
This document contains assignments given in LSU EE 4755 over many
semesters. It was automatically generated and so some solutions (and pos-
sibly some assignments) are likely missing. At the top of each page of each
assignment is a link to the original assignment. Those who want to print an
assignment might follow that link. All assignments and public solutions are
available at https://www.ece.lsu.edu/ee4755/prev.html.

Contents

1 Fall 2023 6
1.1 hw01.pdf . 7
1.2 hw02.pdf . 10
1.3 hw03.pdf . 15
1.4 hw04.pdf . 21
1.5 hw05.pdf . 28
1.6 hw06.pdf . 32

2 Fall 2022 33
2.1 hw01.pdf . 34
2.2 hw02.pdf . 38
2.3 hw03.pdf . 42
2.4 hw04.pdf . 48
2.5 hw05.pdf . 51

3 Fall 2021 57
3.1 hw01.pdf . 58
3.2 hw02.pdf . 60
3.3 hw03.pdf . 64
3.4 hw04.pdf . 66
3.5 hw05.pdf . 69
3.6 hw06.pdf . 70

4 Fall 2020 73
4.1 hw01.pdf . 74
4.2 hw02.pdf . 77
4.3 hw03.pdf . 79
4.4 hw04.pdf . 83
4.5 hw05.pdf . 88

5 Fall 2019 89
5.1 hw01.pdf . 90
5.2 hw02.pdf . 94
5.3 hw03.pdf . 96
5.4 hw04.pdf . 100
5.5 hw05.pdf . 103
5.6 hw06.pdf . 104

1

https://www.ece.lsu.edu/ee4755/prev.html

6 Fall 2018 108
6.1 hw01.pdf . 109
6.2 hw02.pdf . 111
6.3 hw03.pdf . 113
6.4 hw04.pdf . 115
6.5 hw05.pdf . 116
6.6 hw06.pdf . 119
6.7 hw07.pdf . 120
6.8 hw08.pdf . 122

7 Fall 2017 125
7.1 hw01.pdf . 126
7.2 hw02.pdf . 128
7.3 hw03.pdf . 129
7.4 hw04.pdf . 130
7.5 hw05.pdf . 132
7.6 hw06.pdf . 134
7.7 hw07.pdf . 135

8 Fall 2016 137
8.1 hw01.pdf . 138
8.2 hw02.pdf . 141
8.3 hw03.pdf . 143
8.4 hw04.pdf . 145
8.5 hw05.pdf . 147
8.6 hw06.pdf . 149

9 Fall 2015 151
9.1 hw01.pdf . 152
9.2 hw02.pdf . 156
9.3 hw03.pdf . 157
9.4 hw04.pdf . 160
9.5 hw05.pdf . 161
9.6 hw06.pdf . 165

10 Fall 2014 167
10.1 hw01.pdf . 168
10.2 hw02.pdf . 169
10.3 hw03.pdf . 170
10.4 hw04.pdf . 171

11 Spring 2001 173
11.1 hw01.pdf . 174
11.2 hw02.pdf . 175
11.3 hw03.pdf . 176
11.4 hw04.pdf . 178

2

11.5 hw05.pdf . 179

12 Spring 2000 181
12.1 hw01.pdf . 182
12.2 hw02.pdf . 183
12.3 hw03.pdf . 185
12.4 hw04.pdf . 186
12.5 hw05.pdf . 187
12.6 hw06.pdf . 189

13 Fall 2023 Solutions 190
13.1 hw01-sol.v.html . 191
13.2 hw02-sol.v.html . 196
13.3 hw03-sol.v.html . 204
13.4 hw04 sol.pdf . 210
13.5 hw05-sol.v.html . 219

14 Fall 2022 Solutions 226
14.1 hw01-sol.v.html . 227
14.2 hw02-sol.v.html . 233
14.3 hw03 sol.pdf . 241
14.4 hw04-sol.v.html . 253
14.5 hw05 sol.pdf . 261
14.6 hw05-sol.v.html . 272

15 Fall 2021 Solutions 291
15.1 hw01 sol.pdf . 292
15.2 hw01-sol.v.html . 296
15.3 hw02-sol.v.html . 300
15.4 hw03 sol.pdf . 309
15.5 hw04 sol.pdf . 315
15.6 hw04-sol.v.html . 322
15.7 hw05 sol.pdf . 330
15.8 hw06-sol.v.html . 331

16 Fall 2020 Solutions 338
16.1 hw01 sol.pdf . 339
16.2 hw02-sol.v.html . 345
16.3 hw03-sol.v.html . 349
16.4 hw04 sol.pdf . 357

17 Fall 2019 Solutions 364
17.1 hw01 sol.pdf . 365
17.2 hw01-sol.v.html . 371
17.3 hw02 sol.pdf . 375
17.4 hw02-sol-try.v.html . 381

3

17.5 hw02-sol.v.html . 386
17.6 hw03 sol.pdf . 391
17.7 hw04 sol.pdf . 396
17.8 hw05 sol.pdf . 402
17.9 hw06-sol.v.html . 404

18 Fall 2018 Solutions 410
18.1 hw01-sol.v.html . 411
18.2 hw02 sol.pdf . 416
18.3 hw03-sol.v.html . 419
18.4 hw04 sol.pdf . 425
18.5 hw05-sol.v.html . 426
18.6 hw06 sol.pdf . 432
18.7 hw07-sol.v.html . 435
18.8 hw08 sol.pdf . 442

19 Fall 2017 Solutions 449
19.1 hw01 sol.pdf . 450
19.2 hw01-sol.v.html . 452
19.3 hw02-sol.v.html . 455
19.4 hw04-sol.v.html . 460
19.5 hw05-sol.v.html . 465
19.6 hw06 sol.pdf . 470
19.7 hw07-sol.v.html . 475

20 Fall 2016 Solutions 483
20.1 hw01 sol.pdf . 484
20.2 hw02-sol.v.html . 489
20.3 hw03 sol.pdf . 494
20.4 hw04 sol.pdf . 499
20.5 hw04-sol.v.html . 507
20.6 hw05 sol.pdf . 513
20.7 hw06-sol.v.html . 518

21 Fall 2015 Solutions 526
21.1 hw01 sol.pdf . 527
21.2 hw02 sol.pdf . 533
21.3 hw02-sol.v.html . 537
21.4 hw03 sol.pdf . 542
21.5 hw04 sol.pdf . 549
21.6 hw04-sol.v.html . 554
21.7 hw05 sol.pdf . 566
21.8 hw06 sol.pdf . 572

4

22 Fall 2014 Solutions 575
22.1 hw01-sol.v.html . 576
22.2 hw02-sol.v.html . 580
22.3 hw03 sol.pdf . 586
22.4 hw03-sol.v.html . 590
22.5 hw04 sol.pdf . 598
22.6 hw04-sol.v.html . 600

23 Spring 2001 Solutions 606
23.1 hw01 sol.html . 607
23.2 hw03 sol.html . 609
23.3 hw04 sol.html . 621
23.4 hw05 sol.html . 635

24 Spring 2000 Solutions 643
24.1 hw05 sol.html . 644
24.2 hw06 sol.html . 645

5

1 Fall 2023

6

← → Fall 2023 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2023/hw01.pdf

LSU EE 4755 Homework 1 Due: 7 September 2023

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2023/hw01.v.html.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator on the unmodified homework
file, hw01.v. Do this early enough so that minor problems (e.g., password doesn’t work) are minor
problems.

Testbench
To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up

account. The testbench will test 3 modules, minmax2p1 (n = 2), minmax4 (n = 4), and minmax8

(n = 8). Each module will be tested on 100 inputs. If a module’s output on a particular input
is incorrect, a message will be printed showing the incorrect and correct output. This output will
only be shown for the first few errors, but a tally will be shown near the end counting all errors.

In an unmodified assignment the testbench will generate output that includes the following
near the end:

Error n=8 max z != 8107 (correct)

Error n=8 min z != 907 (correct)

Error n=8 max z != 8156 (correct)

Error n=8 min z != 243 (correct)

Error n=8 max z != 6424 (correct)

Done with n=8, tests, 100 min 100 max errors found.

xmsim: *W,RNQUIE: Simulation is complete.

xcelium> exit

Total number of errors: 600

The z in the output above means that the minmax8 outputs (both min and max) were set to z,
meaning the output was not connected (z is often used to indicate high impedance). The output
of the testbench for a correctly completed assignment is:

Done with n=2, tests, 0 min 0 max errors found.

Done with n=4, tests, 0 min 0 max errors found.

Done with n=8, tests, 0 min 0 max errors found.

1

← → Fall 2023 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2023/hw01.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2023/hw01.pdf

xmsim: *W,RNQUIE: Simulation is complete.

xcelium> exit

Total number of errors: 0

Helpful Examples
A good past assignment to look at is 2017 Homework 1. A question very similar to Problem 1 was
asked in 2018 Homework 1 Problem 1. So, do not look at 2018 Homework 1 until after you have
made a very serious attempt at Problem 1.

Problem 1: Module minmax2, shown below, sets output min to the smaller of its two inputs a0

and a1, and sets max to the larger of those two inputs:

module minmax2
#(int w = 10)

(output uwire [w-1:0] min, max, input uwire [w-1:0] a0, a1);

assign { min, max } = a0 <= a1 ? { a0, a1 } : { a1, a0 };

endmodule

Notice that minmax2 uses a continuous assignment statement. Complete module minmax2p1 so that
it does the same thing as minmax2, but without a continuous assignment and without procedural
code. Instead instantiate compare_lt and mux2 modules (shown below). Follow other guidelines
and requirements shown in the checkboxes in the Verilog file.

module compare_lt
#(int w = 31)

(output uwire lt, input uwire [w-1:0] a0, a1);

// Set lt to 0 if a1 < a0, set lt to 1 otherwise.

assign lt = a0 <= a1;

endmodule

module mux2
#(int w = 3)

(output uwire [w-1:0] x, input uwire s, input uwire [w-1:0] a0, a1);

assign x = s ? a1 : a0;

endmodule

There is another problem on the next page.

2

← → Fall 2023 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2023/hw01.pdf

Problem 2: Modules minmax4 and minmax8 each have outputs min and max, which are to be
set to the smallest and largest values of their input. Input a to minmax4 is a 4-element array of
w-bit unsigned integers, and input a to minmax8 is an 8-element array. Complete these modules as
described below.

For this problem use modules minmax2, min2, and max2. Module min2, as one might guess,
sets its output to the smaller of its two inputs. Module max2 is similar. Assume that the combined
cost of a min2 and max2 module is greater than one minmax2 (but less than the cost of two minmax2

modules).

module min2 #(int w = 10)

(output uwire [w-1:0] min, input uwire [w-1:0] a0, a1);

assign min = a0 < a1 ? a0 : a1;

endmodule

module max2 #(int w = 10)

(output uwire [w-1:0] max, input uwire [w-1:0] a0, a1);

assign max = a0 < a1 ? a1 : a0;

endmodule

(a) Complete module minmax4 using instantiations of modules minmax2, and possibly min2 and
max2 as needed. Do not use assign statements or procedural code. Follow other guidelines shown
in the checklist in the code. Pay attention to the relative cost of the min2, max2, and minmax2

modules.

(b) Complete module minmax8 using instantiations of modules minmax4, and possibly minmax2,
min2, and max2 as needed. Do not use assign statements or procedural code. Follow other
guidelines shown in the checklist in the code. Pay attention to the relative cost of the min2, max2,
and minmax2 modules.

The code must by synthesizable. To synthesize your code issue the command genus -files

syn.tcl. If there are no errors, running this command will generate output that includes like the
following:

Module Name Area Delay Delay

Actual Target

minmax2p1_w8 15086 2.191 10.000 ns

minmax2_w8 15086 2.191 10.000 ns

minmax4_w8 49094 4.412 10.000 ns

minmax8_w8 117111 6.632 10.000 ns

minmax2p1_w8_1 19678 1.029 0.100 ns

minmax2_w8_1 19678 1.029 0.100 ns

minmax4_w8_1 75084 1.496 0.100 ns

minmax8_w8_1 214774 2.567 0.100 ns

3

← → Fall 2023 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2023/hw01.pdf

LSU EE 4755 Homework 2 Due: 29 September 2023

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2023/hw02.v.html.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if necessary), copy the assignment, and run the Verilog simulator on the un-
modified homework file, hw02.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Overview
In this assignment modules will be completed to compute the expression (1− b/c)/a. For example,
if the inputs to one of these modules are a = 10, b = 20, and c = 80, the output would be
(1−20/80)/10 = 0.075. The inputs are unsigned integers, but the output is floating point. Module
parameters provide the widths of the integer inputs and the significand and exponent size of the
floating-point output.

In Problem 1 module comp_p1 is to be completed so that the calculation is foolishly done in
the order given by the expression, (1 − b/c)/a. The floating point conversion and calculation are
to be done using Chipware modules. Solving it requires a straightforward application of Verilog
techniques for instantiating modules and wiring them together. It also requires an understanding
of when and how to convert numbers from integer to floating-point representations.

In Problem 2 module comp_p2 is to be completed so that the expression is computed much
more efficiently (not foolishly as in Problem 1). The expression (1 − b/c)/a is to be transformed
so that some of the computation can be done by integer arithmetic and in a way that requires less
computation precision.

In a correctly completed assignment the testbench will show that module comp_p2 has greater
accuracy, and the synthesis program will show that module comp_p2 is both faster and less expensive
than comp_p1. That is, by transforming (1− b/c)/a all factors of interest improve, there’s no cost/
performance tradeoff to balance! That’s why the method used by comp_p1 is foolish.

Testbench
To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up
account. The testbench will apply inputs to several instantiation of modules comp_p1 and comp_p2.
The instantiations differ on the number of bits used for the integer inputs and the format of the
floating-point output. The instantiation parameters are shown at the end of the testbench along
with a summary of the errors for that module. The output for an unmodified assignment is:

1

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2023/hw02.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2023/hw02.pdf

Total comp_p1 exp= 7, sig= 6, w= 4: 9258 errors. Err bits: avg 8.83, max 18

Total comp_p1 exp= 7, sig= 8, w= 4: 9207 errors. Err bits: avg 10.60, max 20

Total comp_p1 exp= 8, sig=10, w= 5: 9533 errors. Err bits: avg 13.60, max 25

Total comp_p1 exp= 8, sig=10, w=10: 9918 errors. Err bits: avg 18.49, max 38

Total comp_p1 exp= 8, sig=12, w=10: 9893 errors. Err bits: avg 20.38, max 39

Total comp_p2 exp= 7, sig= 6, w= 4: 9228 errors. Err bits: avg 9.06, max 18

Total comp_p2 exp= 7, sig= 8, w= 4: 9268 errors. Err bits: avg 10.91, max 20

Total comp_p2 exp= 8, sig=10, w= 5: 9529 errors. Err bits: avg 14.04, max 25

Total comp_p2 exp= 8, sig=10, w=10: 9906 errors. Err bits: avg 19.11, max 39

Total comp_p2 exp= 8, sig=12, w=10: 9903 errors. Err bits: avg 21.15, max 41

Total number of errors: 95643

The text exp= 7 shows the value of parameter w_exp, etc. To add or change instantiation
parameters search for the place where variable pset is assigned and edit the initialization of pset
(and change npsets if needed):

localparam int npsets = 5; // This MUST be set to the size of pset.

// { w_exp, w_sig, w_int }

localparam int pset[npsets][3] =

’{

{ 7, 6, 4 },

{ 7, 8, 4 },

{ 8, 10, 5 },

{ 8, 10, 10 },

{ 8, 12, 10 }};

The testbench will report on the correctness and accuracy of the output. The output of a
module does not need to exactly match a correct output to be considered correct, it just needs to
be close enough. Module comp_p2 is expected to be more accurate, so an output of comp_p2 can
be considered wrong even though the same output of comp_p2 is considered correct.

The difference between the expected output and the output provided by your module is mea-
sured in error bits (EB). Zero error bits means the output exactly matches. When the exponents of
the module and expected output are the same the EB is the size (in bits) of a number that would
have to be added to one significand (treating it as an integer) to make it equal to the other. For
example, an EB of 1 means that a 1-bit number can be added to one significand to make it equal
to the other. An EB of 2 means that a two-bit number can be added. If the exponents differ by
more than one then the exponent difference is the EB. See routine conv::err_bits for details.

For Problem 2 an output with an EB less than 2 is considered correct. For Problem 1 a
per-input tolerance is computed and is used to determine if the output is correct. The testbench
keeps track of the average and maximum EB for each module, and these are shown at the end of
execution along with an error count. The output for a correct solution is:

Total comp_p1 exp= 7, sig= 6, w= 4: 0 errors. Err bits: avg 0.37, max 4

Total comp_p1 exp= 7, sig= 8, w= 4: 0 errors. Err bits: avg 0.40, max 4

Total comp_p1 exp= 8, sig=10, w= 5: 0 errors. Err bits: avg 0.48, max 5

Total comp_p1 exp= 8, sig=10, w=10: 0 errors. Err bits: avg 0.71, max 10

Total comp_p1 exp= 8, sig=12, w=10: 0 errors. Err bits: avg 0.71, max 9

Total comp_p2 exp= 7, sig= 6, w= 4: 0 errors. Err bits: avg 0.00, max 0

Total comp_p2 exp= 7, sig= 8, w= 4: 0 errors. Err bits: avg 0.00, max 0

Total comp_p2 exp= 8, sig=10, w= 5: 0 errors. Err bits: avg 0.00, max 0

Total comp_p2 exp= 8, sig=10, w=10: 0 errors. Err bits: avg 0.07, max 1

Total comp_p2 exp= 8, sig=12, w=10: 0 errors. Err bits: avg 0.04, max 1

2

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/ee4755/2023/hw02.pdf

Total number of errors: 0

Notice that both modules have zero errors, but that instances of comp_p2 are more accurate
(lower EB). The maximum error bits occurred for comp_p1 instantiated with a significand width
of 10 bits and an integer width of 10 bits. The average EB though is just 0.71, so those big 10-bit
errors don’t occur very often.

To help in debugging details of errors are shown. Here are the first two errors shown for
comp_p1 with the unmodified code:

Error p1 #(7,6,4) a= 1 b=13 c= 1: Err bits 8 (tol 2)

Output 2.0000e+00 != -1.2000e+01 (correct).

Output ’h00 * 2^(64-63) != ’h20 * 2^(66-63) (correct)

Error p1 #(7,6,4) a= 5 b=10 c= 5: Err bits 11 (tol 2)

Output 6.0000e+00 != -1.9922e-01 (correct).

Output ’h20 * 2^(65-63) != ’h26 * 2^(60-63) (correct)

The first list of each error shows the instantiation size (7,6,4), inputs (a=1, b=13,c=1), the
EB value, 8, and the tolerance, 2. The tolerance of 2 indicates that an EB of 2 or lower would
have been considered correct, but alas the EB is 8. The next two lines (starting with Output) show
the provided and correct output, in decimal (the first line) and in binary scientific notation (the
second line). These lines show for the first error that the expected correct output is -12, but the
provided output is 2. The second line shows the significand (in hex) and exponent of the provided
and correct output.

Details are not shown for every incorrect output. Instead, details are shown if the EB exceeds
the highest EB encountered for that module.

Helpful Examples
For this assignment Chipware modules are to be instantiated to perform floating-point computation
and integer/floating-point conversion. See 2017 Homework 2 for examples of how to instantiate
these modules to perform a computation and integer/floating-point conversion. In the 2017 assign-
ment all FP numbers were IEEE single 32-bit format. But in this (2023) assignment the formats
vary and so parameters must be used when instantiating the Chipware modules to specify the
exponent and significand length. In 2021 Homework 2 Chipware modules were instantiated with
non-default exponent and significand lengths. Also see 2022 Homework 5. That assignment uses
both combinational and sequential modules. (Sequential material has not yet been covered.) See
ms_comb in 2022 Homework 5 for a straightforward connection of FP modules (but without format
conversion).

3

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/ee4755/2023/hw02.pdf

Problem 1: Module comp_p1 has three w_int-bit integer inputs, a, b, and c, and a wfp-bit
floating-point output, h. The module has three parameters, w_int, w_exp, and w_sig. (A fourth
parameter, wfp is set to 1+w_exp+w_sig and its value should not be changed.) Complete module
comp_p1 so that h is set to the value of (1− b/c)/a. The module inputs, a, b, and c are unsigned
integers but the calculation must be done in floating-point in this problem. Output h is a floating-
point number with a w_exp-bit exponent, a w_sig-bi significand, and one sign bit. The format of
h is the same as the format used by the Chipware modules.

In the unmodified code comp_p1 computes h = a + 1, which is clearly wrong but it does
show a quick example of how to convert a to floating point, how to get a FP constant, and how to
instantiate a Chipware adder.

Complete comp_p1 so that it foolishly computes h based on the calculation order in the ex-

pression 1−b/c
a . (The foolishness is avoided in Problem 2.) That is, first compute x1 = b/c, then

compute x2 = 1− x1, and finally compute h = x2/a.
Use Chipware modules for the floating-point arithmetic and for conversions between integer

and floating-point representations. Pay attention to cost.
A correct solution should show zero errors, but the average bit error can be 0.5 and the

maximum bit error can be larger than 5. Lower error rate and lower cost and lower delay will be
possible in Problem 2.

Use Chipware modules for floating-point computation.

Use procedural or implicit structural code for any integer computation.

Pay attention to cost: The significand size of the floating-point units can be at most w sig+1 bits.
To achieve this one must provide parameter inputs to the Chipware modules.

Pay attention to cost: don’t use more bits than are needed.

The modules must be synthesizable.
The code must by synthesizable. To synthesize your code issue the command genus -files

syn.tcl. Synthesis should take two or three minutes. If there are no errors, running this command
will generate output that includes like the following:

Synthesizing at effort level "high"

Module Name Area Delay Delay Synth

Actual Target Time

comp_p1_w4_w_exp7_w_sig6 183394 31.57 900.0 ns 66 s

comp_p2_w4_w_exp7_w_sig6 129109 18.07 900.0 ns 36 s

Problem 2: Expression 1−b/c
a might be easy for a human to read, but it does not describe the

best way to compute the value with finite-precision computations on non-zero cost hardware. One
place accuracy is lost is computing 1 − b

c when b/c ≈ 1. Furthermore all computation must be

done in floating-point. Fortunately it is easy to transform 1−b/c
a to eliminate the 1− b

c calculation
and also to put it in a form where some computation can be done using integer arithmetic. One
possible way of transforming the expression is to multiply by 1. Not just any 1 of course, but c

c . A
few further manipulations should bring it to a form that can be more easily computed.

Module comp_p2 has the same ports and parameters as comp_p1. Complete comp_p2 so that it

computes 1−b/c
a much more efficiently, following the guidelines described above. When transforming

the expression keep in mind that integer addition and subtraction is less costly than floating-point

4

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/ee4755/2023/hw02.pdf

subtraction and division (floating-point or integer) is much more costly (time and area) than other
operations.

Module comp_p2 should use a mix of integer and floating-point computation. Pay attention to
precision, especially for integer arithmetic where the result of a computation can require more bits
than the operands. (If you don’t remember try looking it up.)

The testbench applies a stricter test to the output of comp_p2, which affects the expected
output for inputs in which b ≈ c.

Use Chipware modules for floating-point computation.

Use procedural or implicit structural code for integer computation.

Pay attention to cost: The significand size of the floating-point units can be at most w sig+1 bits.
To achieve this one must provide parameter inputs to the Chipware modules.

Pay attention to cost: don’t use more bits than are needed.

The modules must be synthesizable. (Use the same synthesis command as used in Problem 1.)

5

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/ee4755/2023/hw02.pdf

LSU EE 4755 Homework 3 Due: 13 October 2023

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2023/hw03.v.html.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if necessary), copy the assignment, and run the Verilog simulator on the un-
modified homework file, hw03.v.

Homework Overview
As we probably know a permutation is a rearrangement of distinct objects. If there are n objects
there are n! permutations, including the identity permutation (which leaves the objects in their
original positions). For example, the three-letter sequence abc can be permuted 6 ways: abc,

acb, bac, bca, cab, cba. (In module perm input pdata_in is an unpermuted sequence and
output pdata_out should be set to a permutation of the input.) There are many ways to specify
which permutation we want. We could just say, I want permutation acb, meaning leave the first
element unchanged and swap the next two. So permutation acb of xyz would be xzy. When
specifying permutations this way it is more common to use digits, so rather than acb we would
say permutation 021 of xyz. Here 021 indicates how we want things rearranged and xyz are the
objects before being re-arranged and xzy are after the rearrangement.

Suppose we want to generate all permutations in, say, a loop. We might have a current
permutation, 021, and would like to generate the next one, say 102 (or bac). One way of doing
that is using a factorial number. (This was the subject of https://xkcd.com/2835.) A factorial
number is a mixed-radix number. (In module perm input pnum_in and output pnum_out are both
factorial numbers. In the testbench the factorial numbers are called indices.) In an n-digit factorial
number digit 0 (the LSD) is radix 1, digit 1 is radix 2 (binary), digit 2 is radix 3, and so on, to
digit n− 1. Digit 0, by the way, being radix 1, must always be zero. Digit 1 can be 0 or 1, digit 2
can be 0,1,2, etc. When all digits are zero the number specifies an identity permutation. Digit i of
a factorial number specifies where to get the value to put in position i of the permuted sequence.
To see examples of factorial numbers and the respective permutations look at the sample testbench
outputs below.

With factorial numbers it’s easy to compute the next permutation in a sequence: just add one.
Start at the least significant digit. If there is a carry out (and there always is at the least significant
digit) proceed to the next digit. Denote the value of digit i (radix i + 1) as di ∈ [0, i]. Adding a

1

← → Fall 2023 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2023/hw03.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://xkcd.com/2835
https://www.ece.lsu.edu/ee4755/2023/hw03.pdf

carry in to the digit yields di + 1. If di + 1 ≤ i then that is the new value of of di and the carry
out propagation stops. Otherwise the new value of di is zero and proceed to digit i + 1.

Code for computing the next permutation is shown in module perm_behavioral. That module
also shows how to apply a factorial number (pnum_in) to permute items in pdata_in and connect
them to pdata_out.

Testbench
To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up
account. The testbench will apply inputs to several instantiation of module perm. The instantiations
differ on the number of items to permute, n, and the number of bits in each item, w. The testbench
shows sample outputs and errors, and ends with a tally of errors for each instantiation. The output
for an unmodified assignment includes:

Starting tests for w=8, n=3

Trace of permutation: 0 0 0 -> a b c

Error in next index: 0 0 0 -> 0 0 0 != 0 1 0 (correct)

Error in permutation: 0 1 0 -> a b c != a c b (correct)

Error in next index: 0 1 0 -> 0 1 0 != 1 0 0 (correct)

[snip]

Finished with n=10, 999 perm errors, 1000 next idx errors in 1000 tests.

End of tests n=3, 5 perm errors, 6 next idx errors for 6 tests.

End of tests n=4, 23 perm errors, 24 next idx errors for 24 tests.

End of tests n=8, 999 perm errors, 1000 next idx errors for 1000 tests.

End of tests n=10, 999 perm errors, 1000 next idx errors for 1000 tests.

xmsim: *W,RNQUIE: Simulation is complete.

In the unmodified assignment perm connects the permutation (pdata_out) output to the per-
mutation input (pdata_in), which is wrong except for the identity permutation. That’s why each
module gets one permutation correct, as can be seen in the output above. (For example, for n = 3,
5 perm errors out of 3! = 6 tests.)

The testbench always shows the first few outputs of each instance. For a correct assignment
the output would include:

Starting tests for w=8, n=3

Trace of permutation: 0 0 0 -> a b c

Trace of permutation: 0 1 0 -> a c b

Trace of permutation: 1 0 0 -> b a c

Trace of permutation: 1 1 0 -> b c a

Trace of permutation: 2 0 0 -> c a b

Trace of permutation: 2 1 0 -> c b a

Finished with n=3, 0 perm errors, 0 next idx errors in 6 tests.

Starting tests for w=7, n=4

Trace of permutation: 0 0 0 0 -> a b c d

Trace of permutation: 0 0 1 0 -> a b d c

Trace of permutation: 0 1 0 0 -> a c b d

Trace of permutation: 0 1 1 0 -> a c d b

For n = 3 the testbench sets pdata_in[0]=’c’, pdata_in[1]=’b’, and pdata_in[2]=’a’.
The module needs to work for any settings for pdata_in, but the testbench sets pdata_in to
values in a,b,c,.. to make debugging easy.

2

← → Fall 2023 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/ee4755/2023/hw03.pdf

Testbench output starting Trace of permutation shows the value of pnum_in (index, a
factorial number) and pdata_out when pdata_out is correct. For the n = 3 module notice that
all 6 permutations (permuted inputs) are shown, such as a b c. The sample above also shows the
first few outputs of the n = 4 instance.

The digits of the permutation number are separated by spaces. The leftmost digit is (of course)
the most significant, at position n-1. Being a permutation number, the least significant digit is
always zero.

For each instance the first permutation is always identity (pnum_in=0), and the first 5 permu-
tations are shown. For instances where n! ≤ 1000 (or the value of max_tests) all permutations are
tried. Otherwise, after showing 5 consecutive permutations a new random permutation is chosen.
That can be seen below.

Starting tests for w=8, n=8

Trace of permutation: 0 0 0 0 0 0 0 0 -> a b c d e f g h

Trace of permutation: 0 0 0 0 0 0 1 0 -> a b c d e f h g

Trace of permutation: 0 0 0 0 0 1 0 0 -> a b c d e g f h

Trace of permutation: 0 0 0 0 0 1 1 0 -> a b c d e g h f

Trace of permutation: 0 0 0 0 0 2 0 0 -> a b c d e h f g

Trace of permutation: 5 2 3 2 1 0 0 0 -> f c e d b a g h

Trace of permutation: 5 2 3 2 1 0 1 0 -> f c e d b a h g

Trace of permutation: 5 2 3 2 1 1 0 0 -> f c e d b g a h

If there is an error the provided and correct outputs are shown. Here again is the output from
the unmodified assignment:

Starting tests for w=8, n=3

Trace of permutation: 0 0 0 -> a b c

Error in next index: 0 0 0 -> 0 0 0 != 0 1 0 (correct)

Error in permutation: 0 1 0 -> a b c != a c b (correct)

Error in next index: 0 1 0 -> 0 1 0 != 1 0 0 (correct)

The first permutation output, a b c, is correct. The pnum_out value is wrong, that’s shown
in the line starting Error in next index. That line shows the value of pnum_in (the factorial
number) to the left of the -> and the value of pdata_out to the right of ->. The correct value is
shown to the right of !=. Similar information is shown for incorrect permutations.

Helpful Examples
An example that might help in computing pnum_out is from the class notes on generate statements.
Module ripple_w_r recursively implements an adder. Pay attention to how bfa computes the LSB
of the sum, and the recursive instance computes the remaining bits:

module ripple_w_r #(int w = 16)

(output uwire [w-1:0] sum, output uwire cout,

input uwire [w-1:0] a, b, input uwire cin);

uwire c;

// Instantiate a BFA to handle least-significant bit.

//

bfa bfa(sum[0], c, a[0], b[0], cin);

if (w == 1)

// If just one bit, we’re done.

3

← → Fall 2023 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/ee4755/2023/hw03.pdf

//

assign cout = c;

else

// Recursively instantiate this module to handle remaining bits.

//

ripple_w_r #(w-1) r(sum[w-1:1], cout, a[w-1:1], b[w-1:1], c);

endmodule

There’s no need to use a BFA for this assignment. Use continuous assignments or procedural code
to compute one digit of pnum_out.

In most examples of where we recursively describe a module we omit a particular bit (bit 0
in the ripple adder example above) in the connection to the recursive instance, or we have two
recursive instances, each connected to half the inputs. The perm module is different because the
digit to omit depends on the pdata_in. So, we need to use procedural code to compute an input
to the recursive module and there are no good past assignment that do that. The closest is the
Batcher merge module from 2018 Homework 5 where the odd and even elements of each of two the
inputs were separated and recombined as inputs to two recursive instances:

module batcher_merge #(int n = 4, int w = 8)

(output uwire [w-1:0] x[2*n], input uwire [w-1:0] a[n], b[n]);

uwire [w-1:0] xlo[n], xhi[n];

if (n == 1) begin

assign xlo[0] = a[0];

assign xhi[0] = b[0];

end else begin

localparam int nh = n/2;

uwire [w-1:0] ae[nh], ao[nh], be[nh], bo[nh];

for (genvar i=0; i<nh; i++)

begin

assign ae[i] = a[2*i];

assign ao[i] = a[2*i+1];

assign be[i] = b[2*i];

assign bo[i] = b[2*i+1];

end

batcher_merge #(nh,w) mlo(xlo, ae, bo);

batcher_merge #(nh,w) mhi(xhi, ao, be);

end

for (genvar i=0; i<n; i++)

sort2 #(w) s2(x[2*i], x[2*i+1], xlo[i], xhi[i]);

endmodule

4

← → Fall 2023 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/ee4755/2023/hw03.pdf

Problem 1: Module perm has two data inputs, pdata_in and pnum_in. Input pdata_in is an
array of n items, each w bits wide, where n and w are module parameters. Input pnum_in is an n-
element array of dw-bit digits, where dw is a parameter. Module perm has three outputs, pdata_out,
pnum_out, and carry_out. Like pdata_in, output pdata_out is an n-element array of w-bit items,
and like pnum_in, output pnum_out is an n-element array of dw-bit digits. Output carry_out is
one bit.

Output pdata_out is to be set to a permutation (rearrangement) of the elements of pdata_in.
Suppose pdata_in = {a,b,c} (which means n = 3, and perhaps w = 8) and that the elements
of pdata_in and pdata_out are ASCII characters. Then valid outputs could be pdata_out =

{a,b,c}, pdata_out = {b,a,c}, etc. An invalid output would be pdata_out = {a,a,c}, it’s
invalid because a appears twice and b does not appear.

Input pnum_in, a factorial number, specifies how pdata_in should be permuted. A permutation
is constructed iteratively, starting from the most-significant digit of pnum_in, which is pnum_in[n-
1] and specifies where the value of pdata_out[n-1] should be drawn from. The Verilog code below
(also part of the assignment file) shows how pdata_out is computed:

module perm_behavioral
#(int w = 8, n = 20, dw = $clog2(n))

(output logic [w-1:0] pdata_out[n], output logic [dw-1:0] pnum_out[n],

output logic carry_out,

input uwire [w-1:0] pdata_in[n], input uwire [dw-1:0] pnum_in[n]);

always_comb begin

pdata_out = pdata_in;

for (int i=n-1; i>0; i--) begin

automatic logic [dw-1:0] pos = i-pnum_in[i];

automatic logic [w-1:0] x = pdata_out[pos];

for (int j=pos; j<i; j++) pdata_out[j] = pdata_out[j+1];

pdata_out[i] = x;

end

end

Notice that pdata_out is written multiple times, each iteration of the i loop permanently writes
pdata_out[i] but also changes some other elements.

(a) Add code to perm, including recursive instantiation, so that pdata_out is a permutation of
pdata_in as specified by pnum_in. Module perm with parameter n>1 must recursively instantiate
itself and the module must be synthesizable. Use command genus -files syn.tcl to synthesize.

