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Abstract. We consider the problem of repositioning N autonomous
robots on a plane so that each robot is visible to all others (the Com-
plete Visibility problem); a robot cannot see another robot if its vis-
ibility is obstructed by a third robot positioned between them on a
straight line. This problem is important since it provides a basis to solve
many other problems under obstructed visibility. Robots operate fol-
lowing Look-Compute-Move (LCM) cycles and communicate with other
robots using colored lights as in the recently proposed robots with lights
model. The challenge posed by this model is that each robot has only a
constant number of colors for its lights (symbols for communication) and
no memory (except for the persistence of lights) between LCM cycles.
Our goal is to minimize the number of rounds needed to solve Complete
Visibility, where a round is measured as the time duration for all robots
to execute at least one complete LCM cycle since the end of the previous
round. The best previously known algorithm for Complete Visibility
on this robot model has runtime of O(logN) rounds. That algorithm
has the assumptions of full synchronicity, chirality, and robot paths may
collide. In this paper we present the first algorithm for Complete Vis-
ibility with O(1) runtime that runs on the semi-synchronous (and also
the fully synchronous) model. The proposed algorithm is deterministic,
does not have the chirality assumption, and is collision free.

1 Introduction

In the classical model of distributed computing by mobile robots, each robot is
modeled as a point in the plane that is equipped with a local coordinate sys-
tem and sensory capabilities to determine the positions of other robots [10]. The
robots are autonomous (no external control), anonymous (no unique identifiers),
indistinguishable (no external identifiers), and possibly disoriented (no agree-
ment on local coordinate systems and units of distance measures). They execute
the same algorithm. Each robot proceeds in Look-Compute-Move (LCM) cycles;
that is, when a robot becomes active, it uses its sensory capabilities to get a
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snapshot of its surroundings (Look), then computes a destination point based
on the snapshot (Compute), and finally moves towards the destination point
(Move). Furthermore, the robots are assumed to be oblivious in the sense that
in each cycle, each robot has no memory of its past LCM cycles [10].

Although the robots in the classical model have vision and mobility, they are
silent because they do not communicate directly, and only vision and mobility
enable the robots to coordinate their actions. While silence has advantages, for
example in hostile environments, in many other situations direct communication
is assumed. A model that incorporates direct communication is called robots with
lights [7,10,15]. In this model, each robot is provided with a local externally visi-
ble light which can assume colors from a fixed constant size set; robots explicitly
communicate with each other using these colors. The colors are persistent; i.e.,
the color is not erased at the end of a cycle. Except for the lights, the robots are
oblivious as in the classical model.

Much of the work on both the classical model and the model of robots with
lights assumes that visibility is unobstructed; that is, three collinear robots are
assumed to be visible to each other. The notion of obstructed visibility is captured
in the so-called fat robot model where robots are non-transparent unit discs [1,6].
However, the fat robot model does not assume the availability of lights.

Di Luna et al. [13] gave the first algorithm for robots with lights under
obstructed visibility to solve the fundamental Complete Visibility problem:
Given an arbitrary initial configuration of robots located in distinct points on a
plane, reach a configuration in which each robot is in a distinct position from
which it can see all other robots. This problem is important since it provides a
basis to solve many other problems requiring complete visibility among robots
under obstructed visibility. Moreover, robots cannot share positions during the
execution of the algorithm to reach a complete visibility configuration, that is,
sharing the same position by two or more robots constitutes a robot collision. Ini-
tially some robots may be obstructed from the view of other robots and the total
number of robots, N , is not known to robots. The solution of Di Luna et al. [13]
arranges robots on corners of a convex polygon, which naturally solves the Com-
plete Visilibity problem. They proved the correctness of their algorithm but
gave no runtime analysis except a proof of its termination in finite time. Runtime
is measured in terms of rounds. A round ends as soon as all robots have executed
at least one complete LCM cycle since the end of the previous round [5].

Recently, Vaidyanathan et al. [17] presented an algorithm for this problem
which has a running time of O(log N) rounds for any initial configuration of
N ≥ 4 robots in the fully synchronous setting (where all robots are active in all
rounds). However, their solution allows the paths of robots to cross. Moreover,
their solution assumes chirality [10] – robots agree on the orientation of the
axes of their local coordinate system. The focus of other recent work is only on
solvability, minimizing the number of colors and does not provide runtime. The
goal of this work is to develop an optimal algorithm with constant runtime and
constant number of colors for Complete Visibility on the robots with lights
model.
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Contributions. We consider the same robot model as in the work of Di Luna
et al. [13], namely, robots are oblivious except for a persistent light that can
assume a constant number of colors. Visibility could be obstructed by other
robots in the line of sight. We assume that N is not known and the robots may
be disoriented. We consider the fully synchronous and semi-synchronous models
of computation (Sect. 2). Moreover, we assume that a robot in motion cannot
be stopped (by an adversary). As in the model of Di Luna et al. [13], we assume
that two robots cannot head to the same destination point (this would constitute
a collision). In this paper, we present, to our knowledge, the first algorithm for
Complete Visibility which has the running time of constant rounds and uses
a constant number of colors. In particular, we prove the following theorem.

Theorem 1. For any initial configuration of N ≥ 1 robots with lights, there is a
deterministic algorithm that solves Complete Visilibity in O(1) rounds with
O(1) colors and without collisions on the semi-synchronous model.

Our algorithm is deterministic and has three phases: Phase 0 (initialization),
that breaks up any initial linear arrangement of robots and places all robots
within or on a convex polygon P (convex hull of points); Phase 1 (interior
depletion), which places all robots on the corners or sides of a convex polygon
P ′; and Phase 2 (edge depletion), which moves each robot on a side of P ′ to a
corner of a new convex polygon P ′′. Key to Phase 1 is a corner moving procedure
that permits all interior robots to see all corners of the hull. Key to Phase 2
is a corner insertion procedure that moves robots to corners while retaining
convexity. Both the corner moving and corner insertion procedures may have
independent interest.

