
that could be used to unfold and reinforce the underlying concept.

For example, consider the idea of state. Early on, a state could be a flip-flop output
in digital logic, or a variable value in a programming or algorithmic context. In computer
organization or architecture, the contents of registers and flags may be the state. In general,
the idea of a state that should be constructed through the different courses is that of infor-
mation from the past needed to take the next step. This is more directly understandable in
the context of checkpointing and state restoration (taught possibly at a higher-level course).

In addition to the development of concept threads, the workshop featured two invited
talks on “Connecting Computing Education Threads in a Coherent Active Learning Envi-
ronment,” and “Introducing Computer Systems from a Programmer’s Perspective.”

Details of the workshop, including its findings, are available at www.ece.lsu.edu/vaidy/WCCC.

http://www.ece.lsu.edu/vaidy/WCCC

1 Introduction

There has been much work on improving teaching, typically at the level of a single course. At
the other extreme, there have also been efforts towards developing comprehensive and rich
curricula for various computing disciplines. There is a gap, however, in understanding how
individual courses in a curriculum could interact to student benefit. Typically, this interac-
tion is specified simply as a set of prerequisites. While the downstream course (for which an
upstream course is a prerequisite) assumes knowledge of certain topics, the upstream course
is quite oblivious to where its coverage could be subsequently used.

The purpose of this project is to address ways to thread the coverage of important topics,
a little at a time, through a sequence of courses. The idea is to introduce key concepts early
on, starting from “basic” (upstream) courses, with the purpose of reinforcing them in other
“advanced” (downstream) courses throughout the curriculum. One could view the approach
as that of introducing “conceptual dots” in the basic courses that will be “connected” in the
advanced courses.

The proposed objective of this project was to use a freshman/sophomore-level digital
logic course as the basic course in which to introduce (primarily parallel and distributed)
computing concepts that may be leveraged in advanced courses (such as computer organiza-
tion and architecture). It was anticipated that restricting the consideration to digital logic
and parallel and distributed computing would lend focus to the proposed work. This was to
be facilitated through a workshop to address ways to introduce key concepts early on and
utilize this downstream in the curriculum.

2 The Workshop on Connecting Concepts Across the

Curriculum

During the initial planning of the workshop we found that our approach for parallel and
distributed computing (PDC) topics in digital logic readily extends to several other concepts
in computing, in general, with the potential for gentle introduction in other basic courses.
Consequently, we expanded the scope of the project to include first digital logic and first
programming as the basic courses. An expanded set of computing concepts serves a wider
repertoire of advanced courses, including advanced logic/hardware design, microprocessors
and embedded systems, computer networks, computer organization/architecture and algo-
rithms.

While the objective of introducing and reinforcing key concepts across multiple courses
remained the same, this objective covered a broader swath of a typical Computer Engineering
or Computer Science curriculum than originally envisaged. To address this objective, “The
Workshop on Connecting Concepts Across the Curriculum” was held on February 4–5, 2016
at the Cook Hotel and Conference Center, Louisiana State University, Baton Rouge.

Three broad questions were addressed during the workshop:

1. Which topics are both important and difficult for students to understand?

2. Can these topics be captured through broad “concept-threads” that can be woven
through a course sequence? Can these threads serve to introduce and strengthen the

1

comprehension and retention of these concepts?

3. Are there course/level-specific ways to introduce these concept-threads in a typical
curriculum?

To increase the chances of adoption, the discussion was framed against the following
considerations for introducing new ideas in a basic course.

• The introduction of a new idea should not appreciably interfere with the content or
the instruction of the basic course.

• The introduction of the new idea should enhance and/or motivate the comprehension
of the material in the basic course itself.

In the remainder of this section, we describe various details of the workshop, including its
structure and activities conducted. The findings of the workshop are described progressively
in Sections 2.5.1–2.6. In Section 3 we outline the follow-up and continuing activity resulting
from the workshop. Finally in Section 4 we make some concluding remarks.

The Appendix contains the program and a table of possible relationships between com-
puting topics and courses. Additional details on the workshop are available at
www.ece.lsu.edu/vaidy/WCCC.

2.1 The Participants

The goals of the workshop (that include identifying specific topics, threads and methods)
guided the process of selecting participants. These goals were viewed in the context of a set
of courses, commonly seen in many computer engineering and computer science curricula
(more details appear in Section 2.2). We recognized the following considerations in inviting
participants.

• A set of thought leaders is needed to guide the discussion in the workshop. They
include authors of textbooks and researchers in engineering and science education.

• A set of students is needed to provide insight that is often missed from a faculty
perspective.

• The invited faculty should represent a large variety of institutions ranging from lead-
ing research institutions to those focused more on teaching, from local and regional
institutions to universities across the nation.

• The expected outcomes of the workshop would be a set of recommendations for how
one should introduce and connect “concept dots” across courses in the curriculum. To
fully understand the scope of these recommendations, they must be adopted and tried
at different levels. To this end, (a) the ideas must be tried out locally (at LSU) and (b)
inviting multiple faculty from the same institution increases the chances of adoption.