(b) Add code to perm, including recursive instantiation, so that output pnum_out is the factorial
number that follows pnum_in. The module must be synthesizable. As a reference the Verilog code
below computes the next factorial number.

always_comb begin

// Compute next factorial (permutation) number.

carry_out = 1;

for (int i=0; i<n; i++) begin

automatic int radix = i + 1;

automatic logic [dw:0] next_val = pnum_in[i] + carry_out;

if (next_val < radix) begin

5

← → Fall 2023 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/ee4755/2023/hw03.pdf

pnum_out[i] = next_val;

carry_out = 0;

end else begin

pnum_out[i] = 0;

end

end

end

6

← → Fall 2023 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/ee4755/2023/hw03.pdf

LSU EE 4755 Homework 4 Due: 6 November 2023

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, how a part of the problem might be solved, etc.)
It is also acceptable to seek out digital design resources for help on Verilog, digital design, etc. It
is okay to make use of AI LLM tools such as ChatGPT to answer these questions. Just don’t trust
the answers. (Do not assume LLM output is correct. Treat LLM output the same way one might
treat legal advice given by a lawyer character in a movie: it may sound impressive, but it can range
from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Helpful Examples
See the simple model slides for material on computing cost and delay, and also for a list of some
sample problems. Also see 2022 Homework 3.

1

← → Fall 2023 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2023/hw04.pdf

Permutation Module
This assignment is based on the solution to Homework 3, the recursive permutation module perm,
and the solution to Midterm Exam Problem 1, the inferred hardware for the permutation module.
See Homework 3 for details on what the permutation module does. Appearing below is the Home-
work 3 solution with some comments removed. For the unabridged version visit
https://www.ece.lsu.edu/koppel/v/2023/hw03-sol.v.html.

module perm
#(int w = 8, n = 20, wd = $clog2(n))

(output uwire [w-1:0] pdata_out[n], output uwire [wd-1:0] pnum_out[n],

output uwire carry_out,

input uwire [w-1:0] pdata_in[n], input uwire [wd-1:0] pnum_in[n]);

if (n == 1) begin

assign pdata_out[0] = pdata_in[0];

assign carry_out = 1;

assign pnum_out[0] = 0;

end else begin

// Set pos to the position of the element to be moved.

uwire [wd-1:0] pos = n - 1 - pnum_in[n-1];

// Copy the element at position pos to position n-1 in the output.

assign pdata_out[n-1] = pdata_in[pos];

// Prepare an array of n-1 elements and set to ..

// .. the elements of pdata_in except for the element at pos.

uwire [w-1:0] prdata_in[n-1];

for (genvar i=0; i<n-1; i++)

assign prdata_in[i] = i < pos ? pdata_in[i] : pdata_in[i+1];

// Recursively instantiate perm.

uwire co;

perm #(w,n-1,wd) rp(pdata_out[0:n-2], pnum_out[0:n-2], co,

prdata_in, pnum_in[0:n-2]);

// Compute a tentative next value of digit n-1.

uwire [wd-1:0] dnext = pnum_in[n-1] + co;

// Determine whether there is a carry.

assign carry_out = dnext >= n;

// Set the next value of digit n-1 based on whether there is a carry.

assign pnum_out[n-1] = carry_out ? 0 : dnext;

end

endmodule

2

← → Fall 2023 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/koppel/v/2023/hw03.pdf
https://www.ece.lsu.edu/koppel/v/2023/hw03-sol.v.html
https://www.ece.lsu.edu/ee4755/2023/hw04.pdf

Permutation Module Inferred Hardware
Midterm Exam Problem 1 asked for the inferred hardware for the perm module instantiated with
n=4. The solution appears below on the left. For this assignment the inferred hardware for a
non-specific value of n will be needed, that is shown on the right.

pdata_in[1]

 [2]

 [3]

p
d

a
ta

_in

pnum_in[0]

 [1]

 [2]

 [3]

p
n

u
m

_in

3 pos

2 <

1

0

p
d

a
ta

_in

perm
n=3

rp

p
n
u
m

_in

p
d

a
ta

_o
u
t

p
n
u
m

_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥4

perm n=4

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]
[2]

pnum_out[0]
[1]
[2]

[0]

[2]

[0]

[2]

[0]

[0]

[3]

[3]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[2]

[3]

 [0]

+

p
rd

a
ta

_in
[2

]

prdata_in[0]
pdata_in[1]

[2]

[n-1]

p
d

a
ta

_in

pnum_in[0]

[1]

[n-2]

[n-1]
p

n
u

m
_in

n
-1 pos

n
-2

<

1
0

p
d
a
ta
_in

perm
n=n-1

rp

p
n
u
m
_in

p
d
a
ta
_o
u
t

p
n
u
m
_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥
n

perm n

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]

[n-2]

pnum_out[0]
[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

p
rd
a
ta
_in

[n
-2
]

There’s no need to squint, the diagrams appear again in larger size at the end of this assignment.
Also, SVG source for these modules are at https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg
and https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg.

3

← → Fall 2023 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg
https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg
https://www.ece.lsu.edu/ee4755/2023/hw04.pdf

Problem 1: Compute the cost and delay of the following arithmetic hardware from the perm

module. Assume that ripple units are used for addition, subtraction, and comparison.

(a) Compute the cost and delay of the hardware computing pos = n - 1 - pnum_in[n-1] in terms
of wd, the value of parameter wd. Optimize for constants, including n.

Cost of hardware in terms of wd. Delay of hardware in terms of wd.

Optimize for constants, don’t confuse elaboration-time computation with computation hardware.

(b) Compute the cost and delay of the hardware computing dnext = pnum_in[n-1] + co in terms
of wd, the value of parameter wd. Optimize for constants and for the size of co. Assume in this
problem that pnum_in and co arrive at t = 0.

Cost of hardware in terms of wd. Delay of hardware in terms of wd.

Optimize considering the size of co. Optimize for constants, don’t confuse elaboration-time
computation with computation hardware.

(c) Compute the cost and delay of the hardware described by these lines:

uwire [wd-1:0] dnext = pnum_in[n-1] + co;

assign carry_out = dnext >= n;

Assume in this problem that co and pnum_in arrive at t = 0. The cost, of course, includes the
cost of computing dnext in the previous part. The delay must be computed taking both lines into
account.

Cost of hardware in terms of wd. Delay of co in terms of wd.

Optimize considering the size of co. Optimize for constants, don’t confuse elaboration-time
computation with computation hardware.

There are more problems on the next page.

4

← → Fall 2023 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/ee4755/2023/hw04.pdf

Problem 2: In this problem consider the multiplexors with inputs connecting to pdata_in. (In
the diagram they are the multiplexors on the upper-left including the 2-input muxes the n-input
mux.) Call these the pdata multiplexors. In the solutions to the parts below use w for the value of
parameter w and wd for the value of parameter wd.

(a) Compute the cost of the pdata multiplexors for a module instantiated at size n = N including
only the hardware in the n=N instantiation, not in the recursive instantiations. The answer should
be in terms of N and w. Hint: this is easy.

Cost of the pdata multiplexors at one level in terms of N , w, and (if needed) wd.

(b) This is important. Expect to expend brain energy. Don’t skip. Compute the total cost of the
pdata multiplexors for an instantiation at size n = N including the recursive instantiations all the
way down. The answer should be in terms of N and w.

Cost of the pdata multiplexors including recursive instantiations in terms of N , w, and (if needed)
wd.

Problem 3: In this problem compute delays for pdata_out and pnum_out. In the solutions use d
for the value of parameter wd. This is also important and even more interesting. Expect to expend
brain energy. Don’t skip.

(a) Assume that the delay of the subtractors computing pos is lgwd, where wd is the value of
parameter wd. (Note that lgwd is not an answer to Problem 1.) Further, suppose the delay of
the less-than units providing a select signal to the 2-input pdata multiplexors is zero. Using these
assumptions compute the delay of the first and last elements of pdata_out for an instantiation at
n=N and show the critical path. The delay should be in terms of N and wd. To solve this problem
it might be helpful to draw two instantiation levels to help find the critical path.

Delay of pdata out[0] in terms of N and wd accounting for recursive instantiations. Show
critical path.

Delay of pdata out[N-1] in terms of N and wd accounting for recursive instantiations. Show
critical path.

5

← → Fall 2023 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/ee4755/2023/hw04.pdf

SVG source for the module below is at
https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg.

pdata_in[1]

 [2]

 [3]

p
d

a
ta

_in

pnum_in[0]

 [1]

 [2]

 [3]

p
n

u
m

_in
3 pos

2 <

1

0
p

d
a
ta

_in

perm
n=3

rp

p
n
u
m

_in

p
d

a
ta

_o
u
t

p
n
u
m

_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥4

perm n=4

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]
[2]

pnum_out[0]
[1]
[2]

[0]

[2]

[0]

[2]

[0]

[0]

[3]

[3]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[2]

[3]

 [0]

+

p
rd

a
ta

_in
[2

]

prdata_in[0]

6

← → Fall 2023 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg
https://www.ece.lsu.edu/ee4755/2023/hw04.pdf

SVG source for the module below is at
https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg.

pdata_in[1]

[2]

[n-1]

p
d

a
ta

_in

pnum_in[0]

[1]

[n-2]

[n-1]

p
n

u
m

_in

n
-1 pos

n
-2

<

1
0

p
d
a
ta
_in

perm
n=n-1

rp

p
n
u
m
_in

p
d
a
ta
_o
u
t

p
n
u
m
_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥
n

perm n

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]

[n-2]

pnum_out[0]
[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

p
rd
a
ta
_in

[n
-2
]

7

← → Fall 2023 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg
https://www.ece.lsu.edu/ee4755/2023/hw04.pdf

LSU EE 4755 Homework 5 Due: 27 November 2023

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2023/hw05.v.html.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if necessary), copy the assignment, and run the Verilog simulator on the un-
modified homework file, hw03.v.

Homework Overview
In previous assignments there were modules that permuted their inputs, the one called pdata_in.
What would happen if the pdata_in input to our permutation module, perm, did not consist
of n distinct elements? Let’s suppose there would be some dire consequences that we need to
avoid. That’s what this assignment is about, module uniq_vector_seq will be used to determine
if elements are distinct.

Module uniq_vector_seq has one we-bit data input, element, where we is a module parameter.
There are two outputs, n-bit output uniq_bvec and wc-bit output n_match, where n and wc are
module parameters. There is also a 1-bit input start.

At each positive clock edge a new element will be placed on input element. The module output
uniq_bvec indicates the elements arriving in the prior n cycles (or since the last start) that appear
only once. An element that appears only once is called unique. Output uniq_bvec (unique bit
vector) has one bit for each of the past n cycles, with the least significant bit corresponding to the
previous cycle. Let t denote the current cycle and let et denote the element at the element input
in cycle t. The previous cycle is t− 1, the one before that is t− 2, and so on. (If this is starting to
get confusing look at the examples in the description of the testbench.)

First, consider the case where start=0 for at least the last n cycles. If uniq_bvec[i] is 1 then
et−i−1 is unique, meaning that et−i−1 6= et−j−1 for i, j ∈ [0, n− 1] and i 6= j. If uniq_bvec[i] is 0
then et−i−1 = et−j−1 for some i 6= j.

For example, suppose n = 4 and suppose the most recent elements are 4, 7, 5, 5, with 4
the least recent of those. Then uniq_bvec will be 11002 because 5 appears twice. For 7, 7, 2, 2
uniq_bvec will be 00002, for 4, 7, 2, 0 uniq_bvec will be 11112, and finally for 3, 7, 7, 0 uniq_bvec

will be 10012. The testbench shows the recent elements and the provided (module output) and if
different, the correct value of uniq_bvec.

Output n_match should be set to the number of elements that the most recent element matches,
including itself. For 4, 7, 5, 5 n_match=2, for 4, 7, 2, 0 n_match=1 and for 9, 0, 9, 9 n_match=3 but
for 8, 8, 8, 6 n_match=1.

1

← → Fall 2023 ← → Homework 5 Homework Sol Code hw05.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2023/hw05.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2023/hw05.pdf

In a cycle where start=1 the element on element starts a new sequence. So for the purposes
of computing uniq_bvec and n_match element is considered not equal to any element that arrived
in a previous cycle.

Testbench
To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up
account. The testbench will apply inputs to several instantiation of module uniq_vector_seq.
The instantiations differ in n and in whether the start signal will be set to 1 during testing.

The testbench will always show information about at least 5 (or the value of trace_len) sets
of inputs for each instantiation. If there are errors it will show information on at least 4 inputs
that generate each kind of error.

Here is sample testbench output from a working module:

** Starting tests for n=4, input start used = No **

Trace, uniq_bvec: t=33, 1001

[,], 1, 0, 0, 1 <-- uniq_bvec

[13, 8], 7, 9, 9, 4 <-- Element

[0, 0], 0, 0, 0, 0 <-- Start

Trace, uniq_bvec: t=34, 0011

[,], 0, 0, 1, 1 <-- uniq_bvec

[8, 7], 9, 9, 4, 14 <-- Element

[0, 0], 0, 0, 0, 0 <-- Start

Trace, uniq_bvec: t=35, 1100

[,], 1, 1, 0, 0 <-- uniq_bvec

[7, 9], 9, 4, 14, 14 <-- Element

[0, 0], 0, 0, 0, 0 <-- Start

The text above shows information on three inputs, they occur at t = 33 through t = 35.
(Actually those numbers refers to test numbers, not cycles.) The rows labeled Elements show the
elements that have arrived over the past six cycles. The rightmost one is the most recent. The
output above was for a module instantiated with n=4, so only the last 4 elements should matter.
As an aid in debugging two additional elements are shown. So, for t = 33 the module should only
pay attention to elements 7, 9, 9, 4, and the module should ignore 13, 8. The value of uniq_bvec is
shown on the lines that start with Trace. The same value is shown in the rows labeled uniq_bvec.
Note that the value 1001 is the output at t = 33. But the values shown in the Element and Start

rows are from the past n + 2 cycles.
Notice that a bit of uniq_bvec is 0 if the corresponding element appears more than once. That

is the case for 9 in the t = 33 input. At t = 35 the 9 element becomes uniq because the other 9
has arrived more than n cycles ago. For the examples above n_matches should be 1 at t = 33 and
t = 34 and 2 at t = 35 (because there are two 14s).

The start input is used to reset the module. When start=1 the prior elements are forgotten
or ignored. The output below shows the correct effect of start.

** Starting tests for n=6, input start used = Yes **

Trace, uniq_bvec: t=53, 000111

[,], 0, 0, 0, 1, 1, 1 <-- uniq_bvec

[13, 99], 1, 1, 1, 19, 95, 53 <-- Element

[0, 0], 0, 0, 0, 0, 0, 0 <-- Start

Trace, uniq_bvec: t=54, 111111

[,], 1, 1, 1, 1, 1, 1 <-- uniq_bvec

[99, 1], 1, 1, 19, 95, 53, 19 <-- Element

[0, 0], 0, 0, 0, 0, 0, 1 <-- Start

2

← → Fall 2023 ← → Homework 5 Homework Sol Code hw05.pdf

https://www.ece.lsu.edu/ee4755/2023/hw05.pdf

Trace, uniq_bvec: t=55, 111111

[,], 1, 1, 1, 1, 1, 1 <-- uniq_bvec

[1, 1], 1, 19, 95, 53, 19, 32 <-- Element

[0, 0], 0, 0, 0, 0, 1, 0 <-- Start

At t = 53 in the output above there are three elements equal to 1, setting the uniq_bvec bits
to zero. A t = 54 the start input is asserted and so the positions with 1 elements become unique.
Also arriving elment 19 is also considered uniq. If in t = 56 a 19 arrived then the 19 elements
would no longer be unique.

Here is testbench output for a module with errors:

** Starting tests for n=4, input start used = No **

Error, uniq_bvec: t=9, 0100!= 1100 (correct)

[,], E0, 1, 0, 0 <-- uniq_bvec

[9, 9], 9, 2, 13, 13 <-- Element

[0, 0], 0, 0, 0, 0 <-- Start

Error, uniq_bvec: t=11, 0001!= 0011 (correct)

[,], 0, 0, E0, 1 <-- uniq_bvec

[9, 2], 13, 13, 2, 1 <-- Element

[0, 0], 0, 0, 0, 0 <-- Start

The Error line shows first the value of uniq_bvec exiting the module, and then the correct
value. The uniq_bvec line shows the value from the module, preceded with an E if that value is
wrong. At t = 9 the MSB should have been a 1 because 9 is unique. Perhaps it is being dubbed
not unique because there was another 9 earlier, but that should be too early to matter. A common
mistake is to leave an output unconnected. The value would be shown as x, say Ex for a uniq_bvec

bit.
Error lines are also shown if n_match is wrong:

** Starting tests for n=4, input start used = No **

Trace, uniq_bvec: t=10, 0000

Error: n_match: 1 != 2 (correct)

[,], 0, 0, 0, 0 <-- uniq_bvec

[9, 9], 7, 13, 13, 7 <-- Element

[0, 0], 0, 0, 0, 0 <-- Start

In the output above n_match should have been 2 (since element 7 appears twice), but the
module output is 1.

The testbench checks instantiations with two values of n, and does one set of tests where start
is always 0 (after initialization) and another set of tests where start is occasionally set to 1.

At the end of the testbench a summary of error counts is printed:

End of tests n= 4, s=0: 0 bvec errors, 33368 n_match errors for 99992 tests.

End of tests n= 4, s=1: 0 bvec errors, 19771 n_match errors for 99992 tests.

End of tests n= 6, s=0: 0 bvec errors, 18240 n_match errors for 99988 tests.

End of tests n= 6, s=1: 0 bvec errors, 9326 n_match errors for 99988 tests.

xmsim: *W,RNQUIE: Simulation is complete.

The output above shows lots of n_match errors but no bvec_uniq errors.

Helpful Examples
The demo module computing a running sum will probably be most helpful. That and other
pipelined modules are in file pipe.v in the homework file and can be viewed, with images, at
https://www.ece.lsu.edu/koppel/v/2023/pipe.v.html. Look for module simple_pipe_avg.

3

← → Fall 2023 ← → Homework 5 Homework Sol Code hw05.pdf

https://www.ece.lsu.edu/koppel/v/2023/pipe.v.html
https://www.ece.lsu.edu/ee4755/2023/hw05.pdf

Problem 1: In the unmodified assignment module uniq_vector_seq has some starter code, and
it will actually generate the correct outputs for the start=0 tests. It does so using combinational
module uniq_vector_comb. The problem with the combinational module is that it is too costly,
and also slow. Also, it ignores the start signal. So for this problem remove the instantiation of
uniq_vector_comb from uniq_vector_seq and complete uniq_vector_seq so that it operates as
described above. It is important that the cost is reasonable. The reason that uniq_vector_comb

is costly is that it does n2 comparisons. Module uniq_vector_seq should only perform about n
comparisons per clock cycle.

(a) Add code to uniq_vector_seq so that n_match works as described above. The code must be
synthesizable. Use command genus -file syn.tcl to synthesize. This part is easy.

Complete module so that n match is correct.

Follow the checkbox items in hw05.v.

(b) Add code to uniq_vector_seq so that uniq_bvec works as described above. This is trickier,
at least for a low-cost solution. It might be easier to get the start=0 version working first.

Complete module so that uniq bvec is correct.

Pay attention to cost, cost should not be proportional to n2.

Follow the checkbox items in hw05.v.

4

← → Fall 2023 ← → Homework 5 Homework Sol Code hw05.pdf

https://www.ece.lsu.edu/ee4755/2023/hw05.pdf

LSU EE 4755 Homework 6 Due: 1 December 2023

This assignment will be collected and graded, but the grades will not count.

Problem 1: Solve 2022 Final Exam Problem 1. In part a, a timing analysis is to be performed
on a combinational vector normalization module norm_comb, and in part b a pipelined version of
the module is to be designed.

Problem 2: Solve 2022 Final Exam Problem 2, in which Verilog code describing a vector normal-
ization module, norm_comb_n, is to be completed.

Problem 3: Solve 2022 Final Exam Problem 3, in which a cost and timing analysis is to be done
for an illustration of hardware for the add_accum module from 2019 Homework 6.

1

← → Fall 2023 ← → Homework 6 Homework hw06.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2023/hw06.pdf

2 Fall 2022

33

← → Fall 2022 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2022/hw01.pdf

LSU EE 4755 Homework 1 Due: 21 September 2022

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2022/hw01.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw01.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Background
The goal of this homework assignment and follow-on assignments is to convert an ASCII string
into a number. For example, to convert "12" (equivalently ’h3132) into 12 (equivalently ’b1100

or ’d12 or ’hc). An ASCII string is a sequence of bytes, but in this assignment there is just one
byte. The follow-on assignments there will be multiple bytes.

The input to the module for this assignment, atoi1, is the character. The module has two
outputs, the value, val, and whether the character is a valid digit. For example, "1" is a valid
digit, but "#" is not.

The module has a parameter r which indicates the radix of the number that’s expected. If r=2
and the character is "3" then it is not a valid digit and the returned value should be zero. Further
details are provided in the problem description below. For r=16 the valid characters are 0 to 9,
A to F, and a to f, with a and A, b and B, . . . treated equivalently. The module should work for
any r up to 36. As of this writing the testbench evaluates radices 4, 8, 10, 14, 16, 19. The TA-bot
might test with different radices. Feel free to modify the testbench to try different radices. (Search
for testbench and figure out the code.)

This assignment exercises basic Verilog skills like instantiating modules and understanding the
difference between structural and procedural code. In the follow-on assignment the atoi modules
will be connected to handle longer strings.

Testbench
To run compile your code and run the testbench press F9 in an Emacs buffer in a properly set
up account. In an unmodified assignment the testbench will generate output that includes the
following near the end:

Radix 4, done with 256 tests, 0 val errors, 0 is_digit errors.

Radix 8, done with 256 tests, 0 val errors, 0 is_digit errors.

Radix 10, done with 256 tests, 0 val errors, 0 is_digit errors.

Radix 14, done with 256 tests, 0 val errors, 0 is_digit errors.

Radix 16, done with 256 tests, 0 val errors, 0 is_digit errors.

Radix 19, done with 256 tests, 0 val errors, 0 is_digit errors.

xmsim: *W,RNQUIE: Simulation is complete.

xcelium> exit

Total number of errors: 0

There are zero errors because the procedural code in atoi1 is correct. Notice that there are
separate tallies for each radix plus a grand total. Detailed messages are printed for the first few
errors, after which only a tally is provided. For example, here is what the error messages would
look like if the conversion to upper case were wrong:

xcelium> run

Radix 4, done with 256 tests, 0 val errors, 0 is_digit errors.

1

← → Fall 2022 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2022/hw01.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2022/hw01.pdf

Radix 8, done with 256 tests, 0 val errors, 0 is_digit errors.

Radix 10, done with 256 tests, 0 val errors, 0 is_digit errors.

R 14 Error val ’h0d or D != A (correct) for string " a"

R 14 Error val ’h00 or 0 != B (correct) for string " b"

R 14 Error is_digit 0 != 1 (correct) for string " b"

R 14 Error val ’h00 or 0 != C (correct) for string " c"

R 14 Error is_digit 0 != 1 (correct) for string " c"

R 14 Error val ’h00 or 0 != D (correct) for string " d"

R 14 Error is_digit 0 != 1 (correct) for string " d"

Radix 14, done with 256 tests, 4 val errors, 3 is_digit errors.

R 16 Error val ’h0d or D != A (correct) for string " a"

R 16 Error val ’h0e or E != B (correct) for string " b"

R 16 Error val ’h0f or F != C (correct) for string " c"

R 16 Error val ’h00 or 0 != D (correct) for string " d"

R 16 Error is_digit 0 != 1 (correct) for string " d"

R 16 Error is_digit 0 != 1 (correct) for string " e"

R 16 Error is_digit 0 != 1 (correct) for string " f"

Radix 16, done with 256 tests, 6 val errors, 3 is_digit errors.

R 19 Error val ’h00d or D != A (correct) for string " a"

R 19 Error val ’h00e or E != B (correct) for string " b"

R 19 Error val ’h00f or F != C (correct) for string " c"

R 19 Error val ’h010 or G != D (correct) for string " d"

R 19 Error is_digit 0 != 1 (correct) for string " g"

R 19 Error is_digit 0 != 1 (correct) for string " h"

R 19 Error is_digit 0 != 1 (correct) for string " i"

Radix 19, done with 256 tests, 9 val errors, 3 is_digit errors.

xmsim: *W,RNQUIE: Simulation is complete.

xcelium> exit

Total number of errors: 28

Consider one of those lines with some ASCII-art underlining:

R 14 Error val ’h0d or D != A (correct) for string " a"

0000 1111 2 3 44 <- ASCII art underlining

The part underlined with 0000 indicates that this result is for radix r=14. The character to
be converted is a, though it’s called a string and shown with a leading space. That’s the part
underlined with 44. The part underlined with 3 is what the value should be in radix 14, and the
part underlined with 2 is what the atoi1 module’s val output is, in radix 14. The part underlined
in 1111 is the module output in hexadecimal. In this case, the value should be 10 (decimal) or A
(base 14), but the module output is D (which is 13 in decimal).

That’s one error line. Going back to the more complete testbench output notice that only
strings with lower-case letters are wrong. This is what one would expect since we intentionally
broke the lower-to-upper conversion.

The testbench only shows details for the first 4 errors of each type at each radix. If you want
to see more errors feel free to edit the testbench. Search for err < 5. Feel free to edit the testbench
in other ways to facilitate debugging. The TA-bot will run your code using its own testbench, so
don’t worry about being accused of cheating by modifying the testbench.

2

← → Fall 2022 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2022/hw01.pdf

Problem 1: Appearing below (and in the assignment file hw01.v) is module atoi1, ASCII to
Integer of 1 character. The module has an 8-bit input char, a 1-bit output is_digit, and a w-bit
output val. There are also two parameters, w (width) and r (radix). Output is_digit is set to 1

iff (if and only if) str is a radix-r digit. If char is a digit output val is set to its value, otherwise
val is set to zero.

module atoi1 #(int r = 32, w = $clog2(r))

(output logic [w-1:0] val, output uwire is_digit, input uwire [7:0] char);

logic [7:0] char_uc;

logic [w-1:0] val_09, val_az;

logic is_09, is_az;

digit_valid_09 #(r,w) v09(is_09, val_09, char);

assign is_digit = is_09 || is_az;

always_comb begin

char_uc = char >= Char_a && char <= Char_z ? char - Char_a + Char_A : char;

val_az = 10 + char_uc - Char_A;

is_az = char_uc >= Char_A && char_uc < Char_A + r - 10;

if (is_09) val = val_09;

else if (is_az) val = val_az;

else val = 0;

end

endmodule

For example, suppose w=4 and r=10. If char=51 (ASCII for the digit 3), then output val is
set to 3 and is_digit is set to 1. If char=58 (ASCII for : [colon]), then output val is set to 0
and is_digit is set to 0. If char=65 (ASCII for A), then output val is set to 0 and is_digit is
set to 0. Now suppose that atoi1 is instantiated with r=16 (hexadecimal). If char=65 (ASCII for
A), then output val is set to 10 and is_digit is set to 1. If char=97 (ASCII for a), then output
val is also set to 10 and is_digit is set to 1.

Module atoi1 includes an instantiation of module digit_valid_09, a continuous assignment
(of is_digit), and procedural code. Module digit_valid_09, which is finished, converts an
ASCII character into a value if the character is a digit from 0 to 9, and if the value is valid (less
than r). (Those who are not sure what digit_valid_09 is doing might want to inspect module
atoi1_behavioral, which uses only procedural code.)

Make the following changes to atoi1: Instantiate module char_to_uc (character to upper
case) and use it to convert char to upper case. Instantiate module digit_valid_az and use it
to compute is_az and val_az. Instantiate mux2 modules and use them to route the correct value
to the val output of atoi1. As you instantiate and connect these modules remove the procedural
code that’s no longer needed.

Also, add code to digit_valid_az and char_to_uc so that they compute their proper values.

To help with debugging, do this in small steps. For example, first complete the char_to_uc

module and make sure there are no compilation errors. Then instantiate it in atoi1, and make
sure there are no compilation errors and no testbench errors.

Pay attention to compilation errors and ask for help with any that you can’t understand.

The code must by synthesizable. To synthesize your code issue the command genus -files

syn.tcl. If there are no errors, running this command will generate output that includes like the
following:

3

← → Fall 2022 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2022/hw01.pdf

Module Name Area Delay Delay

Actual Target

atoi1_r2 1796 0.454 10.000 ns

atoi1_behavioral_r2 1796 0.454 10.000 ns

atoi1_r8 2047 0.495 10.000 ns

atoi1_behavioral_r8 2047 0.495 10.000 ns

atoi1_r10 2517 0.529 10.000 ns

atoi1_behavioral_r10 2517 0.529 10.000 ns

atoi1_r16 5792 0.752 10.000 ns

atoi1_behavioral_r16 5792 0.752 10.000 ns

atoi1_r2_3 3754 0.274 0.100 ns

atoi1_behavioral_r2_4 3754 0.274 0.100 ns

atoi1_r8_3 5762 0.260 0.100 ns

atoi1_behavioral_r8_4 5762 0.260 0.100 ns

atoi1_r10_3 7371 0.259 0.100 ns

atoi1_behavioral_r10_4 6937 0.260 0.100 ns

atoi1_r16_3 18302 0.363 0.100 ns

atoi1_behavioral_r16_4 18302 0.363 0.100 ns

The synthesis script is synthesizing both the module for this assignment, atoi1, and the
behavioral version, atoi1_behavioral. The radix at which it is instantiated is appended to the
name.

4

← → Fall 2022 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2022/hw01.pdf

LSU EE 4755 Homework 2 Due: 7 October 2022

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2022/hw02.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw02.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Background
This assignment is a follow-on to Homework 1, in which the atoi1 modules will be used to convert an
ASCII string holding a number into a value. For example, to convert "12" (equivalently ’h3132)
into 12 (equivalently ’b1100 or ’d12 or ’hc). An ASCII string is a sequence of bytes, in this
assignment there can be one or more bytes.

The string is on module input str and it is declared so that str[0] is the rightmost (least-
significant) character of the ASCII string. For example, if the string were " 987" then str[0]

would be the 7 (ASCII value 48 + 7 = 55), str[1] would be the 8, str[2] the 9, and str[3] the
space (ASCII value 32).

Let n denote the number of characters in the string. The ASCII number may take up n or fewer
characters. For example, for n = 4 the number 1 would only need one character. The remaining
characters can be any non-digit character. For example for the 1 in radix 10 the string can be "

1", or "abc1", but not "ab21" since that would be the number 21.
The input to the modules for this assignment, atoi_it and atoi_tr, is the string. The modules

have two outputs, the value, val, and the number of digits in the number, nd. For example, for
input "9 43" in radix 10 the value is 43 and the number of digits is 2. The 9 does not count
because it is separated by a non-digit character from the 43. For radix 16 and input " a12" the
value is 2578 and the number of digits is 3. If the radix is 3 and the string is "32" then the value
is 2 and the number of digits is 1. The 3 is not a valid digit in trianary, and so it ends the number.

For r=16 the valid characters are 0 to 9, A to F, and a to f, with a and A, b and B, . . . treated
equivalently. The module should work for any r up to 36.

As of this writing the testbench evaluates radices 10 and 16 and a variety of string lengths.
Feel free to modify the testbench to try different radices. (Search for testbench and figure out the
code.)

Reference Module
To help you get started, there is a reference module, atoi_pr, that correctly computes the value
of a string. This module would not be a correct solution to either problem.

module atoi_pr
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))

(output logic [wv-1:0] val,

output logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

always_comb begin

val = 0; nd = 0;

for (int i=0; i<n; i++) begin

// Get val of current char. If val is < 0 then char is not a digit.

automatic int dval = atoi1_func(str[i],r);

1

← → Fall 2022 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2022/hw02.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2022/hw02.pdf

if (dval < 0) break;

val += dval * r**i;

nd++;

end

end

endmodule

Testbench
To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up
account. In an unmodified assignment the testbench will generate output that includes the following
near the end:

Total errors for radix 10: 14000 len, 14140 val

Total errors for radix 16: 14000 len, 14224 val

Total errors for string length 1: 4000 len, 4052 val

Total errors for string length 2: 4000 len, 4052 val

Total errors for string length 3: 4000 len, 4052 val

Total errors for string length 4: 4000 len, 4052 val

Total errors for string length 7: 4000 len, 4052 val

Total errors for string length 8: 4000 len, 4052 val

Total errors for string length 9: 4000 len, 4052 val

Total errors for mod atoi_it: 14000 len, 14182 val

Total errors for mod atoi_tr: 14000 len, 14182 val

The errors are tallied above three ways: by radix, by string length, and by module (atoi_it
and atoi_tr). In the output above both modules have errors, and their are errors at each radix
and length. In the output below module atoi_it has zero errors, and errors only occur at lengths
3, 7, 9. The errors would have to be due to atoi_tr:
Total errors for radix 10: 1201 len, 1201 val

Total errors for radix 16: 1144 len, 1036 val

Total errors for string length 1: 0 len, 0 val

Total errors for string length 2: 0 len, 0 val

Total errors for string length 3: 687 len, 687 val

Total errors for string length 4: 0 len, 0 val

Total errors for string length 7: 1434 len, 1434 val

Total errors for string length 8: 0 len, 0 val

Total errors for string length 9: 224 len, 116 val

Total errors for mod atoi_it: 0 len, 0 val

Total errors for mod atoi_tr: 2345 len, 2237 val

Total number of errors: 4582

The messages above are tallies printed near the end. Detailed messages are printed for the
first few errors. Here are two error messages (of many from the same run as above:
Mod-atoi_tr R-10 n- 7 Ty-SP Error val 1 != 2011 (correct) for string " 2011"

Mod-atoi_tr R-10 n- 7 Ty-SP Error len 1 != 4 (correct) for string " 2011"

Each of the two lines indicates that the error was with module atoi_tr instantiated at r=10

(radix 10) and string length of n = 7. (Don’t confuse string length with the length of the number
in the string.) Ty-SP indicates the type of test, in this case a number padded with spaces. The
first line indicates that the value should have been 2011 but the module output was 1. The second
line informs us that the length should have been 4, but the module nd output was 1.

There are three types of tests: Ty-SC, Ty-SP, and Ty-GE. For Ty-SC tests the number is always

2

← → Fall 2022 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/ee4755/2022/hw02.pdf

one digit (regardless of the string length). For Ty-SP tests the number is followed spaces. For
Ty-GE the number is followed by any non-digit character.

The testbench only shows details for the first 4 errors of each type at each radix. If you want
to see more errors feel free to edit the testbench. Search for err < 5. Feel free to edit the testbench
in other ways to facilitate debugging. The TA-bot will run your code using its own testbench, so
don’t worry about being accused of cheating by modifying the testbench.