Previous Work. The problem of uniformly spreading robots in a line, studied by
Cohen and Peleg [4], considers the case of obstructed visibility, but these robots
have no lights. The work of Pagli et al. [14] considers a problem where collisions
must be avoided between robots. However, they do not provide runtime analysis.
Similarly, much work on the classical robot model (with no lights) [2,4,16,18]
showed that Gathering (robots come together to be in a not predefined point)
is achieved in finite time without a full runtime analysis, except in a few cases
[8,9,12]. Furthermore, Izumi et al. [11] considered the robot scattering problem
(opposite of the gathering problem) in the semi-synchronous setting and provided
a solution with an expected runtime of O(min{N,D2 + log N}); here D is the
diameter of the initial configuration.

Paper Organization. In Sect. 2 we provide details of our model and some pre-
liminaries. For clarity, the Complete Visilibity algorithm is first presented
for the fully synchronous model in Sect. 3. The conversion of the algorithm to
the semi-synchronous model is discussed in Sect. 4. We then conclude in Sect. 5.
Many proofs, details, and pseudocodes are omitted due to space constraints.
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2 Model and Preliminaries

This paper uses a distributed system of N robots (agents) with index from set
R = {0, 1, · · · , N − 1}. We will then use a variable, for example r, to indicate a
robot on or the point on the plane it is positioned at. Each robot is a (dimen-
sionless) point that can move in an infinite 2-dimensional real space R

2. A robot
i can see, and be visible to, another robot j iff there is no third robot k in the
line segment joining i and j. Each robot has a light that can assume one of a
constant number of colors.

Look-Compute-Move. Each robot i is either active or inactive. When a robot i
becomes active, it performs the “Look-Compute-Move” cycle described below.

– Look: For each robot j that is visible to it, robot i can observe the position
of j on the plane and the color of the light of j. Robot i can also observe
its own color and position; that is, i is visible to itself. Each robot observes
position on its own frame of reference. That is, two different robots observing
the position of the same point may produce different coordinates. However
a robot observes the positions of points accurately within its own reference
frame.

– Compute: In any cycle, robot i may perform an arbitrary computation using
only the colors and positions observed during the “look” portion of that cycle.
This computation also includes determination of a (possibly) new position and
light color for i for the start of next cycle. Robot i maintains this new color
from the current cycle to the next cycle.

– Move: At the end of the cycle, robot i moves to its new position and changes
its light to the new color.

In the fully synchronous model, every robot is active in every LCM cycle.
In the semi-synchronous model, a subset of robots (zero to all) in R are active,
and over an infinite number of LCM cycles, every robot is active infinitely often.
In the fully synchronous model, one round is always one LCM cycle. In the
semi-synchronous model, a round can take an arbitrary number of LCM cycles.
Depending on the activation schedule, some robots may be active for many
cycles in a round before every robot has been active at least once. Note that our
time bounds for the semi-synchronous model hold regardless of the activation
schedule.
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Convex Polygon. For N ≥ 3, a convex poly-
gon can be represented as a sequence P =
(c0, c1, · · · , cN−1) of corner points in a plane
that enumerates the polygon vertices in clock-
wise order. A point s on the plane is a side
point of P iff there exists 0 ≤ i < N such that
ci, s, c(i+1)(mod N) are collinear; for the rest of
the paper we will implicitly assume the above
modulo operation and write c(i+1)(mod N) =
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ci+1. A side S = (ci, s1, s2, · · · , sm, ci+1) is a sequence of collinear points whose
beginning and end are adjacent corner points and whose remaining points are
side points. We write pq for a line segment connecting two points p, q and denote
by length(pq) its length. For a given polygon P, the plane can be divided into
the interior and exterior parts. For a given side S of P, the infinite line obtained
by extending side S divides the plane into the interior and exterior parts of the
side. The interior part of S contains the interior of the polygon. The corridor of
S is the infinite subregion on its exterior that is bounded by S and perpendicular
lines through points ci, ci+1 of S. The corridors of the sides of P are disjoint.
The figure above illustrates these concepts.

Lines and Angles of View. For any robot r, let Vr be the set of robots (other
than itself) visible to r. Let L1, L2 be lines through robot r, such that θ1 is
the smallest induced angle at r whose region accommodates all robots of Vr;
call this the region of view of r. The line segments of L1, L2 that border the
region of view of r are called the lines of view of r and the associated angle is
called the angle of view of r. These ideas can also be used with a subset of the
robots visible to r. The figure below illustrates these ideas: In the left part all
elements of Vr = {r2, r3, r4, r6} are considered; in the right part only r3, r4, r6
are considered.
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Configuration and Local Convex Poly-
gon. A configuration C = {(p0,
col0), . . . , (pN−1, colN−1)} defines the
positions of the robots in R and their
colors; here pi = (xi, yi) is the posi-
tion of robot i and coli is the color of
its light. A configuration for a robot i ∈ R, C(i), is a configuration that defines
the positions of the robots in R that are visible to i (including i) and their colors,
i.e., C(i) ⊆ C. The convex hull of points in C(i) is denoted by P(i). P(i) is local to
i since P(i) depends only on the points that are visible to i. We sometime write
Ct,Pt,Ct(i),Pt(i) to denote C,P,C(i),P(i), respectively, for any round t ≥ 0.
Moreover, we sometime write C(ri),P(ri) instead of C(i),P(i).