2

http://www.ece.lsu.edu/vaidy/WCCC

Once the dates, location and target courses were decided on, we proceeded to contact de-
partmental chairs of several universities, requesting names of faculty with interest in the
workshop and who teach (or have taught) the courses to be considered at the workshop.
Many of the invitees to the workshop were from those recommended by chairs of depart-
ments. Independently, we also invited students, thought leaders and LSU faculty to attend
the workshop.

The workshop had 25 participants, excluding the PI and Co-PIs.

1. Stephen Brown, University of Toronto

2. Randal Bryant, Carnegie Mellon University

3. Konstantin Busch, Louisiana State University

4. Murad Chowdhury, Louisiana State University

5. Pradeep Chowriappa, Louisiana Tech University

6. Gabriel DeSouza, Louisiana State University

7. Coretta Douglas, Louisiana State University

8. Geoffrey Hermann, University of Illinois

9. David Kaeli, Northeastern University

10. Justin Kilpatrick, Louisiana State University

11. David Koppelman, Louisiana State University

12. Sukhamay Kundu, Louisiana State University

13. Thomas Lavastida, Louisiana State University

3

14. Michael Loui, Purdue University

15. Julius Marpaung, University of Houston

16. Lu Peng, Louisiana State University

17. Michael Pratt, University of Louisiana, Lafayette

18. Jagannathan Ramanujam, Louisiana State University

19. Mohammad A. Salam, Southern University

20. Violet Syrotiuk, Arizona State University

21. Grant Thomas, Louisiana State University

22. Warren Waggenspack, Louisiana State University

23. Chao Wang, Arizona State University

24. Bill Wischausen, Louisiana State University

25. Shizhong Yang, Southern University

The participants included 3 LSU students (juniors/seniors), 10 LSU faculty, 4 faculty from
other institutions in Louisiana and 8 faculty from institutions across the USA and Canada.
Among the LSU faculty members invited were two from broader STEM areas in which the
approach discussed at the workshop could find potential application. One of these faculty
members is from Mechanical Engineering and the other is from Biological Sciences; these
faculty are also active in pedagogical research.

All participants were fully supported as needed (transportation, hotel stay, food) for the
duration of the workshop. Participants were also offered help related to child-care services,
if needed.

For added perspective, we also invited faculty from a Community College, but did not
receive a response to our invitation. We were also unable to include participants from the
NSF, IEEE TCPP and others in the networking area due to scheduling conflicts; another
NSF workshop was held at the same time as ours.

2.2 Workshop Structure

The broad aim of the workshop was to determine a template for the instruction of important
concepts in computing by distributing the instruction through the entire curriculum, rather
than in just a small set of courses. Specifically, basic (lower-level) courses would aim to
introduce these concepts, typically as simple extensions to, or applications of, what is already
taught in the basic course. Advanced courses (downstream in the curriculum) would leverage
the superficial introduction to a concept in basic courses. To allow for a non-disruptive
adoption of the ideas generated in the workshop, we required that recommended changes to
existing basic courses be incremental, and, where possible, these changes should benefit the
basic course itself (in addition to the advanced course). To this end, the workshop set out
to determine:

1. Concepts that are important and difficult for students to grasp.

4

2. Topic-threads from a set of courses that can be used collectively to reinforce these
concepts.

3. Course-specific strategies to teach these concepts.

To lend focus to the discussion, we used the following broad streams of computing courses/areas:

• Hardware, including digital logic, design and optimization.

• Software, including programming and algorithms.

• Computer organization and hardware.

• Embedded systems and computer networks, including elements of communication.

A typical computer engineering or computer science curriculum covers these broad areas
through a set of courses.

The Workshop participants were welcomed by Prof. Judy Wornat, Interim Dean, LSU
College of Engineering. It was also attended by Prof. Jagannathan Ramanujam, Director,
LSU Center for Computation and Technology.

Both days of the workshop featured talks by faculty members with vast experience in
using innovative approaches in undergraduate education. Broadly speaking, the first evening
allowed participants to meet each other and familiarize themselves with the activity for the
second day. During the second day we took on the task of determining ways to connect
important concepts across courses (see list above) in the curriculum. Appendix A shows the
program of the workshop.

Sections 2.3–2.6 details the activities at various parts of the workshop, including activity
conducted prior to the workshop. The workshop findings are also described progressively
through these sections.

2.3 Pre-Workshop Activity

After the workshop participants were finalized, we sent an invitation to each participant to
consider the list of courses/areas listed above and provide an initial set of 5-10 topics that
are both important and difficult for students to grasp. Participants were asked to weigh in
on as many courses/areas as they were comfortable with. They were also pointed to our
book chapter1 that provides an example of how digital logic ideas could be used to introduce
broader concepts in computing.

The responses from the participants were pooled together with our own ideas to gen-
erate an initial set of topics and threads. Appendix B shows this mapping of topics to
courses/areas, arranged alphabetically by topic. This was mailed in advance to the par-
ticipants. They were also provided with the same list of topics, ordered by the number of
courses that they could potentially impact.