Similar Problems
See the l025-gen-elab.v demo code for examples of how to use generate statements iteratively
(needed for Problem 1) and recursively (needed for Problem 2). An easy example is ripple_w

from that set. Pay attention to how the carry signals are connected from one BFA to the other:
module ripple_w

#(int w = 4)

(output uwire [w-1:0] sum, output uwire cout,

input uwire [w-1:0] a, b, input uwire cin);

uwire c[w-1:-1];

assign c[-1] = cin;

assign cout = c[w-1];

for (genvar i = 0; i<w; i++)

bfa bfai(sum[i], c[i], a[i], b[i], c[i-1]);

endmodule

A simple recursive module is min_t which finds the minimum of its n inputs:
module min_t

#(int w = 4, n = 8)

(output uwire [w-1:0] e_min, input uwire [w-1:0] e [n-1:0]);

if (n == 1) begin

assign e_min = e[0];

end else begin

localparam int n_lo = n / 2;

localparam int n_hi = n - n_lo;

uwire [w-1:0] m_lo, m_hi;

min_t #(w,n_lo) mlo(m_lo, e[n_lo-1:0]);

min_t #(w,n_hi) mhi(m_hi, e[n-1:n_lo]);

min_2 #(w) m2(e_min, m_lo, m_hi);

end

endmodule

See the count-leading-zeros assignment from 2019 Homework 2 for an example of how to
recursively instantiate a module and combine results.

3

← → Fall 2022 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/koppel/v//2022/l025-gen-elab.v.html
https://www.ece.lsu.edu/ee4755/2022/hw02.pdf

Problem 1: Module atoi_it has an n-character input str, and outputs val (value) and nd

(number of digits), as well as parameters r (radix) and n (number of characters in string). Following
the rules further below, complete module atoi_it so that val is the value of the radix-r ASCII
representation of a number in str and nd is set to the number of digits in the number (not to
be confused with the number of characters in the string). Further details are described in the
background section above.

Module atoi_it must use instantiations of module atoi1 to convert characters to their values
and it must use instantiations of mult_by_c to do multiplication by a constant. The module may
also instantiate add and mux2 modules, but it doesn’t have to. A selection of modules is defined
under the Problem 0 section of hw02.v.

Module atoi_it must not instantiate itself (that’s Problem 2). Instead, use a generate loop
to instantiate the atoi1 and mult_by_c modules.

To help you get started, module atoi_it includes an instantiation of atoi1 and mult_by_c.
But, those are not in a generate loop and won’t work. They are only there to show you how to
instantiate something correctly.

Make sure that your module is synthesizable by running the synthesis script. The command
is genus -files syn.tcl.

Problem 2: Module atoi_tr has the same ports and parameters as atoi_it and should produce
the same outputs. Complete atoi_tr so that it does so by recursively instantiating two instances
of itself, with each instance operating on about half of the string. As with atoi_it, it must use
instantiations of atoi1 to convert characters and mult_by_c to perform multiplication. Make sure
that the module is synthesizable.

Some may have realized (or will come to realize) that for certain radices neither multiplication
nor addition (at least for values) is needed. Don’t worry about that, it’s okay to use mult_by_c

even when not needed.
The module must be synthesizable. See the comments in the code for other requirements and

things to look out for.

4

← → Fall 2022 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/ee4755/2022/hw02.pdf

LSU EE 4755 Homework 3 Due: 17 Oct 2022, 11:30 CDT

Resources
To help with this assignment review the simple cost model slides and the material in
generate statement demo code.

The following problems ask for both inferred hardware and a cost/performance analysis: 2019
Midterm Exam Problem 3c (equality module with shifted inputs), 2021 Midterm Exam Problem 2
(a concentrator for neural network hardware reading sparse weights).

The following are good cost and performance analysis questions (these are the same ones
mentioned in the simple model slides): The “find oldest” (big mux) problem covered in class can
be found in 2017 Final Exam Problem 3, the knapsack problem hardware covered in class can be
found in 2016 Final Exam Problem 2 and 4.

The following are good inferred hardware and optimization problems. Start with 2019 Midterm
Exam Problem 1 (a recursively described clz [count leading zeros] module). A problem combining
both recursive and iterative generate statements can be found in 202 Midterm Exam Problem 4.

A sequential version of the ASCII-to-value hardware was also assigned in this course. The
hardware was described by procedural code and it operated sequentially, so I don’t suggest that it
specifically be studied for clues on how to solve this assignment.

Problem 1: Compute the cost and delay, using the simple model, of the atoi1 module (from
the solution to Homework 1) instantiated with r=12. Base this on a module with reasonable
optimizations applied and be sure to account for constants when computing cost and delay.

• Base your analysis of ripple implementations of the adder and magnitude comparison units.

• Show cost.

• Show delay of each output and identify the critical path.

• Account for constants when computing cost and delay.

module atoi1
#(int r = 32, w = $clog2(r))

(output logic [w-1:0] val, output logic is_digit,

input uwire [7:0] char);

logic [w-1:0] val_09, val_az, val_n;

logic is_09, is_az;

digit_valid_09 #(r,w) v09(is_09, val_09, char);

uwire [7:0] char_uc;

char_to_uc tuc(char_uc,char);
digit_valid_az #(r,w) vaz(is_az, val_az, char_uc);

uwire [w-1:0] z = 0;

mux2 #(w) mval(val_n,is_09,val_az,val_09);
mux2 #(w) mval0(val,is_digit,z,val_n);

1

← → Fall 2022 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2022/lsli-simple-model.pdf
https://www.ece.lsu.edu/koppel/v/2022/l025-gen-elab.v.html
https://www.ece.lsu.edu/ee4755/2022/hw03.pdf

assign is_digit = is_09 || is_az;

endmodule

typedef enum

{ Char_0 = 48, Char_9 = 57, Char_A = 65, Char_Z = 90, Char_a = 97, Char_z = 122 }

Chars_Special;

module digit_valid_09
#(int r = 9, vw = $clog2(r))

(output uwire valid, output uwire [vw-1:0] val, input uwire [7:0] char);

assign val = char - Char_0;

assign valid = char >= Char_0 && char <= Char_9 && char < Char_0 + r;

endmodule

module char_to_uc(output uwire [7:0] uc, input uwire [7:0] c);

uwire is_lc = c >= Char_a && c <= Char_z;

uwire [7:0] uc_if_lc = c - Char_a + Char_A;

mux2 #(8) m(uc, is_lc, c, uc_if_lc);

endmodule

module digit_valid_az
#(int r = 11, vw = $clog2(r))

(output uwire valid, output uwire [vw-1:0] val, input uwire [7:0] char);

assign val = 10 + char - Char_A;

assign valid = char >= Char_A && char < Char_A + r - 10;

endmodule

module mux2
#(int w = 3)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, a1);

assign x = s ? a1 : a0;

endmodule

2

← → Fall 2022 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03.pdf

Problem 2: Appearing further below is the atoi_it from the solution to Homework 2.

(a) Show the hardware inferred for an atoi_it module instantiated with r=14 (yes, radix 14) and
n=3.

• Show atoi1, mult_by_c, and add instances as modules, do not show what is inside.

• Show the hardware inferred for the operators, such as && and ?:.

• Do not confuse parameters and ports.

• Omit hardware that does not belong, such as “hardware” to compute values needed at
elaboration time.

• Be sure to show the inferred logic. Remember that generate statements describe what hap-
pens at elaboration time, not what happens at simulation time nor does it describe operations
performed by the hardware.

(b) Show the hardware inferred for an atoi_it module instantiated with r=16 (hexadecimal this
time) and n=3, and show the hardware after optimization. Consider the impact of optimization on
the mult_by_c and add modules, which should be considerable since r is a power of 2.

3

← → Fall 2022 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03.pdf

module atoi_it
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))

(output logic [wv-1:0] val,

output logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n-1:-1];

uwire is_valid[n-1:-1];

uwire [wd-1:0] ndi[n-1:-1];

assign is_valid[-1] = 1;

assign ndi[-1] = 0;

assign vali[-1] = 0;

assign nd = ndi[n-1];

assign val = vali[n-1];

localparam int wcv = $clog2(r);

for (genvar i=0; i<n; i++) begin

// Find Value of Digit i

//

uwire [wcv-1:0] valdr;

uwire is_digit;

atoi1 #(r,wcv) a(valdr, is_digit, str[i]);

// Determine if this digit continues a sequence of valid digits

// starting at str[0].

//

assign is_valid[i] = is_digit && is_valid[i-1];

// Replace value with zero if str[i] is not a digit, or if the

// string of valid digits has already ended.

//

uwire [wcv-1:0] vald = is_valid[i] ? valdr : 0;

// Multiply (scale) the digit value based on its position in the number.

//

uwire [wv-1:0] vals;

mult_by_c #(.w_in(wcv), .c(r**i), .w_out(wv)) mc(vals, vald);

// Add the scaled digit to the value accumulated so far.

//

add #(wv) a1(vali[i], vali[i-1], vals);

// Update the number of digits so far.

//

assign ndi[i] = is_valid[i] ? i+1 : ndi[i-1];

end

endmodule

4

← → Fall 2022 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03.pdf

Problem 3: Appearing further below is the atoi_tr from the solution to Homework 2. Show the
inferred logic for an instantiation with r=10 and n=9.

• Show the logic for one level. That is, show the two instantiations of atoi tr, alo and ahi,
but don’t show what is inside of alo nor ahi.

• Show the mult by c instantiations as modules, do not show what is inside.

• Show the hardware inferred for the operators, such as && and ?:.

• Omit hardware that does not belong, such as “hardware” to compute values needed at
elaboration time.

• Do not confuse parameters and ports.

• Be sure to show the inferred logic. Remember that generate statements describe what hap-
pens at elaboration time, not what happens at simulation time nor does it describe activities
performed by the hardware.

5

← → Fall 2022 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03.pdf

module atoi_tr
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))

(output uwire [wv-1:0] val, output var logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

if (n == 1) begin

uwire is_dd;

uwire [wv-1:0] valr;

atoi1 #(r,wv) a(valr, is_dd, str[0]);

assign val = is_dd ? valr : 0;

assign nd = is_dd; // Note: nd may be more than one bit.

end else begin

// Prepare to split the input string into two halves. Note that

// the hi half may be larger, and so we use nhi to compute the

// number of bits needed in the value output (vwh) and the

// number of digits output (dwh).

//

localparam int nlo = n/2;

localparam int nhi = n - nlo;

localparam int vwh = $clog2(r**nhi);

localparam int dwh = $clog2(nhi+1);

//

uwire [vwh-1:0] vallo, valhi;

uwire [dwh-1:0] ndlo, ndhi;

// Split input string between two recursive instantiations

//

atoi_tr #(r,nlo,vwh,dwh) alo(vallo, ndlo, str[nlo-1:0]);

atoi_tr #(r,nhi,vwh,dwh) ahi(valhi, ndhi, str[n-1:nlo]);

// Determine whether the hi half of the string may be part

// of the number.

//

uwire hitoo = ndlo == nlo;

uwire [vwh-1:0] valhid = hitoo ? valhi : 0;

// Scale the upper half.

//

uwire [wv-1:0] valhis; // Value High Scaled

mult_by_c #(vwh,r**nlo,wv) mc(valhis, valhid);

assign val = vallo + valhis;

assign nd = hitoo ? nlo + ndhi : ndlo;

end

endmodule

6

← → Fall 2022 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03.pdf

LSU EE 4755 Homework 4 Due: 4 November 2022

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2022/hw04.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw04.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Helpful Past Homework Assignments
For those who would like to see a fairly simple sequential circuit, and one that counts characters,
see 2017 Homework 4, maxrun.

Problem 1: Module word_count has three inputs, an 8-bit char input, and 1-bit inputs clk and
reset. At each positive edge of clk a new ASCII character will be available at input char. The
characters might be from a text file, a keyboard, or some other source of English text. Based on
the word rules given below these characters form words, and the module is to count the words and
provide other information.

Module word_count has three parameters, wl, wn, and n_avg_of. The module has six outputs.
Output len_word, which is wl bits, is the length so far of the current word, or the length of the
most recent word. Output n_words, which is wn bits, is the number of complete words counted
since the last reset.

Output len_avg, which is also wl bits, is the average length of the n_avg_of most recent
completed words with the fractional part truncated. If fewer than n_avg_of words have ended
since the last reset then len_avg should be zero. For example, if n_avg_of=4 and the lengths of
the four most recent words are 8, 4, 12, and 15 then len_avg should be set to b(8+4+12+15)/4c =
b39/4c = b9.75c = 9. If there is a reset and then only three words have ended, len_avg should be
0.

Output word_start should be set to 1 iff the current character starts a word. Output
word_part should be set to 1 if the current character is part of a word based on the word rules
described further below. (If word_start is 1 then word_part is 1.) Output word_ended is 1 if the
character in the previous cycle was the last character of a word.

For an example of how these output should be set examine the testbench output below, col-
lected for the text “A or bee”:

W-M I Text---->! SPE L N A {D}

Trace 2-5 0 " A" ___ SP_ 1 0 0 {1}

Trace 2-5 1 " A " sp_ __E 1 1 0 {0}

Trace 2-5 2 " A o" __e SP_ 1 1 0 {1}

Trace 2-5 3 " A or" sp_ _P_ 2 1 0 {1}

Trace 2-5 4 " A or " _p_ __E 2 2 1 {0}

Trace 2-5 5 " A or b" __e SP_ 1 2 1 {1}

Trace 2-5 6 " A or be" sp_ _P_ 2 2 1 {1}

Trace 2-5 7 " A or bee" _p_ _P_ 3 2 1 {1}

Trace 2-5 8 " A or bee " _p_ __E 3 3 2 {0}

Trace 2-5 9 "A or bee 2" __e ___ 3 3 2 {0}

Trace 2-5 10 " or bee 2n" ___ ___ 3 3 2 {1}

1

← → Fall 2022 ← → Homework 4 Homework Sol Code hw04.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2022/hw04.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2022/hw04.pdf

Each line shows the output at one cycle, the I column shows an index (which is something like
a cycle number). The W column shows the value of n_avg_of and the M column shows the maximum
possible word length. The last column, {D}, is for debugging, see the discussion further below.

The most-recent ten characters are shown under the Text heading, in the first line (index 0),
A is the most recent character. There will be an R to the right of the text in a cycle when reset is
1.

The L column shows the length of the word so far, or the length of the most recent word. The
N column shows the number of words (incremented when the word ends), and the A column shows
a running average of the last word lengths, the last 2, in this case. The column headed SPE shows
the state of the outputs of word_start, word_part, and word_ended outputs. An upper case letter
shows the state after the positive edge of the clock (which is the one that is needed). To help with
debugging, the lower case letters show the state just before the positive edge.

Note: word_part should only be 1 if char is a word-part char and a word has already started.
Notice that at index 10 the arriving character is an n, which is a word-part character. But because
it was not preceded by a non-word-part character a word does not start at index 10 (nor 9).

Notice that L is updated as each character arrives, while N and A only update when the word
ends.

The testbench will trace the first few lines, and then only show trace lines when there are
errors (along with a few trace lines preceding the error). For lines with an error the correct output
is also shown:

W-M I Text---->! SPE L N A

Trace 2-5 5 " I II I" __e SP_ 1 2 1

Trace 2-5 6 " I II II" sp_ _P_ 2 2 1

Trace 2-5 7 " I II III" _p_ _P_ 3 2 1

Trace 2-5 8 " I II III " _p_ __E 3 3 3 <- Error Correct -> __E 3 3 2

W-M I Text---->! SPE L N A SPE L N A

In the example above, the running average, A, is wrong. The module output is 3 but the
testbench expects a 2.

Reset Behavior
If input reset is 1 on a positive edge then len_word, num_words, and len_avg should all be set to
zero and input char should be considered a non-word character (regardless of its value). The trace
below shows an example of reset behavior. The reset occurs at index 6. Because of when the reset
occurs bee, rather than being a three-letter word is considered a one-letter word, the last e. Notice
also that the average length (column A) does not show a value until two complete words arrive.

W-M I Text---->! SPE L N A {D}

Trace 2-5 3 " A or" sp_ _P_ 2 1 0 {1}

Trace 2-5 4 " A or " _p_ __E 2 2 1 {0}

Trace 2-5 5 " A or b" __e SP_ 1 2 1 {1}

Trace 2-5 6 " A or be" R sp_ ___ 0 0 0 {1}

Trace 2-5 7 " A or bee" ___ SP_ 1 0 0 {1}

Trace 2-5 8 " A or bee " sp_ __E 1 1 0 {0}

Trace 2-5 9 "A or bee k" __e SP_ 1 1 0 {1}

Trace 2-5 10 " or bee kn" sp_ _P_ 2 1 0 {1}

Trace 2-5 11 "or bee kno" _p_ _P_ 3 1 0 {1}

Trace 2-5 12 "r bee knot" _p_ _P_ 4 1 0 {1}

Trace 2-5 13 " bee knot " _p_ __E 4 2 2 {0}

Trace 2-5 14 "bee knot " __e ___ 4 2 2 {0}

2

← → Fall 2022 ← → Homework 4 Homework Sol Code hw04.pdf

https://www.ece.lsu.edu/ee4755/2022/hw04.pdf

Testbench Information
The testbench will instantiate and test word_count at three different sizes, varying both the value
of n_avg_of and the maximum word size. The values of n_avg_of will be 2, 1, and 9. To change
these sizes search for pset in hw04.v. Several items in the testbench can be changed to facilitate
debugging and familiarization. Search for HW04 and read the comments for more info. The testbench
will start streaming characters from the string test_one, and after that will construct a stream of
random characters. Feel free to change test_one to facilitate debugging.

The testbench shows the first few errors encountered, and then silently tallies errors. After
each instantiation is tested a summary of errors is shown:

Trace 9-7 10 " or bee " ___ ___ 3 3 0 {0}

Trace 9-7 11 "or bee " ___ ___ 3 3 0 {0}

Done with n_avg_of=9, max wd len=7. Errors: st 0, pa 0, en 0, nc 0, nw 0, av 0

The line starting Done shows a tally of errors by type after the word Errors. Six types of errors
are tallied (all have zero errors in the output above). They are st, the word_start output, pa,
the word_part output, en, the word_ended output, nc, the len_word output, nw, the num_words

output, and av, the len_avg output. Remember that the line describes one instantiation, so there
should be three lines printed.

The trace can be helpful for looking at values of objects in your module (not just inputs and
outputs). As an example, the trace shows the value of object char_az, but feel free to change that
or add others. To do so search for wd_cnt.char_az. It appears as an argument to $sformatf

which prepares part of the trace text. Here wd_cnt is the instance name that the testbench uses
for word_count. Change or add arguments to $sformatf to examine additional objects in your
module. Be sure to change the format string to match the arguments. The end of the format string,
the part in curly braces, handles the last argument wd_cnt.char_az.

The value of wc will always be chosen so that output len_chars never overflows. It is unlikely
but not impossible that the number of words is too large for wn.

Word Rules
A character is an 8-bit quantity. A character is called a word-start character if it an ASCII
alphabetic character (upper or lower case). In word_char net char_wd_start is set to one if the
char input is a word-start character. A character is called a word-part character if it an ASCII
alphabetic character (upper or lower case), a digit, or an underscore character. The word_count

module net char_wd_part is set to one if the char input is a word-part character. Note that all
word-start characters are word-part characters.

A word starts when the current character is a word-start character and the previous character
was not a word-part character or if the module was reset in the previous cycle. A word ends when
an arriving character is not a word-part character.

The length of a word is the number of characters. The output len_word should only be zero
after a reset and until the next word starts.

Design Requirements and Goals
As always, avoid costly designs. Pay particular attention to the logic computing len_avg. Do not
use n_avg_of-1 adders to compute this. And definitely don’t use n_avg_of division units.

The design can use procedural code, but it must be synthesizable. Use command genus

-files syn.tcl to synthesis. Timing and area (cost) reports will be placed in a file named
syn-report.log.

3

← → Fall 2022 ← → Homework 4 Homework Sol Code hw04.pdf

https://www.ece.lsu.edu/ee4755/2022/hw04.pdf

LSU EE 4755 Homework 5 Due: 22 November 2022

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2022/hw05.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw05.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Assignment Background
As we should know the synthesis program, given a Verilog description of a module, writes a design
file with an optimized version of the module mapped to the chosen technology. For this assignment
the chosen technology is the same Oklahoma University ASIC process we’ve been using throughout
the semester.

An important skill for those writing Verilog descriptions is to estimate the cost and performance
of those synthesized modules. In this assignment we’ll look at how well the synthesis program
handles the different modules we considered for computing the floating-point expression v20 +v0v1 +
v21 . We will consider the combinational, sequential, and pipelined modules covered in class.

A synthesis script will be used to synthesize these modules, plus three arithmetic unit modules,
plus additional modules created for the solution to this problem. To complete the assignment the
output of the script must be understood and the synthesis script must be modified. The output of
the synthesis script is similar to the output of the scripts used in prior assignments, so it should be
familiar. Modifying the script will be something new, and might be a challenge for some of you. It
is okay to seek help modifying the script from classmates and others, though the solutions to the
problems themselves must be completed individually.

Modules
This assignment includes modules for the combinational, sequential, and pipelined implementations
of the multi-step computation. They are named ms_comb, ms_seq, and ms_pipe. For compari-
son the assignment also includes modules containing a single floating-point unit, they are named
try_mult, try_add, and try_sq (square).

Four additional modules are provided for experimentation, m1_func, m1_comb, m1_seq, and
m1_pipe. These modules initially perform the computation v0+v0v1+v21 , but they can be modified
to perform other computations. Module m1_func is used by the testbench to obtain a correct value,
so modify it first so that it computes the desired computation. Then modify the others that you
want to synthesize. (The synthesis program does not care whether a module passes the testbench,
but no conclusion can be drawn from the area and delay of module that does not work correctly.)

All of these modules have the same parameters and ports, though not every module uses every
port. For example, only ms_seq and ms_pipe are sequential so that the clk and reset ports on
the others serve no function. These unused ports will be eliminated during optimization so they
won’t affect cost or timing.

Module Parameters and Floating Point Format
The modules used in this assignment all have the same parameters, these parameters specify the
floating-point number format to be used. The first parameter, wsig, specifies the number of bits
in the significand (fractional part) of the floating point number. The default value is 23, which is
the same as an IEEE 754 single (C float). The second parameter, wexp, is the number of bits in
the exponent. The default value is 8, which matches an IEEE single. The third parameter, ieee,
specifies whether the IEEE floating-point format should be strictly followed. The default value

1

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2022/hw05.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2022/hw05.pdf

is 1, which means yes; a 0 means that special cases do not have to be handled correctly. These
include NaN (not a number) and subnormal values. The size of the floating point number using
these parameters is 1+wexp+wsig, the extra 1 is for the sign bit.

For this assignment all modules are instantiated with ieee=0. This is done to explore the
fuller range of optimization possibilities and also to reduce the time needed for synthesis.

The sample synthesis runs consider two formats, IEEE single in which wsig=23 and wexp=8,
and the ML-friendly BF16 (informally known as brain float) in which wsig=7 and wexp=8. The
advantage of BF16 for machine learning is that it is half the size of a single, and with a 7-bit
significand, requires half the energy for multiplication than the older 16-bit FP16 format. For us
the big advantage is that it takes less time to synthesize than a single.

Testbench
The testbench exercises the six modules, ms_comb, ms_seq, ms_pipe, m1_comb, m1_seq, and m1_pipe

instantiated with a significand size of 7 and 23. They should all initially pass. As with other test-
benchs in this class, a line will be printed for the first few module errors, and a tally will be provided
for each module and size. The testbench uses ms_func to determine the correct output of the ms

modules and m1_func to determine the correct output of the m1 modules. When modifying the m1

modules be sure to also modify m1_func so that the testbench can show you whether your modified
modules do what you think they are doing.

The Synthesis Script
As with past assignments, the modules in the assignment file should be synthesized using the script
syn.tcl. Unlike other assignments, this script will have to be modified.

The synthesis script itself is written in TCL (Tool Control Language, the abbreviation is pro-
nounced tickle) a scripting language chosen by Cadence for scripting their EDA software. (Nowa-
days Python would be used. If it were up to me it would be Perl. But it’s TCL.) Documentation for
TCL can be found at https://tmml.sourceforge.net/doc/tcl/. This describes TCL, not the
functionality needed to run Genus or other tools. For Genus-specific commands see the synthesis
documentation linked to https://www.ece.lsu.edu/koppel/v/ref.html.

For this assignment it should not be necessary to use new Genus commands, just to change
which modules are synthesized and which parameters to instantiate with. For that, one needs only
a rudimentary knowledge of TCL, perhaps what can be learned just by looking at syn.tcl.

The synthesis script starts by setting some script variables, using the TCL set command, and
by setting Genus attributes, using the Genus set_db command:

set verilog_source hw05.v

set syn_level "high"

set spew_file "spew.log"

set report_file "syn-report.log"

set_db syn_global_effort $syn_level

set rpt_chan [open $report_file w]

puts "Synthesizing at effort level \"$syn_level\"\n"

As one might guess syn_level is the amount of effort used for synthesis. Possible values are
none, low, medium, and high. These initial lines are followed by the definition of a TCL procedure
syn_mod, which emits the commands needed to synthesize a module, followed by commands to
retrieve the area and delay of the synthesized module. A line of text is written showing the area
and delay. It should not be necessary to modify syn_mod for this assignment.

Module syn_mod is called in a loop nest near the end of the file:

List of combinational modules.

2

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05.pdf

https://tmml.sourceforge.net/doc/tcl/
https://www.ece.lsu.edu/koppel/v/ref.html
https://www.ece.lsu.edu/ee4755/2022/hw05.pdf

set mods_comb { ms_comb try_mult try_add try_sq }

set delay_targets { 100 0.1 }

set mods { try_mult try_add try_sq }

set mods { ms_comb ms_seq ms_pipe try_mult try_add try_sq }

set wsigs { 7 14 23 }

foreach delay_target $delay_targets {

foreach ws $wsigs {

foreach mod $mods {

syn_mod $mod $delay_target " $ws 8 0 "

}

}

}

The loop nest above synthesizes each of the modules listed in mods (that’s the inner loop). Each
of these six modules is synthesized for each significand size found in wsigs. These modules are
synthesized with each delay constraint in delay_target. For the code above there would be a total
of 2× 6× 3 synthesis runs. That would probably take hours.

The first set line writes variable mods_comb with a list of combinational modules. This variable
must be updated with any new combinational modules that you use. Variable mods is set twice,
first to a list of the arithmetic modules, then those are replaced with a list of the arithmetic modules
and our multi-step modules. (Because of the second assignment the first assignment has no effect.)
If one wanted to only synthesize the arithmetic modules one would comment out the second mods

line. There is no need to use a loop nest. It is possible to write a syn_mod call for each synthesis,
for example:

set delay_targets { 100 }

set wsigs { 7 14 23 }

syn_mod try_mult 5 "7 8 0"

syn_mod try_mult 5 "7 6 0"

Exit before the loop nest.

close $rpt_chan

quit

foreach delay_target $delay_targets {

The example above does two synthesis runs. The 5 is the delay target and the quoted part are
the parameters. (The parameters must be quoted so that they are read as a single argument to
syn_mod.) In the example above, try_mult is synthesized with two exponent sizes, 8 bits and 6
bits, both are synthesized with a delay target of 5 ns.

To synthesize a new module (for example, one you wrote) add the name to one of the mod

lists, or just use the name on a direct call to syn_mod as in the example above. Iff the module is
combinational add the module to mods_comb. Not adding a combinational module to mods_comb

will result in an error. Adding a sequential module to mods_comb will result in incorrect timing.

Synthesis Script Output
The synthesis script syn.tcl is run using the command genus -files syn.tcl. The run starts
with a substantial amount of header output, including warnings, copyright information, and system
information. Some is shown below:

[cyc.ece.lsu.edu] % genus -files syn.tcl

3

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05.pdf

https://www.ece.lsu.edu/ee4755/2022/hw05.pdf

2022/11/13 16:52:05 WARNING This OS does not appear to be a Cadence supported Linux configuration.

2022/11/13 16:52:05 For more info, please run CheckSysConf in <cdsRoot/tools.lnx86/bin/checkSysConf <productId>

TMPDIR is being set to /tmp/genus_temp_566634_cyc.ece.lsu.edu_koppel_nvftYI

Cadence Genus(TM) Synthesis Solution.

Copyright 2022 Cadence Design Systems, Inc. All rights reserved worldwide.

Cadence and the Cadence logo are registered trademarks and Genus is a trademark

of Cadence Design Systems, Inc. in the United States and other countries.

[16:52:12.338826] Configured Lic search path (21.01-s002): /apps/linux/cadence/share/license/license.dat:/opt/pgi/license.dat

The output of the script proper (as opposed to Genus, the synthesis program) starts with an
announcement of the synthesis effort level followed by a table of synthesis results:

Synthesizing at effort level "high"

Module Name Area Delay Delay Synth

Actual Target Time

ms_comb_wsig7_wexp8_ieee0 600190 12.219 0.1 ns 423 s

ms_seq_wsig7_wexp8_ieee0 445400 5.754 0.1 ns 236 s

ms_pipe_wsig7_wexp8_ieee0 797327 5.678 0.1 ns 309 s

ms_comb_wsig14_wexp8_ieee0 1363980 14.391 0.1 ns 707 s

Each line of the table shows the result of one synthesis run. The Module Name column shows
the name of the module followed by the parameter values used in its instantiation. In the sample
above three different modules are synthesized, ms_comb, ms_seq, and ms_pipe. Module ms_comb is
synthesized once with significand of 7 bits and once with a significand of 14 bits.

The Area column shows the area given by the Genus report area command. The units are
relative to the OSU technology. The Delay Actual column shows the length of critical path through
the module in units of nanoseconds. The Delay Target column shows the delay constraint that the
synthesis program was set to meet. In the example above the constraint is 0.1 ns, which means the
critical path can be no longer than 0.1 ns. This constraint was intentionally set to an impossibly
low value, to determine the minimum delay that the synthesis program could achieve. Normally
the delay constraint is set to something achievable, perhaps 4 ns in the example above, and the
synthesis program would generate the least expensive design that meets the delay constraint. The
Synth Time column shows the wall-clock (elapsed) time needed to perform the synthesis. The
wall-clock time is shown to help plan the synthesis runs, it does not directly affect or describe the
design itself.

4

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05.pdf

https://www.ece.lsu.edu/ee4755/2022/hw05.pdf

Problem 1: In class we considered three ways of implementing multi_step, the modules that
computed v20 + v0v1 + v21 : A combinational version, a sequential version, and a pipelined version.
Appearing below are the results from synthesizing these three modules, named ms_comb, ms_seq,
and ms_pipe, followed by results of synthesizing modules consisting only of the Chipware floating-
point multiplier, adder, and a multiplier with the same value used for both operands. These are
synthesized with a large delay constraint, meaning that the cost has been minimized.

Module Name Area Delay Delay Synth

Actual Target Time

ms_comb_wsig23_wexp8_ieee0 1597692 75.142 100.0 ns 229 s

ms_seq_wsig23_wexp8_ieee0 945919 29.324 100.0 ns 111 s

ms_pipe_wsig23_wexp8_ieee0 1866509 28.273 100.0 ns 205 s

try_mult_wsig23_wexp8_ieee0 525991 28.231 100.0 ns 62 s

try_add_wsig23_wexp8_ieee0 339036 27.396 100.0 ns 53 s

try_sq_wsig23_wexp8_ieee0 297753 25.504 100.0 ns 38 s

ms_comb_wsig7_wexp8_ieee0 375767 34.708 100.0 ns 75 s

ms_seq_wsig7_wexp8_ieee0 275858 15.305 100.0 ns 34 s

ms_pipe_wsig7_wexp8_ieee0 526000 14.466 100.0 ns 62 s

try_mult_wsig7_wexp8_ieee0 94274 9.346 100.0 ns 13 s

try_add_wsig7_wexp8_ieee0 140221 14.196 100.0 ns 21 s

try_sq_wsig7_wexp8_ieee0 57802 6.085 100.0 ns 8 s

(a) Based on the data above, show the latency and throughput of each module for the 23-bit
significand. It might be necessary to look at the module descriptions (Verilog code) to answer this
question.

(b) For each of the two significand sizes, show that the delay of the three ms modules are what one
would expect given the delays of the three arithmetic modules.

(c) Using the cost of the arithmetic units, show that the cost of ms_comb is lower than expected, but
the cost of ms_seq and ms_pipe are about or perhaps a little more than what one would expect.

5

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05.pdf

https://www.ece.lsu.edu/ee4755/2022/hw05.pdf

Problem 2: It is welcome that the cost of ms_comb is lower than what one would expect based
on the cost of the arithmetic units. There are several possible reasons for this, for example the
synthesis program may be simplifying the two adders used in computations such as a + b + c or it
may be sharing hardware used to process the common b operand in expressions like a× b and b× c,
or perhaps it may even be transforming v20 + v0v1 + v21 into (v0 + v1)2 − v0v1. Or maybe the costs
for the arithmetic units shown in the table are higher than they should be.

Perform a set of synthesis runs to provide evidence for a reason that ms_comb cost less than its
constituent parts. Consider the possible reasons given above, or one of your own. These synthesis
runs can operate on one of the existing modules, a slightly modified version of the modules, or some-
thing wholly different. The modules m1_comb, m1_seq, m1_pipe can be used for experimentation.
See the Modules section above.

Describe the results of these experiments and how they convincingly support a particular
reason for the lower cost. Data from a single synthesis run, or a series of very similar runs will not
be considered convincing.

The Verilog file for this assignment will be collected, but submit the answers to this question
on paper or by E-mail. Please E-mail PDF files. Sending word processor source files as a final
product is unprofessional, even if they are TEX files.

In your writeup:

• Indicate how you believe the synthesis program is optimizing ms comb.

• Describe the modules you synthesized to come to this conclusion, and the results of synthesis.
Most credit will be given for this part of the assignment.

• Explain why your experiments show that the lower cost was not due to other optimizations.

6

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05.pdf

https://www.ece.lsu.edu/ee4755/2022/hw05.pdf

3 Fall 2021

57

← → Fall 2021 ← → Homework 1 Homework Solution Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2021/hw01.pdf

LSU EE 4755 Homework 1 Due: 24 September 2021

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2021/hw01.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw01.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Problem 1: The partially completed insert_at module below and in the homework assignment
file has three inputs, a wa-bit input ia, a wb-bit input ib, and a dlg(wa+1)e-bit input pos, and there
is one output, a wa+wb-bit output o. Complete the module following the coding requirements given
further below so that o consists of the bits of ia with ib inserted at pos. That is, o[pos-1:0]
should be set to ia[pos-1:0], o[wb+pos-1:pos] should be set to ib, and o[wa+wb-1:wb+pos]

should be set to ia[wa-1:pos].
For example, let wa=6 and wb=2, ia=111111, ib=00, and pos = 2. Then o=11110011. For

pos=5, o=10011111. For those still not 100% sure of what o should be set to should look at how
o_shadow is computed in the testbench module. Also, the testbench will show what the output
should be when it isn’t.

module insert_at
#(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia, input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

// The line assigning mask_low must be replaced with a mask module.

uwire [wo-1:0] mask_low = (1 << pos) - 1; // REPLACE ME!

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, pos);

assign o = ia & mask_low | ib_at_pos;

endmodule

The insert_at module must be synthesizable and must not use procedural code and must
not use shift operators. (That includes the line assigning mask_low, it must be replaced.) Instead,
rely on instantiations of the provided shift and mask modules.

