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1.1 Introduction
Synthesis is the converting of a design specified in a hardware description language, such as

Verilog or VHDL, into a form suitable for manufacture or into a form that can be loaded to a
programmable device such as an FPGA. Synthesis is performed by a synthesis program, or by a
collection of synthesis programs. The one used for LSU EE 4755 is Cadence Encounter.

This study guide describes the kind of hardware that one gets for a given piece of Verilog. It
supplements the material provided in the course references. Some coverage of synthesis is provided
in Brown & Vranesic 3rd Edition in Section 4.6 (for combinational logic) and Section 5.12 (for
sequential logic), and these sections are probably the best place for a student unfamiliar with the
material to look (other than this guide). The coverage in the Ciletti text is in chapters 5 and 6,
but this coverage contains unnecessary detail and is not recommended for a beginning student.

This guide will first provide a brief overview of synthesis, with a level of detail appropriate for
EE 4755. The rest of the guide will describe the kind of hardware a typical synthesis programs
generates for a given piece of Verilog code. That is, given some Verilog code the guide will show
how to sketch a logic diagram of the inferred hardware. For example, the Verilog modules below
might each be synthesized into the logic shown to the right.
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// Module is written in Explicit Structural Form

module pie( output wire x, y, input wire a, b, c );

wire t1, t2;

xor x1(t1,a,b);

not n1(x,t1);

and a1(t2,x,c);

or o1(y,t2,b);

endmodule

// Module is written in Implicit Structural Form

module pie( output wire x, y, input wire a, b, c );

assign x = ~ ( a ^ b );

assign y = x & c | b;

endmodule

// Module is written in a Synthesizable Behavioral Style

module pie( output logic x, y, input wire a, b, c );

always_comb

begin

x = ~ ( a ^ b );

y = x & c | b;

end

endmodule

// Module is written in Implicit Structural Form

module pie( x, y, a, b, c );

input wire a, b, c;

output wire x, y;

assign x = ~ ( a ^ b );

assign y = x & c | b;

endmodule

// Module is written in a Synthesizable Behavioral Style
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module pie( x, y, a, b, c );

input wire a, b, c;

output logic x, y;

always @( a or b or c )

begin

x = ~ ( a ^ b );

y = x & c | b;

end

endmodule

Determining the hardware that will be synthesized for a given piece of Verilog is an important
skill since the cost and performance of a circuit is determined by what the synthesis program
generates.

One might wonder: Why is this hard? Afterall, Verilog is a hardware description language.
Actually, Verilog is two languages in one. Verilog written in an explicit structural form describes
exactly how components are interconnected. So the synthesis program (at least after the initial
inference step, explained below) generates exactly what it read. But Verilog is also a simulation
language, in which you can describe what hardware will do by writing behavioral code. Though
behavioral code describes what a circuit will do, it does not describe what components are needed
to do it. The last module above uses behavioral code.

The Verilog language describes exactly what behavioral code should do during simulation. The
language says almost nothing about what kind of hardware corresponds to the behavioral code.

All this suggests that one should use explicit structural code for designing hardware and use
behavioral code for writing testbenches (a module that tests other modules by providing inputs to
those modules and verifying that their outputs are correct). The problem is that explicit structural
code is tedious to write, and so synthesis programs have been developed which can synthesize
hardware from behavioral code. They do this by inferring the hardware that corresponds to some
piece of Verilog behavioral code.

Current synthesis programs cannot infer hardware for any behavioral code. The behavioral
code must follow certain rules, and we will call such code synthesizable behavioral code. These rules
are defined by the synthesis programs, they are not part of the Verilog standard. Each synthesis
program has different rules but there is a great deal of commonality.

This guide will describe rules which work for the Cadence Encounter synthesis program and
the rules should work for many other synthesis programs.

1.2 Overview and Terminology
For purposes of designing hardware Verilog (and other HDLs including VHDL) code is written

in different styles. A style is a set of rules specifying how the code can be written. In the explicit

structural style code cannot contain behavioral code (code following an always or initial) and
it cannot contain continuous assignments (assign statements). Such modules only consist of in-
stantiations of other modules and primitives. Code in the implicit structural style cannot contain
behavioral code but can contain continuous assignments. Code in a synthesizable behavioral style

can contain behavioral code but must follow certain rules, which are described in this guide.
A primitive gate is a gate recognized by Verilog. Examples include and, and xor. A technology

module is a module which has been identified as a component in the target technology. For example,
INVX1, is a NOT gate defined in the OAU technology library.