Eligible Area. Let A be a set of points and
P be the convex polygon of the points in A.
Let Rc, Rs, Ri be the set of points at cor-
ners, sides, and the interior of P. Moreover,
let ci be a corner point of P and a, b be the
counterclockwise and clockwise neighbors
of ci in the perimeter of P. The eligible
area for ci, denoted as EA(ci), is a polyg-
onal subregion inside P within the triangle ciuw, where u,w are the midpoints of
edges cia, cib, respectively. It is easy to show that the eligible areas for any two
corner points of P are disjoint. Due to obstructed visibility, EA(ci) is computed
based on C(ci) and the corresponding polygon P(ci). One prominent property
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of the eligible area is that ci remains a corner of P even after it moves to any
point inside EA(ci) (except the points on the lines going through EA(ci)). The
other prominent property is that all the points in Rs, Ri are visible to ci (and
vice-versa), when ci moves to any point inside EA(ci). This computation is used
in Phase 1 of our algorithm.

We outline here how EA(ci) is computed for any corner point ci of P. The
pseudocode is omitted due to space constraints. Initially, ci sets the triangle ciuw
as its EA(ci). However, if ci sees some point of A inside ciuw, then it sets as
EA(ci) the triangle ciyz such that there is no point inside ciyz. Note that yz is
parallel to ab. Let c′ be a point in C(ci). For every other point c′′ ∈ C(ci), c′′ �=
c′, c′′ �= ci, ci computes a line, L′, parallel to cic′′ passing through c′. Let HP
be the half-plane divided by L′ such that ci is in HP . Corner ci then updates
its EA(ci) by keeping only the portion of EA(ci) that is in the half-plane HP .
This process is repeated for all c′ ∈ C(ci)\{ci} and EA(ci) is updated in every
iteration. Now from the area EA(ci) that remains, ci removes the points that
are in the perimeter of EA(ci) and also the points that are part of the lines←→cix, x ∈ C(ci)\{a, b, ci}, passing from inside of EA(ci). This removal of points is
crucial to guarantee that when ci moves to a point in EA(ci), it does not become
collinear with any robot in Rs, Ri. The figure above illustrates the computation
of EA(ci); the shaded area is EA(ci) except the points on the lines inside it
(e.g., the point of lines cic′ and cic′′ inside EA(ci)).

Lemma 1. The eligible area EA(ci) for each corner robot ci in P is non-empty.
Moreover, when ci moves to a point inside EA(ci), then ci remains as a corner
of P and all internal and side robots in P are visible to ci (and vice-versa).
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Safe Angle and Apex. Let u, v, w, x, y
be points such that (a) v, w, x are
collinear with w between v and x, (b)
u, y are not collinear with line segment
v, w, x, and (c) u, y lie on the same side
of line v, w, x such that line segments
uv and xy do not intersect. The figure below illustrates safe angles and apex.
Define (non-reflex) angles θ1, θ2 < 180◦ as θ1 = ∠(u, v, w) and θ2 = ∠(w, x, y).
Let φ1 = 45◦ − θ1

4 and φ2 = 45◦ − θ2
4 be the “safe angles” for v and x, respec-

tively. Let L1 (resp., L2) be the line traversing point v (resp., x) such that it
forms an angle φ1 (resp., φ2) with line segment v, w, x as shown in the figure in
the right. Sinceφ1, φ2 < 45◦, lines L1, L2 will intersect on the side of line v, w, x,
opposite to that of points u, y. Call this point of intersection h as the safe apex
of w with respect to (or wrt)u, v, x, y.

Observe that if vx is a side S of P with v, x as corner points and w as a
side point, and if u, y are adjacent corner points for side S, then define triangle
v, x, h as the safe area for side S. The pseudocode outlining the technique of
computing safe apex for a side robot si of P is omitted due to space constraints.
This is used in Phase 2 of our algorithm.
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3 Algorithm in the Fully Synchronous Model

We outline an O(1) round algorithm for Complete Visibility in the fully
synchronous model; we will then convert this algorithm for the semi-synchronous
model in Sect. 4. Our algorithm consists of three phases converging toward a
configuration where all the robots are in a convex hull (see Fig. 1). The goal
of Phase 0 is to reposition robots (if needed) so that they are inside or on the
corners and sides of a convex polygon P. Phase 0 (initialization) is performed
if a robot i sees only at most two other robots and the robots seen by i are in
a line (this case happens only if N ≥ 2 in R and all N robots are collinear).
If i sees two other robots, it moves small distance δ directly perpendicular to
the line joining j, l ∈ C(i). If N ≥ 3, this action ensures that in the resulting
configuration not all robots are collinear. Figure 1a depicts a worst case scenario
where all robots are initially collinear.

Phase 1 (interior depletion) starts as soon as the robots in C0 reach a non-
collinear configuration (robots on or in convex polygon P). In Phase 1 the algo-
rithm first identifies corner and side robots as follows (Fig. 1b). For robot i, if all
other visible robots are within an angle of view of < 180◦ (respectively, = 180◦),
then i is a corner (resp., side) robot of a convex polygon P. The remaining robots
(that lie in the interior of P) are called “interior robots”. Phase 1 moves all inte-
rior points of P to the sides of a slightly smaller convex polygon P

′ (Fig. 1e). It
accomplishes this by first moving the corner robots of P to some point inside the
eligible area in the interior of P, where now all the corner robots are visible to
the interior robots (Fig. 1b). The interior robots then move toward the closest
corners of P′ (Fig. 1c), and finally to the sides of P′ (Fig. 1d). We show later that
this phase runs in O(1) rounds in any configuration of the robots.