The testbench will test your module and report the first few errors. For example, here is the
testbench output for the unmodified module:

Error for ia=11111111 ib=000 pos= 0 00000000000 != 11111111000 (correct)

Error for ia=11111111 ib=000 pos= 1 00000000001 != 11111110001 (correct)

Error for ia=11111111 ib=000 pos= 2 00000000011 != 11111100011 (correct)

Error for ia=11111111 ib=000 pos= 3 00000000111 != 11111000111 (correct)

Error for ia=11111111 ib=000 pos= 4 00000001111 != 11110001111 (correct)

Done with 27 tests, 15 errors found.

The text 00000001111 != 11110001111 (correct) shows the output of insert_at to the left
of the != and the correct answer to the right. So in this case 00000001111 is the module output

1

← → Fall 2021 ← → Homework 1 Homework Solution Sol Code hw01.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2021/hw01.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2021/hw01.pdf

and 11110001111 is what the module output should have been. Only the first few errors are shown,
but the total number of errors is reported at the end, 15 in this case.

Synthesizability can be checked by running the synthesis script using the command genus

-files syn.tcl. If the module is synthesizable (though not necessarily correct) a table of area
and delay will be shown, for example:
Module Name Area Delay Delay

Actual Target

insert_at 51832 0.987 1.000 ns

insert_at_1 97968 0.616 0.100 ns

Normal exit.

One common problem encountered by beginners is setting the correct port sizes. For example,
the shift_left module the port sizes are wi, wo, and wolg:

module insert_at #(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia, input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, pos);

So the first connection to a shift_left instantiation must be wi bits, the second must be wo

bits, and the third wolg bits. In the unmodified insert_at these parameters to insert_at were
set explicitly to match the connection sizes. Sometimes it may be necessary to use an intermediate
object or to cast in order to get the correct connection size. For example, if we wanted to shift by
pos+1 the following would not work:

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, pos + 1);

because the 1 in the pos+1 expression implicitly expands it to 32 bits. (This results in a warning,
but it’s not good to clutter compiler output with ignorable warnings.) The problem can be solved
using a cast:

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, walg’(pos + 1));

2

← → Fall 2021 ← → Homework 1 Homework Solution Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2021/hw01.pdf

LSU EE 4755 Homework 2 Due: 11 October 2021

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2021/hw02.v.html.

Problem 0: If necessary, follow the instructions at https://www.ece.lsu.edu/koppel/v/proc.html
to set up your class account, copy the assignment, and run the Verilog simulator and synthesis pro-
gram on the unmodified homework file, hw02.v. Do this early enough so that minor problems (e.g.,
password doesn’t work) are minor problems.

Background
The flurry of activity machine learning is due to the success of deep neural networks (DNNs) in
providing much improved solutions to otherwise hard-to-tackle problems such as natural language
translation and image recognition. Deep neural network consists of multiple layers (more than
two or three, otherwise they would not be deep). A fully connected layer computes matrix/vector
products. The matrix coefficients are called weights, and in typical computations there are a large
number of weights, so many that performance is limited by the time needed to move them around.
Normally with ni input neurons and no output neurons, there would be nino weights, one for each
input/output pair. One way to reduce the number of weights is to not require a weight for each
input/output pair. In trained networks many weights are close to zero, so their removal ought to
have little effect. If inference hardware (the hardware that computes the output of a layer) supports
sparse weights then the network can be trained taking into account that some weights will be zero.

Sparsity is easier said than done because it makes the task of moving inputs and their weights
to a functional unit (a multiply/add unit) more difficult. One way of lessening the difficulty is
limiting which weights can be set to zero. NVidia Volta-generation GPUs support sparsity in
which each group of four inputs used to compute one output is limited to two non-zero weights.
Two inputs will go unused for that output (but may be used for others.)

In this assignment a module for sparse computation will be completed, nn_sparse. Like the
Nvidia design it will operate on four inputs. But unlike the Nvidia design it can operate in both
sparse and dense modes, determined by a fmt input. In dense mode there are four weights, but
those weights have a very low precision. In sparse mode there are two weights with higher precision.

There are two challenges. One is a Verilog coding issue: instantiating an nn2 module (see
problem description) for the sparse case, and connecting it to the correct inputs, and making sure
the nn2 output reaches the module output. The other challenge is to do this in a way that maintains
high performance. That is, the wider multipliers used for the sparse case will take more time and
so we want to take care to not increase the critical path more than is necessary.

Testbench Output
The testbench will instantiate the nn_sparse module with several different parameter sets. It will
then present dense and sparse patterns and check for the correct outputs. In the unmodified code
all of the dense patterns should pass but nearly all of the sparse patterns should fail.

The testbench will show details on the first four errors for each configuration, followed by a
tally of the total. Here is a sample showing the last error and the tally:
Error tn=4 for fmt 0101 084cca0 = 4.7993 != 4.4000 (correct)

1.0000 2.0000 + 1.2000 2.0000

2.0000 + 2.4000

acc1 = 0806640 = 2.1997

Done with ex6,ac18,in12,wd3 5000 tests, 2555, 0 sp, den errors found.

For ex6,ac18,in12,wd3 max diff 21132739836.039532, 0.097594 sp, den.

1

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2021/hw02.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2021/hw02.pdf

Here is what is shown for each reported error: tn gives a test number, fmt shows the value of
the fmt input. Note that fmt[0] is the least significant big. After the format the error line shows
the output value in hexadecimal and decimal. In the sample above they are 084cca0 = 4.7993.
After that the correct (or at least what the testbench assumes is correct) value is shown: 4.4000

(correct). The next line shows the expression to be computed, which will consist of four terms if
the error is for a dense calculation and two terms for a sparse calculation. The example above is
for a sparse calculation. The next line, 2.0000 + 2.4000, shows the products.

Finally, the value of an object in the module is shown, acc1. It is shown in hexadecimal, and
in decimal. Note that acc1 is floating point, so that the hexadecimal value will let you see the sign,
exponent, and significand. In most cases though, it will let you see if the value has any x or z bits.

You are encouraged to add code at this point to print out values of other signals in your
module. The code to do that is:

// Feel free to modify or add to this to help with your solution.

$write(" acc1 = %h = %.4f\n",

nnsp.acc1, conv#(wexp,wsig_ac)::ftor(nnsp.acc1));

The nn_sparse instance is named nnsp, so nnsp.acc1 refers to an object in the module. The
function conv#(wexp,wsig_ac)::ftor(X) converts X from a floating-point format with exponent
length wexp and significand length wsig_ac into a real. The code for this function is in hw02.v.
Any object could be named, but remember to adjust the $write for data type, and the parameters
to conv if necessary.

To aid in debugging the testbench starts out with sparse patterns in which only one weight is
1 and the others are zero. It will then use weights of 2, 0.1, 10.1. It will repeat the pattern again
with two non-zero weights. After that it will use randomly chosen weights and formats. Feel free
to modify the testbench to aid in your debugging. Keep in mind that the ta-bot won’t test your
module using the testbench in your file so removing the tests that your module fails won’t help.

Synthesis Script
The synthesis script will synthesize the module at two different target delays. It takes a significant
amount of time to run, so only one set of parameters is included. Feel free to modify the script,
syn.tcl to add other sets.

Problem 1: Module nn_sparse, has one wo-bit output, o, four wi-bit inputs, i[0] to i[3], a
ww-bit input, w, and a four-bit input, fmt. Input w can carry either two or four values, called
weights. If fmt=4’b1111 then w carries four weights, each ww/4 bits. These are called dense
weights. Otherwise w carries two weights, each ww/2 bits, called sparse weights. To help get
started quickly the module assigns the dense weights to four-element net wd.

The module is to compute o in one of two possible ways, depending on the value of fmt.
When fmt=4’b1111 the module computes o using the dense weights and all four values of i:
o = i0w0 + i1w1 + i2w2 + i3w3, where i0 and w0 are values of i[0] and wd[0]. The Verilog code
to do this is already in the module.

The module should work for six additional values of fmt: 4’b0011, 4’b0110, 4’b1100, 4’b1010,
4’b0101, and 4’b1001, these will be referred to as the sparse formats. For each of these the module
should set the output to o = iaW0 + ibW1, where W0 and W1 are the two sparse weights and where
a is the position of the rightmost (least significant) 1 in fmt and b is the position of the leftmost
(most significant) 1 in fmt. For example, if fmt=4’b0011 then a = 0 and b = 1 and the hardware
should compute o = i0W0 + i1W1, and if fmt=4’b1010 then a = 1 and b = 3 and the hardware
o = i1W0 + i3W1.

All values are floating-point. They share a common exponent, specified by parameter wexp.
The width of the significand of the output is specified by parameter sig_ac, the width of the

2

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/ee4755/2021/hw02.pdf

significand of the inputs is specified by wsig_in, and the width of the significand of the dense
weights is specified by parameter wsig_wd. The layout follows IEEE 754: The most significant bit
is a sign bit, that is followed by the exponent, and that is followed by the significand. So the total
size of the output is 1+wexp+wsic_ac.

To compute the dense output nn_sparse instantiates three modules: two nn2 modules and
fp_add. The nn2 module computes i0w0 + i1w1. The nn2 module instantiates two hy_mult and
one fp_add (both described below). Details on the nn2, including parameters, can be learned by
inspecting the module (it is in the homework file).

The fp_add module is a convenience wrapper around the Chipware CW_fp_add module.

Module hy_mult wraps CW_fp_mult, but it provides functionality that you’d think would be
part of the Chipware library. Unlike the Chipware module, hy_mult can be instantiated so that
the multiplier, multiplicand, and product each have different significand sizes, though they all
share the same exponent size. (The hy is for hybrid, referring to the different sizes.) The module
instantiates the Chipware module using the product significand size. It then widens (or shrinks)
the significands of the multiplier and multiplicand inputs (called a and b). The inputs are widened
by placing zeros in the least significant bits of the widened significands. This was done with the
hope that the synthesis program, when performing optimization, would see that these bits were
zero and so optimize away the affected partial products. Experiments using Genus (version 211)
confirmed that optimization was occurring.

(a) The table below shows synthesis script output for the hybrid multiplier at a variety of sizes.
Based on this table there is a good and bad way to connect the hybrid multiplier. Design your
module taking this data into account. In the table the parameter values are concatenated with the
module name, and numbers are added on the end to avoid duplicating a name. Remember that
with a large delay target cost is the only goal, and with a 1ns goal speed is the primary goal.

For purposes of interpreting the data below, assume your design will be instantiated with
parameters {wexp 5} {wsig_ac 14} {wsig_in 8} {wsig_wd 4}. (These can be found in the
synthesis script.)
Module Name Area Delay Delay

Actual Target

hy_mult_wsig_a5_wsig_b5_wsig_p20 62541 7.466 100.000 ns

hy_mult_wsig_a10_wsig_b10_wsig_p20 131839 12.799 100.000 ns

hy_mult_wsig_a10_wsig_b5_wsig_p20 84546 10.636 100.000 ns

hy_mult_wsig_a5_wsig_b10_wsig_p20 92111 9.851 100.000 ns

hy_mult_wsig_a15_wsig_b5_wsig_p20 108593 13.440 100.000 ns

hy_mult_wsig_a5_wsig_b15_wsig_p20 123209 12.643 100.000 ns

hy_mult_wsig_a4_wsig_b8_wsig_p14 71354 8.435 100.000 ns

hy_mult_wsig_a8_wsig_b4_wsig_p14 63890 9.007 100.000 ns

hy_mult_wsig_a14_wsig_b8_wsig_p14 131244 12.047 100.000 ns

hy_mult_wsig_a8_wsig_b14_wsig_p14 144388 11.824 100.000 ns

hy_mult_wsig_a3_wsig_b7_wsig_p12 59985 7.737 100.000 ns

hy_mult_wsig_a7_wsig_b3_wsig_p12 53501 8.081 100.000 ns

hy_mult_wsig_a12_wsig_b7_wsig_p12 110260 12.113 100.000 ns

hy_mult_wsig_a7_wsig_b12_wsig_p12 117097 11.660 100.000 ns

hy_mult_wsig_a5_wsig_b5_wsig_p20_22 130160 2.398 1.000 ns

hy_mult_wsig_a10_wsig_b10_wsig_p20_22 324729 3.046 1.000 ns

hy_mult_wsig_a10_wsig_b5_wsig_p20_22 189191 2.690 1.000 ns

hy_mult_wsig_a5_wsig_b10_wsig_p20_22 214533 2.684 1.000 ns

hy_mult_wsig_a15_wsig_b5_wsig_p20_22 248189 2.742 1.000 ns

3

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/ee4755/2021/hw02.pdf

hy_mult_wsig_a5_wsig_b15_wsig_p20_22 302877 2.900 1.000 ns

hy_mult_wsig_a4_wsig_b8_wsig_p14_22 171041 2.369 1.000 ns

hy_mult_wsig_a8_wsig_b4_wsig_p14_22 135568 2.232 1.000 ns

hy_mult_wsig_a14_wsig_b8_wsig_p14_22 296160 3.030 1.000 ns

hy_mult_wsig_a8_wsig_b14_wsig_p14_22 321123 3.232 1.000 ns

hy_mult_wsig_a3_wsig_b7_wsig_p12_22 127217 2.308 1.000 ns

hy_mult_wsig_a7_wsig_b3_wsig_p12_22 132936 1.994 1.000 ns

hy_mult_wsig_a12_wsig_b7_wsig_p12_22 263353 2.823 1.000 ns

hy_mult_wsig_a7_wsig_b12_wsig_p12_22 260279 2.951 1.000 ns

(b) Modify nn_sparse so that it computes the correct outputs for both sparse and dense inputs,
and is coded for higher speed. Since a sparse weight is larger than a dense weight a multiplier
designed to use sparse weights would cost more and take more time than one designed for dense
weights. But, when computing sparse weights only one addition operation is needed. Design your
module so that this benefit is realized.

Modify only nn_sparse to solve the problem, and use the provided FP units. (Contact me
if you feel modifying other modules is needed. (Note that you are free to modify the testbench
and related files to help with debugging. But the solution itself should only involve changes to
nn_sparse.)

Solving this problem requires good debugging skills. Use SimVision (see the course procedures
page) to view what is going on inside your module. Also take advantage of the testbench output,
and don’t hesitate to modify it so that it provides tests that will help you better understand your
module.

4

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/ee4755/2021/hw02.pdf

LSU EE 4755 Homework 3 Due: 18 October 2021

To help solve the problems below, look at problems listed in the simple model slides, 2020 Homework
4, 2019 Midterm Exam Problem 2b and c, and especially 2018 Final Exam problems 1 and 2.

Problem 1: As requested in the subproblems below use the simple model to determine the cost
and delay of the insert_at module from the solution to Homework 1 (see last page) instantiated
with wa = wa and wb = wb, and using Clsb(wa) for the cost of the mask_lsb module and Dlsb(wa)
for the delay of the mask_lsb module. The wo and walg parameters are not set so you can use
their default values, wo = wa + wb, la = dlg(wa + 1)e, and lb = dlgwbe, in your answers.

For partial credit, and to help you solve the problems provide a sketch of the inferred hardware.
It may help to first solve the problem for specific values of wa and wb, and then to generalize for
arbitrary wa and wb.

(a) Find the cost and delay of the hardware inferred for the line of Verilog from insert_at shown
below. Just for the hardware described on the line. There’s no trick, this part is easy. Just
remember to express your answers in terms of wa, wb, and wo.

assign o = ia_high | ib_at_pos | ia_low;

(b) Find the cost and delay of the shift_left module instances slc and slb taking into account any
constant inputs and assuming that the synthesis program infers a logarithmic shifter. Don’t forget
that your answer must be in terms of wa, wb, wo, la, and lb, and that these denote the parameters
of insert_at, not the parameters of the shifters. For more information on the logarithmic shifter
see the additional material provided for the Set 1 lectures on the course lectures page.

Before cutting-and-pasting simple-model cost and delay expressions for a logarithmic shifter,
take a close look at the parameters set for slc and slb and be sure to optimize for them. Notice
that unlike typical shifters, the shift-out and shift-in ports are not the same size and that the shift
amount is not necessarily ceiling-log-two of the input width.

Hint: The cost and delay for one of these shifters will be really easy to compute.

(c) Find the cost and delay of insert_at. Use the answers above and work out cost and delay for
the remaining hardware in the module. Don’t forget to use Clsb(wa) for the cost of the mask_lsb

module and Dlsb(wa) for the delay of the mask_lsb module.

Problem 2: Some of you may have seen this coming: Find expressions for Clsb(w), the cost of the
mask_lsb module and Dlsb(w), the delay of the mask_lsb module, in both cases wo = w, where wo

is the parameter used in the mask_lsb definition. Assume a well-optimized design, not something
that uses w dlgwe-bit magnitude comparison units.

Hint: Think about the problem for about 30 minutes, then look at 2018 Final Exam Problems
1 and 2.

1

← → Fall 2021 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/ln.html
https://www.ece.lsu.edu/ee4755/2021/hw03.pdf

An uncommented Homework 1 solution appears below.
For the full version visit https://www.ece.lsu.edu/koppel/v/2021/hw01-sol.v.html.

module insert_at
#(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia,

input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

uwire [wa-1:0] mask_low;

mask_lsb #(wa) ml(mask_low, pos);

uwire [wa-1:0] ia_low = ia & mask_low;

uwire [wa-1:0] ia_high_low = ia & ~mask_low;

localparam int wblg = $clog2(wb);

uwire [wo-1:0] ia_high;

shift_left #(wa,wo,wblg) slc(ia_high, ia_high_low, wblg’(wb));

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) slb(ib_at_pos, ib, pos);

assign o = ia_high | ib_at_pos | ia_low;

endmodule

module shift_left
#(int wi = 4, wo = wi, wolg = $clog2(wo))

(output uwire [wo-1:0] o,

input uwire [wi-1:0] i,

input uwire [wolg-1:0] amt);

assign o = i << amt;

endmodule

module mask_lsb
#(int wo = 6, wp = $clog2(wo+1))

(output logic [wo-1:0] o, input uwire [wp-1:0] n1);

always_comb for (int i=0; i<wo; i++) o[i] = i < n1;

endmodule

2

← → Fall 2021 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/koppel/v/2021/hw01-sol.v.html
https://www.ece.lsu.edu/ee4755/2021/hw03.pdf

LSU EE 4755 Homework 4 Due: 11 November 2021

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2021/hw04.v.html.

Problem 0: If necessary, follow the instructions at https://www.ece.lsu.edu/koppel/v/proc.html
to set up your class account, copy the assignment, and run the Verilog simulator and synthesis pro-
gram on the unmodified homework file, hw04.v. Do this early enough so that minor problems (e.g.,
password doesn’t work) are minor problems.

Teamwork
Students can work on this assignment in teams. Each student should submit his or her own
assignment but list team members. It is recommended that one team member be responsible for
learning SimVision.

Every member of a team that has completed a project, must be capable of re-solving the
problem. It is recommended that all team members re-solve the problem on their own for their
own pedagogical benefit.

Problem 1: Module bit_keeper has a wb-bit output bits (b is for width of buffer) and a 1-bit
output ready. Think of output bits as a long bit vector (wb bits long) that is edited using the
module’s inputs. Commands to edit bits are given using four-bit input cmd (command), wi-bit
input din (data in), and ws-bit input pos (position). The module is to operate sequentially using
input clk.

Complete bit_keeper as described below, and make sure that it is synthesizable. As always,
code should be written clearly, and designs should not be costly or slow.

When completed bit_keeper should operate as follows. On a positive edge of clk action is
taken based on the value of cmd. The possible values of cmd are: Cmd_Reset, Cmd_None, Cmd_Write,
and Cmd_Rot_To. (These can be used as constants in your code. The constants are defined by enum

Command.) Some commands will be complete in one cycle (the cycle in which the cmd is set up to
the positive edge of clk). Other commands will take multiple cycles.

Be sure to understand the details of how multi-cycle commands execute. When a multi-cycle
command starts the ready output must be set to zero and must be held at zero until the command
completes. The command and its arguments will only be held at the inputs for one cycle, and so at
the next positive clock edge they will be gone. The cmd input will be set to Cmd_Nop, and the pos

and din inputs will be set to random values. This means that the inputs of multi-cycle commands
that will be needed in subsequent cycles must be saved in registers.

The testbench can emit a trace of commands and their effects. This trace is used below to
illustrate what the module is supposed to do. The trace is collected after the command completes.
A trace entry starts with the word Cycle. The cycle number is shown, followed by command
details, followed by the state of bits.

For Cmd_Reset output bits should be set to zero. Also, any internal registers should be set
to zero. The command should complete at the positive edge. This should set ready to 1. In the
trace below the reset command set bits back to zero. Notice that the command completes in one
cycle (based on the cycle numbers).
Cycle 307 -- test 73: Cmd_Nop : bits = 01401f4

Cycle 308 -- test 74: Cmd_Reset : bits = 0000000

1

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2021/hw04.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2021/hw04.pdf

For Cmd_Rot_To the value in bits must be rotated so that the contents of bits[0] is moved
to bits[pos], bits[1] is moved to bits[(pos+1)%wb], and so on. This is like a left shift of pos
bits, except that the most significant pos bits of bits are rotated into the the pos least significant
bits. In the trace below the rotate command rotates four bits (one hexadecimal digit). Notice that
the most-significant digit on the first line is rotated to the least significant digit after the rotation
command.
Cycle 301 -- test 71: Cmd_Nop : bits = 401401f

Cycle 306 -- test 72: Cmd_Rot_To pos 4 : bits = 01401f4

This rotation must be performed using two instances of module rot_left. One instance
should rotate by 1, the other rotates by a larger value, call it rb, of your choosing. Each clock cycle
the value of bits is rotated using one of these, but never both in the same clock cycle. Use the
rb-bit rotate instance until the number of bit positions to shift is ≤ rb, then use the 1-bit rotate
instance.

Command Cmd_Write has two forms based on the value of input pos. If pos is zero then the
least significant wb bits of bits should be written with din. This should complete at the positive
edge. Otherwise, bits pos through pos+wi-1 of bits should be written with din—but not directly.
Instead, bits should be rotated so that bit pos is at the least-significant position, then the data
should be written, then bits should be rotated back to its original position. Use only the two
rot_left instances.

The trace below shows a write with pos=0:
Cycle 417 -- test 86: Cmd_Nop : bits = 0000240000

Cycle 418 -- test 87: Cmd_Write pos 0, data 7 : bits = 0000240007

When pos is non-zero the writes take longer:
Cycle 96 -- test 20: Cmd_Nop : bits = 0a0000003c

Cycle 107 -- test 21: Cmd_Write pos 27, data 4 : bits = 0a2000003c

No action is needed for command Cmd_Nop. In fact, this is the command that will be present
while the external hardware, including the testbench, is waiting for other commands to complete.

The testbench will test bit_keeper at two sizes. At each size detailed information is given for
the first few errors. That includes a trace of commands leading up to the error, followed by the
erroneous command, and what the bits should have been. After each error the testbench sets its
shadow value of bits to the erroneous output so that subsequent tests can pass. Here is in example
of the output:
Cycle 22 -- test 0: Cmd_Rot_To pos 20 : bits = 0000000000

Cycle 54 -- test 1: Cmd_Rot_To pos 31 : bits = 0000000000

Cycle 55 -- test 2: Cmd_Nop : bits = 0000000000

Cycle 96 -- test 3: Cmd_Write pos 37, data 2 : bits = 4000000000

Cycle 97 -- test 4: Cmd_Nop : bits = 4000000000

Cycle 103 -- test 5: Cmd_Rot_To pos 5 : bits = 0000000008

Cycle 104 -- test 6: Cmd_Write pos 0, data 3 : bits = 0000000003

Error in test 7: Cmd_Write pos 1, data 2 : 0000000c04 != 0000000005 (correct)

For multi-cycle commands the testbench will wait for ready to go to zero and then back to
one. If that does not happen after a certain number of cycles the testbench will timeout, meaning
that it will give up waiting and print a CYCLE LIMIT EXCEEDED message. If there is a timeout
while a command is in progress (meaning that ready did go to zero, but did not return to one) the
testbench will show a trace of recent history, followed by an indication of what it was waiting for:
Exit from clock loop at cycle 16000, limit 16000, ** CYCLE LIMIT EXCEEDED **

2

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04.pdf

https://www.ece.lsu.edu/ee4755/2021/hw04.pdf

** Preceding Commands **

Cycle 7 -- test 0: Cmd_Rot_To pos 20 : bits = 0000000000

Cycle 14 -- test 1: Cmd_Rot_To pos 31 : bits = 0000000000

Cycle 15 -- test 2: Cmd_Nop : bits = 0000000000

** In-Progress Command **

test 3: Cmd_Write pos 37, data 2

-- Awaiting ready = 1.

If the testbench does not timeout then it will print a tally of the number of errors after testing
each bit_keeper instance. Also, as a measure of quality, the testbench reports the average number
of cycles to perform Cmd_Rot_To and Cmd_Write (with non-zero pos). For example,
Starting tests for (wb=40,wi=4)

Finished 200 tests for (wb=40,wi=4), 0 errors.

Avg cyc Cmd_Rot_To 5.5 (67) Cmd_Write 10.6 (35)

Starting tests for (wb=28,wi=8)

Finished 140 tests for (wb=28,wi=8), 0 errors.

Avg cyc Cmd_Rot_To 4.2 (57) Cmd_Write 8.2 (18)

The lines starting Avg cyc report timing. The number in parentheses is the number of times
the command was issued. So for the first set of tests Cmd_Rot_To was tried 67 times, and the
average number of cycles taken to complete it was 5.5.

A lower number for Avg cyc can indicate a good design, or that certain rules were not followed.
It is very important that debugging tools are used. Take advantage of the testbench messages

to see what is going wrong. Run SimVision to get a detailed look at what your module is doing.

3

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04.pdf

https://www.ece.lsu.edu/ee4755/2021/hw04.pdf

LSU EE 4755 Homework 5 Due: 17 November 2021

Problem 1: Solve 2020 Solve-Home Final Exam Problem 1, which asks for the inferred hard-
ware for the v20 + v0v1 + v21 module that we covered in class. For those who may have for-
gotten how to use a pencil, or never learned, an SVG version of the illustration is available at
https://www.ece.lsu.edu/koppel/v/2020/fe-ms.svg. Use Inkscape or your favorite SVG edi-
tor on the file.

Problem 2: This assignment does not have a Problem 2. I know that’s confusing but the alter-
native is also confusing.

Problem 3: Solve 2020 Solve-Home Final Exam Problem 3, which asks for a timing analysis of
the v20 + v0v1 + v21 module. An SVG version of the diagram is at
https://www.ece.lsu.edu/koppel/v/2020/fe-ms-t.svg.

1

← → Fall 2021 ← → Homework 5 Homework Solution hw05.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2020/fe.pdf
https://www.ece.lsu.edu/koppel/v/2020/fe-ms.svg
https://www.ece.lsu.edu/koppel/v/2020/fe-ms-t.svg
https://www.ece.lsu.edu/ee4755/2021/hw05.pdf

LSU EE 4755 Homework 6 Due: 22 November 2021

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2021/hw06.v.html.

Problem 0: If necessary, follow the instructions at https://www.ece.lsu.edu/koppel/v/proc.html
to set up your class account, copy the assignment, and run the Verilog simulator and synthesis pro-
gram on the unmodified homework file, hw06.v. Do this early enough so that minor problems (e.g.,
password doesn’t work) are minor problems.

Teamwork
Students can work on this assignment in teams. Each student should submit his or her own
assignment but list team members. It is recommended that one team member be responsible for
learning SimVision.

Every member of a team that has completed a project, must be capable of re-solving the
problem. It is recommended that all team members re-solve the problem on their own for their
own pedagogical benefit.

Problem 1: Complete module multi_step_pipe so that it is a pipelined version of the
multi_step_functional or multi_step_seq modules. All of modules are in hw06.v. (This is
based on 2020 Solve-Home Final Exam Problem 2.)

The module must accept a new set of v0 and v1 values each clock cycle and produce a new
result each clock cycle. In the module set nstages to the number of stages in your module, so that
the value of output result is based on the inputs that appeared nstages clock cycles ago.

Instantiate as many Chipware floating-point multiplication and addition modules as needed.
(Do not use procedural code for the arithmetic.) The critical path should pass through at most
one floating-point module.

Also, set the ready output at the correct time. Output ready should be set to the value that
start has nstages ago.

The testbench will show a trace for about the first three computations (inputs in which start

was 1), and will show a trace for the ten cycles preceding each error, up to seven errors. A tally of
errors will be shown at the end. Here is a sample of the testbench for a working module:
MS Pipe Cyc 20 In: 0.0, 0.0 -> 0.0 Rdy 0 , Res: 0.0

MS Pipe Cyc 21 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 22 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 23 start=0 Rdy 1 , Res: 0.0 Good

MS Pipe Cyc 24 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 25 In: 1.0, 0.0 -> 1.0 Rdy 0 , Res: 0.0

MS Pipe Cyc 26 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 27 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 28 In: 0.0, 1.0 -> 1.0 Rdy 1 , Res: 1.0 Good

MS Pipe Cyc 29 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 30 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 31 start=0 Rdy 1 , Res: 1.0 Good

For MS Pipe ran 400 tests: Errors: 0 wrong val, 0 bad timing

1

← → Fall 2021 ← → Homework 6 Homework Sol Code hw06.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2021/hw06.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2020/fe.pdf
https://www.ece.lsu.edu/ee4755/2021/hw06.pdf

On a cycle in which input start is 1 the trace line will show the word In: followed by the
values of v0 and v1, and to the right of -> the correct result (which should appear nstages cycles
later). The text to the right of Rdy shows the value of the ready output. If the value is incorrect
it is followed by an x, for example, Rdy 1x,.

The text to the right of Res: shows the value on the module result output. That is followed
by text commenting on the result. A comment will be shown if Rdy is 1 or if an output is expected.
Good indicates a correct value at the correct time. XX: Need Rdy indicates that the correct value
appears at the correct time, but the ready output isn’t 1. XX: Wrong indicates the wrong value at
the time when an output was expected. XX: Early indicates the correct value arriving too early.
XX: Unexpected indicates the wrong value at a time when no value at all is expected.

Below are excerpts from the testbench output on the unmodified module.
MS Pipe Cyc 20 In: 0.0, 0.0 -> 0.0 Rdy 0X, Res: 0.0 XX: Need Rdy

MS Pipe Cyc 21 start=0 Rdy 1X, Res: 0.0 XX: Early

MS Pipe Cyc 22 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 23 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 24 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 25 In: 1.0, 0.0 -> 1.0 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe Cyc 26 start=0 Rdy 1X, Res: 1.0 XX: Unexpected

MS Pipe Cyc 27 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 28 In: 0.0, 1.0 -> 1.0 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe Cyc 29 start=0 Rdy 1X, Res: 0.0 XX: Early

MS Pipe Cyc 30 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 31 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 32 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 33 In: 1.0, 1.0 -> 3.0 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe Cyc 34 start=0 Rdy 1X, Res: 1.0 XX: Unexpected

MS Pipe Cyc 35 In: -8.6, 5.0 -> 55.9 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe test 4: Inputs at cyc 35, result expected at cyc 35. Wrong val: h’00000022

0.0000 != 55.8659 (correct)

MS Pipe Cyc 36 In: 0.4, 3.9 -> 16.7 Rdy 1 , Res: -8.6 XX: Wrong

MS Pipe test 5: Inputs at cyc 36, result expected at cyc 36. Wrong val: h’c109657e

-8.5873 != 16.7235 (correct)

The following is the testbench output on a module in which nstages is set too low by 1, and
in which v00 is used where v01 should be:
MS Pipe Cyc 20 In: 0.0, 0.0 -> 0.0 Rdy 0 , Res: 0.0

MS Pipe Cyc 21 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 22 start=0 Rdy 0X, Res: 0.0 XX: Need Rdy

MS Pipe Cyc 23 start=0 Rdy 1X, Res: 0.0 XX: Early

MS Pipe Cyc 24 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 25 In: 1.0, 0.0 -> 1.0 Rdy 0 , Res: 0.0

MS Pipe Cyc 26 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 27 start=0 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe Cyc 28 In: 0.0, 1.0 -> 1.0 Rdy 1X, Res: 2.0 XX: Unexpected

MS Pipe Cyc 29 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 30 start=0 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe test 2: Inputs at cyc 28, result expected at cyc 30. Wrong val: h’00000000

0.0000 != 1.0000 (correct)

MS Pipe Cyc 31 start=0 Rdy 1X, Res: 1.0 XX: Unexpected

2

← → Fall 2021 ← → Homework 6 Homework Sol Code hw06.pdf

https://www.ece.lsu.edu/ee4755/2021/hw06.pdf

MS Pipe Cyc 32 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 33 In: 1.0, 1.0 -> 3.0 Rdy 0 , Res: 0.0

MS Pipe Cyc 34 start=0 Rdy 0 , Res: 0.0

MS Pipe Cyc 35 In: -8.6, 5.0 -> 55.9 Rdy 0X, Res: 0.0 XX: Wrong

MS Pipe Cyc 36 In: 0.4, 3.9 -> 16.7 Rdy 1X, Res: 3.0 XX: Unexpected

MS Pipe Cyc 37 In: -9.5, -4.5 -> 152.0 Rdy 0X, Res: 0.0 XX: Wrong

Make sure that your modules are synthesizable.
The smart way to solve the problem is to base the design on ms_functional. Remember that

the control logic in multi_step_seq, such as logic related to step, is not needed in a pipelined
implementation. The solution should be relatively short and uncomplicated. For example, no
conditionals are needed.

A good way to start is to compute everything in one stage, and when that’s correct break the
logic into stages so that the critical path passes through at most one floating-point module.

3

← → Fall 2021 ← → Homework 6 Homework Sol Code hw06.pdf

https://www.ece.lsu.edu/ee4755/2021/hw06.pdf

4 Fall 2020

73

← → Fall 2020 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4755/2020/hw01.pdf

LSU EE 4755 Homework 1 Due: 16 September 2020
Paper copies will not be accepted. E-mail your solution to koppel@ece.lsu.edu. A single PDF

file is preferred.

Problem 1: In the Module-Port-versus-Module-Parameter section of lecture code
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html there are several module de-
signs for computing c1x + c2y, where c1 and c2 are constants and x and y are module inputs. The
point of that section and of the modules was to illustrate the SystemVerilog differences between
module parameters and ports (syntax issues, for example) and also how they relate to the hardware
being modeled.

(a) Draw a diagram of module c1x_c2y_good, shown below, using its default parameter values
(which are different than the ones in the lecture code). Show the contents of all instantiated
modules and appropriately label ports and wires. (See 2016 Homework 1 Problem 3 for a dia-
gram showing instantiated modules. Also see module arb_exp and the illustration that follows in
https://www.ece.lsu.edu/koppel/v/2020/l015-syn-comb-str.v.html.)

• Use the default parameter values of the module c1x_c2y_good shown below.

• Use the appropriate parameter values for the mult_by_c instances. Hint: appropriate is not
a synonym for default.

• Show the ports for all modules.

• Show the number of bits in each wire.