Two important kinds of programs for reading HDL code are simulators and synthesis programs.
The Verilog code tells the simulator how to determine the values on wires (and registers, etc) over
time, and it also directs the simulator to print messages, write files, and so on. Simulators are run
to verify the correctness of the design. A synthesis program reads the HDL and applies several
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passes to convert the HDL into a manufactureble form.
The following is a simplified description of synthesis, describing the steps which we will focus

on in this class.
The starting point for synthesis is an HDL model of the design (which might consist of a file

or files of Verilog code) which has already been debugged using simulation tools.
The first step is inference. In the inference step the HDL is converted to an explicit structural

form. In explicit structural form the design uses only primitive gates, technology modules, or
modules that themselves are in explicit structural form. For the pie example above inference is a
straightforward process, but for other code things aren’t so simple. Understanding how inference
works is important and the primary purpose of this study guide.

The next step is optimization. The goal of the optimization step is to reduce the area of
the design, improve the speed of the design, or achieve some other goal. Optimization may be
performed multiple times. It is typically done initially after inference, and again after subsequent
steps that modify the design, such as after technology mapping (see below).

After optimization the synthesis program will perform technology mapping. The goal of tech-
nology mapping to replace all primitive gates with technology modules. A technology module is a
component that can be manufactured on the chip, a programmable part of an FPGA, or something
similar.

Following technology mapping another optimization step may be performed.
The last step (or steps, but we’ll consider it one step) is place and route. In place and route

the synthesis program (usually a separate place and route program) first decides where on the chip
to place the technology modules. Then it decides how to run connections between them.

After place and route the design could be sent to fabrication, but before doing that post-
synthesis simulations are performed to verify timing and other characteristics. The post-synthesis
simulation uses timing data provided by the synthesis program which is based on the capabilities of
technology modules taking into account the impact of fan-out and the length of the wiring between
the modules.

EE 4755 students need to know the definitions of the terms described above, that’s the easy
part. They also need to be able to look at a Verilog description and determine the hardware
that would be inferred, and how the hardware might be simplified after optimization. That’s the
interesting part.
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1.3 Synthesis of Simple Expressions in Implicit Structural Code

Inference of code in implicit structural form is easiest to understand because things declared as
wire are wire in the synthesized design and Verilog operators map to hardware in a straightforward
way. The Boolean operators are the simplest, since they map to primitive gates. For arithmetic
operators, such as +, synthesis programs will use modules from a library (usually provided with the
synthesis software). The conditional operator synthesizes into a multiplexor.

1.3.1 Inference of Boolean Operators

Boolean operators are inferred to the respective primitive gates. In the example below the ^

operator maps to an XOR, the ~ to a NOT gate, etc. Notice that t1 is declared as a wire in the
module and appears as a wire in the inferred hardware. (Things aren’t so simple in behavior code
with variables declared logic.)
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// Module is written in Implicit Structural Form

module pie( output wire x, y, input wire a, b, c );

assign x = ~ ( a ^ b );

assign y = x & c b;

endmodule

The module below includes both instantiations and implicit structural logic. The illustration
for the inferred hardware shows the instantiated modules as boxes even though hardware would be
inferred for them too. A test or homework question should specify whether to show the logic inside
of instantiated modules. For the example below the problem might read: Show the hardware that

a synthesis program would infer for the module below. Show the instantiated modules as boxes.

module adder_r4_c3(sum,a,b);

input wire [11:0] a, b;

output wire [12:0] sum;

wire [2:0] P, G, carry;

wire [2:0] CO; // Unused.

ripple_4_block ad0(sum[3:0], CO[0], a[3:0], b[3:0], carry[0]);

ripple_4_block ad1(sum[7:4], CO[1], a[7:4], b[7:4], carry[1]);

ripple_4_block ad2(sum[11:8], CO[2], a[11:8], b[11:8], carry[2]);

gen_prop_4 gp0(G[0], P[0], a[3:0], b[3:0]);

gen_prop_4 gp1(G[1], P[1], a[7:4], b[7:4]);

gen_prop_4 gp2(G[2], P[2], a[11:8], b[11:8]);

assign carry[0] = 1’b0;

assign carry[1] = G[0];

assign carry[2] = G[0] & P[1] | G[1];

assign sum[12] = G[0] & P[1] & P[2] | G[1] & P[2] | G[2];

endmodule
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1.3.2 Inference of Arithmetic Operators

Arithmetic operators include the four basic operations, as well as comparisons. That is, the com-
parison in a == b is considered an arithmetic operator. When a synthesis program encounters an
arithmetic operator it will substitute (or infer) a corresponding module from a library of arithmetic
operators. Most synthesis programs come with such a library, and many let you substitute your
own modules. The substituted modules, of course, must be synthesizable.