1R. Vaidyanathan, J. L. Trahan, and S. Rai, “Introducing Parallel and Distributed Computing Con-
cepts in Digital Logic,” in Topics in Parallel and Distributed Computing: Introducing Concurrency
in Undergraduate Courses, 1st edition, eds. S. K. Prasad et al., Elsevier-Morgan Kaufman, 2015.
grid.cs.gsu.edu/ tcpp/curriculum/?q=system/files/ch5.pdf.

5

http://grid.cs.gsu.edu/~tcpp/curriculum/?q=system/files/ch5.pdf

2.4 Invited Talk and Keynote

The first day (evening) of the workshop featured an invited talk entitled “Connecting Com-
puting Education Threads in a Coherent Active Learning Environment,” by Prof. David
Kaeli, Northeastern University. The talk described a hands-on introductory course with
emphasis on embedded systems and robotics, cast in the setting of a recently redesigned
curriculum in the Department of Electrical and Computer Engineering at Northeastern Uni-
versity.

The second day began with a Keynote talk “Introducing Computer Systems from a
Programmer’s Perspective,” By Prof. Randal E. Bryant, Carnegie Mellon University. The
talk described experiences from an “Introduction to Computing Systems” course designed
to teach students to be sophisticated applications programmers and to prepare them for
upper-level courses.

Collectively, both talks explored, among other ideas, the benefits of using lower level
courses (particularly with hands-on activity) to prime students for deeper understanding of
concepts in upper level courses. The slides of the talks appear at www.ece.lsu.edu/vaidy/WCCC.

2.5 At the Workshop

The workshop had three main sessions that addressed the three questions mentioned earlier,
namely, (a) which topics are important and difficult for students to grasp, (b) how can one
thread these important topics (as special cases of a broader concept) through a sequence of
courses, (c) what methods can be used to implement these threads in a course?

The slides outlining the process to be followed at the workshop is available at
www.ece.lsu.edu/vaidy/WCCC. We describe Sessions 1–3 below.

2.5.1 Session 1: Identifying Topics

The questions mentioned above were to be answered in the context of the courses/areas listed
earlier. To lend focus to the discussion, we informally divided the participants, largely based
on their research and teaching interests, into four “groups,” each with seven participants.

1. Digital Logic

2. Programming and Algorithms

3. Computer Organization and Architecture

4. Embedded Systems and Networking.

Each participant was given his/her group at the start of the workshop. Each group had a
“leader,” a faculty member with experience with pedagogical issues and textbook authorship,
to lead the discussion within the group. Each group also had a student-participant. The
group leaders were cued in on the nature of the expected outcome of the discussion; the
organizers (R. Vaidyanathan, J. L. Trahan and S. Rai) were also part of individual groups,
lending both their own opinions and providing clarification on the process as needed.

The goal of Session 1 was to identify, independently within each group, a set of important
topics/concepts that are difficult for students to grasp.

6

http://www.ece.lsu.edu/vaidy/WCCC
http://www.ece.lsu.edu/vaidy/WCCC

Groups recorded the main points of their discussion and at the end of the session sum-
marized the topics that their group considered important enough to pursue further in the
next session.

The following broad topics were identified within each group.

Digital Logic:

• Multiple forms of logic representation: truth table, Karnaugh map, Boolean ex-
pression

• Delay

• Hazards

• Data and control paths, control units and FSMs

• Tools: debugging, design and technology

• Engineering design: specs, design, debugging, verification, iterative process.

Programming and Algorithms:

• Abstraction: moving from concept to algorithm to program

• State and state transformation

• Problem decomposition (including divide-and-conquer)

• Performance: Throughput, latency, Amdahl’s law, experimental design and eval-
uation

• Synchronization and locking

• Debugging

• Resource management: memory, network and other shared resources

• Trade-offs: speed, power

• Big “Oh” performance

Computer Organization and Architecture:

• Impact of logic delay on cycle time and pipeline speed

• Memory: design, decoding, pointers, addressing, data representation in memory

• Distinction between code and data

• Power: busing, interfacing and I/O

Embedded Systems and Networking:

• Protocol stacks

• Flow-control, handshaking

• Data representation, distinction between control and data

• Performance and trade-off: latency, throughput, data buffering

7

• Addressing: physical, logical

• Abstraction: client, thread

During the break, this input was distilled and provided to the participants before the
start of the next session.

2.5.2 Session 2: Identifying Threads

For Session 2, participants were relocated among groups so that each table now had members
from all other groups. The group leaders remained at their original table to provide a link
between the discussion in Sessions 1 and 2.

The goal of Session 2 was to identify course-specific topics through which the concepts
identified in Session 1 could be emphasized/taught. The findings of Session 1 helped focus the
discussion to those concepts that the participants deemed most important, yet difficult for
students to understand. At this point in the discussion, abstraction, state, data vs. control,
design, and trade-offs bubbled up as concepts that most participants felt were important
and difficult for students.

The following broad concepts were identified by four “tables” of participants, with each
table working independently.

Table 1:

• Addressing: logical and physical, conventions, translation-cost, memory topology,
range and precision

• State: Finite-state machine, state representation, transitions, events

• Abstraction: levels of abstraction, black-box design, interoperability, hierarchical
design

• Data vs Control: interdependency, parallelism, learning, synchronous/asynchronous

Table 2:

• Abstraction: input-output relationship; truth-tables, state table/diagram, ASM
charts; instruction set, machine code; pseudo-code, flow-chart; network protocols
and layering

• Optimization and Trade-offs: Gate-register, delay; CISC, RISC; throughput, la-
tency; algorithms, data structures

• Design Process: top-down vs bottom-up; control/data portion of design; tools for
specification, implementation, debugging, verification

Table 3:

• Abstraction: reasoning about complex structures, deciding the correct level of
abstraction

• State: view of system as a transformer of state, state decomposition

8

• Addressing, including indirection

• Asymptotic thinking: relation to scalability

Table 4:

• State

• Concurrency/parallelism

• Abstraction: data types, number representation

• Robust design: problem decomposition, trade-offs, usability, testability, readabil-
ity, debugging

2.5.3 Session 3: Identifying Methods

Session 2 yielded, for each of the broad concepts identified in Session 1, possible course-
specific topics that could could be used to used to teach the concept. The goal of Session 3
was to find strategies for weaving these concepts through specific courses. Considering that
some of the targeted concepts may not be central to the course in question, it is important
to identify possible ways to integrate the target concepts into the course without affecting
the flow of the course. This was the goal of Session 3.

Once again, the groups were shuffled among the tables and group leaders provided the
context across the various sessions.

Unlike those of other sessions, the objective of Session 3 was much closer to a course
offering than the broad concepts pursued earlier. Understandably, this session did not yield
as many specific methods as we had hoped for. Nevertheless some interesting ideas emerged.

1. Knowledge of digital logic (whose aim is to produce a circuit) can be used to strengthen
the understanding of mathematical logic (for reasoning).

2. A common mistake made by students in converting a binary sequence to octal or
hexadecimal is to collect bits in 3’s or 4’s starting from the left (rather than from the
lsb). This mistake can be used to emphasize the idea of framing, without which a
computer can make a similar mistake.

3. A priority queue can illustrate trade-offs ranging from a linear array to a heap.

4. Implementations of network layers (for example, UDP vs TCP) can illustrate perfor-
mance trade-offs and abstraction.

5. Race conditions can be illustrated in many courses ranging from digital logic (in a
circuit with reconvergent paths, and metastability in latches), to operating systems
(shared variables) and computer networks (multiaccess).

6. The idea of state (as a collection of information about the past needed to take the next
step) can be illustrated in many contexts from FSMs and flow-control (sliding-window)
protocols to simply the set of variable values in a program.

9

2.6 Workshop Findings

As noted in Section 2.2, the workshop findings were developed in three stages (Sessions) that
addressed the following three questions.

1. In the targeted courses, what are the most important and difficult to grasp topics for
students?

2. What broad concept that is threaded though a sequence of courses addresses these
topics?

3. What course-specific strategies can be used to thread concepts through courses?

At the end of Session 3 the following topics/concepts emerged as some of the most im-
portant and deserving attention: (a) Abstraction, (b) State, (c) Addressing, (d) Trade-offs
and Optimization, (e) Data vs. Control, (f) Design Process, and (g) Asymptotic Thinking
and Scalability. We organize the ideas below by these concepts. For each of these con-
cepts, topics are organized by (sets of) courses. Some of the topics clearly straddle multiple
courses; these have also been pointed out. Depending on the level of the course at which the
concept is explored, one could look to either set up the concept in a lower-level course for
further development in a higher-level course or use the introduction in a lower-level course
to jump-start the instruction at the higher level. The following, together with the table in
Appendix B, provide a concrete method to connect the important concepts identified across
multiple courses.

Abstraction: Abstract thinking is essential for problem-solving and modeling. Tradition-
ally, students learn this important skill as a second-order activity, in the sense that very few
courses directly talk about abstraction (even though they present plenty of opportunities to
do so).

Digital Logic: A digital logic course begins with the abstract idea of 0 and 1 as truth values
and the symbol “+” to mean the logical OR, leading to (correct) statements such as
1 + 1 = 1; this not surprising when viewed within the right context and at the correct
level of abstraction. An HDL “module” is a black box appearing to the outside only as
an abstract relationship between the input and output. Digital logic also lends itself
to illustrating functional and temporal abstraction through timing diagrams.

Programming and Algorithms: The process of program development takes the student
through several abstract layers, starting from the algorithm (even if simple, as in a
starting course) through a flow-chart and/or a pseudo-code, to the program. (An ASM
chart provides a similar abstraction as a flowchart for synchronous sequential circuits).
As in hardware modules, functions and procedures define black-boxes at the software
level. Programming languages themselves illustrate several levels of abstraction as we
move down from pseudo-code and HLLs to assembly and machine code.

Computer Organization and Architecture: The ISA (instruction set architecture) provides
an abstract view of a processor’s functional elements (operations, addressing modes
etc.). The memory hierarchy (including virtual memory and caching) provides an
abstract view of the memory space.

10

Embedded Systems and Networking: Layered protocol stacks are an excellent illustration
of abstraction. The distinction between a sequence of bits and what it (abstractly) rep-
resents can be explored through several courses, including computer networks (packet
headers and error correction code), computer organization and architecture (instruc-
tion/data, number representations) and digital logic (state assignment). Real-time
control, cyber-physical systems and event-based systems present opportunities to illus-
trate abstraction, albeit at a more advanced level.

Finally, courses in a curriculum can themselves be viewed as an illustration of abstrac-
tion. For example, digital logic abstracts away from details of gate implementation, whereas
computer organization and architecture remain at the level of registers and ALUs. Fur-
ther down, a computer network is described in terms of nodes, and an algorithm typically
abstracts away from many physical details of a computer.

State: While many courses use the idea of a state, students tend to view these ideas in
isolation, without grasping the general concept. In the following, opportunities for reinforcing
the concept of a state (as a record of what is needed/used from the past to take the next
step) are identified.

Digital Logic: In constructing a state diagram, a state is indeed viewed as a record of
relevant information from the past needed for the state machine to transition to the
next state. This is sometimes lost on students viewing states simply as flip-flop outputs.

Programming and Algorithms: A variable’s value is a record of a computation that will
be consumed at a later time. A handy example is the use of a temporary storage to
hold the value of one of two variables whose values are to be swapped. The difference
between functional and imperative programming can also reinforce the concept of state.

Computer Organization and Architecture: Processor flags are an automatic record of fea-
tures of preceding computations that are used often to decide on the next step. At
a slightly higher level, a CPU can also be viewed as an FSM. Cache coherence and
read/write hazards also provide opportunities to reinforce the idea of state.

Embedded Systems and Networking: Checkpointing and state restoration are important
aspects of embedded (and distributed systems). States are also inherent in most pro-
tocols. The state diagram of a simple handshaking protocol is not very different from
an FSM implementing the same idea across hardware module; that is, the concept of a
state can be decoupled from topic-specific artifacts, such as flip-flops and program vari-
ables. At another extreme, distributed systems (such as robot swarms) whose nodes
have limited state can illustrate the advantage of oblivious systems in self-stabilization.

Addressing: Addresses are used in various contexts, whose manifestation ranges from a
bit sequence (for example, internet addresses, memory address) to a more abstract quantity
(URL, MAC addresses, or even a variable name or pointer in a program). Here the address
encompasses the idea of uniquely identifying an object (memory location, internet node
etc.). Associated with this broad concept are other ideas (such as the distinction between

11

address and data, indirection, logical/physical address etc.) that, when tied together, can
help convey the idea of addressing in a richer way. In the following, we list some of the topics
that were identified as possible links to the “address” concept in various courses.

Digital Logic: A one-hot decoder is used to convert a binary address to a unary “enabling
signal” (as used in most hardware). This also relates to address width bounding the
largest number of uniquely identifiable entities.

Programming and Algorithms: Pointers (and associated data structures) provide a good
way to distinguish data from address. Address related computations, such as in virtual
memory/caching, hash tables, and routing table look-up, can be used to reinforce the
concept of address.

Computer Organization and Architecture: The distinction between address and data is
touched upon in various contexts in assembly programming. Indirection and address
computation, together with logical and physical addresses demonstrate trade-offs be-
tween access and address space cost/size.

Embedded Systems and Networking: URL and MAC address are two examples that illus-
trate addresses in a more abstract sense.

Trade-offs and Optimization: This is a central topic of Engineering and Computer
Science and is typically explored in several courses in the curriculum. Nevertheless, the
participants felt strongly enough about its importance to include in this list. While trade-
offs and optimizations occurs in different contexts in different courses, on the whole they
illustrate the common idea of competing forces (trade-offs) and fine-tuning (optimization).
In the following, we list some of the course-specific ideas that were brought up.

Digital Logic: Karnaugh maps illustrate optimization (in terms of gates for a two level
circuit); one could however add that this optimization may fail for multiple-output
circuits. In a more advanced course, a trade-off between gate cost and resilience to
stuck-at faults can be illustrated by including additional implicants. In addition to
gate/register count and delay (that are typically studied), wiring cost and power can
be considered as well.

Programming and Algorithms: Opportunities abound in this class of courses, ranging from
time/space trade-offs and the impact of data structures (for example, array vs linked
lists) to algorithm design itself (for example, sorting and searching techniques, the
benefit of pre-processing).

Computer Organization, Architecture and Embedded Systems: The memory hierarchy, ISA,
interconnect density, and elements of system granularity (number/size of processing
elements, cache line size) illustrate trade-offs.

Networking: Delay, throughput and latency are good vehicles to emphasize trade-off and
optimization. Other performance measures (such as QoS) can be illustrated through
protocols (such as UDP and TCP).

12

Data vs Control: Data and control-information manifest in different ways at various
levels, some less obvious than others. Understanding the distinction between them can
further comprehension of the underlying topic itself.

Digital Logic: Most digital systems have separate “control” and “data” components in
which the control unit could be an FSM of fixed size that controls a data unit whose
size (data-width) can be adjusted (independently of the control unit).

Programming and Algorithms: An analogous idea in programming is the idea the program-
size (control) being independent of the problem size (data).

Computer Organization, Architecture and Embedded Systems: The order of instructions
(control) executed over time can affect, for example, prefetching. On the other hand,
the order of data accessed affects, for example, cache design. The separation of program
and data (separate address spaces) is also illustrative. In general, the width of control
and data words is independent.

Networking: The distinction between the payload (data to be conveyed) and header/trailer
bits (that convey information about the data—error detection or correction, data de-
livery address etc.) captures the distinction between data and control information.
Further, encapsulation that causes control information at one level to become data at
the next, illustrates abstraction.

The Design Process: The aspect of the design process that was most emphasized dur-
ing the workshop was modular design. Modular thinking also facilitates other directions,
including abstraction, trade-offs, testing and validation.

Digital Logic, Embedded Systems, Computer Organization and Architecture: Verilog mod-
ules directly reflect modular design ideas. Logic decomposition (possibly into “control”
and “data” parts) also supports modular thinking.

Programming and Algorithms: Like Verilog modules, functions and classes can be used for
modular design. The scope of variables can add to the understanding of Modularity.

Networking: The design of various protocol elements and services across layers supports
modular thinking.

On the whole many course sequences support modular thinking in an abstract sense; for
example, digital logic deals with gates and flip-flops, whereas ideas in computer organization
could be expressed in terms of registers.

Asymptotic Thinking: The ability to consider the effect of an increase in problem size
is important. This impacts scalability and intractability of a general solution (that may be
missed by students focused solely on local optimization).

Digital Logic: Most ideas in digital logic (truth tables, Karnaugh maps, state assignment)
increase exponentially with the number of variables and offer simple ways to expose
students to computational complexity.

13

Programming and Algorithms: Programming exercises for intractable problems (for ex-
ample, Towers of Hanoi) quickly illustrate the impact of problem size increase. Most
algorithm courses directly encourage asymptotic thinking.

Embedded Systems, Computer Organization and Architecture: Cache coherence, schedul-
ing and assignment problems become significantly more difficult in a multicore envi-
ronment.

Networking: In a different, but related, way, network design must allow for system expan-
sion.

3 Follow-Up Activity

The following developments have occurred in the Division of Electrical and Computer Engi-
neering at LSU:

Connecting Concepts: The computer group within the division met and discussed with
instructors of courses on microprocessors, computer organization and architecture and
singled out a specific idea that many students seem to have difficulty with: distin-
guishing a binary string from what it stands for (a facet of abstraction). This occurs,
for example, in the context of number representations, instructions and data (in ma-
chine language). In the Fall 2016 offering of the first digital logic course, students were
specifically cued into this concept, whenever the opportunity occurred. Students self re-
ported (in increasing numbers over the course) that they understood the the difference.
A final exam question indicated that over 54% of students understood the difference.
It remains to be seem whether this understanding results in better comprehension and
retention of concepts in downstream courses.

Digital Logic and Lab: Two ideas emphasized by both talks during the workshop were the
benefits of a breadth first coverage in a beginning courses and the value of hands on
experience. We have used this in a redesign of our consecutive Digital Logic and Lab
sequence (where the classroom course is currently a prerequisite to the lab) into one
that includes a lab experience with both courses in a two-course sequence. This uses
a breadth first coverage in that the first course aims to teach students only the core
fundamentals, leaving advanced (relatively speaking) material to the second course.

4 Concluding Remarks

The last session of the workshop summarized the findings and also provided an opportunity
for the participants to provide feedback. On the whole the workshop was very well received.
Some of the observations and suggestions we received included the following:

• The idea of concept mapping to various courses was considered a useful exercise.

• A sample syllabus of a course could be constructed to include the ideas discussed.

14

• The process followed in the workshop (Sessions 1–3) could be better fleshed out to
make the objectives clearer.

We too recognized the importance of the last point in repeating the exercise for other STEM
disciplines. Invariably each discipline has its own concept threads that hold the potential for
reinforcement through the curriculum.

In our own judgment, the first two sessions yielded the results we expected for topics
and threads. Session 3, however, was not as productive as we had hoped for. While specific
topics (to emphasize key concepts) were identified within courses, the level of detail on how
to touch on these topics, without disrupting the lower level course, was lower than we had
hoped for.

On the whole, we believe that the workshop met its goals. In the coming years we expect
to implement some the findings in our own curriculum.

15

A Workshop Program

The program for the workshop appears on the next page.

16

Thursday 5:00‐5:30 pm Registration

February 4 5:30‐6:00 pm Introduction and Welcome

6:00‐7:00 pm Invited Talk

Connecting Computing Education Threads in a Coherent Active Learning

Environment

Prof. David Kaeli, Northeastern University

7:00‐7:15 pm An outline of the Friday agenda

7:15 PM Dinner

Friday 7:30‐8:00 am Registration

February 5

8:00‐8:45 am Keynote

Introducing Computer Systems from a Programmer's Perspective
Prof. Randy Bryant, Carnegie Mellon University

8:45‐10:15 am Session 1

Determine important and difficult to understand topics in each stream

10:15‐10:45 am Break

10:45 am‐12:45 pm Session 2

Identify threads of important topics through course sequences

12:45‐2:00 pm Lunch

2:00‐3:30 pm Session 3

Identify methods to implement threads across courses

3:30‐4:00 pm Break

4:00‐5:15 pm Session 4 and Closing

Record workshop findings; Feedback

Workshop on Connecting Concepts Across the Curriculum
Parallel and Distributed Computing: From Digital Logic to Computer Architecture and Algorithms

The Cook Hotel and Conference Center, 3848 West Lakeshore Drive, Baton Rouge, LA 70808

B Topic List and Possible Threads

Participants’ input was distilled into the following list of topics, each with possible threads
spanning the courses/areas considered in the workshop. The table in the next two pages is
arranged alphabetically by topic. Participants were also provided with the same list with
topics arranged by the number of courses the topic could be associated with.

18

Topic (alphabetical) First digital logic + lab Digital logic (advanced) First programming Microprocessors Embedded Systems Networking
Organization &

Architecture
Algorithms General

abstract thinking and modeling algorithm-flowchart-code

binary string as instruction has

a different meaning from same

binary string as data

programming models; relation

to underlying hardware

levels of protocol stack;

encapsulation
ISA abstraction

abstract models (including

programming models), proofs,

analysis

Abstraction; "information =

bits+context"

addressing modes pointer use main exploration of topic content addressability address vs data

alternate representations/conventions

(for convenience/advantage)

Truth table = K-Map; state

table = state diagram

different data structures for

same data (ex: incidence

matrix, edge list for graphs),

pre, post and infix

different representations of

same data (binary-hex,

unsigned, BCD)

Ex: left/right endian
different data structures.

Modeling tools

Amdahl's Law

carry propagation as a

bottleneck in ripple carry

adder

critical paths parallel algorithms bottlenecks

Arithmetic

assembly vis-a-vis hardware

Complexity and Analysis
complexity of algorithms,

program efficiency

CAD tool use can provide a

window to appreciating the

importance of complexity in

practice

Can provide a setting for

probilistic and amortized

analyses

Complexity theory

Control structures (conditional, loop) introduction at HLL implementation in assembly implementation in assembly

delay circuit delay
area/time optimization;

retiming, clock skew
program speed instruction delay Ex: FPGA clocking rate latency

instruction delay,pipeline

delay, access time

algorithms as a general recipe,

implementable in hardware or

software

see performance measures

distinction between control and data control instructions control and data hazards
indepencence in width of

control and data paths

floating point add/mult, rounding

introduction to idea that n bits

can only represent 2^n distinct

values

implementing floating point

hardware
introduction of float

Details of floating

points/standards
precision, errors standards instructions precision, errors Standards

Graphs

state diagram as a graph, can

relate binary numbers to

graphs

place and route, connectivity,

planarity

data structures (trees, linked

lists)
DAGs, task graphs routing and congestion control Graph algorithms

see also modeling and

abstraction

hazards

idea of "state"

need for memory in

computation (example

swapping values)

CPUs as FSM

Checkpointing and state

restoration; FPGA pattern

matching constructs a state

machine for the patterm (such

as in the KMP algorithm)

instrction (cycles per instr,

format,encoding)

instruction choice (example

shift or multiply)

cycles/instr, instruction choice

(example multiply by a

constant), format

constant coefficient multipliers

(via look-up tables)

instruction choice, ISA,

RISC/CISC
see arithmetic

interrupts/exceptions event-driven processes

low-level paralleism

bitwise boolean operations as

opposed to scans and global

operations

instruction implementations
Low-level optimizations (for

example in FPGAs)
ILP, supersacalar

possible efficiencies (stemming from proper selection of

operation/instruction), overflow

ALUs, possible efficiencies, stemming from proper selection of

operation/instruction; Strassen's matrix multiplication

programming models; relation to underlying hardware programming models; exploiting efficiencies

0,1 can mean yes/no, enable/disable, true/false, numbers ….;

1+1=1?

see cycles/instr

arithmetic circuits (adders and perhaps multiplier, divider).

Number representations

Relationship between hardware, assembly/machine code and

high level code

Digital logic can provide a first hand look at complexity. It is

intimately tied to circuit complexity and is replete with

intractable problems. For example, state assignment could

easily illustrate the futility of an exhaustive approach

Example in MUXs, ALU etc. (data width is independent of

control width). Complex circuits with control FSM enabling the

operation of "data" part

data, structural and control hazards (branch prediction),out-of-

order execution, race conditions, synchronization, deadlock,

livelock

can be introduced with circuit delay in an advanced example

(that implements an instruction or an address computation)

logic hazards, reconvergent paths, synchronization using

registers, async gates in synchronous ckts,
synchronization, handshaking

From flip-flop outputs to "what needs to be remembered"
Checkpointing and state restoration (particularly in distributed

environment); oblivious (limited-state) computation

enable, asynchronous inputs; event triggered Verilog

execution
interrupts and exceptions, priorities

Topic (alphabetical) First digital logic + lab Digital logic (advanced) First programming Microprocessors Embedded Systems Networking
Organization &

Architecture
Algorithms General

0,1 can mean yes/no, enable/disable, true/false, numbers ….;

1+1=1?memory
memory as an abstract idea to

explain state
memory as a circuit memory as a variable

memory hierarchy and

management; memory

architecture (shared,

distributed); performance

memory as an algorithmic

abstraction (online, oblivious)

Models/Structures of

interaction/communication

The idea of interconnects and

topologies can be introduced

in the first digital logic

bus (and other stucture)

implementation

parameter passing, shared

variables

client-server, peer-to-peer,

routing, flow control,

protocols and services

between protocol layers

also see abstract thinking

procedures, scope of variables bit-slice Verilog modules
layers in protocol stack,

encapsulation

parallel vs. sequential First look at sequential
multiple pieces running

sequntial code independently

Sequential/Parallel at different

layers (Transport layer may

deliver packets sequentially (in

order), network carries

packets in parallel paths/links.

(see also abstraction)

Multicore environment …

parallel, sequential,

distributed algorithms,

concurrency

performance measures
delay, number of gates/flip-

flops
clock-speed, area, power time (asymptotic) processor cycles, memory

speed, power, memory,

cost/form-factor

latency, throughput, quality or

service
speed, power, fault-tolerance

time, space, communication

cost, approximation ratio

pipelining concept

series of flip-flops (example

shift register) as an analog of

progess through an ideal

pipeline

pipeline implementation Ex: image processing pipeline

pipelining packets across

(frame-level) links; sliding

window protocol

instruction pipeline sofware/algorithmic pipelining

procedures, parameter passing, scope

of variables, run-time stack (see

recursion also)

procedures, stacks
details of parameter passing,

runtime stack
Remote Procedure Call (RPC) see also Modular design

recursion (see procedures also)

Decompsition of MUXes,

decoders etc. Carry lookahead

as a recurrence

recursive harware blocks

(example bitonic sorter), prefix

circuits (ex: Kogge-Stone)

recursion, recursive structures

(such as trees)
Recursive structures Divide and Conquer Recurrences

shared resources MAC layer, multiaccess

Multiplexing in other

dimensions (besides time),

for example

frequency/wavelength

speedup

obliquely through "parallel"

examples. How much is delay

reduced by increasing H/W

cost

area/time optimization parallel algorithms
see tradeoffs, performance

measures

Synchronization
handshaking between

modules

flow control, handshaking

(protocol level), traffic shaping

(example leaky bucket)

interfacing between modules

(example CPU-RAM)

distributed systems, I/O

streams and buffering,

concurrency

throughput
"throughput," for example in

series parallel conversion
network throughput see performance measures

Tools compiler, debugger

Trade-off delay-area speed-space (array-linked list) speed-area(cost)-power

performance tradeoffs in

memory hierarchy,

interconnect density,

scalability

space-time-communication

complexity

translating informal specs. (see also

abstract thinking and modeling)

verbal description to

algorithm/flow-chart
Problem to algorithm

verification and testing

proof of simple programs, loop

invariants, induction (see also

recuirsion)

HDL testbench, verification

flow

protocol verification (safety,

liveness)

See also abstraction

First look at parallel. Circuits are inherently parallel. Many

possibilities, serial to parallel conversion, carry look-ahead,

barrel shifter, Verilog blocking and unblocking assignments etc.

MUX to share output among several inputs Shared buses, hardware modules, hardware reuse (FPGA)
shared resources (memory, channels, processing elements),

deadlock, semaphore, critical region

Verilog modules, circuit decomposition

data and control buses, interconnects and interfaces

HDL testbench, verification flow
Architecture/Software verification/testing; algorithm

correctness

Modular design

course sequnce itself may be viewed as an exercise in modular exposition of concepts, for example, electronics --> digital logiv --> microprocessors --> embedded systems --> computer organization --> Computer architecture

physical device vs CAD tools simulating, debugging, verification, testing (in different contexts)

verbal/informal description to state diagram/architecure

latch, flip-flop, circuit timing

memory as registers and RAM, different types of memory

shared/distributed memory, message passing,

routing,interconnection networks, topologies

	Introduction
	The Workshop on Connecting Concepts Across the Curriculum
	The Participants
	Workshop Structure
	Pre-Workshop Activity
	Invited Talk and Keynote
	At the Workshop
	Session 1: Identifying Topics
	Session 2: Identifying Threads
	Session 3: Identifying Methods

	Workshop Findings

	Follow-Up Activity
	Concluding Remarks
	Workshop Program
	Topic List and Possible Threads