• Label wires with the symbols used below (such as p1 and prod) and take care to place
the label on the correct side of a module boundary. (In the two_pie illustration from
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html look at the wire carrying
labels x, i1, and a.).

module mult_by_c
#(int w = 8, int c = 16, int w2 = w+$clog2(c))

(output uwire signed [w2-1:0] prod, input uwire signed [w-1:0] a);

assign prod = a * c;

endmodule

module c1x_c2y_good
#(int c1 = 4, int c2 = 7, int w = 15,

int w2 = w + $clog2(c1) + $clog2(c2))

(output logic signed [w2-1:0] s, input uwire signed [w-1:0] x, y);

uwire [w2-1:0] p1, p2;

mult_by_c #(w,c1,w2) m1(p1,x);
mult_by_c #(w,c2,w2) m2(p2,y);

assign s = p1 + p2;

endmodule

1

← → Fall 2020 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html
https://www.ece.lsu.edu/koppel/v/2020/l015-syn-comb-str.v.html
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html
https://www.ece.lsu.edu/ee4755/2020/hw01.pdf

(b) Draw a diagram of module c1x_c2y_okay below using its default parameter values (which are
different than the defaults used in the lecture code). Show the same details, such as ports, as was
requested for the previous part.

module mult
#(int w = 8, int w2 = 2 * w)

(output uwire signed [w2-1:0] prod, input uwire signed [w-1:0] a, b);

assign prod = a * b;

endmodule

module c1x_c2y_okay
#(int c1 = 4, int c2 = 7, int w = 15,

int w2 = w + $clog2(c1) + $clog2(c2))

(output logic signed [w2-1:0] s, input uwire signed [w-1:0] x, y);

uwire [w2-1:0] p1, p2;

uwire [w:1] C1 = c1, C2 = c2; // Convert constants to desired size.

mult #(w,w2) m1(p1, x, C1);

mult #(w,w2) m2(p2, y, C2);

assign s = p1 + p2;

endmodule

2

← → Fall 2020 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4755/2020/hw01.pdf

Problem 2: Synthesis programs optimize a design to minimize cost while meeting timing con-
straints. The illustration below for the mult and mult_by_c modules (used in the slides) show how
the multiplier can be simplified when one of the inputs is a convenient constant, 1.

Show how the c1x_c2y_good module from the first problem can be optimized based on the
default c1=4 and c2=7 values. To do so show the multiplier replaced by much simpler hardware,
such as adder(s). A correct solution uses only one adder for both multipliers, bit relabeling, plus
the adder used to combine p1 and p2.

Note: As originally assigned, and until Tuesday, 15 September 2020 at about 16:15, the problem
stated that a correct solution uses only one adder, implying but not specifically stating that the one
adder was the replacement for the multipliers and that there would also be and adder computing
p1+p2, for a total of two adders.

×

a

b

prod

mult (w,w2)

w

w

× w2

a
prod

mult_by_c (w,c,w2)

w × w2
C

a

b

prod

mult (w=8,w2)

8

8

× 16

a
prod

mult_by_c (w=8,c=1,w2)

8
8

1

Before instantiation and optimization.

After instantiation and optimization.

3

← → Fall 2020 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4755/2020/hw01.pdf

LSU EE 4755 Homework 2 Due: 18 September 2020

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2020/hw02.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw02.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Problem 1: Module nn4x4, below, has two inputs, a 4-element vector ai and a 4× 4 matrix wht,
and one output, a 4-element vector ao. Output ao is set to the product of wht and ai. Parameter
ww (width of weight) gives the number of bits in the elements wht and parameter wa (width of
activation) gives the number of bits in the elements of ai and ao.

The illustration below the module shows hardware that might be inferred for nn4x4. The
illustration also includes three dotted green boxes. These are suggestions on how to hierarchically
decompose this large, some would say unwieldy, module.

The two smaller boxes, labeled nn1x2b, show hardware computing part of one output using two
inputs. The larger box, labeled nn1x4b shows hardware computing one output using four inputs.
As those who took the time to look at the illustration might have guessed by now the module
suggested by nn1x4b can be constructed using two instances of nn1x2b. Further, a nn4x4b can be
constructed using four instances of nn1x4b. Sounds interesting? Good!

The homework file hw02.v contains module nn4x4, it is there for your reference. The file
also contains mostly empty modules nn4x4b, nn1x4b, and nn1x2b. Complete these so that they
compute the same output as nn4x4 and are constructed as suggested in the illustration and follow
the guidelines below.

Module nn4x4b must instantiate exactly four nn1x4b modules and nn1x4b must instantiate
exactly two nn1x2b modules. Module nn1x4b will also need an adder. Module nn4x4b has parame-
ters. Don’t change them. The other modules should have similar parameters with the same default
values as nn4x4b. Do not ignore the parameters when declaring inputs and outputs. A standing
rule in this class is that all code must be clearly written.

The modules must be synthesizable. This should not be a challenge for this assignment. Verify
synthesizablity by running the synthesis script using the command genus -files syn.tcl.

Those who fear they might forget to address some part of the problem described here can rest
easy. There is a checklist in the part of the Verilog file where the solution goes.

To help you solve the problem in stages the testbench will perform three rounds of tests. In the
first round, labeled n12, only output ao[0] will be examined and only inputs ai[0] and ai[1] will
have non-zero values. In the second round, labeled n14, only output ao[0] will be examined but
all inputs will have non-zero values. The full test, all outputs checked and all inputs are non-zero,
is labeled n44.

Some might find it helpful to look at two past homework assignments in which a flat module
was to be decomposed hierarchically. The simpler one (perhaps) is 2019 Homework 1, in which
a multiplier is decomposed. But the multiplier had two scalar inputs, a and b. In this (2020)
assignment one input is a 1-D array (ai) and the other is a 2-D array (wht). In the Fall 2017
Homework 1 Problem 2 an 8-input multiplexor is to be decomposed. The mux input a is a 1-D
array that had to be split between two instances.

Module and illustration on the next page.

1

← → Fall 2020 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2020/hw02.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2020/hw02.pdf

module nn4x4
#(int wa = 10, ww = 5)

(output uwire [wa-1:0] ao[4],

input uwire [wa-1:0] ai[4],

input uwire [ww-1:0] wht[4][4]);

assign ao[0] = ai[0] * wht[0][0] + ai[1] * wht[0][1]

+ ai[2] * wht[0][2] + ai[3] * wht[0][3];

assign ao[1] = ai[0] * wht[1][0] + ai[1] * wht[1][1]

+ ai[2] * wht[1][2] + ai[3] * wht[1][3];

assign ao[2] = ai[0] * wht[2][0] + ai[1] * wht[2][1]

+ ai[2] * wht[2][2] + ai[3] * wht[2][3];

assign ao[3] = ai[0] * wht[3][0] + ai[1] * wht[3][1]

+ ai[2] * wht[3][2] + ai[3] * wht[3][3];

endmodule

ai[0]

w
[0
][
0
]

×

ai[1]

w
[0
][
1
]

×

ai[2]

w
[0
][
2
]

×

ai[3]

w
[0
][
3
]

×

+
++

w
[1
][
0
]

× w
[1
][
1
]

× w
[1
][
2
]

× w
[1
][
3
]

×

+
++

w
[2
][
0
]

× w
[2
][
1
]

× w
[2
][
2
]

× w
[2
][
3
]

×

+
++

w
[3
][
0
]

× w
[3
][
1
]

× w
[3
][
2
]

× w
[3
][
3
]

×

+
++ ao[3]

ao[2]

ao[1]

ao[0]

ao

ai

w nn4x4
nn4x4b

nn1x2bnn1x2b

nn1x4b

2

← → Fall 2020 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/ee4755/2020/hw02.pdf

LSU EE 4755 Homework 3 Due: 13 October 2020

The deadline has been extended by one day, to 13 October (late at night) due to power outages
caused by Hurricane Delta.

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete Verilog
for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2020/hw03.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if you haven’t already), copy the assignment, and run the Verilog simulator and
synthesis program on the unmodified homework file, hw03.v.

Homework Overview and Neural Network Background
The goal of Homework 2 was to describe a 4 × 4 matrix/vector multiply circuit hierarchically.
That goal is generalized here where an ni × no matrix is multiplied by an ni-element vector. In
Homework 2 each ao[o] was computed by a tree connection of multipliers. Here both linear and
tree connections will be tried. Also, the module in this assignment will optionally do something
about overflow.

The modules in this assignment and in Homework 2 could be used any place where matrix/
vector multiplication is needed, but they were designed with a particular application in mind that
some students might have guessed from the names used: artificial neural networks. The nn prefix
is for neural network. The output and one input name starts with a, that’s for activation, which
can be though of as a neuron. The weights model connections between neurons.

A completely connected neural network layer performs a matrix vector multiplication. The
multiply/add operation needed to compute that is also an important operation for other compute-
intensive workloads, including graphics and many forms scientific computation. General-purpose
CPUs and GPUs were designed in part to perform multiply/add operations efficiently—on some
workloads, including graphics and scientific computation.

One thing that sets neural network (a technique for machine-learning [ML]) workloads apart
is operand precision. Graphics uses 32-bit values for coordinates, many scientific computation uses
64-bit values. Lower precision would be less effective. But machine learning can get by with less
precision, and with different precision for the weights than the activations. Lower precision reduces
the amount of energy needed for computation (which is often a limiter), and the amount of data
that needs to be moved. This is especially important for weights in fully-connected layers.

The modules in this assignment allow for different precision for inputs, outputs, and weights.
When the precision of the output is low there is a danger of overflow. That is often handled by
saturating a value at the maximum representable quantity.

Reference Module, nnOxIbe
A goal of this assignment is to write a Verilog description of a module performing the same com-
putation as a reference module, nnOxIbe. Module nnOxIbe has two inputs, an ni-element vector
of wi-bit integers, ai, and an no × ni matrix of ww-bit integers, wht; the module has one output,
an no-element vector of wo-bit integers, ao, where ni, no, wi, ww, and wo are the values of the
similarly named module parameters. All integers are unsigned. Output ao is set to the product of
matrix wht and column vector ai with overflow handled as described further below.

Most will find it easiest to inspect the code in nnOxIbe (below) to resolve any remaining

certainty about what this module does. For the others let r(p) =
∑ni−1

q=0 Hp,qai(q), where Hp,q

is the equivalent of the Verilog wht[p][q], and ai(q) is the equivalent of ai[q]. Then either

1

← → Fall 2020 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2020/hw03.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2020/hw03.pdf

ao(p) = min{ r(p), 2wo − 1 } or ao(p) is set to the low wo bits of r(p), depending on the value of
parameter sat.

Module nnOxIbe initially computes a 32-bit precision value (see variable acc) for each ao[i].
If sat=0 then ao[i] is assigned the low wo bits of this value. If sat!=0 then ao[i] is set to the
minimum of acc and 2wo−1. As some may have guessed, sat is short for saturating arithmetic. (In
saturating arithmetic an overflow is replaced by the maximum representable value. For example,
for 4-bit unsigned integers and a saturating add: 112 + 11102 = 11112.)

module nnOxIbe
#(int no = 4, ni = 4, wo = 10, wi = 4, ww = 5, sat = 0)

(output logic [wo-1:0] ao[no],

input uwire [wi-1:0] ai[ni], input uwire [ww-1:0] wht[no][ni]);

// The maximum possible value of each element of ao.

localparam logic [wo-1:0] smax = ~wo’(0);

always_comb

for (int o = 0; o < no; o++) begin

automatic int unsigned acc = 0;

for (int i=0; i<ni; i++) acc += ai[i] * wht[o][i];

// If sat is non-zero replace a value that would overflow

// ao[o] with the maximum value that ao[o] can hold.

ao[o] = sat && acc > smax ? smax : acc;

end

endmodule

Testbench
(This part is best read after looking at Problems 1 and 2.) The testbench will instantiate sixteen (as
of this writing) configurations of nnOxI. For each configuration, three sets of tests are performed,
similar to the ones performed for Homework 2. A grand total of errors is printed at the end, such as
Total number of errors: 660. Above that the number of errors are grouped in various ways.
For example:

All Sat 0 220 errors.

All Sat 1 220 errors.

All Sat 2 220 errors.

Linear 330 errors.

Linear Sat 0 110 errors.

Linear Sat 1 110 errors.

Linear Sat 2 110 errors.

Tree 330 errors.

Tree Sat 0 110 errors.

Tree Sat 1 110 errors.

Tree Sat 2 110 errors.

Total number of errors: 660

The line reading Linear 330 errors shows the total number of errors of all configurations for
which tr=0. The line Linear Sat 0 110 errors. shows the number of errors on linear modules
with sat=0.

2

← → Fall 2020 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/ee4755/2020/hw03.pdf

Further up specific inputs and incorrect outputs are shown. For example:

** Starting tests for no=3, ni=5, wo=15, wi=9, ww=8, sat=2

Testing module Linear

** Starting test set n12 (1 outputs, 2 inputs) for Linear **

Error test # 0, output 0: z != 32767 (correct)

Error test # 1, output 0: z != 32767 (correct)

Error test # 2, output 0: z != 26759 (correct)

Done with 10 n12 tests on Linear: 10 errors found.

In the example above output ao[0] was z (unconnected) but should have been 32767.
In test set n12 the inputs and weights are chosen so that the only non-zero output should be

ao[0] and so that only ai[0] and ai[1] are non-zero. In set n1* all inputs can have non-zero
values but weights are chosen so that only ao[0] is non-zero. In test set n** all inputs can be
non-zero and all outputs can be non-zero.

Problem 1: Complete module nnOxI so that it produces the same output as nnOxIbe and does
so using generate statements to either describe a linear or recursive module as described below.

Module nnOxI is to be the starting point in all cases. It has the same parameters as nnOxIbe,
plus it also has a parameter tr. The solution to this problem requires modification to nnOxI and
to module nn1xI. Both are in hw03.v.

Multiplication and addition of values should be performed by instances of the provided arith-
metic modules, nnAdd, nnMult, and nnMADD (multiply/add). These modules can perform saturating
arithmetic.

Module nnOxI should instantiate no (that’s a number) nn1xI modules. Each nn1xI instance
should compute one output of nnOxI. The tr parameter in nnOxI indicates whether each nn1xI

should compute its output using a linear arrangement of modules or a tree arrangement.
For the linear arrangement nn1xI should use a generate loop to instantiate nnMADD modules.

The critical path (without optimization) should be O(ni) multiply/add operations. For the tree
arrangement nn1xI should either instantiate two copies of itself or for the base case, the arithmetic
modules.

For an example of a module describing a linear arrangement of hardware see min_n in the gener-
ate/elaborate lecture code, https://www.ece.lsu.edu/koppel/v/2020/l025-gen-elab.v.html.
For an example of a module describing a tree arrangement of hardware see min_t in the lecture
code.

Be sure to specify the appropriate parameters when instantiating modules, including the sat

parameter.

• Do not make ports wider than they need to be.

• Make sure that the modules pass all tests.

• Make sure that the module is synthesizable. (Use command genus -files syn.tcl to
synthesize.) The area should be > 0.

• Code should be clearly written.

Problem 2: Module nnOxIbe honors the sat parameter after it has computed a 32-bit ao[o]

value. (That is, it first computes a 32-bit result, then it checks if it’s too large.) That’s fine for
software, but it would be wasteful for our hardware because we’d need to provide 32-bit precision

3

← → Fall 2020 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/koppel/v/2020/l025-gen-elab.v.html
https://www.ece.lsu.edu/ee4755/2020/hw03.pdf

hardware for all arithmetic. Or is it really that wasteful? First, we don’t necessarily need 32 bits.
The maximum value of ao[o] depends on wi, ww, and ni, so we only need enough bits to hold that.
Also, the saturating arithmetic modules may be inflating cost for two reasons: the cost of detecting
and handling saturation, and the fact that algebraic optimizations are impeded when saturation is
performed. So, it may be less expensive to compute a value for ao[o] to a precision greater than
wo, and then just saturate that value. This way saturation is performed once per output, rather
than ni times.

Modify your modules so that when sat=2 saturation is performed as described above.

4

← → Fall 2020 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/ee4755/2020/hw03.pdf

LSU EE 4755 Homework 4 Due: 28 October 2020
Paper copies will not be accepted. E-mail your solution to koppel@ece.lsu.edu. A single PDF

file is preferred.

This assignment refers to the solution to Homework 3. Pieces are shown below, the complete
solution can be found at https://www.ece.lsu.edu/koppel/v/2020/hw03-sol.v.html and in
the directory where the original assignment was copied from.

Problem 1: Using the simple model compute the cost and delay of the nnAdd module from Home-
work 3 (shown below) for both sat=0 and sat=1. Do so after applying optimizations for constants.
Show the cost and delay in terms of w. Hint: See the simple model notes,
https://www.ece.lsu.edu/koppel/v/2020/lsli-simple-model.pdf, for the cost of a ripple adder.

• Show cost and delay in terms of w.

• Don’t forget to optimize for constant values.

• Assume that the adder will be implemented using a ripple circuit.

• Indicate both the delay of the least-significant bit of the sum and the delay of the most
significant bit of the sum. Answering this part correctly and applying it to the other problems
in this assignment will reveal something important about the impact of detecting overflow
and of the different methods of doing so.

module nnAdd #(int w = 5, sat = 0)

(output uwire [w-1:0] so, input uwire [w-1:0] a, b);

uwire [w:0] s = a + b;

localparam logic [w-1:0] smax = ~w’(0);

assign so = sat && s[w] ? smax : s[w-1:0];

endmodule

There are more problems on the next pages.

1

← → Fall 2020 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2020/hw03-sol.v.html
https://www.ece.lsu.edu/koppel/v/2020/lsli-simple-model.pdf
https://www.ece.lsu.edu/ee4755/2020/hw04.pdf

Problem 2: Using the simple model compute the cost and delay of the nnMult module from
Homework 3 for sat=1. Let w denote the setting of both wa and wb (they are to be set to the same
value), and let y denote the setting of wp. Solve this for y < 2w. Do so after applying optimizations
for constants.

Solve this using the following cost for an unsigned integer multiplier with two w-bit inputs
and a 2w-bit output: the cost using the simple model is 10w2 uc and the delay is [8w + 2] ut

for the complete product and [4i + 2] ut for bit position i. (The LSB is at position i = 0.)
(For more details on how those were derived see the comments after the Linear Multiplier in
https://www.ece.lsu.edu/koppel/v/2020/mult-seq.v.html.)

• Show the cost and delay in terms of w and y.

• Solve this for y < 2w.

• Don’t forget to optimize for constant values.

module nnMult #(int wa = 5, wb = 6, wp = wa + wb, sat = 0)

(output uwire [wp-1:0] p, input uwire [wa-1:0] a, input uwire [wb-1:0] b);

localparam logic [wp-1:0] pmax = ~wp’(0);

localparam int wmx = wp > wa+wb ? wp : wa+wb;

uwire [wmx-wp:0] phi;

uwire [wp-1:0] plo;

assign {phi,plo} = a * b;

assign p = sat && wp < wa + wb && phi ? pmax : plo;

endmodule

There are more problems on the next pages.

2

← → Fall 2020 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/koppel/v/2020/mult-seq.v.html
https://www.ece.lsu.edu/ee4755/2020/hw04.pdf

Problem 3: Using the simple model determine the cost and performance of module nn1xI (shown
on the next page) for the configurations described below. In all cases, let n denote the value of ni,
w denote the value of ww and wi (which are the same) and y denote the value of wo. Assume the
same hardware costs as the first two problems (modifying sizes and accounting for cascading where
appropriate).

(a) Find the cost (not delay in this part) for sat=0, tr=0, and y > 2w (that’s one configuration) and
for sat=0, tr=1, and y > 2w (that’s a second configuration). The two costs will be very similar.

• Show the costs in terms of n, w, and y.

(b) Find the delay (not cost in this part) for sat=0, tr=0, and y > 2w (that’s one configuration)
and for sat=0, tr=1, and y > 2w (that’s a second configuration). The two delays will be very
different.

• Show the delays in terms of n, w, and y.

• When computing the total delay don’t forget to take into account the time that inputs arrive
at each port, especially for the multiplier.

• When computing total delay account for cascading of ripple units.

(c) Find the delay for sat=1, tr=0, and y > 2w (that’s one configuration) and for sat=1, tr=1, and
y > 2w (that’s a second configuration). The two delays should be very different from each other
and from the delays from the previous problem.

3

← → Fall 2020 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/ee4755/2020/hw04.pdf

module nn1xI #(int wo = 10, wi = 4, ww = 5, ni = 2, tr = 0, sat = 0)

(output uwire [wo-1:0] ao,

input uwire [wi-1:0] ai[ni],

input uwire [ww-1:0] wht[ni]);

if (tr) begin

if (ni == 1) begin

nnMult #(wi,ww,wo,sat) mult(ao, ai[0], wht[0]);

end else begin

localparam int nlo = ni / 2;

localparam int nhi = ni - nlo;

uwire [wo-1:0] aolo, aohi;

nn1xI #(wo,wi,ww,nlo,1,sat) nnlo(aolo, ai[0:nlo-1], wht[0:nlo-1]);

nn1xI #(wo,wi,ww,nhi,1,sat) nnhi(aohi, ai[nlo:ni-1], wht[nlo:ni-1]);

nnAdd #(wo,sat) add(ao,aolo,aohi);

end

end else begin

uwire [wo-1:0] s[ni-1:-1];

assign s[-1] = 0;

assign ao = s[ni-1];

for (genvar i = 0; i < ni; i++)

nnMADD #(ww,wi,wo,sat) madd(s[i], wht[i], ai[i], s[i-1]);

end

endmodule

module nnMADD #(int wa = 10, wb = 5, ws = wa + wb, sat = 0)

(output uwire [ws-1:0] so,

input uwire [wa-1:0] a, input uwire [wb-1:0] b, input uwire [ws-1:0] si);

uwire [ws-1:0] p;

nnMult #(wa,wb,ws,sat) mu(p, a, b);

nnAdd #(ws,sat) ad(so, si, p);

endmodule

There are even more problems on the next pages.

4

← → Fall 2020 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/ee4755/2020/hw04.pdf

Problem 4: Consider module nnOxI instantiated with no=1, tr=0, for both sat=1 and sat=2. (A
slightly simplified version appears below.) Let n denote the value of ni, w denote the value of wi
and ww (which are the same), and let y denote the value of wo.

Assume that 2w < y < dlg n(2w− 1)2e. That is, y is large enough so that the multipliers can’t
overflow but not so large that the adders can’t overflow.

(a) Compute the cost and delay for both the sat=1 and sat=2 cases. For sat=1 just re-use answers
from the previous problems.

• Show answers in terms of n, w, and y.

• Don’t forget that the value of wo in the nn1xI instantiations depends upon sat.

(b) In terms of the costs computed above is sat=2 always better, always worse, or sometimes better
than sat=1? Be specific of course.

module nnOxI #(int no = 4, ni = 2, wo = 10, wi = 4, ww = 5, tr = 0, sat = 0)

(output uwire [wo-1:0] ao[no],

input uwire [wi-1:0] ai[ni], input uwire [ww-1:0] wht[no][ni]);

// Compute number of bits to represent largest possible value that

// can appear on an ao.

localparam int wr = $clog2((2**wi - 1) * (2**ww - 1) * ni);

if (sat < 2) begin

for (genvar i = 0; i < no; i++)

nn1xI #(wo,wi,ww,ni,tr,sat) row(ao[i], ai, wht[i]);

end else begin

for (genvar i = 0; i < no; i++) begin

uwire [wr-1:0] ar;

nn1xI #(wr,wi,ww,ni,tr,0) row(ar, ai, wht[i]);

assign ao[i] = ar[wr-1:wo] ? ~wo’(0) : ar[wo-1:0];

end

end

endmodule

Problem 5: Zero points will be given for the answer to this question, but please try your very best
to answer it. Suggest a method of saturating ao that avoids the extra wo bits needed (for nn1xI)
when sat=2 but also avoids the critical-path-killing saturation logic used when sat=1. Your solution
could add extra ports to all modules except nnOxI. A correct solution would detect overflow under
the same conditions as nnOxI does with sat=1.

5

← → Fall 2020 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/ee4755/2020/hw04.pdf

LSU EE 4755 Homework 5 Due: 3 December 2020
Paper copies will not be accepted. E-mail your solution to koppel@ece.lsu.edu. A single PDF

file is preferred.

Problem 1: Complete 2019 Final Exam Problem 2, which asks for a timing analysis of a best_match
module, and related questions.

Problem 2: Complete 2019 Final Exam Problem 3, in which code implementing an illustrated
module is to be completed. The module computes a Fibonacci sequence. Submit your solution
by E-mail, handwritten is acceptable. However, those wishing to write Verilog code and to use a
testbench can copy /home/faculty/koppel/pub/ee4755/hw/2020/hw05 to class account and solve
it. Instructions for remote access are in https://www.ece.lsu.edu/koppel/v/proc.html (look
for the “Remote Access” heading).

1

← → Fall 2020 ← → Homework 5 Homework hw05.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2020/hw05.pdf

5 Fall 2019

89

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2019/hw01.pdf

LSU EE 4755 Homework 1 Due: 18 September 2019

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2019/hw01.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw01.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Overview
In class you were told that for common operations, such as shifting, addition, and multiplication,
it’s better to use Verilog operators in procedural code than to re-invent the wheel by writing
Verilog to implement those operations. This point was made when covering the shift module in the
introductory lectures. For example, if you need a shifter it’s better to just use the shift operator:
module shift_right_operator

(output uwire [15:0] shifted,

input uwire [15:0] unshifted, input uwire [3:0] amt);

assign shifted = unshifted >> amt;

endmodule

than to write code for your own shifter:
module shift_right_logarithmic

(output uwire [15:0] sh, input uwire [15:0] s0, input uwire [3:0] amt);

uwire [15:0] s1, s2, s3;

mux2 st0(s1, amt[0], s0, {1’b0, s0[15:1]});

mux2 st1(s2, amt[1], s1, {2’b0, s1[15:2]});

mux2 st2(s3, amt[2], s2, {4’b0, s2[15:4]});

mux2 st3(sh, amt[3], s3, {8’b0, s3[15:8]});

endmodule

module mux2(output uwire [15:0] x,

input uwire select, input uwire [15:0] a0, a1);

assign x = select ? a1 : a0;

endmodule

The reason for showing the implementation of shifters, and other common operations, was to
teach general design concepts using operations that you should be familiar with. That will be the
approach in this homework, in which a multiplier is to be implemented.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests the multiply modules. Modules mult_operator and mult16

should pass, mult16_tree awaits your solution. A sample of the end of the testbench output
appears below:

Starting testbench...

Error in mult16_tree test 0: xxxxxxxx != 00000001 (correct)

Error in mult16_tree test 1: xxxxxxxx != 00000002 (correct)

Error in mult16_tree test 2: xxxxxxxx != 00000020 (correct)

Error in mult16_tree test 3: xxxxxxxx != 00000020 (correct)

1

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2019/hw01.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2019/hw01.pdf

Error in mult16_tree test 4: xxxxxxxx != 139dff24 (correct)

Error in mult16_tree test 5: xxxxxxxx != 4839cb7b (correct)

Mut mult_operator , 0 errors (0.0% of tests)

Mut mult16_flat , 0 errors (0.0% of tests)

Mut mult16_tree , 1000 errors (100.0% of tests)

Memory Usage - 38.6M program + 154.6M data = 193.2M total

CPU Usage - 0.0s system + 0.0s user = 0.1s total (70.4% cpu)

Simulation complete via $finish(2) at time 10 US + 0

./hw01.v:218 $finish(2);

ncsim> exit

A count of the number of tests and errors is shown for three modules. The testbench shows
the first six errors it finds on each module. To see more than six modify the testbench (search
for err_limit). In the output above the testbench is showing that the module outputs are x

(uninitialized) which of course don’t match the expected outputs.
Use Simvision to debug your modules. Feel free to modify the testbench so that it presents

inputs that facilitate debugging.

Synthesis
The synthesis script, syn.tcl, will synthesize the three modules each with two delay targets, an
easy 10 ns and a un-achievable 0.1 ns. If the module doesn’t synthesize −.001 s is shown for the
delay. The script is run using the shell command genus -files syn.tcl, which invokes Cadence
Genus.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew.log. Sample synthesis script output appears
below:

Problem 1 on next page.

2

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2019/hw01.pdf

mult2

16

1:0

mult2

16

3:2

<<
2

+

mult2

16

5:4

mult2

16

7:6

<<
2

+
<<

4

+

mult2

16

9:8

mult2

16

11:10

<<
2

+

mult2

16

13:12

mult2

16

15:14

<<
2

+
<<

4

+
<<

8

+

16b by 4b

16b by 8b

mult16

a

b

p
ro
d

16

16

32

There are four of these.

T
h
e
re

 a
re

 tw
o
 o

f th
e
se

.

Problem 1: The illustration to the
right shows a sketch of a multiplier,
mult16, with two 16-bit inputs and a
32-bit output. The multiplier is con-
structed from mult2 modules, shifters
(<<), and adders. The illustrated mod-
ule is similar to the multiplier in
mult16_flat in hw01.v. The mult2

modules have two inputs, one is two
bits, the other is 16 bits. Each input
holds an unsigned integer. The out-
put, 18 bits, is the product of the two
inputs. Notice that each mult2 module
is connected to two bits of a and all bits
of b. The outputs of the mult2 mod-
ules are shifted and added together in
such a way that prod is the correct
product of a and b.

There are two parts of mult16 sur-
rounded by green boxes. The upper
one, labeled 16b by 4b, contains two
mult2 modules. The label is explain-
ing that the boxed material multiplies
a 16-bit number by a 4-bit number. A
similar box could have been put around
the next pair of mult2 modules, etc.
The hardware within each of these four boxes would be identical. (The bit slices at the upper
mult2 inputs, such as 1:0 and 5:4 are different, but that can be taken care of outside the green
box.) Think about the poor soul who might have just typed in all the Verilog for mult16 and then
suddenly realizes this. All that person would have had to do would be to code one module, call it
mult4_tree, and just instantiate it four times. Here is an almost empty version of mult4_tree:

module mult4_tree
(output uwire [0:0] prod, // Need to change output size.

input uwire [3:0] a, input uwire [15:0] b);

mult2 mlo(/* finish */);

mult2 mhi(/* finish */);

endmodule

Alert students might suspect that we don’t actually instantiate mult4_tree four times because
the 16b by 8b section itself could be a module which would contain only two instantiations of
mult4_tree. That would be correct.

Modify modules mult16_tree, mult8_tree, and mult4_tree found in hw01.v so that they
implement the multiplier described above. Module mult16_tree must instantiate exactly two
mult8_tree modules, module mult8_tree must instantiate exactly two mult4_tree modules, and

3

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2019/hw01.pdf

mult4_tree must use the two mult2 modules that are already instantiated (but with the ports
missing).

In each module use implicit structural code or behavioral code to combine the outputs of that
module’s two instantiated modules. It might be helpful to look at mult16_flat for examples of
instantiation and implicit procedural code.

Start with module mult16_tree. You can test your changes to mult16_tree by putting
placeholder code in mult8_tree, such as assign prod = a*b;. Don’t forget to change the port
sizes on mult8_tree to what they should be based on the diagram.

Once the testbench reports zero errors move the placeholder to mult4_tree and complete
mult8_tree. Continue until the three modules are finished.

Some of the port sizes are set to 1 bit, [0:0]. Those are placeholders, change those to the
correct sizes, but no larger. Credit will be deducted for oversized ports, especially if all ports are
made 32 bits.

Pay attention to port-size warnings when running the simulator.

Problem 2: The synthesis script will synthesize mult16_tree from Problem 1, plus two already
working modules, mult16_flat and mult_operator, which just uses the multiply operator.

If the synthesis program were perfect then all three modules would have the same cost and
delay because they each do exactly the same thing (multiply) and so the optimization algorithms
would have found the same lowest-cost circuit from each one. Spoiler alert: Genus is not perfect.

Guess which module you think will be the fastest or least expensive, and explain why. Then
run the synthesis script and comment on whether the results met your expectations.

4

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2019/hw01.pdf

LSU EE 4755 Homework 2 Due: 8 October 2019

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2019/hw02.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw02.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Correction (December 2019)
When assigned in October 2019 this assignment defined clz backward, starting at the least-significant
bit. That has been corrected in this version and in the posted code.

Homework Overview
A count leading zeros (clz) operation returns the number of consecutive zeros starting at the most
significant bit of an integer’s binary representation. For example, the clz of 001012 is 2, the clz of
1012 is 0, and the clz of 32-bit number 02 is 32. The Verilog module below computes the clz of its
input:

module clz
#(int w = 19, int ww = $clog2(w+1))

(output var logic [ww-1:0] nlz, input uwire logic [w-1:0] a);

uwire [w:0] aa = { a, 1’b1 };

always_comb for (int i=0; i<=w; i++) if (aa[i]) nlz = w-i;

endmodule

The module was written as behavioral code, but it does turn out to be synthesizable. Nev-
ertheless, one may wonder if the synthesis program will do a good job with this. (Later in the
semester we will learn what kind of hardware will be inferred for the description above.) One way
to find out is to design a module which should be efficient and see how well it compares to what
the synthesis program does with the module above. That, and the use of generate statements, is
the subject of this assignment.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests the clz_tree module at several different widths. All should
initially fail. A shortened sample of the testbench output appears below:

ncsim> run

** Starting tests for width 1.

Error for width 1: input 1: z != 0 (correct).

Error for width 1: input 0: z != 1 (correct).

Error for width 1: input 1: z != 0 (correct).

Error for width 1: input 0: z != 1 (correct).

Width 1, done with 10 tests, 10 errors.

** Starting tests for width 2.

Error for width 2: input 3: z != 0 (correct).

Width 2, done with 20 tests, 20 errors.

** Starting tests for width 5.

1

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2019/hw02.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2019/hw02.pdf

[snip]

Error for width 17: input 08959: z != 0 (correct).

Width 17, done with 170 tests, 170 errors.

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

Total number of errors: 610

The testbench prints the details of the first four errors it finds, and after that prints just one
detail time per width. A total for each width and a grand total are printed, see the transcript
above.

Use Simvision to debug your modules. Feel free to modify the testbench so that it presents
inputs that facilitate debugging.

Synthesis
The synthesis script, syn.tcl, will synthesize clz (for reference) and clz_tree (your solution).
Each module will be synthesized at three widths, and with two delay targets, an easy 10 ns and a
un-achievable 0.1 ns. If a module doesn’t synthesize −.001 s is shown for its delay. The script is
run using the shell command genus -files syn.tcl, which invokes Cadence Genus. If you would
like to synthesize additional modules or sizes edit syn.tcl near the bottom.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew.log.

Problem 1: Complete module clz_tree so that it computes the clz of its input in a tree-like
fashion. For the non-terminal case it should instantiate two clz_tree modules and each should op-
erate on part of the input, a. The outputs of these two modules should be appropriately combined.
To help you get started, a recursive solution to Homework 1, mult_tree, is in hw02.v.

An easy mistake to make is using the wrong sized variable in a module port connection.
Previously the Verilog software (ncelab to be precise) would issue a warning which was easy to
miss. Now a port size mismatch is a fatal error.

For maximum credit do not use adders in your design. Adders can be avoided if the size of
the low module is always a power of 2.

See the Verilog code check boxes for additional items to check for.

Problem 2: Run the synthesis program and indicate how your module compares to the behavioral
module, clz. Indicate which results are expected, and which are not expected, and explain why.