For our show-the-synthesized hardware problems it will be sufficient to show boxes for the
modules performing arithmetic operations (see the borc example below).

The synthesis program too might leave the arithmetic modules as module instantiations (as
opposed to showing, say, all the gates that make up the adder). This would make it easier for the
synthesis program to optimize circuits containing multiple arithmetic operations.

1.3.3 Inference of the Conditional Operator (c ? a : b)

The synthesis program will infer a multiplexor for the conditional operator. An expression of the
form c ? a : b will synthesize to a two-input multiplexor, with one input connected to a and
the other to b, the control input will connect to c.

When drawing diagrams of the inferred hardware we will show the multiplexor as a multiplexor.
As with arithmetic operations, this is both for clarity and as a reminder that the synthesis program
too might not replace these modules with gates until after it has made an optimization pass.

Here is a module using the conditional operator and addition:

+
a

b

c

d

x

t

addborcmodule addborc

( output wire [15:0] x,

input wire [15:0] a, b, c,

input wire d );

wire [15:0] t = d ? b : c;

assign x = a + t;

endmodule

Often the conditional operator includes a comparison, for example, a < b ? c : d. That, of
course, is handled by connecting a and b to a comparison unit.
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1.4 Synthesis of Combinational Logic from Behavioral Code
This section describes how combinational logic is inferred from behavioral Verilog code. The

Verilog code must be in a synthesiable form suitable for combinational logic, that form is described
in the next section. That is followed by a description of the kind of hardware that is inferred for
various pieces of code.

1.4.1 Restrictions on Verilog Code to Synthesize Combinational Logic

Behavioral code following the rules below (and additional rules, because the list is not complete)
will synthesize into combinational logic.

• The code must be in an always or always comb block.

• The sensitivity list must not contain a posedge or negedge.

• The sensitivity list must explicitly list all referenced live-in variables, or consist of a * which
does the same thing.

• A variable must either be always assigned in a block, or never assigned in a block.

There are other restrictions which apply to things not covered in class, such as wait statements
or the use of event controls, like @, within a block. Additional restrictions will be given in the sections
that follow.

The module below follows these rules:

// Will synthesize to combinational logic.

module pie( x, y, a, b, c );

input wire a, b, c;

output logic x, y;

always @( a or b or c )

begin

x = ~ ( a ^ b );

y = x & c | b;

end

endmodule

Here is how the code above follows the rules: The behavioral code is in an always block. (As
opposed to an initial block.) The sensitivity list (the stuff after the @) does not have an edge
trigger, and does list each live-in variable that has been used, a, b, and c. (The variable x is
referenced but it is not live in because its value is assigned before it is used.) Both x and y are
always assigned.

In contrast, the module below breaks some of these rules and so will not synthesize to combi-
national logic:

// Will NOT synthesize to combinational logic.

module pie( x, y, a, b, c );

input wire a, b, c;

output logic x, y;

always @( a or b )

begin

x = ~ ( a ^ b );

if ( c ) y = x & c | b;

end

endmodule

Here is how the code above violates the rules: The sensitivity list omits c. The variable y is only
sometimes assigned. The synthesis program might reject this code for the incomplete sensitivity
list. Even if that were corrected, the conditional assignment would result in a latch being used for
y.
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1.4.2 Inference of Simple Assignments, and the Handling of Var (nonnet) Type Objects

For procedural code consisting of assignments, such as the code below, the method to determine
the inferred hardware is the same as the method used for implicit structural code.

Consider again the behavioral pie module below.
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module pie( x, y, a, b, c );

input wire a, b, c;

output logic x, y;

always @( a or b or c )

begin

x = ~ ( a ^ b );

y = x & c | b;

end

endmodule

Notice that x and y are declared logic but they appear as wire. In this case there is exactly
one wire for each logic. If there are loops then a logic can synthesize into multiple wires.

1.4.3 Inference of if Statements

One or more multiplexors will be inferred for an if statement in behavioral code. To be exact,
there will be one multiplexor for each distinct register assigned in the if or else part. One mux
input is for the value produced in the if part, the other is for the value produced in the else part.
If no value is produced in either the if or else part then the value before the if is used.