Phase 2 (edge depletion) relocates side robots of P′ to the corners of a slightly
larger convex polygon P

′′. It accomplishes this by moving only the side robots
of P′ into the safe area of the side they belong to. This proceeds by first moving
two side robots that are neighbors of the corner robots of that side to the safe
area (Fig. 1f), after that forming a circle segment using the information provided
by three of (at most) four robots (two endpoints of the side, and one of the two
robots that moved to the safe area, as shown in Fig. 1g), and then moving all
other remaining side robots of that side perpendicularly to the points in the
formed circle segment for the side. Figure 1h shows the resulting convex hull.
This phase also runs in O(1) rounds irrespective of the number of side robots in
any side of P′.

The pseudocode of the algorithm is omitted due to space constraints. Each
robot i works autonomously having only the information about C(i). If P(i) is
not a line segment for each i ∈ R, then Phase 1 starts immediately. If P(i) is
a line segment, then in one round, the robots in C0 result into a non-collinear
configuration C0 and Phase 1 starts in the second round. Phase 1 proceeds
autonomously until all (visible) robots are colored either corner or side. This
acts as the starting configuration for Phase 2, which proceeds autonomously
until all (visible) robots have color corner. The algorithm then terminates. The
total number of colors used through Phases 0–2 is 9 and the algorithm runs for
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Fig. 1. The three phases of the algorithm.

(at most) 9 rounds. We provide details of Phases 0–2 separately below. The
moves of each robot in Phases 0–2 can also be described as condition/action
pairs (which we omit due to space constraints).

3.1 Phase 0 - Initialization

Initially, all N ≥ 1 robots in R have color start. Assume that C0 is collinear
(otherwise, this phase is not required). We have that P is a line segment. Let
rj , . . . , rl be the robots in P (a line segment rjrl) with rj , rl be the endpoints. Let
x be a robot in rjrl between rj , rl and let y, z be two other robots it sees. Robot
x moves perpendicular to line yz for a short distance δ keeping its color start in
the first round. Robots rj , rl change their color to ready without moving, since
they see only one other robot. At the end of the first round, it is impossible
for robots in R to be in a straight line, if N ≥ 3. Consequently, there exists
polygonal P on or in which all robots lie. If N = 2, one robot sees the light of
one other robot with color ready and figures out that there are only 2 robots in
R and terminates. This happens at the second (and final) round. If a robot x
sees no other robot, it can simply terminate.

3.2 Phase 1 - Interior Depletion
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(a) Initial positions and colors  (b) Final positions and colors

At the start of Phase
1, each robot is col-
ored start or ready.
All the robots in
R are colored start
if Phase 0 was not
executed. A robot
with color ready is
located at a corner of
P and a robot with color start is located at a corner or side or in the interior
of P. Let Rc, Rs, Ri be the sets of robots at corners, sides, and the interior of
P. Let P

′ be a convex hull formed by the robots in Rc after they moved to a
point in their eligible areas, EA(∗), and have assumed color corner. Note that
P

′ is completely contained inside P. The goal of Phase 1 is to move the robots
in sets Rs, Ri to make them side robots of P′ with color side. Therefore, at the
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end of Phase 1, all the robots are in the corners and edges of P
′ with corner

robots colored corner and side robots colored side. The figure above illustrates
Phase 1.

Phase 1 has four rounds. In Round 1.1, all corners of P become corners of P′

with color corner and the side robots of P change their color to side1 without
moving. In Round 1.2, all interior robots of P (also interior in P

′) assume color
transit moving closer to their closest corners in P

′ and the robots with color
side1 move to the closest sides of P′ assuming color side. In Round 1.3, some
transit colored robots become side robots of P′ and, by the end of Round 1.4,
all transit colored robots become side robots of P′.

We give details on each round separately below.
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i2

c3

c0
c1

c2

P

P
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Round 1.1: Each corner rc of P (the robot is in
Rc) computes its eligible area EA(rc), moves to a
point x in EA(rc), and assumes color corner. Since
all the robots in Rc move simultaneously, they all
become corners of P′ by the end of Round 1.1 and do
not move in any future rounds (Lemma 1). The side
robots Rs of P also change their color to side1 from
start at Round 1.1 without moving. The interior
robots of Ri do nothing. The figure on the right illustrates this round. We have
the following results by the end of Round 1.1.

Lemma 2. The set of robots Ri in the interior of P remain as interior robots
of P′.

Observation 1. Let rc be a corner robot in P
′. Let rccw, rcw be the neighbor

corners of rc in P
′ in the counterclockwise and clockwise directions of rc, respec-

tively, in its local coordinate system. Robot rc sees both rccw, rcw. (c1 and c4 for
corner c0 in the figure above.)

Round 1.2: Since each rc ∈ Rc moved to EA(rc) and become a corner of P′ in
Round 1.1, all the robots in Ri, Rs see all corner robots of P′ (Lemma 1) and
each internal robot ri ∈ Ri can determine the closest corner robot rc in P

′. Robot
ri can also see rc’s neighbors rccw and rcw in P

′ (Lemma 1). Moreover, all robots
in Ri are in the interior of P′ (Lemma 2). We need the following definition.

Definition 1. Let rc, rccw, rcw be the robots defined in Observation 1. The line
segment xy connects points x, y, where x = length(rcrccw)/8 from rc in line
rcrccw and y = length(rcrcw)/8 from rc in line rcrcw.
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Interior robot ri determines the line xy, moves
to the the intersection point z of xy and ←→rirc, and
assumes color transit. The robots in Rs (which
were colored side1 in Round 1.1) also see all the
corner robots of P′. Let S be a side of P′ such that
a robot rs ∈ Rs is in its corridor. Let Ŝ = x′y′ be
the line segment connecting point x′, y′, where x′ is
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the point at S at distance length(S)/4 from its one endpoint and y′ is the point
at distance length(S)/4 from its other endpoint. Let p be the midpoint of Ŝ and
α = ∠x′prs. Robot rs computes point q = α

180◦ · length(Ŝ) from x′ on Ŝ, moves to
q, and assumes color side. This computation of q guarantees that each angle α is
mapped to a different position q on Ŝ and q does not coincide with either x′ or y′

[17]. The figure above illustrates this round. We have the following observations
at the end of Round 1.2.

Observation 2. The internal robots Ri are in the lines xy of the corner robots
of P′ and the side robots Rs are in the sides of P′.

Observation 3. Let S be a side in P
′. If there are robots on S, they are in

the positions of S between points x′ = length(S)/4 from one endpoint of S and
y′ = length(S)/4 from the other endpoint of S.

Round 1.3: The robots in Rs do not move in the remaining rounds of Phase
1 since they already have become side robots of P′ in Round 1.2. Therefore, we
only deal with the internal robots in Ri (all are colored transit) in this and the
next round. Using the same notation as in Round 1.2, each ri ∈ Ri sees rc (the
closest corner of P′) even after it has moved to point z in xy. If ri sees both rccw

and rcw (as defined in Observation 1), it can move to become a side robot of P′

as follows: ri draws two lines L and L′ parallel to line segments rcrccw, rcrcw,
respectively, passing through ri, then moves to the intersection point of L, rcrcw

or L′, rcrccw whichever is closest to ri (with respect to the distance from ri to
the intersection points) and assumes color side.

There are situations where ri may not see rccw and/or rcw, for example, the
moves of other internal robots in Ri with the closest corners rccw, rcw may block
the visibility of ri to see rccw, rcw. In this case, ri tries to find whether it sees
two robots, sa, sb, with color side as the adjacent robots of rc in P

′, instead of
rccw, rcw.

Lemma 3. Let rc be the closest corner of ri ∈ Ri. If ri ∈ xy sees two robots
sa, sb with color side adjacent to rc in the counterclockwise and clockwise direc-
tion of rc, respectively, then all the robots in xy see both sa, sb.
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Robot ri draws two lines L and L′ parallel
to line segments rcsa, rcsb, respectively (instead of
rcrccw, rcrcw), passing through ri, and then moves to
the intersection point of L, rcsb or L′, rcsa whichever
is closest to ri (with respect to the distance from ri

to the intersection points) and assumes color side.
The figure to the right illustrates this round. If each
ri ∈ Ri sees either both sa, sb with color side or
both rccw, rcw, all the robots in Ri become side robots of P′ in this round and
Phase 1 finishes.

However, there are situations where all the robots in Ri may not even see
both sa, sb. In this case, we have the following lemma.
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Lemma 4. Let ri ∈ Ri be the robot in line xy of corner rc and rj ∈ Ri be the
robot in line xy of corner rcw. Suppose ri, rj are closest to the side rcrcw of P′

among the robots in their lines xy. At least one of ri, rj sees both rc, rcw.

Proof. Robots ri, rc, rcw form a triangle which is non-empty. Robot ri sees rc

since there is no robot inside triangle rcxy and all robots closest to rc are in line
segment xy. If ri sees rcw, we are done. Otherwise, rj or some other robot in the
line xy of rcw must be collinear with side rircw. Since rj is the closest robot to
side rcrcw and there is no robot in side rirc, rj must see rc. Moreover, rj sees
rcw since rcw is the closest corner to it. ��
Therefore, either of ri, rj that sees both rc, rcw moves to the point at
length(rcrcw)/4 from its closest corner in P

′ in rcrcw and assumes color side.

Lemma 5. Let S = c1c2 be a side of P′. When a robot r′ with light transit
in a line xy of c1 (or c2) moves to a point at length(S)/4 in S from c1 (or c2),
then all the robots in lines xy of both c1 and c2 see r′.

Proof. Let S′ denote the other side incident on c1 in P
′. Similar to Lemma 3,

since the line xy of c1 connects points x = length(S′)/8 from c1 in S′ and
x = length(S)/8 from c1 in S and r′ is in position length(S)/8 from c1 in S, the
robots in xy can not be collinear with r′. Similarly, it holds for the robots in xy
closest to c2. ��
Round 1.4: If Phase 1 did not finish in Round 1.3, each ri ∈ Ri sees rc (the
closest corner in P

′) and a robot each with light side as neighbors of rc in both
directions of rc at the end of Round 1.3 (Lemma 5). The part b of the figure
in the beginning of this section illustrates this round as i4 moves to a side of P′

and assumes color side. The move technique is similar to Round 1.3. We prove
the following results for Phase 1.

Lemma 6. At every round of Phase 1, each robot sees at least one robot with
color from {start, ready, side1, transit}.
Proof. Initially, all robots have color start. Some robot assume color ready if
robots execute Phase 0. Therefore, at Round 1.1, each robot sees only ready or
start colored robots. At Rounds 1.2 and 1.3 robots must see some robot with
color in {start, ready, side1, transit}, otherwise there will be only corner
and side colored robots in P

′ and Phase 1 execution is finished. ��
Theorem 2. Given a set of N robots placed on corners, sides, and interior of a
convex polygon P such that all robots have color either start or ready, Phase 1
executes in at most four (fully synchronous) rounds avoiding collisions and uses
6 colors.