2

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02.pdf

https://www.ece.lsu.edu/ee4755/2019/hw02.pdf

LSU EE 4755 Homework 3 Due: 23 October 2019

Problem 1: Appearing below is a module excerpted from the solution to Homework 1. Compute
the cost and delay of this module using the simple model under the following assumptions:

• The inputs arrive at t = 0. Don’t assume that any bit is early or late, they all arrive at
exactly t = 0.

• A ripple adder will be used to implement addition.

• Apply obvious optimizations. In particular, don’t use a BFA if a BHA would suffice. And
only use a BHA if that is needed.

• Don’t overlook the fact that one of the shifter inputs is a constant.

Show the cost and delay in terms of wa and wb, but use symbol a for wa and b for wb. For
example, “The cost is (a + b)9 uc and the delay is (a + b)2 ut.” (Those answers assume that BFAs
are used for the entire module, which is wrong.)

The simple model slides (AOTW) don’t show the cost and delay of a BHA, so work that out
yourselves.

module mult_piece
#(int wa = 16, int wb = 16, int wp = wa + wb,

int wn = wa / 2, int wx = wb + wn)

(output uwire [wp:1] prod,

input uwire [wx:1] prod_lo, prod_hi);

assign prod = prod_lo + (prod_hi << wn);

endmodule

There’s another problem on the next page!

1

← → Fall 2019 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2019/hw03.pdf

Problem 2: A w-bit multiplier needs to add together w partial products using w − 1 adders. A
näıve timing analysis of a non-tree ripple adder implementation would compute a delay of w(2 ×
2w + 2) = (4w2 + w) ut for the 2w-bit product using the simple model and ignoring ripple-unit
cascading. As we should know 4w2 is not a good term to have in an expression for time. The goal
of this problem is to see how the tree multiplier compares to this näıve timing.

Appearing below is the Bonus Solution to Homework 1 in which a single mult_tree module
is used rather than separate modules mult16_tree, mult8_tree, etc. Also shown is a module,
my_module that instantiates the mult_tree. Also shown a page or two ahead is the diagram from
Homework 1. You may want to use this to help work out the solution to this problem.

Analyze the cost and performance of my_module as described below. When computing the
cost and performance don’t forget to account for the full elaboration, not just the top level. For
example, my_module with w=4 consists of one mult_tree at w=4 and two mult_tree modules at
w=2, and four mult_tree modules at w=1.

module mult_tree
#(int wa = 16, int wb = 16, int wp = wa + wb)

(output logic [wp:1] prod,

input uwire [wa:1] a,

input uwire [wb:1] b);

if (wa == 1) begin

assign prod = a ? b : 0;

// Equivalent to: prod = a * b;

end else begin

// Split a in half and recursively instantiate a module for each half.

localparam int wn = wa / 2;

localparam int wx = wb + wn;

uwire [wx:1] prod_lo, prod_hi;

mult_tree #(wn,wb) mlo(prod_lo, a[wn:1], b);

mult_tree #(wn,wb) mhi(prod_hi, a[wa:wn+1], b);

// Combine the partial products.

always_comb prod = prod_lo + (prod_hi << wn);

end

endmodule

module my_module
#(int w = 8, int wp = 2 * w)

(output uwire [wp-1:0] p,

input uwire [w-1:0] x, y);

mult_tree #(w,w) mt1(p,x,y);
endmodule

(a) Compute the cost of my_module using the same assumptions as in Problem 1. The cost must

2

← → Fall 2019 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/ee4755/2019/hw03.pdf

be in terms of w. It’s okay, indeed encouraged, to use sample values like w = 16 when working
out the problem, but once you have it figured out give the answer in terms of w. (If you have not
solved Problem 1 then use the incorrect sample answers provided in Problem 1.)

The following identity may be helpful:
∑m−1

i=0 2i = 2m − 1. In such a summation i might
indicate the level of recursion and 2i might indicate the number of modules at that recursion level.
For the top level of the recursion i = 0.

(b) Compute the delay of the multiplier using a simplifying assumption similar to the one used in
Problem 1: when computing the delay of prod = prod_lo + (prod_hi << wn) assume that
all bits for prod_lo and prod_hi arrive at the same time and that all bits of prod are sent to the
outputs at the same time. (Don’t like simplifying assumptions? The next subproblem is for you!)

Show your answer for w=8 and as an expression in terms of w. Don’t forget to consider the
entire elaboration, not just the top-level module.

(c) Compute the delay of the multiplier without the simplifying assumption. That is, account for
the fact that the less-significant bits of mult_tree will be ready before the more-significant bits.

Show your answer for w=8 and as an expression in terms of w. Don’t forget to consider the
entire elaboration, not just the top-level module.

Useful diagram on next page.

3

← → Fall 2019 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/ee4755/2019/hw03.pdf

Use the diagram below to help work out solutions.

mult2

16

1:0

mult2

16

3:2

<<
2

+

mult2

16

5:4

mult2

16

7:6

<<
2

+
<<

4

+

mult2

16

9:8

mult2

16

11:10

<<
2

+

mult2

16

13:12

mult2

16

15:14

<<
2

+
<<

4

+
<<

8

+

16b by 4b

16b by 8b

mult16

a

b

p
ro
d

16

16

32

There are four of these.

T
h
e
re

 a
re

 tw
o
 o

f th
e
se

.

4

← → Fall 2019 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/ee4755/2019/hw03.pdf

LSU EE 4755 Homework 4 Due: 11 November 2019

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2019/hw04.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if for whatever reason you haven’t done so or neeed to do it again), copy the
assignment, and run the Verilog simulator and synthesis program on the unmodified homework
file, hw04.v. Do this early enough so that minor problems (e.g., password doesn’t work) are minor
problems.

Homework Overview
Module best_match_behavioral has two inputs, a longer vector, val, and a short vector, k. It
sets pos to the start of a subvector of val that best matches k and sets err to the number of bit
positions that don’t match. For example, suppose val = 8’b11110000 and k=4’b1100. Then pos

would be set to 2 and err to 0 because there is an exact match at position 2 in val. If k=4’b1101
then there isn’t an exact match for k in val, but at position 2 there is a match with one error. If
k=2’b00 then there are matches at positions 0, 1, and 2, all with zero errors.

Module best_match_behavioral is combinational (and was written as a behavioral module).
In this assignment a sequential version will be written and analyzed.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests the modules. Initially, the testbench will exit because module
best_match has not responded in sufficient time. When that happens one of the last lines of the
testbench output shows that the final cycle count is the same as the cycle limit (128 below), and
“CYCLE LIMIT EXCEEDED” is shown.

ncsim> run

Exit from clock loop at cycle 128, limit 128. ** CYCLE LIMIT EXCEEDED **

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

Compilation finished at Mon Nov 4 17:56:24

To get rid of this message best_match must handshake correctly, see Problem 1. If best_match
responds in time, the testbench will check to see if pos is in the right range. The output below shows
errors when pos is out of range: Error in best_match, test # 3, pos out of range:

0xff

Error in best_match, test # 4, pos out of range: 0xff

Done with best_match_behavioral tests, 0 errors found.

Done with best_match tests, 1000 errors found.

Exit from clock loop at cycle 59001, limit 59069.

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

The output err is supposed to be the number of non-matching bits at pos. If not, the testbench
shows output like:
Error in best_match, test # 2, err wrong 1 != 3 (correct) pos 2 84 ^ 01

Error in best_match, test # 3, err wrong 1 != 2 (correct) pos 13 1f ^ 3d

Error in best_match, test # 4, err wrong 1 != 2 (correct) pos 4 78 ^ f9

Done with best_match_behavioral tests, 0 errors found.

1

← → Fall 2019 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2019/hw04.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2019/hw04.pdf

Done with best_match tests, 972 errors found.

Exit from clock loop at cycle 59001, limit 59069.

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

For test # 4, the testbench reports that err was 1 but should have been 2. The line also shows
that pos was set to 4, and that val at that position was 78 (in hexadecimal) and that k=f9.

The testbench also checks whether the err returned is the minimum error for that value of
val and k.

The testbench prints the details of the first few errors it finds. A grand total is printed at the
end, see the transcript above.

Use Simvision to debug your modules. Feel free to modify the testbench so that it presents
inputs that facilitate debugging.

Synthesis
The synthesis script, syn.tcl, will synthesize best_match_behavioral (for reference) and best_match

(your solution). Each module will be synthesized at three widths, and with two delay targets, an
easy 90 ns and a un-achievable 0.1 ns. If a module doesn’t synthesize −.001 s is shown for its delay.
The script is run using the shell command genus -files syn.tcl, which invokes Cadence Genus.
If you would like to synthesize additional modules or sizes edit syn.tcl near the bottom.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew-file.log.

Problem 1: Complete module best_match so that it computes the best match sequentially as
described below. In addition to val and k, the module has 1-bit inputs start and clk and 1-bit
output ready.

Handshaking works as follows: When start=1 at a positive edge the module should set ready
to zero. It should then start scanning for the best match, checking one shifted position per cycle.
The maximum number of cycles needed should be wv-wk plus one or two more needed for hand-
shaking. (The testbench will wait 2*wv cycles before giving up.) The module should set err and
pos to their correct values and ready to 1.

The inputs, val and k will be held steady at least until ready is set to 1.
The module must use the pop (population) module (in hw04.v) to compute possible values for

err. That is, don’t use something like the b loop in best_match_behavioral to accumulate the
sum e. Instead compute the XOR of the appropriate bit range and provide that to the pop module
as an input.

For maximum credit avoid the use of large (such as wv-input) multiplexors in your design, or
the use of a non-constant shifter.

The module must be synthesizable and correct.
The behavioral best match module is shown below for reference.

module best_match_behavioral
#(int wv = 32, int wk = 10, int wvb = $clog2(wv), int wkb = $clog2(wk+1))

(output logic [wvb:1] pos, // Position of best match.

output logic [wkb:1] err, // Number of non-matching bits.

input uwire [wv-1:0] val, input uwire [wk-1:0] k);

always_comb begin

automatic int best_err = wk + 1;

automatic int best_pos = -1;

2

← → Fall 2019 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/ee4755/2019/hw04.pdf

for (int p=0; p<=wv-wk; p++) begin

automatic int e = 0;

for (int b=0; b<wk; b++) e += k[b] !== val[p+b];

if (e < best_err) begin

best_err = e;

best_pos = p;

end

end

err = best_err;

pos = best_pos;

end

endmodule

Problem 2: Run the synthesis program and indicate how your module compares to the behavioral
module.

(a) Compare the amount of time needed for your module compared to the behavioral one. The
answer to this question requires some manipulation of the values in the Delay Actual column.
Indicate which results are expected, and which are not expected, and explain why.

(b) Compare the area of your design to the behavioral one. Indicate which results are expected,
and which are not expected, and explain why.

3

← → Fall 2019 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/ee4755/2019/hw04.pdf

LSU EE 4755 Homework 5 Due: 20 November 2019

Problem 1: Solve 2018 Final Exam Problem 3, in which the inferred hardware for a misc module
is to be found (a) and the state of the event queue over time simulating misc (b) is to be found.

Problem 2: Appearing below is a solution to Homework 4 Problem 1. Show the hardware that
will be inferred for this module after some optimization. Show the pop module as a box.

• Clearly show all input and output ports.

• Please don’t get parameters and ports confused.

module best_match
#(int wv = 32, int wk = 10, int wvb = $clog2(wv), int wkv = $clog2(wk+1))

(output logic [wvb:1] pos, output logic [wkv:1] err, output logic ready,

input uwire [wv-1:0] val, input uwire [wk-1:0] k, input uwire start, clk);

logic [wvb-1:0] curr_pos;

logic [wv-1:0] sh_val;

uwire [wkv-1:0] e;

pop #(wk,wkv) p(e, k ^ sh_val[wk-1:0]);

always_ff @(posedge clk)

if (start == 1) begin

ready = 0;

curr_pos = 0;

sh_val = val;

err = ~0;

end else if (!ready) begin

if (e < err) begin err = e; pos = curr_pos; end

ready = curr_pos == wv - wk;

curr_pos++;

sh_val >>= 1;

end

endmodule

1

← → Fall 2019 ← → Homework 5 Homework Solution hw05.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2019/hw05.pdf

LSU EE 4755 Homework 6 Due: 4 December 2019

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2019/hw06.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if for whatever reason you haven’t done so or need to do it again), copy the
assignment, and run the Verilog simulator and synthesis program on the unmodified homework
file, hw06.v. Do this early enough so that minor problems (e.g., password doesn’t work) are minor
problems.

Homework Overview
Module add_accum keeps a running total of values appearing at its inputs. A 1-bit input ai_valid
indicates whether the value on w-bit input ai should be added to the total (ai_valid==1) or
ignored (ai_valid==0). These signals should be examined on the positive edge of input clk. The
module places a running sum of these values on output sum. The sum should be reset to 0 when
input reset is 0 at a positive edge. The Verilog below implements the behavior described so far.

module add_accum
#(int w = 20, n_stages = 3)

(output logic [w-1:0] sum,

output logic sum_valid,

input uwire [w-1:0] ai,

input uwire ai_valid, reset, clk);

always_ff @ (posedge clk)

if (reset) sum = 0; else if (ai_valid) sum += ai;

always_comb sum_valid = 1;

endmodule

A student at this point might wonder if this is going to be a dull assignment. No, of course
not! Did you notice the parameter n_stages? That indicates that the module shall [I understand
why shall is used instead of should in some contexts, but still it sounds too bossy to me] use a
pipelined adder of n_stages stages. The point of this assignment is to modify the module above
so that it uses the provided (and pre-instantiated) pipelined adder.

There are two challenges here. The straightforward challenge of connecting the pipelined
input and output ports properly. Then there’s the perhaps unexpected and interesting challenge
of properly updating the running sum when input values arrive even while the calculation of a sum
is still in the pipeline. The module has an output sum_valid that should only be set to 1 when
output sum is the correct sum of all arriving valid values since the most recent reset.

After a reset sum should be set to zero and sum_valid to 1. When the first value arrives sum

might change to that arriving value by the next clock cycle (no adder needed). But when the second
value arrives it will be necessary to add it to the first (the current sum) and since the pipelined
adder takes several cycles sum_valid will have to be set to zero while the adder is computing. If
no other new values arrive before the adder is finished sum can be set to the sum and sum_valid

should again be set to 1. Suppose instead that while the adder is operating on the first two values,
a third value arrives? Then when the adder is finished the third value will have to be added to
the just-completed sum. There is no restriction on when values can arrive. They may arrive every
cycle or with large gaps between arrivals. If values arrive frequently then sum_valid may remain

1

← → Fall 2019 ← → Homework 6 Homework Sol Code hw06.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2019/hw06.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2019/hw06.pdf

0. But if values stop arriving sum_valid should eventually be set to 1 and sum should be set to
the correct sum.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests add_accum instantiated for different pipeline lengths. It will
check that the output values are correct, and that they don’t appear too early or too late. Initially
the testbench will report that there were 0 incorrect values but that they all arrived too early. The
testbench will report the first four errors of each time for each pipeline length. The error message is
followed by a string describing when the module was last reset and when values have since arrived.
For example:

At cyc 7, value ready too soon, 0, cyc. (Min cyc 8.)

R(4)+42(5)+40(7)

This indicates that at cycle 7 the value arrived too soon, after 0 cycles instead of after a
minimum of 8 cycles. (The first value can appear after 0 cycles since there’s nothing to add.) The
R(4) indicates that the most recent reset was in cycle 4. The +42(5) indicates that the value 42
was at the input to the module in cycle 5.

A tally of errors and other information is shown after each pipeline length:

Done with 6-stage tests, 10000 series.

Correct, 65271; errors : 0 not done, 0 val, 45273/0 early/late.

For 6 stages average latency 0.15 cycles.

The number after correct was the number of correct values found. To the left of “not done” is
the number of tests skipped due to unresponsiveness. The number to the left of val is the number
of incorrect results. The numbers to the left of early/late indicate the number of values appearing
too early (45273 in the example above) or too late (0 in the example).

The testbench enforces a minimum time for all but the first value after a reset. The minimum
time, n_stages, is assigned to parameter lat_min_empty in module testbench_n. The testbench
enforces two maximum times. If the module is asserting sum_valid and a new value arrives, the
updated sum should appear within lat_limit_empty = n_stages + 2 cycles. (That’s also a
testbench parameter.) If sum_valid is 0 and a new value arrives the testbench will patiently wait
lat_limit_full = 2 + (1+$clog2(n_stages)) * (n_stages + 1) cycles. These testbench
parameters can be changed to help with debugging, but they should be set back. The ta-bot will
test the code using a different copy of the testbench module.

Following the error tally an average latency is shown, in this case less than 1 cycle. A low
number is good so long as the pipelined adder is being used (which it isn’t in the example above).

The following is output if the problem is solved correctly:

Starting tests for 2-stage pipeline.

Done with 2-stage tests, 10000 series.

Correct, 35763; errors : 0 not done, 0 val, 0/0 early/late.

For 2 stages average latency 3.26 cycles.

Starting tests for 3-stage pipeline.

Done with 3-stage tests, 10000 series.

Correct, 32338; errors : 0 not done, 0 val, 0/0 early/late.

For 3 stages average latency 4.64 cycles.

Starting tests for 5-stage pipeline.

Done with 5-stage tests, 10000 series.

Correct, 28774; errors : 0 not done, 0 val, 0/0 early/late.

For 5 stages average latency 7.77 cycles.

Starting tests for 6-stage pipeline.

2

← → Fall 2019 ← → Homework 6 Homework Sol Code hw06.pdf

https://www.ece.lsu.edu/ee4755/2019/hw06.pdf

Done with 6-stage tests, 10000 series.

Correct, 27737; errors : 0 not done, 0 val, 0/0 early/late.

For 6 stages average latency 9.48 cycles.

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

Total number of errors: 0

Use Simvision to debug your modules. Finding errors in sequential code without a debugger
is time consuming and tedious. Feel free to modify the testbench so that it presents inputs that
facilitate debugging.

Synthesis
The synthesis script, syn.tcl, will synthesize add_pipe (for reference) and add_accum. Each
module will be synthesized at several pipeline depths, and with two delay targets, a delay-is-
nothing-to-worry-about 10 ns and an unachievable 0.1 ns. If a module doesn’t synthesize −.001 s
is shown for its delay. The script is run using the shell command genus -files syn.tcl, which
invokes Cadence Genus. If you would like to synthesize additional modules or sizes edit syn.tcl

near the bottom.
The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional

output of the synthesis program is written to file spew-file.log.

Problem 1: Modify module add_accum so that it keeps an accumulated sum (see the intro above)
using a pipelined adder. The module must be synthesizable. A pipelined adder has been instanti-
ated and some starter solution code has been included:

module add_accum
#(int w = 20, n_stages = 3)

(output logic [w-1:0] sum, output logic sum_valid,

input uwire [w-1:0] ai, input uwire ai_valid, reset, clk);

always_ff @ (posedge clk)

if (reset) sum = 0; else if (ai_valid) sum += ai;

always_comb sum_valid = 1;

/// The code above must be removed and the pipelined adder, add_p0, used instead.

uwire [w-1:0] aout;

uwire [w-1:0] a0 = ai; // May need other connections.

uwire [w-1:0] a1;

add_pipe #(w,n_stages) add_p0(aout,a0,a1,clk);

logic [n_stages:0] st_occ; // Indicate which stage of add_p0 is occupied.

uwire aout_valid = st_occ[n_stages-1];

always_ff @(posedge clk) if (reset) begin

st_occ <= 0;

end else begin

// Keep track of which stage of add_p0 is occupied.

st_occ[0] <= ai_valid; // Lets initially assume all values enter pipe.

3

← → Fall 2019 ← → Homework 6 Homework Sol Code hw06.pdf

https://www.ece.lsu.edu/ee4755/2019/hw06.pdf

// Advance other occupied signals.

for (int i=1; i<=n_stages; i++) st_occ[i] <= st_occ[i-1];

end

endmodule

The module above correctly computes the accumulated sum, however it does not use the
pipelined adder. The pipelined adder has been instantiated and one input has been connected
(though it may need to be connected to additional items).

Beneath the pipelined adder is code needed to keep track of which stages of the adder have
values. Bit st_occ[i] is 1 if stage i of the adder has a valid value. Stage 0 is initialized with the
module input’s valid signal. Values are advanced one position per cycle. Net aout_valid is 1 if
the adder output is valid, which will be true n_stages cycles after ai_valid is 1.

As described in the introduction, this problem would be easy if new values arrived at least
n_stages cycles apart, because in that case the accumulated sum and the new value could be
placed in the adder without worry. But a new value can arrive while the adder is busy with one or
more computations, so the new value must be buffered until there is something to add it to, either
a second new value or something emerging from the pipeline.

See the checkbox items in the Verilog code for additional items to look for. A diagram like the
one below might help in solving this problem.

Cycle 0 1 2 3 4 5 6

ai_valid 1 1

a0 ai ai

a1 sum sum

aout_valid 0 1 0 1

sum =ao =ai

Cycle 0 1 2 3 4 5 6

4

← → Fall 2019 ← → Homework 6 Homework Sol Code hw06.pdf

https://www.ece.lsu.edu/ee4755/2019/hw06.pdf

6 Fall 2018

108

← → Fall 2018 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2018/hw01.pdf

LSU EE 4755 Homework 1 Due: 5 September 2018

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2018/hw01.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw01.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Overview
An n-input sorting network is a combinational circuit with n inputs and n outputs. The n values at
the inputs appear at the outputs in sorted order. The illustration below shows a four-input sorting
network with example values shown in green.

a051

a16

a214

a39

x0

51

x1

6

x2 14

x3

9

sort4

File hw01.v contains correctly functioning 2-input and 3-input sorting networks, sort2_is,
and sort3. Modules sort2 and sort4 are empty and are to be completed for this assignment as
described in the problems. File hw01.v contains several other modules for use in solutions, and a
testbench.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests four modules: sort2_is, sort2, sort3, and sort4. Modules
sort2_is and sort3 should pass, the others await your solution. A sample of the end of the
testbench output appears below:

Mod sort2, sort 2 index 0, wrong elt z != 0 (correct)

Tests for sort2 done, errors in 100 of 100 sorts.

Tests for sort2_is done, errors in 0 of 100 sorts.

Tests for sort3 done, errors in 0 of 100 sorts.

Mod sort4, sort 0 index 0, wrong elt z != 24 (correct)

Mod sort4, sort 0 index 1, wrong elt z != 26 (correct)

Mod sort4, sort 0 index 2, wrong elt z != 64 (correct)

Mod sort4, sort 0 index 3, wrong elt z != 94 (correct)

Mod sort4, sort 1 index 0, wrong elt z != 0 (correct)

Tests for sort4 done, errors in 100 of 100 sorts.

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

Compilation finished at Tue Aug 28 16:53:25

1

← → Fall 2018 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2018/hw01.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2018/hw01.pdf

A count of the number of tests and errors is shown for four modules. The testbench shows the
first five errors it finds on each module, to see more modify the testbench (search for g_elt_err_count).
In the output above the testbench is showing that the module outputs are z (an unconnected wire)
which of course don’t match the expected outputs.

Use Simvision to debug your modules. Feel free to modify the testbench so that it presents
inputs that facilitate debugging.

Synthesis
The synthesis script, syn.tcl, will synthesize the four modules each with two delay targets, an
easy 10 ns and a un-achievable 0.1 ns. If the module doesn’t synthesize −.001 s is shown for the
delay. The script is run using the shell command genus -files syn.tcl, which invokes Cadence
Genus. In past semesters Cadence RTL Compiler (rc) was used, which would be invoked using rc

-files syn.tcl, but that won’t work on the 2018 homework assignments.
The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional

output of the synthesis program is written to file spew.log. Sample synthesis script output appears
below:

Problem 1: Complete module sort2 so that it implements a 2-input sorter using a comparison
unit and two 2-input multiplexors, as illustrated below. The module must pass the testbench and
be synthesizable.

a0

a1

x0

sort2

>

x1

Use only structural code in the module (do not use assign, initial, or always blocks).
Instantiate mux2 for the multiplexors and compare_le for the comparison unit. See the check
boxes in hw01.v near the problem for other requirements and tips.

Problem 2: Complete module sort4 so that it implements a 4-input sorting network. Do so by
instantiating sort3 and sort2 (or sort2_is) modules. As with sort2, use only structural code
and make sure that the module passes the testbench and synthesizes.

For this assignment, implement sort4 using one sort3 and several sort2 modules. Use the
sort2 modules to find the largest of the four inputs to sort4 and connect that largest value to
output x3. Use sort3 to handle the remaining three values.

Implement sort4 to minimize the critical path (measured in sort2 or sort2_is modules).
That is, minimize the maximum number of sort2 (or sort2_is) modules traversed by any signal.
The critical path for sort3 is 3: from input a0, through s0_01, i11, s1_12, i21, s2_01, to output
x0.

The sort3 module uses three sort2_is modules. Feel free to examine sort3 to see how
modules are instantiated and interconnected.

2

← → Fall 2018 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2018/hw01.pdf

LSU EE 4755 Homework 2 Due: 12 September 2018

Problem 1: The Verilog code below is the sort3 module from Homework 1. Draw a diagram of
the hardware as described by sort3, showing the sort2 modules as boxes. Be sure to label the
input and output ports with the same symbols used in the module.

module sort3
#(int w = 8)

(output uwire [w-1:0] x0, x1, x2,

input uwire [w-1:0] a0, a1, a2);

uwire [w-1:0] i10, i11, i21;

sort2 #(w) s0_01(i10, i11, a0, a1);

sort2 #(w) s1_12(i21, x2, i11, a2);

sort2 #(w) s2_01(x0, x1, i10, i21);

endmodule

Problem 2: It is possible to build an n-element sorting network using n
2 lg2 n two-element sorting

networks in such a way that the n-element sorting network has a critical path of lg2 n. (Note:
lg n ≡ log2 n.) But this assignment is concerned with n-element sorting networks using n(n− 1)/2
two-element sorting networks, which we will call n-element bad sorting networks or bad sorters for
short.

An n-element bad sorter has inputs a0, a1, . . . , an−1 and outputs x0, x1, . . . , xn−1. The largest
value is routed to xn−1.

A 2-element bad sorter is a single sort2 module. An n-element bad sorter, n > 2, can be
constructed using an (n − 1)-element bad sorter and n − 1 sort2 modules as follows. The n − 1
sort2 modules are connected to the n inputs and to each other in such a way that the largest
value is routed to a specific output of one of the sort2 modules. That specific sort2 output is
connected to output xn−1 of the n-element sorter. The other values connect to the (n− 1)-element
bad sorter, and the (n − 1)-element bad sorter outputs connect to outputs x0, x1, . . . , xn−2 of the
n-element bad sorter that we are constructing. Note that this generalizes the solution to Homework
1 Problem 2.

The description above is recursive. At level i (the same as n above) another i − 1 sort2

modules are used. For a 4-element sorter we need (4 − 1) + (3 − 1) + 1 = 6 sort2 modules. The
cost of an n-element bad sorter is found by solving the summation

∑n
i=2 i− 1, which is n(n− 1)/2.

That’s O(n2), which is how the bad sorter got its name.
It gets worse. The critical path through the bad sorter can range from bad to awful. That

depends on two things: How the sort2 modules are used to find the largest value, and how the
sort2 modules connect to the (n− 1)-element bad sorter.

(a) Show the worst way that sort2 modules can be connected to find the largest value. Hint: the
critical path should be n− 1 sort2 modules. Provide a sketch for the general case, and an example
for n = 4.

(b) Show the worst way that the sort2 modules, as connected above, can connect to the (n − 1)-
element sorter. Provide a sketch.

(c) Determine the critical path for an n-element bad sorter constructed in the way described in the
last two parts. Hint: The math part should be familiar.

1

← → Fall 2018 ← → Homework 2 Homework Solution hw02.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/hw02.pdf

(d) Show a much better way of connecting the sort2 modules to find the largest value. It should
be easy to show that the critical path is the lowest that is possible. Provide a sketch for n = 8.

The problem with the approach to building the bad sorters described in this assignment is
that each level in the recursion reduces the size by 1 (that is, from n to n− 1), and so the critical
path must be at least O(n). As some students may have realized, a better approach would be to
use recursion in which the n inputs were split between two n

2 -element networks and then somehow
combined. But how? The key insight, described by K. E. Batcher in a landmark 1968 paper, is
not to try to recursively describe a sorting network, but to instead recursively describe a network
that merges two already sorted sequences. The input to a 2-element merge network would be two
1-element sorted sequences. (Of course, every 1-element sequence is sorted.) Pairs of 2-element
merge networks feed a 4-element merge network, and so on. This will be further described later in
the semester.

2

← → Fall 2018 ← → Homework 2 Homework Solution hw02.pdf

https://www.ece.lsu.edu/ee4755/2018/hw02.pdf

LSU EE 4755 Homework 3 Due: 25 September 2018

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2018/hw03.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw03.v.

Homework Overview
The sorting networks from Homework assignments 1 and 2 sorted keys only, and they only sorted
unsigned integer keys. In this assignment sorter inputs will consist of keys and data, and those keys
can be signed integers or floating-point values. The only module to be modified for this assignment
is sort2.

Module sort2 has two inputs, a0 and a1, and parameters w, k, exp, and sig. Parameter
w is the total size of each input, k is the size of the key, exp is size of the exponent (for FP
keys) and sig is the size of the significand (for FP keys). All sizes are in bits. Each input
consists of data, in bit positions w-1:k+1, a key type, in bit position k, and a key, in bit po-
sitions k-1:0. If bit k is zero the key is a signed integer in 2’s complement representation. If
bit k is one the key is a FP value in a format similar to IEEE 754: Bit k-1 is the sign, bits
k-2:sig are the exponent, and bits sig-1:0 are the significand. For a description of these fields
see the floating-point modules in the ChipWare documentation (linked to the course references
page, https://www.ece.lsu.edu/koppel/v/ref.html, and also linked to the HTMLized assign-
ment code, https://www.ece.lsu.edu/koppel/v/2018/hw03.v.html). Also see the fp_to_val

function in the testbench code, this function converts this floating-point representation to a value.
In the unmodified file the sort2 module compares the inputs as unsigned integers. This is

wrong because the high bits of each input are data, not the keys. The mux connections are correct
because each input should be sent to the appropriate output unmodified. The solution to the
problems below involve setting c (the mux select signal) to the correct value.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests module sort2 at two different sizes and using a mix of input

types. It first tries integer-only keys (labeled ii in the output), then floating-point only keys
(labeled ff), and finally integer/FP keys (labeled if). It reports the first five errors of each type,
and for each module size reports a tally by type.

Here is a transcript showing the start of the testbench (after the compiler’s own messages):

Starting testbench for w=32, k=16, exp=6 sig width=9...

Test ii 3, error (x0,x1): (462cf78c,7cfcf78b) != (7cfcf78b,462cf78c) correct.

a0: data 462c, key -2164.00000 = INT ’hf78c

a1: data 7cfc, key -2165.00000 = INT ’hf78b

To re-run paste: tests.push_back(’h462cf78c); tests.push_back(’h7cfcf78b);

Test ii 4, error (x0,x1): (72aed2ac,d512d2aa) != (d512d2aa,72aed2ac) correct.

a0: data d512, key -11606.00000 = INT ’hd2aa

a1: data 72ae, key -11604.00000 = INT ’hd2ac

To re-run paste: tests.push_back(’hd512d2aa); tests.push_back(’h72aed2ac);

The transcript above shows two errors, both for integer key pairs. The first line shows the
actual output followed by the correct output (labeled correct). The number before error is a

1

← → Fall 2018 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2018/hw03.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/ref.html
https://www.ece.lsu.edu/koppel/v/2018/hw03.v.html
https://www.ece.lsu.edu/ee4755/2018/hw03.pdf

test number, these start at zero and go up to num_tests-1 (see the testbench code). The next
two lines show the input values broken into data and key, including the value and representation
details. The last line of each error report has text that can be put into the testbench code so that
particular test can be re-run as one of the first tests.

The testbench tests the sort2 module at two sizes. At the end of the code for each is a tally
of the number of errors:

Done with 3000000 tests for k=16, exp=6: 499679 ff errs, 499666 if errs, 499400

ii errs,

In the sample above there are many errors for each type of test. Here is the output when all
tests pass:

Starting testbench for w=32, k=16, exp=6 sig width=9...

Done with 3000000 tests for k=16, exp=6: 0 ff errs, 0 if errs, 0 ii errs,

Starting testbench for w=24, k=14, exp=5 sig width=8...

Done with 3000000 tests for k=14, exp=5: 0 ff errs, 0 if errs, 0 ii errs,

All done.

Debugging
To debug your code identify an error that looks easy to figure out and copy the text to the right
of paste: into the testbench_size module near the comment Add tests below. Also change
the value of num_tests to a small number, say 3. (Don’t forget to change it back!) Verify that
the code fails on test 0 (or some other small number). Next, run SimVision: irun -gui hw03.v.
Locate your module (it will be under t1 or t2) and copy symbols from s2 to the waveform viewer.
See the SimVision instructions on the https://www.ece.lsu.edu/koppel/v/proc.html page.

Synthesis
The synthesis script, syn.tcl, will synthesize sort2 with two delay targets, an easy 10 ns and a un-
achievable 0.1 ns. If the module doesn’t synthesize −.001 s is shown for the delay. The script is run
using the shell command genus -files syn.tcl, which invokes Cadence Genus. In past semesters
Cadence RTL Compiler (rc) was used, which would be invoked using rc -files syn.tcl, but
that won’t work on the 2018 homework assignments.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew.log. Sample synthesis script output appears
below:

Problem 1: Complete module sort2 so that it correctly sorts inputs with signed integer keys.
Avoid unnecessarily costly or slow designs.

Problem 2: Complete module sort2 so that it also correctly sorts inputs with floating-point keys.
Instantiate at least one ChipWare module, it’s okay to use more. When adding ChipWare modules
be sure to put in an include directive at the end of the file. Avoid unnecessarily costly or slow
designs.

Problem 3: Complete module sort2 so that it also correctly sorts inputs when one key is a
signed integer and the other is floating point. Avoid unnecessarily costly or slow designs. Try to
avoid solutions that use a larger significand than is specified by the parameters or other brute-force
approaches.

2

← → Fall 2018 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2018/hw03.pdf

LSU EE 4755 Homework 4 Due: 3 October 2018

Problem 1: Solve 2017 Final Exam Problem 3, in which the cost and delay of two alternative
designs are to be compared.

1

← → Fall 2018 ← → Homework 4 Homework Solution hw04.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/hw04.pdf

LSU EE 4755 Homework 5 Due: 12 October 2018

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2018/hw05.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw05.v.

Homework Overview
The sorting networks used in past assignments were not very efficient, they were the rough hardware
equivalent of bubble sorts. In this assignment much better sorters will be implemented, sorting
networks based on Batcher’s odd/even merge design.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests module batcher_sort and batcher_merge at several different
sizes.

Here is a transcript showing the output of the testbench (after the compiler’s own messages):

ncsim> run

Starting testbench.

Mod batcher_merge, n=2, sort 1 idx 0, wrong elt 18 != 7 (correct)

Mod batcher_merge, n=2, sort 1 idx 1, wrong elt 7 != 18 (correct)

Mod batcher_merge, n=2, sort 4 idx 0, wrong elt 216 != 120 (correct)

Mod batcher_merge, n=2, sort 4 idx 1, wrong elt 120 != 216 (correct)

Mod batcher_merge, n=2, sort 7 idx 0, wrong elt 150 != 12 (correct)

Tests for batcher_merge (idx 1) n=2 done, errors in 3 of 10 sorts.