In the example below there are two if statements. In the first if statement, if ( d ) t = b;

else t = c;, t is assigned in both the if and else parts, and so both multiplexor inputs come
from value assigned inside the respective parts. Notice that the statement creates three versions of
t, one each in the if and else statements, and a third version at the output of the multiplexor.
In the synthesized hardware each of these is a separate wire.

In the second if statement there is no else part (which is the same as an else part in which
t was not assigned). So for the second mux the condition-false (top) input to the mux is the “old”
value of t. Also notice that a comparison unit is used to provide the condition for the mux.

+
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b

c

d

x

t +

16'd12

<

t

t

16'd8

t

t

if ( d ) t = b; else t = c;

addborcb

if ( a < 8 ) t = t + 12;

module addborcb

( output logic [15:0] x,

input wire [15:0] a, b, c,

input wire d );

logic [15:0] t;

always @* begin

if ( d ) t = b; else t = c;

if ( a < 8 ) t = t + 12;

x = a + t;

end

endmodule

1.4.4 Inference of case Statements and Multiple if Statements

For a case statement with consecutive case constants the synthesis program will infer a multiplexor.
For an example, see the imult_ord_radix_4 in the sequential logic section below.

Though each if statement will be inferred as a two-input multiplexor, under the right condi-
tions an optimization pass can combine these into a single multiplexor.
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1.4.5 Inference of Iteration Constructs (Loops)

Iteration constructs include for and repeat. For these to be synthesizable the number of iterations
must be an elaboration-time constant.

For example, for( int i=0; i<10; i++) is fine. However the example below won’t synthesize
because the synthesis program does not know the value of myluckynumber.

// Won’t synthesize because of myluckynumber

module simple(x,myluckynumber,a);

input wire [7:0] myluckynumber;

input wire [15:0] a;

output logic [15:0] x;

always @* begin

x = 0;

for ( int i=0; i<myluckynumber; i++ ) x = x + a;

end

endmodule

If you need to synthesize something like the module above and there is a reasonable maximum
to the number of iterations, you can guard the loop body with an if:

// Will synthesize.

module var_iter(x,myluckynumber,a);

input wire [7:0] myluckynumber;

input wire [15:0] a;

output logic [15:0] x;

localparam int MAX_LUCKY = 15;

always @* begin

x = 0;

for ( int i=0; i<MAX_LUCKY; i++ ) if ( i < myluckynumber ) x = x + a;

end

endmodule

To determine the what hardware will be inferred for a loop just duplicate the loop body by
the number of iterations, and make the loop variable (i in the example above) a constant in each
body. (Duplicating the body of a loop is called loop unrolling and is an important technique in
code optimization which you might see in other courses.) For example, consider:

module the_hard_way( output logic x, input wire [3:0] a, b );

always_comb

begin

x = 0;

for (int i=0; i<4; i++) x = x | ( a[i] ^ b[i] );

x = ~x;

end

endmodule

The number of iterations is 4. So to the synthesis program this is equivalent to:

module the_hard_way_unrolled( output logic x, input wire [3:0] a, b );

always_comb

begin

// Note: This is not something you will actually see because

// the synthesis program unrolls the loop, not you.

x = 0;

x = x | ( a[0] ^ b[0] );

x = x | ( a[1] ^ b[1] );
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x = x | ( a[2] ^ b[2] );

x = x | ( a[3] ^ b[3] );

x = ~x;

end

endmodule

The inferred hardware (before optimization) will be:

0:00:0

0 x

i=0
1:11:1

i=1

x

2:22:2
i=2

x

3:33:3
i=3

x x
x

a

b

the_hard-way

Here are some important things to observe about this example:

• The variable i has been replaced by constants, in this example the bit positions for a and b.

• For each time x was assigned a wire was synthesized.

• This module is practical because the number of iterations was small. If it were, say, 100,000,
the cost of the hardware would probably be too high.

• Some optimizations can be applied, most obviously eliminating the leftmost OR gate.

The module below compares two signed numbers one pair of bits at a time, starting from the
most-significant bit. The behavioral code should be reasonably easy to follow, but the inferred
hardware in the illustration that follows might be considered a mess. Mess or not, it’s ripe for
optimization.

module compare( output logic gt, lt, input wire [2:0] a, b );

always @* begin

gt = 0; lt = 0;

for ( int i=2; i>=0; i-- )

if ( !gt && !lt ) begin

if ( a[i] < b[i] ) lt = 1;

if ( a[i] > b[i] ) gt = 1;

end

end

endmodule
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if ( !gt && !lt ) if ( a[i] > b[i] ) gt = 1;gt = 0;  lt = 0;

lt

gt

lt

gt

lt

gt

< <

The initial assignments to gt and lt are synthesized as wires driven by constant values, that’s
shown in gold above. Each of the three i loop iteration bodies is shown in a green box. An entire
loop body is guarded by an if (!gt && !lt ), that’s shown in blue for the second iteration: if
the condition is false the values of lt and gt pass through unchanged to the next iteration or to
the module outputs. Within an iteration gt is set to 1 if the > comparison is true, that’s shown in
purple for the last iteration.

Test your understanding by tracing the changes in lt for some sample numbers, both in the
Verilog code and in the diagram of the inferred hardware.

Because the loop body operates on one-bit quantities many optimizations can be applied.
Notice that the < and > comparisons can be replaced by AND gates with one input inverted, the
replacement for the < is shown in the diagram below. The mux used for the if ( a[i] < b[i]

) lt = 1; comparison can be replaced by an OR gate. (If you don’t see it draw a truth table.)
These two optimizations appear in green. The OR gate can itself be eliminated, that’s shown in
purple. It can be eliminated because if the select signal for the mux is 1, choosing the OR-gate
output, the value of lt must be zero.
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The completed hand-optimized module is shown below:
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1.5 Synthesis of Sequential Logic
Sequential logic (logic which includes a clock and edge-triggered registers or flip flops) is inferred

for behavioral Verilog in the following form:

• The code must be in an always or always ff block.

• The sensitivity list must contain a posedge or a negedge and nothing else.

There are other restrictions which apply to topics not covered in class, such as wait statements
or the use of event controls, like @, within a block.

For code in this form an edge-triggered register will be inferred for each variable assigned in
such an always block. An inferred register will be removed during optimization if the corresponding
variable is not live out with respect to the block.

A variable is considered live out with respect to a block is the value assigned in the block is
used outside the block. In module imult_ord_radix_4 (further below) variables im and pp are not
live out, but bit and product are live out.

If a variable is conditionally assigned then either an enable signal or a multiplexor will be used.
The example below shows a simple count down timer. Variable bit is live out because it is

used to determine the value of ready and as an if condition, and so a register is inferred for it.
Because it is not always assigned an enable signal is generated. The inferred logic for the if/else
chain has simplified from two multiplexor to one, this is possible because of the enable signal.
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current val

 of bit

countdown
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module countdown(ready,start,clk);

input wire start, clk;

output wire ready;

logic [4:0] bit;

assign ready = bit == 0;

// Needed for simulation, ignored for synthesis.

initial bit = 0;

always @( posedge clk )

if ( start ) begin

bit = 8;
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end else if ( bit != 0 ) begin

bit = bit - 1;

end

endmodule

The example below is more complex, but follows the same rules. Notice here that variables mb
and pp are assigned but because neither is live-out, no registers are synthesized for them.

module imult_ord_radix_4(product,ready,multiplicand,multiplier,start,clk);

input wire [15:0] multiplicand, multiplier;

input wire start, clk;

output logic [31:0] product;

output wire ready;

logic [4:0] bit;

assign ready = !bit;

// cadence translate_off

initial bit = 0;

// cadence translate_on

wire [17:0] multiplicand_X_1 = {2’b0,multiplicand};

wire [17:0] multiplicand_X_2 = {1’b0,multiplicand,1’b0};

wire [17:0] multiplicand_X_3 = multiplicand_X_2 + multiplicand_X_1;

logic [17:0] pp; // Partial Product

logic [1:0] mb; // Multiplier Bits

always @( posedge clk )

if ( ready && start ) begin

bit = 8;

product = { 16’d0, multiplier };

end else if ( bit ) begin

mb = product[1:0];

case ( mb )

2’d0: pp = {2’b0, product[31:16] };

2’d1: pp = {2’b0, product[31:16] } + multiplicand_X_1;

2’d2: pp = {2’b0, product[31:16] } + multiplicand_X_2;

2’d3: pp = {2’b0, product[31:16] } + multiplicand_X_3;

endcase

product = { pp, product[15:2] };

bit = bit - 1;

end

endmodule
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