Proof. We first prove that the rounds of Phase 1 follow in the order indicated by
their names and if any round is skipped then all the robots are already colored
either corner or side and they are in the perimeter of P′.
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Phase 1 begins when the set of colors visible to each robot is {start, ready}.
This causes Round 1.1 to be executed by corner and side robots of P. Since
internal and side robots do not move until they see robots with light corner,
Round 1.2 follows Round 1.1. All side robots of P become side robots of P′ in
Round 1.2 and do not move in future rounds. Similarly, Round 1.3 follows Round
1.2 since this is the first time internal robots have light transit. Similarly, Round
1.4 follows Round 1.3 since this is the first time the internal robots that did not
see side robots as neighbors of their closest corner robot of P′ will see such side
robots.

Initially, all robots have color start. In Phase 0, only color ready is intro-
duced. At Rounds 1.1, 1.2, and 1.3, colors {side1, transit, corner, side} are
introduced. Therefore, there are total 6 colors.

We now show that the execution of Phase 1 is collision free. In Round 1.1, a
corner robot rc does not collide with any side or internal robot of P while moving
to a point inside EA(rc) since there is no robot inside EA(rc). Robot rc does
not collide with any other corner robot rd since eligible areas for any two corner
robots of P do not overlap.

In Round 1.2, the robots with color side1 of P moving to become side robots
of P′ with color side do not collide, since the technique they use to find a point
to move to in P guarantees that all robots moving to a side do not collide. The
interior robots with color start moving to the positions of lines xy of their
closest corners of P′ also do not collide.

The argument is as follows. For another internal robot rj moving to the same
line segment xy as ri, rc is visible to both ri and rj (Lemma 1), so the path from
ri to rc is unobstructed and so is the path from rj to rc. Robot ri moves along
line ←→rirc to the intersection with line segment xy, while rj moves along line ←→rjrc

to its intersection with line segment xy, so the paths of ri and rj do not cross
and they do not collide.

For another internal robot rk closest to a corner robot rd different from rc,
rk moves along line ←−→rkrd to a point z′. Every point on the path from rk to z′ is
closer to rd than to any other corner. Likewise, every point on the path from ri

to z is closer to rc than to any other corner. Therefore, the paths of ri and rk

do not cross and hence ri and rk do not collide.
In Round 1.3, either all robots in line xy move to become side robots of P′

or the two endpoint robots among the robots in xy move to become side robots.
In the first case, the robots fall in the positions of sides rcx and rcy where there
are no robots in those sides and there are no robots inside triangle rcxy. Their
paths to the positions in rcx and rcy do not cross since they go to the closest
side between rcx and rcy. The moves of endpoint robots also do not collide since
all the other internal robots are in lines xy of the corner robots of P

′ and its
destination on the side it is moving to is not occupied by any other robot and
there is no robot in its path.

In Round 1.4, there is no collision using the similar argument as of Round
1.3. The theorem follows. ��
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3.3 Phase 2 - Edge Depletion

At the start of Phase 2, each robot is colored corner or side and is located
at a corner or side of P′. Let Rc, Rs be the set of robots at corners and sides,
respectively of P

′. Phase 2 moves the robots of Rs to corners of an N -sided
convex polygon P

′′ that also has the robots of Rc as its corners. At the end of
Phase 2, all robots have color corner.

Consider any side S = 〈ci, s1, · · · , sm, ci+1〉, where ci, ci+1 are corner points
and s1, · · · , sm are side points. The other corner points of the side adjacent to
S are ci−1 and ci+2. For each side S = 〈ci, s1, · · · , sm, ci+1〉, Phase 2 places all
side points si on a circle segment traversing ci and ci+1 and which has entirely
within the safe area of S. To determine this circle, each robot needs to see three
point on the circle. The figure to the right illustrates Phase 2 for a side with 5
side points (colored gray).

We will use this as a running example to illustrate this phase.

ci+2

ci

ci−1

ci+1

s1 s2 s3 s4 s5

ci+2ci−1

ci+1

ci

(a) Initial positions and colors (b) Final positions and colors

Phase 2
has four rou-
nds. In Round
2.1, the side
robots of P

′

that are neigh-
bors of at
least one corner of P

′ move to their safe apexes and assume color scout1. In
Round 2.2, each scout for a particular side S of P′ computes two circles (based
on the two corners, itself, and the possibly another scout it sees), places itself
on the circle with larger radius, and changes its color to scout2. If there is only
one scout, the scout robot is already on a circle and can simply change its color
to scout. In Round 2.3, two side robots in S that are now neighbors of their
corners move to place themselves on the circle. This is simple since each of them
can see a corner and two scouts on the circle. In Round 2.4, all remaining side
robots of S move to the circle assuming color corner and the robots already in
the circle change their color to corner.

We give details on each round separately below. For this discussion, we
assume that m ≥ 5. The case of m < 5 is explained later. Before we proceed, we
develop a few results that will be useful later.

Round 2.1: Consider a robot s on side S that can see at least one of
the two corners of S. Moreover, it cannot see any robot with color from
{start, ready, side1, transit}.

h

ci+2ci−1

ci+1

s2 s3 s4
ci

h5
h1

The last sentence ensures that this
condition is not met during Phase 1 (see
Lemma 6). We assume this additional
condition is added to each of the rounds
of Phase 2 (although it is not needed, it
will make the overall proof of correctness
easier).
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For our example, the two side points s1, sm bordering corner points, ci, ci+1,
of S participate during this round; we will call these side points “extremal side
points” of side S. Robot s1 moves to its safe apex, h1, wrt points ci−1, ci, s2, ci+2.
Similarly, sm moves to its safe apex, hm, wrt ci−1, sm−1, ci+1, ci+2. Robots s1, sm

assume color scout1.
The figure above illustrates Round 2.1. Color scout1 is shown in red. Triangle

ci, ci+1, h is the safe area for the entire side. For clarity, the safe angles for ci, s2
(due to point s1) are shown in yellow and light blue, respectively. Similarly, the
safe angles of s4 and ci+1 are shown in pink and light green. Observe that s1
easily determines its side S and that all of the points ci−1, ci, s2, ci+2 are visible
to it.