Tests for batcher_merge (idx 2) n=4 done, errors in 6 of 10 sorts.

Tests for batcher_merge (idx 3) n=8 done, errors in 10 of 10 sorts.

Tests for batcher_merge (idx 4) n=16 done, errors in 10 of 10 sorts.

Tests for batcher_merge (idx 5) n=32 done, errors in 10 of 10 sorts.

Tests for batcher_sort (idx 7) n=2 done, errors in 2 of 10 sorts.

Tests for batcher_sort (idx 8) n=4 done, errors in 10 of 10 sorts.

Tests for batcher_sort (idx 9) n=8 done, errors in 9 of 10 sorts.

Tests for batcher_sort (idx 10) n=16 done, errors in 10 of 10 sorts.

Tests for batcher_sort (idx 11) n=32 done, errors in 10 of 10 sorts.

Done with all tests, errors on 10 sorters.

The transcript shows the first five errors in detail, this is on lines starting with Mod. A tally of
the total number of errors for a particular module is shown on a line starting Tests for.

Here is the output when the assignment is correctly solved:

ncsim> run

Starting testbench.

Tests for Batcher Merge (idx 1) n=2 done, errors in 0 of 10 sorts.

Tests for Batcher Merge (idx 2) n=4 done, errors in 0 of 10 sorts.

Tests for Batcher Merge (idx 3) n=8 done, errors in 0 of 10 sorts.

Tests for Batcher Merge (idx 4) n=16 done, errors in 0 of 10 sorts.

Tests for Batcher Merge (idx 5) n=32 done, errors in 0 of 10 sorts.

Tests for Batcher Sort (idx 7) n=2 done, errors in 0 of 10 sorts.

1

← → Fall 2018 ← → Homework 5 Homework Sol Code hw05.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2018/hw05.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2018/hw05.pdf

Tests for Batcher Sort (idx 8) n=4 done, errors in 0 of 10 sorts.

Tests for Batcher Sort (idx 9) n=8 done, errors in 0 of 10 sorts.

Tests for Batcher Sort (idx 10) n=16 done, errors in 0 of 10 sorts.

Tests for Batcher Sort (idx 11) n=32 done, errors in 0 of 10 sorts.

Done with all tests, errors on 0 sorters.

Debugging
To debug your code run SimVision: irun -gui hw05.v. Locate your module and copy symbols to
the waveform viewer. See the SimVision instructions on the
https://www.ece.lsu.edu/koppel/v/proc.html page.

Synthesis
The synthesis script, syn.tcl, will synthesize sort2 with two delay targets, an easy 10 ns and a un-
achievable 0.1 ns. If the module doesn’t synthesize −.001 s is shown for the delay. The script is run
using the shell command genus -files syn.tcl, which invokes Cadence Genus. In past semesters
Cadence RTL Compiler (rc) was used, which would be invoked using rc -files syn.tcl, but
that won’t work on the 2018 homework assignments.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew.log.

Problem 1: Complete module batcher_sort so that it implements a sorter as described below.
The module has one input, an n-element array a, and one output, an n-element array x. Above
some minimum value of n it should instantiate two copies of itself, each copy should sort half the
the input array, a. A behav_merge module should be instantiated to merge the output of the two
recursive implementations.

The behav_merge module, which is already written, has two inputs, a and b, each an n-element
array, and one output, x, a 2n-element array, where n is the value of the first parameter. Output
x contains the elements of a and b in sorted order.

Once Problem 2 is solved correctly replace behav_merge with batcher_merge.

The module must use structural code, be synthesizable, be reasonably efficient, clearly written,
and of course pass the testbench. See other conditions on the solution and tips in the Verilog file.

The solution to this problem is straightforward and will be in the form of other tree-structured
designs shown in class.

Warning: Do not search for a solution to this problem. Exam questions will be written under
the assumption that each student has solved all homework problems.

Problem 2: Complete module batcher_merge so that it recursively implements a Batcher odd/
even merge module in which the number of elements of each input list is a power of 2. Use sort2

instantiations to combine the output of the recursively instantiated modules. Use either structural
or behavioral code to separate each input sequence into odd and even parts.

The batcher_merge module should recursively instantiate two copies of itself, call them lo
and hi. Input a of the lo module should connect to the even-numbered a elements of the enclosing
module, input b of lo connects to odd-numbered b elements of the enclosing module. For the hi
module switch odd and even. See the illustration below. The illustration also shows how the
outputs should connect.

2

← → Fall 2018 ← → Homework 5 Homework Sol Code hw05.pdf

https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2018/hw05.pdf

b

x

a

a

b

x

lo

batcher_merge

a0, a2, a4, ..

b1, b3, b5, ..

b0, b2, b4, ..

a1, a3, a5, ..

batcher_merge

a
0
, a

1
, a

2
, ..

b
0

, b
1

, b
2

, ..

x0

x1

a0

a1

s
o
r
t
2

x0

x1

a0

a1

s
o
r
t
2

x0

x1

x2

x3

y

a

b

x

hi

batcher_merge
z

Even elements.Even elements.

Even elements.

Odd elements.

Odd elements.

y0

z0

y1

z1

Warning: Do not search for a solution to this problem. Exam questions will be written under
the assumption that each student has solved all homework problems.

The module must be synthesizable, reasonably efficient, clearly written, and of course pass the
testbench.

Do not compare the cost and performance reported by genus for your module, batcher_merge,
to those for behav_merge. That’s because genus does not correctly infer hardware for behav_merge.

3

← → Fall 2018 ← → Homework 5 Homework Sol Code hw05.pdf

https://www.ece.lsu.edu/ee4755/2018/hw05.pdf

LSU EE 4755 Homework 6 Due: 10 October 2018

Problem 1: Use the simple model to compute the cost and delay (critical path length) of the
inferred hardware for module behav_merge from Homework 5. This module has two inputs, a and
b, each of which is an n-element sorted sequence of w-bit unsigned integer values. Output x is a
2n-element array of w-bit quantities. The module assigns elements of a and b to x so that x itself
is a sorted sequence of the elements from a and b.

Show the cost and delay of behav_merge in terms of n and w. The Homework 5 module
appears below. Use the tree implementation of multiplexors for cost and delay. (See the simple
model notes.) Make reasonable optimizations, such as using the same multiplexor for a[ia] and
a[ia++]. Avoid tedious optimizations such as varying the number of bits in ia and ib.

module behav_merge
#(int n = 4, int w = 8)

(output logic [w-1:0] x[2*n], input uwire [w-1:0] a[n], b[n]);

logic [$clog2(n+1)-1:0] ia, ib;

always_comb begin

ia = 0; ib = 0;

for (int i = 0; i < 2*n; i++)

x[i] = ib == n || ia < n && a[ia] <= b[ib] ? a[ia++] : b[ib++];

end

endmodule

Problem 2: As was probably mentioned, a proper n-element Batcher odd/even merge module is
constructed from n

2 ⌈lgn⌉ sort2 modules, and the critical path length through a merge module is
⌈lgn⌉ sort2 delays.

If the previous problem was solved correctly then the cost and critical path length of be-

hav_merge should be much larger than a Batcher merge. But the behavioral code in behav_merge

has a run time of O(2n) running as an ordinary program, and consumes O(2n) memory, both
of which are optimal for an algorithm that must operate on all of 2n items. In fact, recursively
applied code based on behav_merge can sort a sequence in O(n lgn) time, which is the best one
can normally get in many cases.

What is it about the hardware realization of behav_merge that makes it so much less efficient
than the software realization? Your answer should consider how much hardware is being used at
each moment in time.

1

← → Fall 2018 ← → Homework 6 Homework Solution hw06.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/hw06.pdf

LSU EE 4755 Homework 7 Due: 16 November 2018

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2018/hw07.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw07.v.

Homework Overview
Modules mult_seq_ds_prob_1 and mult_seq_d_prob_2 have similar sets of ports as the fast
pipelined multiplier from 2017 Homework 7, but the code within this semester’s modules im-
plements a sequential rather than a pipelined multiplier. In this assignment these modules will
be modified so they use handshaking to start and announce the availability of a product, and in
mult_seq_d_prob_2, so that the latency (number of clock cycles) needed to compute a product
depends upon the number and placement of zeros in the multiplicand. Unlike 2017 Homework 7,
the solution to this problem will not be pipelined.

Initially the testbench should report errors for both modules, identified as Prob 1 and Prob 2,
these errors are due to the modules ignoring the handshake signals (in_valid and out_avail). The
testbench, however, should correctly synthesize both modules. The testbench will also synthesize
an original copy of each module, for comparison.

A correct solution to Problem 1 will eliminate the testbench errors. A correct solution to
Problem 2 will reduce the number of cycles needed to compute a correct result. A future assignment
or possibly final exam questions will ask about the difference in performance between the Problem
1 and Problem 2 modules.

The testbench reports details of the first few errors encountered on each modules, and then a
summary. If you would like to test your module on a specific multiplier/multiplicand pair search
for values to try out and add those to the beginning of the list assigned to tests. The modules
are instantiated with names prob1_m1, prob1_m2, etc. Look for these when using debugging tools
such as SimVision.

The synthesis script for this assignment can be run with the command genus -files syn.tcl.
It synthesizes modules mult_seq_ds_prob_1 and mult_seq_d_prob_2, as well as unmodified copies
of these modules, mult_seq_ds_prob_1_orig and mult_seq_d_prob_2_orig. Each is synthesized
at two sizes and three different values of m. The synthesis script assumes at latency of ⌈w/m⌉ for
these modules, which is an overestimate for Problem 2.

Problem 1: Module mult_seq_ds_prob_1 has two parameters, w and m, four input ports, clk,
in_valid, plier, and cand, and two output ports, prod, and out_avail.

The unmodified module will set prod to the 2w-bit product of w-bit inputs plier and cand,
which hold unsigned integers. It computes the product using m-bit partial products, similar
to the method used by mult_seq_dm but using the streamlined code in mult_seq_stream. In
mult_seq_ds_prob_1 the product will be available with a latency of between ⌈w/m⌉ + 1 and
2⌈w/m⌉ − 1 cycles. The latency will be ⌈w/m⌉ + 1 when the multiplier and multiplicand arrive
when iter is reset to zero, but if they arrive one cycle later the latency will be 2⌈w/m⌉−1. If that
higher latency bothers you then this is your problem. (Even those that don’t care need to solve
this problem.)

The reason for this variation in latency in mult_seq_dm and friends is that those modules
have no way of knowing when a new multiplier/multiplicand pair has arrived (other than contin-
ually comparing them to prior values which would require extra hardware). As the alert student

1

← → Fall 2018 ← → Homework 7 Homework Sol Code hw07.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2018/hw07.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2018/hw07.pdf

suspects, input in_valid in mult_seq_ds_prob_1 is used to indicate the arrival of a new pair.
Modify mult_seq_ds_prob_1 so that it starts a new multiplication at the positive edge of clk

when in_valid is 1, even if there’s a multiplication in progress. When a new multiplication starts
set out_avail to 0, and set it back to 1 when prod holds the correct product.

When this problem is correctly solved the testbench should not show errors on this module.
The testbench instantiates the module for three sizes of m, and it has Prob 1 in the name. See the
checkboxes in hw07.v for additional requirements and tips. Don’t forget synthesizability as well as
clear and efficient code.

Problem 2: The unmodified module mult_seq_d_prob_2 computes a product in at best ⌈w/m⌉+1
cycles. For some multiplicands the value of cand_2d[iter] (see the code) will be zero for certain
values of iter. An extreme case is when the multiplicand is zero, but there are many other
situations where cand_2d[iter] will be zero. Currently iter is incremented by 1 each clock cycle.
Modify mult_seq_d_fast so that iter is incremented so that it points to the next non-zero value
in cand_2d, or to ⌈w/m⌉ if there are no more non-zero values. Doing so will reduce the number of
clock cycles needed to compute a product. This should be reflected in the Avg Cyc shown for the
Prob 2 module by the testbench.

Use the synthesis script syn.tcl to find the clock period of the module. The latency shown
by the synthesis script assumes w cycles per multiply. To find the actual latency of your module
multiply the clock period reported by the synthesis script with the average cycles reported by the
testbench.

The goal is to reduce the average number of cycles, as reported by the testbench while also
keeping clock period low (as reported by the synthesis script) so that the average latency, measured
in seconds (or some fraction) is lower.

2

← → Fall 2018 ← → Homework 7 Homework Sol Code hw07.pdf

https://www.ece.lsu.edu/ee4755/2018/hw07.pdf

LSU EE 4755 Homework 8 Due: 27 November 2018

Problem 1: Appearing below is the output of the simulator and synthesis script, showing data
for the Homework 7 solution modules. Modules are simulated and synthesized for w = 32.

Module Name Area Period Period

Target Actual

mult_seq_ds_prob_1_w32_m1 157813 1000 14926

mult_seq_ds_prob_1_w32_m2 185493 1000 15431

mult_seq_ds_prob_1_w32_m4 242568 1000 16296

mult_seq_d_prob_2_w32_m1 288580 1000 31944

mult_seq_d_prob_2_w32_m2 301203 1000 32204

mult_seq_d_prob_2_w32_m4 329226 1000 32192

For Prob 1 Deg 1 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 33.0

For Prob 1 Deg 2 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 17.0

For Prob 1 Deg 4 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 9.0

For Prob 2 Deg 1 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 9.5

For Prob 2 Deg 2 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 7.3

For Prob 2 Deg 4 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 5.0

Modules instantiated with w = 32.

The Problem 1 modules are based on the streamlined multiplier and so are faster. But the
Problem 2 modules skip zeros. Based on the data above, indicate the ways, if any, that the Problem
2 modules are better than the Problem 1 modules. Explain using the numbers above.

There are more problems on the next pages.

1

← → Fall 2018 ← → Homework 8 Homework Solution hw08.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/hw08.pdf

Problem 2: Appearing below is a solution to Homework 7, Problem 1, the streamlined degree-m
multiplier with handshaking. The complete solution is at
https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html. For this problem assume that w
and m are both powers of 2.

module mult_seq_ds_prob_1 #(int w = 16, int m = 2)

(output logic [2*w-1:0] prod, output logic out_avail,

input uwire clk, in_valid, input uwire [w-1:0] plier, cand);

localparam int iterations = (w + m - 1) / m;

localparam int iter_lg = $clog2(iterations);

uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg:0] iter;

logic [2*w-1:0] accum;

always_ff @(posedge clk) begin

if (in_valid) begin

accum = cand;

iter = 0;

out_avail = 0;

end else if (!out_avail && iter == iterations) begin

out_avail = 1;

prod = accum;

end

accum = { 0 + plier * accum[m-1:0] + accum[2*w-1:w], accum[w-1:m] };

iter++;

end

endmodule

(a) Show the hardware that will be inferred for this module. The Inkscape SVG format diagram
of the hardware for the streamlined sequential module from the class demo notes can be used as a
starting point. It is at https://www.ece.lsu.edu/koppel/v/2018/ill-mul-seq-str.svg.

(b) Compute the cost and delays for this module using the simple model. Show these in terms of
w and m. Clearly show the critical path on your diagram.

There is a problem on the next page.

2

← → Fall 2018 ← → Homework 8 Homework Solution hw08.pdf

https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html
https://www.ece.lsu.edu/koppel/v/2018/ill-mul-seq-str.svg
https://www.ece.lsu.edu/ee4755/2018/hw08.pdf

Problem 3: Appearing below is a solution to Homework 7, Problem 2, the streamlined degree-m
multiplier with handshaking. The complete solution is at
https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html. For this problem assume that w
and m are both powers of 2.

module mult_seq_d_prob_2 #(int w = 16, int m = 2)

(output logic [2*w-1:0] prod, output logic out_avail,

input uwire clk, in_valid, input uwire [w-1:0] plier, cand);

localparam int iterations = (w + m - 1) / m;

localparam int iter_lg = $clog2(iterations);

uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg-1:0] iter;

logic [2*w-1:0] accum;

always_ff @(posedge clk) begin

logic [iter_lg-1:0] next_iter;

if (in_valid) begin

iter = 0;

accum = 0;

out_avail = 0;

end else if (!out_avail && iter == 0) begin

prod = accum;

out_avail = 1;

end

accum += plier * cand_2d[iter] << (iter * m);

next_iter = 0;

for (int i=iterations-1; i>0; i--)

if (i>iter && cand_2d[i]) next_iter = i;

iter = next_iter;

end

endmodule

(a) Show the hardware that will be inferred for this module.

(b) Compute the cost and delays for this module using the simple model. Show these in terms of
w and m. Clearly show the critical path on your diagram.

3

← → Fall 2018 ← → Homework 8 Homework Solution hw08.pdf

https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html
https://www.ece.lsu.edu/ee4755/2018/hw08.pdf

7 Fall 2017

125

← → Fall 2017 ← → Homework 1 Homework Solution Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2017/hw01.pdf

LSU EE 4755 Homework 1 Due: 8 September 2017

Start working on the solutions to the problems below on paper, but complete them using the
computers in the lab. For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For
the complete Verilog for this assignment without visiting the lab visit
https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html.

Problem 1: Appearing below, and in hw01.v, is a Verilog description of a 2-input multiplexer,
mux2, and a partially completed description of a 4-input mux, mux4, along with a diagram showing
how a four-input mux can be made using three two-input multiplexers. Complete mux4 as described
in the diagram.

It is important that mux4 instantiate three mux2 modules. Other correct 4-input multiplexer
implementations will not receive credit. Also, don’t forget to set the parameters correctly when
instantiating modules.

1:10:0

select

a0

a1

a2

a3

x

module mux2
#(int w = 16)

(output uwire [w-1:0] x,

input uwire s,

input uwire [w-1:0] a, b);

assign x = s == 0 ? a : b;

endmodule

module mux4
#(int w = 6)

(output uwire [w-1:0] x,

input uwire [1:0] s,

input uwire [w-1:0] a[3:0]);

endmodule

1

← → Fall 2017 ← → Homework 1 Homework Solution Sol Code hw01.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html
https://www.ece.lsu.edu/ee4755/2017/hw01.pdf

Problem 2: Appearing below is a mux8 module. Complete mux8 so that it implements an 8-input
multiplexer using two mux4 modules and one mux2 module. Notice that the data input to mux8

is an 8-element array of w-bit quantities. To see how to extract a subrange of an array (called a
part select in Verilog) see the testbench module. Solve this problem by generalizing the technique
appearing in the previous problem.

Credit will only be given for mux8 modules that instantiate two mux4 modules and a mux2

module. Yes, assign x = a[s]; is correct and the best way to do it in other situations, but the
goal here is to learn about instantiation.

module mux8
#(int w = 5)

(output uwire [w-1:0] x,

input uwire [2:0] s,

input uwire [w-1:0] a[7:0]);

endmodule

Appearing below is the start of the testbench code. To see the complete testbench and other
modules follow https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html.

module testbench();

localparam int w = 10;

localparam int n_in_max = 8;

localparam int n_mut = 3;

uwire [w-1:0] x[n_mut];

logic [2:0] s;

logic [w-1:0] a[n_in_max-1:0];

mux2 #(w) mm2(x[0], s[0], a[0], a[1]);

mux4 #(w) mm4(x[1], s[1:0], a[3:0]);

mux8 #(w) mm8(x[2], s[2:0], a[7:0]);

initial begin

automatic int n_test = 0;

automatic int n_err = 0;

2

← → Fall 2017 ← → Homework 1 Homework Solution Sol Code hw01.pdf

https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html
https://www.ece.lsu.edu/ee4755/2017/hw01.pdf

LSU EE 4755 Homework 2 Due: 25 September 2017

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab visit
https://www.ece.lsu.edu/koppel/v/2017/hw02.v.html.

Problem 1: Suppose point x1 has value a1, and suppose point x2 has value a2. Let a(x) be
the value at point x determined by linearly interpolating the values at x1 and x2. For example,
a(x1) = a1 and a(12 (x1 + x2)) = a1 + 1

2 (a1 + a2). In general, a(x) = a1 + (x − x1)
a2−a1

x2−x1
for real

values x1, x2, a1, a2, and x. Define a version of linear interpolation, ai(j), in which the point to
interpolate, j, is relative to x1 and in which the interpolated value is the floor of the actual value.
That is, ai(j) = ⌊a1 + j a2−a1

x2−x1
⌋. For example, ai(0) = ⌊a1⌋ and ai(x2 − x1) = ⌊a2⌋.

Module interp_behav in hw02.v performs such a linear interpolation. (You might want to
examine this module to double-check your understanding of what ai(j) does.) Alas, it is not syn-
thesizable. Modify module interp in hw02.v (partially shown below) so that it correctly performs
the linear interpolation, is synthesizable, and uses the floating-point modules from the ChipWare
library. (Don’t try to do everything using integer arithmetic.) (Additional information is provided
after the subproblems.)

(a) Complete module interp below so that it sets output valid to 1 if ⌊x1⌋ + j ≤ ⌊x2⌋.
(b) Complete module interp below so that it sets output aj to ai(j) based on the values at its
input ports, with port names approximately matching the symbols used above.
module interp

#(int jw = 12, int amax = 255)

(output uwire valid,

output uwire [7:0] aj,

input uwire [31:0] x1, a1, x2, a2,

input uwire [jw-1:0] j);

endmodule

Module interp_behav is not synthesizable because it uses operators to perform floating-point
arithmetic. In module interp instantiate ChipWare modules to perform floating-point operations.
Module interp already instantiates an adder and a float-to-int converter. Find additional modules
in the ChipWare documentation, which can be found on the course references page. When using
a ChipWare module put in an include directive at the end of the file. See the end of hw02.v for
examples.

The testbench will test module interp, it should initially report lots of errors. Of course,
when you are done there should be zero errors.

Follow the synthesis steps on the course procedures page to determine if interp is synthesiz-
able. If the elaborate step is successful then the module is synthesizable.

Problem 2: Floating-point hardware is relatively costly. Compare the cost of FP and integer
arithmetic units by synthesizing equivalent FP and integer adders and dividers. Wrap the ChipWare
modules in your own modules, (such as fp_add in hw02.v) and set parameters so the FP and integer
units are comparable. Then modify the synthesis script, syn.tcl, so that it will synthesize these
modules. The modules should be added to the list assigned on the set modules line.

Based on the data collected above, indicate how much less you think the cost would be of an
interp module that used integer arithmetic.

1

← → Fall 2017 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2017/hw02.v.html
https://www.ece.lsu.edu/ee4755/2017/hw02.pdf

LSU EE 4755 Homework 3 Due: 4 October 2017

Problem 1: Solve 2016 EE 4755 Final Exam Problem 2, in which timings are requested for
individual units, such as a BFA and more complex circuits made from individual units.

In the simple timing model 2-input AND and OR gates each have a delay of 1 unit, and NOT
gates have a delay of 0 units. AND and OR gates with more than two inputs have the delay
obtained with a reduction tree of 2-input gates. That is, n-input AND and OR gates have a delay
of ⌈lg n⌉ units.

Problem 2: Solve 2016 EE 4755 Final Exam Problem 4, in which the cost of some circuits is to
be computed.

In the simple cost model NOT gates have a cost of 0 units and n-input AND and OR gates
each have a cost of n−1 units. The cost of other gates is the cost of the AND, OR, and NOT gates
needed to implement them.

1

← → Fall 2017 ← → Homework 3 Homework hw03.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2017/hw03.pdf

LSU EE 4755 Homework 4 Due: 1 November 2017

For instructions visit http://www.ece.lsu.edu/koppel/v/proc.html. For the complete Ver-
ilog for this assignment without visiting the lab visit
http://www.ece.lsu.edu/koppel/v/2017/hw04.v.html.

Problem 1: A run of characters in a sequence is a set of consecutive characters that are the same,
the length of a run is the number of times the character is repeated in the run. For example,
the string aabbbcaaaa contains four runs: a run of length 2 for character a, a run of length 3 for
character b, a run of length 1 for character c, and a run of length 4 for character a. (Note that a
has two runs.)

Module maxrun, when completed, will keep track of the maximum-length run in a sequence of
characters appearing at its in_char input. In this assignment character refers to a c-bit value. The
testbench (including the excerpt below) shows character values as two-digit hexadecimal numbers.
For example, at cycle 2 the table shows c=8d for in_char, meaning that the character value is
8d16 = 14110. The fact that the character can be represented using two hexadecimal digits or three
decimal digits does not change the fact that it is one character.

At the positive edge of input clk, maxrun will compare the character at in_char to the
character seen at the previous positive edge. If they are the same it will increment a current run
counter, if the characters are different it will set the current run counter to 1. If reset is 1 at the
clock positive edge then the current run counter should be set to 1 (which is the same as setting it
to 0 and then incrementing it). A second max run counter is also set to zero on the reset signal
at the positive clock edge. If the current run counter is greater than the max run counter then
the max run counter is set to the current run counter, and the character appearing in that run is
remembered and used used for output mr_char.

If input mr is 1, then output len should be set to the value of the max run counter, otherwise
it should be set to the value of the current run counter. This should be done asynchronously (len
should be updated whenever mr changes, not just at a positive clock edge).

For example, look at the output of the testbench below. Column R shows the value of the
reset signal and column in_char shows the input character, both appearing before and “during”
the positive clock edge. The remaining columns show the value of the current run counter, max
run counter, and the mr_char output after the positive clock edge. At cycle 1 the input character,
00, has a run of 2. At cycle 6 character 8d has reached a run of 5, etc. The testbench shows an ok

if the output is correct, otherwise it shows what the correct output should be.

Cycle R in_char current-run max-run mr_char

----- - ----- ------------- ------------- ----------

0 r c=00 cr_len 1 ok mr_len 1 ok mr_c 00 ok

1 c=00 cr_len 2 ok mr_len 2 ok mr_c 00 ok

2 c=8d cr_len 1 ok mr_len 2 ok mr_c 00 ok

3 c=8d cr_len 2 ok mr_len 2 ok mr_c 00 ok

4 c=8d cr_len 3 ok mr_len 3 ok mr_c 8d ok

5 c=8d cr_len 4 ok mr_len 4 ok mr_c 8d ok

6 c=8d cr_len 5 ok mr_len 5 ok mr_c 8d ok

7 c=c5 cr_len 1 ok mr_len 5 ok mr_c 8d ok

8 c=77 cr_len 1 ok mr_len 5 ok mr_c 8d ok

9 c=f2 cr_len 1 ok mr_len 5 ok mr_c 8d ok

10 r c=f2 cr_len 1 ok mr_len 1 ok mr_c f2 ok

11 c=f2 cr_len 2 ok mr_len 2 ok mr_c f2 ok

12 c=f2 cr_len 3 ok mr_len 3 ok mr_c f2 ok

1

← → Fall 2017 ← → Homework 4 Homework Sol Code hw04.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html
http://www.ece.lsu.edu/koppel/v/2017/hw04.v.html
https://www.ece.lsu.edu/ee4755/2017/hw04.pdf

13 c=f2 cr_len 4 ok mr_len 4 ok mr_c f2 ok

14 r c=f2 cr_len 1 ok mr_len 1 ok mr_c f2 ok

15 c=9d cr_len 1 ok mr_len 1 ok mr_c f2 ok

16 c=0d cr_len 1 ok mr_len 1 ok mr_c f2 ok

17 c=d5 cr_len 1 ok mr_len 1 ok mr_c f2 ok

Complete the maxrun module so that it passes the testbench and is synthesizable. Please pay
attention to the parameters, which indicate the size of a character and the number of bits in the
counters. Use the parameters, not their default values.

Use simvision for debugging, which is explained in the course procedures page.

Problem 2: Run the synthesis script, using command rc -files syn.tcl. If it runs correctly,
a file spew-file.log will be created which contains a timing report for a design. On paper or in
comments in the submission file, indicate where the critical path is in your design.

Provide suggestions on making it faster, or explain what you actually did for a high clock
frequency.

2

← → Fall 2017 ← → Homework 4 Homework Sol Code hw04.pdf

https://www.ece.lsu.edu/ee4755/2017/hw04.pdf

LSU EE 4755 Homework 5 Due: 10 November 2017

For instructions visit http://www.ece.lsu.edu/koppel/v/proc.html. For the complete Ver-
ilog for this assignment without visiting the lab visit
http://www.ece.lsu.edu/koppel/v/2017/hw05.v.html.

Problem 1: Module lookup_char has a w-bit input char, and two outputs, found and idx.
The module has parameter chars, which is an n-element array of w-bit characters. Complete
lookup_char so that output found is logic 1 iff char is equal to one of the elements of chars. Set
idx to the index of that character. (That is, if found is 1 then chars[idx] == char.) It does not
matter what idx is if the character is not found. The module should synthesize into combinational
logic.

See the Verilog Problem 1 code for details on the parameters and ports and review the comment
checkboxes at the top of the problem for additional tips.

Module lookup_char will be used in the next problem and the testbench will be able to test
lookup_char even if no other parts of nest are finished.

Note: There is a 2016 EE 4755 homework assignment in which a module a lot like lookup_char
had to be designed. The major difference is that in 2016 the chars array was a port, here it is a
parameter. Feel free to look at the solutions. It should go without saying that the chars array
should remain a parameter in this assignment.

Problem 2: Module nest, when completed, will monitor a sequence of characters that includes
bracketing characters (such as parentheses) and indicate whether these bracketing characters are
properly nested. For example, sequence “a()[d()e[f]]” is properly nested but “a(]” is not.

The module has input parameters char_open and char_close, each of these is an n-element
array of w-bit characters listing characters that are to be treated as opening and closing bracketing
characters. See the Verilog code for details. The module has three inputs, clk, reset, and in_char.
The module has five outputs, level, awaiting, is_open, is_close, and bad.

Output is_open should be set to 1 iff in_char is one of the characters in char_open, and
is_close should be set to 1 iff in_char is one of the characters in char_close. These outputs
should be generated by instantiations of lookup_char (the module from the first problem). The
logic for computing is_open and is_close should be combinational.

(a) Complete the logic for is_open and is_close as described above. The testbench checks these
outputs for correctness, look for op and cl in the trace. They are correct if er does not appear to
the right of the 0 or 1. The module must be synthesizable.

The module has an output level which should operate as follows. On a positive clock edge
if reset is 1, level is set to zero. Otherwise, if in_char is in char_open then level should be
incremented and if in_char is in char_close then level should be decremented. If in_char is in
neither list then level is left unchanged. (level provides the current nesting level. A value of 0
indicates the current character is not “inside” any bracketing characters, or put another way, that
we are not awaiting something like a closing parenthesis.)

The module has an output bad which indicates whether the sequence seen since the last reset
is improperly nested or if the nesting level exceeded d, a module parameter. Set bad to 0 when
reset is 1 (at a positive clock edge). Set bad to 1 if a closing character is seen when level is 0 or
if an opening character is seen when level is d.

Also set bad to 1 if the wrong closing character is seen. For example, for “(]” set bad to 1
when the “]” is seen because a “)” was expected.

1

← → Fall 2017 ← → Homework 5 Homework Sol Code hw05.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html
http://www.ece.lsu.edu/koppel/v/2017/hw05.v.html
https://www.ece.lsu.edu/ee4755/2017/hw05.pdf

Output awaiting should be set to the next valid closing character. For example, if the sequence
so far is “()[” awaiting should be set to “]”.

When bad is 1 outputs level and awaiting can be set to any value.
Note that bad, level, and awaiting should be updated at the positive clock edge.

(b) Complete nest so that it works as described above. The module must be synthesizable and
show no errors.

The testbench checks nest for correctness and at the end of a run it shows the number of
errors. As of this writing it will test nest on 1000 different sequences, see variable num_groups in
the testbench. It will print details on up to 2 sequences with zero errors and up to 3 sequences
with at least one error. Feel free to edit the testbench to change these numbers.

Consider the following sample of testbench output:
ncsim> run

cyc 2 s.c 0. 0 i op 0 cl 0 bad 0 lev 0 0 await ’)’

cyc 3 s.c 0. 1 J op 0 cl 0 bad 0 lev 0 0 await ’)’

The text cyc 2 indicates the cycle number. That can be used with SimVision or some other
tool to locate the place in execution. The text s.c 0. 1 shows the sequence number, 0, and the
number of previous characters in the sequence, 1. Next shown is the character at in_char, J in
cycle 3. The text op 0 cl 0 bad 0 show the values of the is_open, is_close, and bad outputs
that nest has produced. If these values are wrong then the text er appears to the right of the
value. For example if the value at the is_open port were wrong the text would be op 0 er . Note
that bad 1 is fine but bad 0 er indicates that the bad port value is wrong. The text lev 0 0

shows both the module level output (the first 0 here) and the known correct value (the second 0).
Finally, await shows the module output followed by the correct value. They are between quotes
to make spaces and other non-printable characters obvious.

Note that when level is zero the value of await is irrelevant. Also, when bad is 1, the values of
level and await are both irrelevant.

The example below shows the trace output when there are errors:
cyc 54 s.c 5. 0 L op 0 cl 0 bad 0 lev 0 0 await ’)’

cyc 55 s.c 5. 1 (op 1 cl 0 bad 0 lev 0 1 er await ’)’

cyc 56 s.c 5. 2 (op 1 cl 0 bad 0 lev 0 2 er await ’)’

cyc 57 s.c 5. 3 q op 0 cl 0 bad 0 lev 0 2 er await ’)’

cyc 58 s.c 5. 4 Z op 0 cl 0 bad 0 lev 0 2 er await ’)’

cyc 59 s.c 5. 5) op 0 cl 1 bad 1 er lev 7 1 await ’)’

cyc 60 s.c 5. 6) op 0 cl 1 bad 1 er lev 6 0 await ’)’

At cycle 55 level should have been incremented for the “(“, but it was not. Notice the er to
the right of lev. Also, at cycle 59 the module set bad to 1 which is an error because the sequence
has not violated any rules.

Problem 3: Run the synthesis script, using command rc -files syn.tcl. If it runs correctly,
a file spew-file.log will be created which contains a timing report for a design. On paper or in
comments in the submission file, indicate where the critical path is in your design.

Provide suggestions on making it faster, or explain what you actually did for a high clock
frequency.

2

← → Fall 2017 ← → Homework 5 Homework Sol Code hw05.pdf

https://www.ece.lsu.edu/ee4755/2017/hw05.pdf

LSU EE 4755 Homework 6 Due: 13 November 2017

Problem 1: The solution to Homework 4, http://www.ece.lsu.edu/koppel/v/2017/hw04-sol.v.html,
includes two modules, maxrun and maxrun_opt.

(a) Show the hardware inferred for maxrun.

(b) Show the hardware inferred for maxrun_opt.

Problem 2: Compute the critical path for the maxrun and maxrun_opt modules using the simple
model. The launch points (path starts) are at module inputs and register outputs, and the capture
points (path ends) are at module outputs and register inputs. Note that with these definitions the
critical path does not include the register itself. Show the critical path in terms of w, the number
of bits in the len output and c the number of bits in a character.

1

← → Fall 2017 ← → Homework 6 Homework Solution hw06.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/2017/hw04-sol.v.html
https://www.ece.lsu.edu/ee4755/2017/hw06.pdf

LSU EE 4755 Homework 7 Due: 29 November 2017

For instructions visit http://www.ece.lsu.edu/koppel/v/proc.html. For the complete Ver-
ilog for this assignment without visiting the lab visit
http://www.ece.lsu.edu/koppel/v/2017/hw07.v.html.

Problem 1: Module mult_pipe is a simple pipelined multiplier which multiplies two w-bit operands,
computing m partial products per stage in ⌈w/m⌉ stages. The latency of this multiplier is ⌈w/m⌉
cycles regardless of what is being multiplied, which in many circumstances is just fine.

In contrast mult_fast is designed for situations in which lower latency is beneficial. The
goal is to compute the results for “easier” products in fewer cycles. For example, multiplying
abcd16×987616 in a 16-bit degree-4 (m=4) multiplier would take four cycles since all partial products
are needed. But, abcd16 × 116 requires one partial product and so the product should be available
sooner.

Like the other multipliers mult_fast has w-bit inputs plier and cand and a 2w-bit output
prod, and a 1-bit clk input. But it also has a 1-bit input in_valid and a 1-bit output out_avail.

At each positive clock edge if input in_valid is 1 mult_fast should start computing the
product of the input values, plier×cand. If input in_valid is 0 then the external hardware does
not need plier×cand. Though the module can start computing plier×cand when in_valid is 0,
it should not set out_avail when the product is ready.

The outputs out_avail and prod should be set at each positive clock edge. If out_avail is 1
then prod is the product of values appearing earlier at the inputs at a time when in_valid was 1.
The products should appear in the same order as the inputs. For example, suppose in cycle 10 the
values 876516 × 53ab16 appear at the inputs and at cycle 11 the values 1 × 1 appear. Even though
1 × 1 can be computed in one cycle it cannot appear at the outputs until after 876516 × 53ab16
appears. If it takes four cycles to compute 876516 × 53ab16 then it will appear at the outputs in
cycle 14, and so the product 1 × 1 will not appear at the outputs until four cycles after it arrives,
at cycle 11 + 4 = 15.

A simple case is when in_valid is always equal to one. In that case after w/m cycles out_avail
should always be set to one and the value at output prod is the product of inputs appearing w/m

cycles earlier, which is how an ordinary pipelined multiplier, such as mult_pipe operates.
Next, consider the table below which shows inputs and possible outputs. In cycle 0 the values

1 × 11 arrive. Their product, 11 appears at the outputs in cycle 1. In cycle 1 values 98 and 99

appear at the inputs but since in_valid is 0 their product is not needed. At cycle 2 values 3 and
22 are at the inputs, the product 3× 22 = 66 appears at the output in cycle 4. Note that at cycles
2 and 3 out_avail is 0. The product 4 × 14 appears at the outputs in cycle 5.

cycle 0 1 2 3 4 5

in_valid 1 0 1 1

plier 1 98 3 4

cand 11 99 22 14

out_avail 0 1 0 0 1 1

prod 11 66 56

Note that it took two cycles to compute 3 × 22 but one cycle to compute the other products.

(a) Modify mult_fast so that it sets out_avail when a product is ready. If this is completed
correctly the testbench should show that there are zero errors.

(b) Modify mult_fast so that the product is ready when all of the remaining multiplicand bits are
zero. That is, suppose stage i examines bits mi to mi+m− 1 of the multiplicand. If multiplicand
bits w − 1 to mi + m − 1 are all zero then the product is finished at stage i. If this is completed

1

← → Fall 2017 ← → Homework 7 Homework Sol Code hw07.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html
http://www.ece.lsu.edu/koppel/v/2017/hw07.v.html
https://www.ece.lsu.edu/ee4755/2017/hw07.pdf

correctly then the testbench should show that the average number of cycles for the degree-2 fast
multiplier is about 5.1 and for degree 4 it should be about 2.7.

• Modules must be synthesizable.

• Modules must be reasonably efficient.

• Do not assume specific parameter values.

• Use SimVision for debugging.

2

← → Fall 2017 ← → Homework 7 Homework Sol Code hw07.pdf

https://www.ece.lsu.edu/ee4755/2017/hw07.pdf

8 Fall 2016

137

← → Fall 2016 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4755/2016/hw01.pdf

LSU EE 4755 Homework 1 Due: 9 September 2016

The questions below can be answered without using EDA software, paper and pencil will suf-
fice. Please turn in the solution on paper. Homework 2 will require the use of Verilog im-
plementations. Nevertheless, runnable SystemVerilog code for this assignment can be found at
https://www.ece.lsu.edu/koppel/v/2016/hw01.v (plain Verilog) and
https://www.ece.lsu.edu/koppel/v/2016/hw01.v.html (syntax-highlighted HTML).

Those who are rusty about the correspondence between Verilog code and hardware might want
to look at the solution to EE 3755 Fall 2013 Homework 1, at
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf.

Problem 1: Show a Verilog explicit structural description of the module illustrated below. In this
assignment it is okay to use primitives (and, not,. . .), but don’t get in the habit of using them.

a
[0
]

a
[1
]

a
[2
]

a
[3
]

x

y

a

ezmod

one

two

three

four

�ve

a
lp
h
a

b
e
ta

g
a
m
m
a

• Base the names of ports, wires, and instances on labels in the illustration.

• Of course, use only primitives and wires. See Table 28-1 of IEEE Std 1800-2012 for a list of
gates.

Problem 2: Answer the following questions about Verilog primitives as defined in IEEE Std 1800-
2012. (See Chapter 28.) Indicate the exact section number where the answer is found.

(a) The standard provides a not primitive and a nor primitive, among others. One can easily argue
that a 1-input nor gate is the same as a not gate. Does the standard actually allow Verilog code
to instantiate a 1-input nor gate?

(b) Based on the standard, is there anything that can be done with a not primitive that can’t be
done with a 1-input nor primitive? (Don’t try to answer this too deeply, just show an instantiation.)

1

← → Fall 2016 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2016/hw01.v
https://www.ece.lsu.edu/koppel/v/2016/hw01.v.html
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf
https://www.ece.lsu.edu/ee4755/2016/hw01.pdf

Problem 3: Output match of module is_1133, shown below, is 1 iff its input d (digits) is 1133 in
BCD (which has the same representation as 1133 16). The module instantiates BCD digit detection
modules is_1 and is_3.

module is_1(output uwire match, input uwire [3:0] d);

uwire z321;

nor o0(z321,d[3],d[2],d[1]);
and a1(match,z321,d[0]);

endmodule

module is_3(output uwire match, input uwire [3:0] d);

uwire z32;

nor o0(z32,d[3],d[2]);
and a1(match,z32,d[1],d[0]);

endmodule

module is_1133(output uwire match, input uwire [15:0] d);

uwire m1, m2, m3, m4;

and a1(match, m1, m2, m3, m4);

is_1 i0(m1, d[15:12]);

is_1 i1(m2, d[11:8]);

is_3 i2(m3, d[7:4]);

is_3 i3(m4, d[3:0]);

endmodule

(a) Draw a diagram of is_1133 based on the explicit structural description above. Show the insides
of the is_1 and is_3 modules. Label the diagram using the same wire and instance names used
in the Verilog descriptions.

(b) Design a module is_1133_is that does the same thing as is_1133, but that uses implicit
structural code. The correct solution requires adding only one short line to the shell shown below.
Don’t forget that the value in d is in BCD. Note: The word short was added after the original
assignment.

module is_1133_is(output uwire match, input uwire [15:0] d);

endmodule

2

← → Fall 2016 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4755/2016/hw01.pdf

Problem 4: When completed the output of module is_1235 is 1 iff the input is 1235 in BCD.

module is_1235(output uwire match, input uwire [15:0] d);

endmodule

(a) Complete the module. The module must be explicitly structural except for the use of the
concatenation operator (see Section 11.4.12). The module must use is_1 and is_3 to detect the
digits. Do not assume or design an is_2 or is_5 and don’t put in logic to detect those digits.

(b) Draw a diagram of the completed module, which should be very similar to the diagram from
the previous problem.

3

← → Fall 2016 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4755/2016/hw01.pdf

LSU EE 4755 Homework 2 Due: 22 September 2016

Problem 0: First, follow the instructions for account setup and homework workflow on the course
procedures page, http://www.ece.lsu.edu/koppel/v/proc.html.

Look through the code in hw02.v. It contains partially completed modules for an ASCII-coded
radix-R adder. An overview of ASCII-coded adders and the contents of hw02.v is given here in
Problem 0, where there is nothing to answer. The problem problems start at Problem 1.

Consider first a hypothetical ASCII-coded radix-10 (decimal) adder with two 5-character (5×
8 = 40 bit) inputs, and a 5-character output. If the strings ___10 and __418 appeared at the
inputs, the string __428 should appear at the output (the underscores are supposed to be blanks).
The adder could be constructed from 5 ASCII full adders, which operate analogously to binary full
adders. Each ASCII full adder has two 8-bit inputs, an 8-bit output, and a one-bit carry in and
carry out. The value output is the sum of the values at the two inputs plus the carry in. The
ASCII full adders should be connected to each other in the same way that binary full adders are
connected to make a ripple adder.

BCD and ASCII adders have the following design detail that needs to be decided upon: what
to do about input that’s not a valid digit. For example, what should the radix-10, ASCII adder
do for __x10 + __234? For the adders in this assignment, the decision is to end the number at
the first non-digit character starting from the right. So __x10 would be 10 however __10_ and
_10y would both be treated as zero because there first digit character is after non-digit characters
(starting from the right).

The modules in this assignment try to use inputs is_dig_in and is_dig_out to indicate
whether there is still a run of digits. (There is a small problem in the implementation, a topic for
a future assignment. Anyway, the testbench doesn’t test for that.)

Here is a summary of the modules in hw02.v:

aa_decimal_digit_val: Is complete, don’t touch. Determines the binary value and validity
of an ASCII decimal digit.

aa_digit_val: Incomplete, see Problem 1. Should determine the binary value and validity of
a radix-R digit. Tested by the testbench.

aa_full_adder: Incomplete, see Problem 2. Should add two radix-R ASCII digits.

aa_width2: Is complete, don’t touch. A two-digit ASCII-coded, radix-R adder. Instantiates
two aa_full_adder modules. Tested by the testbench. Will not work correctly when aa_digit_val

or aa_full_adder don’t work correctly (which is the initial state of the file).

reference_adder: Complete, don’t touch. A binary adder with the same range as a 2-digit,
radix-R adder. It’s purpose is to compare the cost and performance of synthesized hardware.

The modules below are used to implement the testbench. Only modify these to help debug
your code.

radtos: Convert an integer into a radix-R ASCII string.

aa_test: Top-level module for the testbench. It instantiates testbenches for aa_digit_val

and aa_full_adder at each radix from 2 to 16.

aa_test_digit_val: Test aa_digit_val using every possible input.

aa_test_width2: Test aa_width2 using 100 randomly chosen numbers. These numbers only
contain digits.

Run the testbench on the unmodified file. It should report errors for aa_digit_val and for
aa_width2.

Note: There are no points for this problem.

1

← → Fall 2016 ← → Homework 2 Homework Sol Code hw02.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2016/hw02.pdf

Problem 1: Module aa_decimal_digit_val, below, has an 8-bit input char and two outputs.
Output is_dig is 1 iff char (an ASCII character) is considered a decimal digit. Output val is the
value of that digit (in binary), or zero if it’s not a digit.

module aa_decimal_digit_val

(output wire [3:0] val, output wire is_dig, input wire [7:0] char);

assign is_dig = char >= "0" && char <= "9";

assign val = is_dig ? char - "0" : 0;

endmodule

Originally module aa_digit_val (see hw02.v) is the same as aa_decimal_digit_val. Modify
aa_digit_val so that it honors the value of its radix parameter. That is, modify it so that is_dig
is 1 iff char (an ASCII character) is considered a digit in radix radix and so that val is the value
(in binary) of that digit. The module should work correctly for all radices from 2 to 16. For radices
≥ 10 only use lower-case letters for alphabetic digits. Please don’t change the width of val.

Run the testbench (press F9) to check whether aa_digit_val is running correctly and make
sure that it is synthesizable.

To check for synthesizability of a module follow the Verilog Synthesis steps given on the
procedures page up to and including the elaborate command. There should be no warnings. The
synthesis script can be run with the command rc -files syn.tcl, it’s purpose will be described
in the next homework.

Problem 2: When completed module aa_full_adder is supposed to add together two digits of a
radix-R number represented in ASCII plus a carry in. Output sum of the module is the ASCII digit
of the sum, and output carry_out is 1 iff there is a carry.

Complete module aa_full_adder so that it operates as described. The module should instan-
tiate two aa_digit_val modules and use them to generate the sum digit. The module must be
synthesizable, it can be written using implicit structural or behavioral code.

Run the testbench to verify correct functioning.
To check for synthesizability of a module follow the Verilog Synthesis steps given on the

procedures page up to and including the elaborate command. There should be no warnings. The
synthesis script can be run with the command rc -files syn.tcl, its purpose will be described
in the next homework.

2

← → Fall 2016 ← → Homework 2 Homework Sol Code hw02.pdf

https://www.ece.lsu.edu/ee4755/2016/hw02.pdf

LSU EE 4755 Homework 3 Due: 28 September 2016

Problem 1: Module aa_digit_val, below, is the solution to Homework 2 Problem 1. It has an
8-bit input char and two outputs. Output is_dig is 1 iff char (an ASCII character) is considered
a radix-R digit, where 2 ≤ R ≤ 16, is the value of parameter radix. Output val is the value of
that digit (in binary), or zero if it’s not a digit.

module aa_digit_val
#(int radix = 10)

(output uwire [3:0] val, output uwire is_dig, input uwire [7:0] char);

uwire is_dig_09 = char >= "0" && char <= "9";

uwire is_dig_af = char >= "a" && char <= "f";

uwire [3:0] val_raw = is_dig_09 ? char - "0" : char - "a" + 10;

assign is_dig = (is_dig_09 || is_dig_af) && val_raw < radix;

assign val = is_dig ? val_raw : 0;

endmodule

Provide sketches of what you expect the inferred hardware to look like for aa_digit_val as
described below. Hint: Some problems in the EE 4755 2014 Final Exam dealt with numbers in
ASCII representation. The optimizations requested below must go beyond those found in the exam
solution.

(a) Show a sketch of the inferred hardware before any optimization is done.

(b) Show a sketch of the inferred hardware after some optimization has been performed.

• The sketches must show the product of human thought (in particular, the human who’s name
is on the submission), not a synthesis program.

• When considering the optimizations for the logic generating is dig (including the logic for
is dig 09 and is dig af) recall that in general the cost of logic computing a==b is less than
the cost of logic computing a>b.

• When considering the optimizations for the logic generating val think about the subtraction
operations and what they actually do when is dig is true. If necessary, work out examples
of the subtraction by hand in hexadecimal.

There is another problem on the next page!

1

← → Fall 2016 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2016/hw03.pdf

Problem 2: Module aa_full_adder from Homework 2, Problem 2 adds together two digits of a
radix-R number represented in ASCII plus a carry in. The module description from the solution
appears below.

module aa_full_adder
#(int radix = 10)

(output uwire [7:0] sum, output uwire carry_out, output uwire is_dig_out,

input uwire [7:0] a, b, input uwire carry_in, input uwire is_dig_in);

uwire [3:0] val_a, val_b;

uwire is_dig_a, is_dig_b;

aa_digit_val #(radix) dva(val_a, is_dig_a, a);

aa_digit_val #(radix) dvb(val_b, is_dig_b, b);

assign is_dig_out = is_dig_in && (carry_in || is_dig_a || is_dig_b);

uwire [4:0] sum_val = carry_in + val_a + val_b;

assign carry_out = sum_val >= radix;

uwire [3:0] sum_dig_val = carry_out ? sum_val - radix : sum_val;

assign sum = !is_dig_out ? " " :

sum_dig_val < 10 ? "0" + sum_dig_val : "a" + sum_dig_val - 10;

endmodule

An obvious objection to an ASCII-coded radix-R adder is that it uses 8 bits to represent a
digit that can be represented using only ⌈lgR⌉ bits.

(a) Show the hardware that might be synthesized for the module aa_full_adder based on the
description above. This should be the inferred hardware with some optimizations applied. Take
care to show the number of bits at the inputs and output of units like adders and comparison logic.

(b) Compare the cost of a d-digit ASCII-coded radix-16 adder to a 4d-bit ripple adder. (Note that
both adders can add numbers in the range of 0 to 24d − 1.) Do so by estimating the cost in terms
of the number of gates, and state any assumptions, such as the number of gates needed for an x-bit
comparison unit.

2

← → Fall 2016 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/ee4755/2016/hw03.pdf

LSU EE 4755 Homework 4 Due: 12 October 2016

Problem 0: First, follow the instructions for account setup and homework workflow on the course
procedures page, http://www.ece.lsu.edu/koppel/v/proc.html.

Look through the code in hw04.v. Module lookup_behav in file hw04.v has a w-bit input char
and an n-element array of w-bit quantities named chars. (Parameter nelts is n and parameter
charsz is w.) The module also has a 1-bit output found which is logic 1 iff any element of chars
is equal to char. Finally, the module has a ⌈lg n⌉-bit output index which is set to the element
number of chars that matches char, or 0 if found is 0. Assume that no two elements of chars are
identical.

For example, suppose input char is set to 102 and that chars is {63,124,102,92}. Then
output found will be 1 and index will be 2. If char were 7 index would be 0 and found would
be 0, if char were 63 index would be 0 and found would be 1, etc. The alert student will have
recognized that n = 4 and that w ≥ 7 in these examples.

Module lookup is coded in synthesizable behavioral form that describes combinational logic.
The hw04.v file contains two other modules which are to do the same thing, lookup_linear and
lookup_tree, but those modules are not yet finished.

The testbench tests all of these modules. It tests them for sizes (n) of 4, 5, 10, 15, 16, 30, 40,
and 64. To change which sizes are tested (or the order in which they are tested) edit the testbench
module.

To have the testbench test only some of these modules (say, skip the lookup_tree tests until
after lookup_linear is working) look for the for loop with mut=0 and modify it appropriately. (It
should be easy to figure out the numbers.)

A synthesis script is provided that will synthesize all three modules at different sizes and both
with and very lax timing constraint and a very strict timing constraint. The script can be run using
the command rc -files syn.tcl. Initially it will stop with an error. To see it run to completion
before starting the assignment have it only synthesize lookup_behav (see below). Pre-set synthesis
options (in file .synth_init) were chosen to reject any design that is not combinational.

If there is an error when using the synthesis script then follow the manual synthesis steps on
the procedures page and look for error messages.

To change which modules are synthesized edit the set modules line (near the bottom) in file
syn.tcl. The values for nelts and other items can also be changed by editing the file.

Note: There are no points for this problem.

Problem 1: Complete lookup_linear so that it does the same thing as lookup_behavioral but
by using as many copies of lookup_elt as it needs. That is, lookup_linear should use generate
statements to instantiate lookup_elt and it should include whatever other code is needed to use
these instances to compute the correct outputs.

• Behavioral or structural code can be used.

• The module must be synthesizable.

• Assume that all elements of chars are different.

Problem 2: Complete module lookup_tree so that it performs the lookup using recursive instan-
tiations of itself. Take care so that index is computed efficiently. Hint: think about how to compute
index efficiently when n (nelts) is a power of 2, then get the same efficiency for any n.

1

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2016/hw04.pdf

If completed correctly, the cost and especially the performance at larger sizes should be
better than lookup_behavioral and (unless you did an unexpectedly good job) better than
lookup_linear.

• Behavioral or structural code can be used.

• The module must be synthesizable.

• Assume that all elements of chars are different.

Problem 3: Run the synthesis script and characterize the strengths and weaknesses of each mod-
ule. (For example, module X has lowest cost for low-speed designs.)

In a follow-on homework assignment additional questions will be asked about these modules.

2

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04.pdf

https://www.ece.lsu.edu/ee4755/2016/hw04.pdf

LSU EE 4755 Homework 5 Due: 7 November 2016

Problem 0: This first problem provides background on the module used in this assignment. Please
read the background and then solve the problems further below. The Verilog source can be found
in directory hw05, however for this assignment there is no need to do anything with it.

Module ortho has one input, v, a three-element vector of signed integers, and one output,
u, also a three-element vector of signed integers. The output is computed so that u is orthogonal
to v in the geometric sense. For those who are rusty on linear algebra, non-zero vectors u and
v are orthogonal if u · v = 0 or uxvx + uyvy + uzvz = 0. Using Verilog notation, u is computed
so that u[0]*v[0]+u[1]*v[1]+u[2]*v[2]=0 and at least one element of u is not zero. It does so
by finding the smallest element of v, setting the corresponding element in u to zero, swapping the
to remaining two elements, and negating one of the two. For example, if v = (4, 7, 55) then the
module would set u = (0, 55,−7).

module ortho #(int alternative = 1, int w = 32)

(output logic signed [w-1:0] u [3], input wire signed [w-1:0] v [3]);

logic [1:0] idx_min, idx_a, idx_b;

always_comb begin

idx_min = 0;

for (int i=1; i<3; i++)

if ($abs(v[i]) < $abs(v[idx_min])) idx_min = i;

idx_a = (idx_min + 1) % 3;

idx_b = (idx_min + 2) % 3;

if (alternative == 1) begin

// The loop below is needed as a hint to the synthesis program

// Cadence Encounter 14.28.

for (int i=0; i<3; i++) u[i] = 0;

u[idx_min] = 0;

u[idx_a] = v[idx_b];

u[idx_b] = -v[idx_a];

end else if (alternative == 2) begin

for (int i=0; i<3; i++)

u[i] = idx_min == i ? 0 : idx_a == i ? v[idx_b] : -v[idx_a];

end else $fatal(1);

end

endmodule

1

← → Fall 2016 ← → Homework 5 Homework Solution hw05.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2016/hw05.pdf

Important: For all problems below in which hardware is shown:

• Clearly show inputs and outputs of ortho.

• Try to draw diagrams showing all hardware for ortho and refer to parts of the diagram in
your answers below.

Problem 1: Consider the following part of the module:

idx_min = 0;

for (int i=1; i<3; i++)

if ($abs(v[i]) < $abs(v[idx_min])) idx_min = i;

(a) Show the hardware that will be synthesized for this fragment. (Please refer to the entire
module when determining what will be synthesized.) Make reasonable optimizations. (See the
next subproblem.) In this subpart show abs as a box.

(b) The synthesis program synthesizes hardware that contains four absolute value units for this
code, even with effort set to high. Explain why four is too many, perhaps by referring your own
version that uses fewer absolute value units.

Problem 2: Consider the part of the module below: Show the hardware that will be synthesized
for this code, taking into consideration that idx_min is two bits. Hint: This is easy. Just consider
all possible values of idx_min.

idx_a = (idx_min + 1) % 3;

idx_b = (idx_min + 2) % 3;

Problem 3: Show the hardware that will be synthesized for the alternative 2 code, below, after
optimization. As with the other problems, take into account the rest of the module. Look for
opportunities to optimize -v[idx_a] taking advantage of hardware for abs.

for (int i=0; i<3; i++)

u[i] = idx_min == i ? 0 : idx_a == i ? v[idx_b] : -v[idx_a];

Problem 4: As directed below, estimate the critical path in ortho for a w-bit instantiation. Do
so using ripple-adder like implementations for absolute value, comparison, and negation. Use the
performance model in which n-input AND and OR gates have delay ⌈lgn⌉ units.

(a) Find the critical path using the assumption that in hardware for an expression like a + b < c
the delay through the adder must be added to the delay through the comparison unit. The answer
should be a function of w.

(b) Find the critical path accounting for the fact that in ripple-like hardware for an expression like
a + b < c the low bits of the comparison can start as soon as the low bits of the sum are available.
The answer should be a function of w.

(c) Show a sketch of the hardware with an arrow tracing the critical path through the hardware,
from input to output. Annotating that arrow with intermediate delays will help in assigning partial
credit.

2

← → Fall 2016 ← → Homework 5 Homework Solution hw05.pdf

https://www.ece.lsu.edu/ee4755/2016/hw05.pdf

LSU EE 4755 Homework 6 Due: 29 November 2016

Problem 0: Review the instructions for account setup and homework workflow on the course
procedures page, http://www.ece.lsu.edu/koppel/v/proc.html.

Look through the code in hw06.v. These modules compute the floating-point sum of squares
of their input, similar to the midterm exam problem but without the square root.

Module mag_functional is a non-synthesizable version of the module. It is not synthesizable
by Cadence Encounter because it operates on floating-point values. The module is included to help
in understanding the other modules.

Module mag_comb is a synthesizable combinational version of the module. The floating-point
operations are implemented using modules from the ChipWare library. See the ChipWare docu-
mentation, linked to the course references page, for details.

Module mag_seq, when finished, computes mag sequentially. It contains some code, including
floating-point module instantiations, but is not complete. It has an input start to initiate the
computation and an output ready to signal that the computation is complete.

Module mag_pipe, when finished, computes mag in pipelined fashion. At each positive edge it
reads a vector from its input and provides the mag of a prior vector at its output.

Module mag_comb should be fastest, but of high cost. Module mag_seq should be the lowest
cost module and mag_pipe should be the highest cost but also the highest throughput.

The testbench provides test inputs to the three synthesizable modules. Initially, mag_comb
should pass all tests and the others should fail all tests. To facilitate debugging the first eight tests
are the vectors [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], After that the vector components are randomly
chosen over the range [−10, 10].

Remember that the values are IEEE 754 single-precision floating point. A 0 in this FP repre-
sentation is 32’h0 and a 1.0 is 32’h3f800000, a 2.0 is 32’h40000000, and a 3.0 is 32’h40400000.

To solve this assignment it is very important to use the waveform viewer for debugging. To do
so start the simulator graphically using the command irun -gui hw06.v. From the Design Browser
pane locate testbench and under it look for m2 (for mag_seq) or m3 (for mag_pipe). Select objects
in the Objects pane and send them to the waveform window by pressing the waveform toolbar
button (it looks like a logic analyzer display) or by selecting the sequence Windows → Send To →
Waveform. Run the simulator by pressing the play toolbar icon. If you’ve made changes to the
Verilog or otherwise want to re-run the simulation without exiting select Simulation → Reinvoke
Simulator.

For further documentation see the SimVision documentation on the course references page,
http://www.ece.lsu.edu/koppel/v/ref.html.

There is a synthesis script that will synthesize each module at high (slow) and low (fast) clock
period targets. To run it use the command rc -files syn.tcl. This will take a long time to run, so
only run it to satisfy your curiosity. Check for synthesizability by manually running the synthesis us-
ing the instructions on the course procedures page, http://www.ece.lsu.edu/koppel/v/proc.html.

Note: There are no points for this problem.

Problem 1: Module mag_seq, when completed, will compute the magnitude sequentially. It
should start when input start is logic 1 on a positive clock edge and it should signal completion
by setting output ready to one several clock cycles later. The module should use one floating-point
multiply and one FP add unit. The module already instantiates these, and contains some logic for
performing the different steps, including setting ready (though not at the right time). Complete the
module so that it works correctly. See the checklist in the Verilog source for hints and reminders.

1

← → Fall 2016 ← → Homework 6 Homework Sol Code hw06.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html
http://www.ece.lsu.edu/koppel/v/ref.html
http://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2016/hw06.pdf

Problem 2: Module mag_pipe, when completed, will compute the magnitude in pipelined fashion.
That is, it will read a vector from its inputs at every clock cycle, and will present a magnitude
at its output every cycle. The magnitude should be for the vector that was at input v nstages

cycles in the past, where nstages is a constant in the module indicating the number of stages. The
inputs to the module are available near the end of the clock cycle and the outputs are expected at
the beginning of the clock cycle.

Choose the number of stages needed to maximize throughput. That is, minimize the delay in
each stage. Of course, within that constraint minimize cost.

Pay close attention to where data is. Remember that at any one time the module will hold
data for nstages different vectors. Use a pipeline diagram to make sure that data from the different
vectors don’t get mixed up. A common problem is a newly arriving vector overwriting data for an
earlier vector. That’s avoided by moving data long from stage to stage.

Be sure to use the waveform viewer for debugging. Remember that the first eight test vectors
consists of 0 and 1 components, making debugging easy.

2

← → Fall 2016 ← → Homework 6 Homework Sol Code hw06.pdf

https://www.ece.lsu.edu/ee4755/2016/hw06.pdf

9 Fall 2015

151

← → Fall 2015 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4755/2015/hw01.pdf

LSU EE 4755 Homework 1 Due: 9 September 2015

The questions below can be answered without using EDA software, paper and pencil will suffice.
Please turn in the solution on paper. Homework 2 will require the use of Verilog implementations.

Those who are rusty about the correspondence between Verilog code and hardware might want
to look at the solution to EE 3755 Fall 2013 Homework 1, at
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf.

Problem 1: The routine shift_right_fixed_amt uses the >> operator to perform the right shift.
Perhaps you are wondering if the operation is an arithmetic right shift or a logical right shift. (In a
logical right shift the vacated bit positions are always set to zero, in an arithmetic shift they are set
to the MSB of the input.) Look up the operation performed by this operator in the SystemVerilog
2012 documentation.

module shift_right_fixed_amt

#(int fsamt = 4) // Fixed shift amount.

(output wire [15:0] shifted,

input wire [15:0] unshifted,

input wire shift);

// If shift is true shift by fsamt, otherwise don’t shift.

//

assign shifted = shift ? unshifted >> fsamt : unshifted;

endmodule

(a) Indicate the section and page in which this information can be found.

(b) Show how the module can be modified to perform the other kind of shift (if it’s currently
arithmetic, make it logical, if it’s currently logical make it arithmetic).

1

← → Fall 2015 ← → Homework 1 Homework Solution hw01.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf
https://www.ece.lsu.edu/ee4755/2015/hw01.pdf

Problem 2: Appearing below are two variations on a min_4 module that finds the minimum of
four unsigned integers. Both of these modules instantiate the following min_2 module.

module min_2

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elt_0,

input [elt_bits-1:0] elt_1);

assign elt_min = elt_0 < elt_1 ? elt_0 : elt_1;

endmodule

(a) Draw a diagram of the hardware that will be synthesized for the min_4_t module below. Your
diagram should include two-input multiplexors and a comparison module. To get an idea of what
to draw, see the EE 3755 Homework solution mentioned at the top of this assignment.

module min_4_t

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

wire [elt_bits-1:0] im1, im2;

min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

min_2 #(elt_bits) m2(im2, elts[2], elts[3]);

min_2 #(elt_bits) m3(elt_min, im1, im2);

endmodule

(b) Draw a diagram of the hardware that will be synthesized for the min_4_l module below. Your
diagram should include two-input multiplexors and a comparison module.

module min_4_l

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

wire [elt_bits-1:0] im1, im2;

min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

min_2 #(elt_bits) m2(im2, im1, elts[2]);

min_2 #(elt_bits) m3(elt_min, im2, elts[3]);

endmodule

(c) Which of the two modules above would you expect to have lower cost? Which would you expect
to be faster? Briefly explain.

2

← → Fall 2015 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4755/2015/hw01.pdf

Problem 3: The module min_4_err below is correct Verilog, but it won’t do what we want.

module min_4_err

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

wire [elt_bits-1:0] im;

min_2 #(elt_bits) m1(im, elts[0], elts[1]);

min_2 #(elt_bits) m2(im, im, elts[2]);

min_2 #(elt_bits) m3(elt_min, im, elts[3]);

endmodule

(a) Explain why it’s correct Verilog yet provides the incorrect result.

(b) Look up uwire in the SystemVerilog standard and explain how that might help catching such
errors.

Problem 4: Appearing below is yet another variation on min_4, this one attempting to take
advantage of a special case by using generate statements. The module is correctly using generate
statements to handle a special case. Do you think the synthesized hardware will be less expensive
for the special case beyond the reduction in cost for using fewer bits. Hint: Think about what the
comparison unit and mux would look like with 1-bit inputs and how such logic can be optimized.

Note: In the original assignment this problem had a typo, which made the Verilog illegal.
Further, the phrase above starting “beyond the reduction” was not in the original question, making
it difficult to see what was really being asked. The answer below is for the corrected question.

module min_4_special1

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

if (elt_bits == 1) begin

assign elt_min = elts[0] && elts[1] && elts[2] && elts[3];

end else begin

wire [elt_bits-1:0] im1, im2;

min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

min_2 #(elt_bits) m2(im2, im1, elts[2]);

min_2 #(elt_bits) m3(elt_min, im2, elts[3]);

end

endmodule

3

← → Fall 2015 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4755/2015/hw01.pdf

Problem 5: The module below handles another special case, in this case the case where the first
element is zero.

module min_4_special2

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

wire [elt_bits-1:0] im1, im2;

if (elts[0] == 0)

assign elt_min = 0;

else begin

min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

min_2 #(elt_bits) m2(im2, im1, elts[2]);

min_2 #(elt_bits) m3(elt_min, im2, elts[3]);

end

endmodule

(a) Explain why the module is illegal Verilog.

(b) Explain why what it’s trying to do would be unlikely to help within a larger design. Hint: Think
about critical path.

4

← → Fall 2015 ← → Homework 1 Homework Solution hw01.pdf

https://www.ece.lsu.edu/ee4755/2015/hw01.pdf

LSU EE 4755 Homework 2 Due: 16 September 2015

Problem 0: Follow the instructions for account setup and homework workflow on the course
procedures page, http://www.ece.lsu.edu/koppel/v/proc.html. Run the testbench on the un-
modified file. There should be errors on all but the min_4 (Four-element) module. Try modifying
min_4 so that it simulates but produces the wrong answer. Re-run the simulator and verify that
it’s broken. Then fix it.

Note: There are no points for this problem.

Problem 1: Module min_n has an elt_bits-bit output elt_min and an elt_count-element array
of elt_bits-bit elements, elts. Complete min_n so that elt_min is set to the minimum of the
elements in elts, interpreting the elements as unsigned integers. Do so using a linear connection
of min_2 modules instantiated with a genvar loop. (A linear connection means that the output of
instance i is connected to the input of instance i + 1.)

Verify correct functioning using the testbench.

Problem 2: Module min_t is to have the same functionality as min_n. Complete min_t so that it
recursively instantiates itself down to some minimum size. The actual comparison should be done
by a min_2 module.

Verify correct functioning using the testbench.

Problem 3: By default the synthesis script will synthesize each module for two array sizes, four
elements and eight elements.

(a) Run the synthesis script unmodified. Use the command rc -files syn.tcl. Explain the
differences in performance between the different modules.

(b) Modify and re-run the synthesis script so that it synthesizes the modules with elt_bits set
to 1.

The synthesis program should do a better job on the behavioral and linear models. Why do you
think that is? Hint: The 1-bit minimum module is equivalent to another common logic component
that the synthesis program can handle well.

1

← → Fall 2015 ← → Homework 2 Homework Solution Sol Code hw02.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2015/hw02.pdf

LSU EE 4755 Homework 3 Due: 7 October 2015

Problem 1: Solve EE 4755 Fall 2014 Midterm Exam Problem 4 and Problem 5. The solutions
are available, but please make an honest effort to solve them on your own.

Problem 2: The homework Verilog file, hw04.v contains two versions of the sequential shifter
used in class, those modules are also reproduced below. Module shift_lt_seq_d_live, is based
on the version written during class and module shift_lt_seq_d is the one prepared in advance.
Though both work correctly their timing is not identical.

(a) