
Topic (alphabetical) First digital logic + lab Digital logic (advanced) First programming Microprocessors Embedded Systems Networking
Organization & 

Architecture
Algorithms General

abstract thinking and modeling algorithm-flowchart-code

binary string as instruction has 

a different meaning from same 

binary string as data

programming models; relation 

to underlying hardware

levels of protocol stack; 

encapsulation
ISA abstraction

abstract models (including 

programming models), proofs, 

analysis

Abstraction; "information = 

bits+context"

addressing modes pointer use main exploration of topic content addressability address vs data

alternate representations/conventions 

(for convenience/advantage)

Truth table = K-Map; state 

table = state diagram

different data structures for 

same data (ex: incidence 

matrix, edge list for graphs), 

pre, post and infix

different representations of 

same data (binary-hex, 

unsigned, BCD)

Ex: left/right endian
different data structures. 

Modeling tools 

Amdahl's Law

carry propagation as a 

bottleneck in ripple carry 

adder

critical paths parallel algorithms bottlenecks

Arithmetic

assembly vis-a-vis hardware

Complexity and Analysis
complexity of algorithms, 

program efficiency

CAD tool use can provide a 

window to appreciating the 

importance of complexity in 

practice

Can provide  a setting for 

probilistic and amortized 

analyses

Complexity theory

Control structures (conditional, loop) introduction at HLL implementation in assembly implementation in assembly

delay circuit delay
area/time optimization; 

retiming, clock skew
program speed instruction delay Ex: FPGA clocking rate latency

instruction delay,pipeline 

delay, access time

algorithms as a general recipe, 

implementable in hardware or 

software

see performance measures

distinction between control and data control instructions control and data hazards
indepencence in width of 

control and data paths

floating point add/mult, rounding

introduction to idea that n bits 

can only represent 2^n distinct 

values

implementing floating point 

hardware
introduction of float

Details of floating 

points/standards
precision, errors standards instructions precision, errors Standards

Graphs

state diagram as a graph, can 

relate binary numbers to 

graphs

place and route, connectivity, 

planarity

data structures (trees, linked 

lists)
DAGs, task graphs routing and congestion control Graph algorithms

see also modeling and 

abstraction

hazards

idea of "state"

need for memory in 

computation (example 

swapping values)

CPUs as FSM

Checkpointing and state 

restoration; FPGA pattern 

matching constructs a state 

machine for the patterm (such 

as in the KMP algorithm)

instrction (cycles per instr, 

format,encoding)

instruction choice (example 

shift or multiply)

cycles/instr, instruction choice 

(example multiply by a 

constant), format

constant coefficient multipliers 

(via look-up tables)

instruction choice, ISA, 

RISC/CISC
see arithmetic

interrupts/exceptions event-driven processes

low-level paralleism

bitwise boolean operations as 

opposed to scans and global 

operations

instruction implementations
Low-level optimizations (for 

example in FPGAs)
ILP, supersacalar

possible efficiencies (stemming from proper selection of 

operation/instruction), overflow

ALUs, possible efficiencies, stemming from proper selection of 

operation/instruction; Strassen's matrix multiplication

programming models; relation to underlying hardware programming models; exploiting efficiencies

0,1 can mean yes/no, enable/disable, true/false, numbers ….; 

1+1=1?

see cycles/instr

arithmetic circuits (adders and perhaps multiplier, divider). 

Number representations

Relationship between hardware, assembly/machine  code and 

high level code

Digital logic can provide a first hand look at complexity. It is 

intimately tied to circuit complexity and is replete with 

intractable problems. For example, state assignment could 

easily illustrate the futility of an exhaustive approach

Example in MUXs, ALU etc. (data width is independent of 

control width). Complex circuits with control FSM enabling the 

operation of "data" part

data, structural and control hazards (branch prediction),out-of-

order execution, race conditions, synchronization, deadlock, 

livelock

can be introduced with circuit delay in an advanced example 

(that implements an instruction or an address computation)

logic hazards, reconvergent paths, synchronization using 

registers, async gates in synchronous ckts, 
synchronization, handshaking

From flip-flop outputs to "what needs to be remembered"
Checkpointing and state restoration (particularly in distributed 

environment); oblivious (limited-state) computation

enable, asynchronous inputs; event triggered Verilog 

execution
interrupts and exceptions, priorities



Topic (alphabetical) First digital logic + lab Digital logic (advanced) First programming Microprocessors Embedded Systems Networking
Organization & 

Architecture
Algorithms General

0,1 can mean yes/no, enable/disable, true/false, numbers ….; 

1+1=1?memory
memory as an abstract idea to 

explain state
memory as a circuit memory as a variable

memory hierarchy and 

management; memory 

architecture (shared, 

distributed); performance 

memory as an algorithmic 

abstraction (online, oblivious)

Models/Structures of 

interaction/communication

The idea of interconnects and 

topologies can be introduced 

in the first digital logic

bus (and other stucture) 

implementation

parameter passing, shared 

variables

client-server, peer-to-peer, 

routing, flow control, 

protocols and services 

between protocol layers

also see abstract thinking

procedures, scope of variables bit-slice Verilog modules
layers in protocol stack, 

encapsulation

parallel vs. sequential First look at sequential
multiple pieces running 

sequntial code independently

Sequential/Parallel at different 

layers (Transport layer may 

deliver packets sequentially (in 

order), network carries 

packets in parallel paths/links. 

(see also abstraction)

Multicore environment …

parallel, sequential, 

distributed algorithms, 

concurrency

performance measures
delay, number of gates/flip-

flops
clock-speed, area, power time (asymptotic) processor cycles, memory

speed, power, memory, 

cost/form-factor

latency, throughput, quality or 

service
speed, power, fault-tolerance

time, space, communication 

cost, approximation ratio

pipelining concept

series of flip-flops (example 

shift register) as an analog of 

progess through an ideal 

pipeline

pipeline implementation Ex: image processing pipeline

pipelining packets across 

(frame-level) links; sliding 

window protocol

instruction pipeline sofware/algorithmic pipelining

procedures, parameter passing, scope 

of variables, run-time stack (see 

recursion also)

procedures, stacks
details of parameter passing, 

runtime stack
Remote Procedure Call (RPC) see also Modular design

recursion (see procedures also)

Decompsition of MUXes, 

decoders etc. Carry lookahead 

as a recurrence

recursive harware blocks 

(example bitonic sorter), prefix 

circuits (ex: Kogge-Stone)

recursion, recursive structures 

(such as trees)
Recursive structures Divide and Conquer Recurrences

shared resources MAC layer, multiaccess

Multiplexing in other 

dimensions (besides time), 

for example 

frequency/wavelength

speedup

obliquely through "parallel" 

examples. How much is delay 

reduced by increasing H/W 

cost

area/time optimization parallel algorithms
see tradeoffs, performance 

measures

Synchronization
handshaking between 

modules

flow control, handshaking 

(protocol level), traffic shaping 

(example leaky bucket)

interfacing between modules 

(example CPU-RAM)

distributed systems, I/O 

streams and buffering, 

concurrency

throughput
"throughput," for example in 

series parallel conversion
network throughput see performance measures

Tools compiler, debugger

Trade-off delay-area speed-space (array-linked list) speed-area(cost)-power

performance tradeoffs in 

memory hierarchy, 

interconnect density, 

scalability

space-time-communication 

complexity

translating informal specs. (see also 

abstract thinking and modeling)

verbal description to 

algorithm/flow-chart
Problem to algorithm

verification and testing

proof of simple programs, loop 

invariants, induction (see also 

recuirsion)

HDL testbench, verification 

flow

protocol verification (safety, 

liveness)

See also abstraction

First look at parallel. Circuits are inherently parallel. Many 

possibilities, serial to parallel conversion, carry look-ahead, 

barrel shifter, Verilog blocking and unblocking assignments etc.

MUX to share output among several inputs Shared buses, hardware modules, hardware reuse (FPGA)
shared resources (memory, channels, processing elements), 

deadlock, semaphore, critical region

Verilog modules, circuit decomposition 

data and control buses, interconnects and interfaces

HDL testbench, verification flow
Architecture/Software verification/testing; algorithm 

correctness

Modular design

course sequnce itself may be viewed as an exercise in modular exposition of concepts, for example, electronics --> digital logiv --> microprocessors --> embedded systems --> computer organization --> Computer architecture

physical device vs CAD tools simulating, debugging, verification, testing (in different contexts)

verbal/informal description to state diagram/architecure

latch, flip-flop, circuit timing

memory as registers and RAM, different types of memory

shared/distributed memory, message passing, 

routing,interconnection networks, topologies