Lemma 7. At the end of Round 2.1, each scout of a side S can see the other
scout (if any) of the side, as well as the corners ci, ci+1 of side S.

Round 2.2: It is well known (for example, [3, Sect. 7.2.3]) that for any three
non-collinear points a, b, c, there is a unique circle that traverses a, b, c. Let
Circle(a, b, c) denote this circle. In this round, each scout for side S determines
Circle(ci, h1, ci+1) and Circle(ci, hm, ci+1) and selects the one with the larger
radius (flatter circle), denoted by Circle(∗) and called the safe circle of side
S. From Lemma 7 each scout can see all the robots (including itself) to deter-
mine the circles Circle(ci, h1, ci+1), Circle(ci, hm, ci+1) and, hence, Circle(∗).
The scout then moves (if needed) to position itself on the safe circle; this move-
ment could, for example, be perpendicular to side S. It then changes its color to
scout2.

h

ci+2ci−1

ci+1

s2 s3 s4
ci

h5
h1

The figure on the right illustrates these
ideas. Color scout2 is shown in pur-
ple; Circle(ci, h1, ci+1) = Circle(∗) and
Circle(ci, hm, ci+1) are shown in blue and
green, respectively. Observe that the arc
of Circle(∗) between corners ci, ci+1 lies
entirely within the safe area of side S.
Also note that placing corner points on
Circle(∗) (over all sides S) will keep the polygon convex.

Round 2.3: Here the current extremal side points of S (s2, s4 in our example)
move to the safe circle Circle(∗). This is straightforward as each extremal point
can see a corner and two scouts (totally three non-collinear points) that are on
Circle(∗).

We now explain this and the next round as condition/action pair (C,A). That
is, each robot that satisfies a condition C performs a corresponding action A.
The appendix gives all steps of the algorithm as condition/action pairs.

Condition 2.3.1: Robot s colored side is on side S and it can see at least one
of the two corners of S and two points colored scout2 in the exterior half-plane
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of S. Moreover, it cannot see any robot with color from {anchor, start, ready,
side1, transit}.

Action 2.3.1: Robot s moves to the safe circle, Circle(∗), of S and colors itself
anchor.

Figure on the right illustrates Round 2.3. Color anchor is shown in green.

ci+2ci−1

ci+1

ci

s2 s3 s4

This round has another move needed
for the case m < 5; this is explained later.

Condition 2.3.2: Robot s colored scout2
corresponding to side S can see no points
colored side in S. Moreover, it cannot see
any robot with color from {start, ready,
side1, transit}.

Action 2.3.2: Robot s colors itself corner.
Round 2.4: At this stage, every side robot on S can see at least four points on
the safe circle Circle(∗). This allows the side point to determine Circle(∗) and
position itself on the circle. All points are now placed on corners of a new convex
polygon P

′′.

ci+2ci−1

ci+1

ci

s2 s3 s4

Condition 2.4.1: Robot s colored side is
on side S and it can see a point colo-
red anchor in the exterior half-plane of
S. Moreover, it cannot see any robot
with color from {start, ready, side1,
transit}.

Action 2.4.1: Robot s moves perpendicular to S and places itself on Circle(∗).
It changes its color to corner.

Robot s determines Circle(∗) as in Round 2.2. Observe that while our exam-
ple shows only one robot, s4, performing the above action, the above condition
would be satisfied by all remaining side points on S and the action executed in
parallel by all of them.

The following condition/action pair is to change the colors of robots already
in Circle(∗) to corner.

Condition 2.4.2: Robot x has color from {scout2, anchor} and it can see a robot
of color anchor (including possibly itself). Moreover, it cannot see any robot with
color from {start, ready, side1, transmit}.

Action 2.4.2: Robot x changes its color to corner.
Here all that matters is that every anchor or scout will be able to see an

anchor; whether the anchor is in its own corridor or not is not important. Figure
on the right illustrates Round 2.4.

We have assumed that the number of side points m on side S is at least 5.
If m < 5, then no robot satisfies Condition 2.4.1. For m = 4, four robots satisfy
Condition 2.4.2 and the phase ends with these robots at corners of convex poly-
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gon P
′. If m = 3, then only one robot satisfies Condition 2.3.1 and three robots

satisfy Condition 2.4.2. If m = 2, then the two scouts were the only side points
on S. They change to color corner at Round 2.3 and terminate Phase 2 for the
side. If m = 1, then there is only one scout and, again, Phase 2 terminates for
side S after Round 2.3. If m = 0 (no side points), then the side does not execute
Phase 2; notice that none of the conditions in the four rounds are satisfied by
robots of color corner.

We have following theorem for the correctness of Phase 2 (a more systematic
proof of overall correctness of the algorithm is omitted due to space constraints).

Theorem 3. Given a set of N robots placed on corners and sides of a convex
polygon P

′ with all corner robots colored corner and all side robots colored side,
Phase 2 executes in at most 4 (fully synchronous) rounds avoiding collisions and
uses 5 colors (out of which 2 colors are common with Phase 1).

Proof. We first prove that the rounds of Phase 2 follow in the order indicated
by their names and that if any side skips a round, then it has completed its side
depletion with all robots, originally on that side, now colored corner. This does
not affect the progress of other sides as corner robots of a side S are needed only
by non-corner robots of side S to determine S itself and its exterior.

Initially, let us assume that the number of side points on a side S is m ≥ 5.
Phase 2 begins when the set of colors visible to each robot is {corner, side}.
This causes Round 2.1 to be executed by robots satisfying Condition 2.1. Since
S has a side point, all non-extremal elements of this side see a robot of color
scout1. So Round 2.2 follows Round 2.1 as the color scout1 appears only at
the end of Round 2.1. Similarly, Rounds 2.3 follows Round 2.2 as this is the only
time the color scout2 is visible without color anchor. Now Round 2.4 follows
Round 2.3 as this the only time anchor is visible.

It is easy to verify that when m (the number of side points in side S) is 4
or 3, then all four rounds are executed in the above order. If m = 1, 2, then
after rounds 2.1, 2.2, and 2.3 the robots of side S are all colored corner and
Round 2.4 is skipped. This does not impact other sides executing Round 2.4 as
the color corner does not affect the conditions of this round.

We now show that the execution of Phase 2 is collision free. The robots in
two different sides never collide since they do not go outside the corridor of the
side they belong to at the end of Phase 1. In Round 2.1, according to the safe
apex computation, the at most 2 robots moving to the safe apex for each do
not collide. From Round 2.2 until Round 2.4 robots move perpendicularly to the
side of P′. ��
We have the following theorem combining the results of Theorems 2 and 3.

Theorem 4. For any initial configuration of N ≥ 1 robots with lights, there
is an algorithm that solves Complete Visilibity avoiding collisions and has
runtime of 9 rounds and uses 9 colors in the fully synchronous model of compu-
tation.
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4 Conversion to the Semi-synchronous Model

We now discuss how to convert the fully synchronous algorithm (Sect. 3) to the
semi-synchronous model. The technique for Phase 0 converts similarly to Phase
0 for the semi-synchronous model and needs at most one (semi-synchronous)
round. For Phases 1 and 2, we describe the difficulty in converting it to work in
the semi-synchronous model, and then how we handle the difficulty. (The detailed
description of each round of Phases 0–2 is omitted due to space constraints.)

Since not all corner robots are able to move to EA(∗) in the same cycle in the
semi-synchronous model, an internal robot ri may not see three corner robots
(one closest corner and its two neighbor corners) necessary to make a move to
become transit colored robot. Therefore, to be able to handle this situation
for internal robots, we need at most 5 (semi-synchronous) rounds and two new
colors corner1,corner2 while converting Round 1.1 of the fully synchronous
model to the semi-synchronous model.

In Round 1.1, instead of directly changing the color of corner and side robots
of P from {ready, start} to corner, each corner robot rc of P that moves to
some point in EA(rc) changes its color to corner1 and each side robot rs of P
changes its color to side1 without moving. Therefore, by the end of Round 1.1,
at least all corner robots of P have color corner1 (and do not move in future
rounds) and all side robots of P have color side1. In Round 1.2, side robots that
are now corners and neighbor of rc change their color to corner1 after moving
to EA(∗) if their color /∈ {corner1, corner2, corner}. After both the neighbors
of any corner robot rc have color ∈ {corner1, corner2, corner}, then ri sees
three corner robots needed to become transit colored robot. However, if there
are robots inside triangle rcxy (points x, y are defined similarly as in Sect. 3), ri’s
view of neighbor corner robots rccw and rcw of rc (Observation 1) may be blocked
by other internal robots that have already moved to become transit colored
robots, and therefore ri might perceive a wrong view of rccw and rcw. To avoid
this situation, we use the technique in which if a corner rc has color corner1,
both of its neighbors in P have color ∈ {corner1, corner2, corner}, and there
are robots inside triangle rcxy, then robot rc changes its color to corner2. That
means an internal robot ri waits until rc is colored corner. Using this technique,
all corners rc of P with robots inside triangle rcxy will be colored corner2 by
the end of Round 1.3. By the end of Round 1.4, all the robots inside triangle
rcxy can move to line xy and assume color transit. Then, by the end of Round
1.5, all the corner robots of P assume color corner. This finishes the conversion
of Round 1.1 of the fully synchronous model to the semi-synchronous model and
the conversion makes sure that when an internal robot ri sees rc colored corner,
it also sees its two neighbors rccw and rcw that are in fact corners of P.

Note also that by the end of Round 1.5, there is no internal robot in rcxy
of any corner rc of P. Therefore, similar to Round 1.2 of the fully synchronous
model, by the end of Round 1.6, all internal robots of P move to lines xy and
assume color transit. Furthermore, by the end of Round 1.8, all transit colored
robots assume color side, all robots with color side1 (if any) assume color
side, and the robots with color corner1, corner2 assume color corner. In
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other words, Rounds 1.2, 1.3, and 1.4 of the fully synchronous model convert to
(semi-synchronous) Rounds 1.6, 1.7, and 1.8.

The conversion for Phase 2 is relatively simple and works for the semi-
synchronous model with no change in the number of rounds. However, robots
may face ambiguity about identifying the exterior direction of the side of P in
Round 2.4 which is handled introducing one additional color corner3. We have
the following theorem.

Theorem 5. For any initial configuration of N ≥ 1 robots with lights, there
is an algorithm that solves Complete Visilibity avoiding collisions and has
runtime of 13 rounds and uses 12 colors in the semi-synchronous model of com-
putation.

We obtain Theorem 1 combining the results of Theorems 4 and 5.

5 Concluding Remarks

We have presented, to our knowledge, the first algorithm for Complete Visi-
bility in the robots with lights model that has runtime of O(1) rounds and uses
O(1) colors in the semi-synchronous (and also in the fully synchronous) model.
This problem is fundamental with application in solving other problems, e.g.,
on the fully synchronous model, gathering robots to a point requires only one
round beyondComplete Visibility.

Several questions remain open. Our solution assumes no intervention by an
adversary.Can this be relaxed? Our solution assumes semi-synchrony.Is a similar
algorithm possible for asynchronous robots?
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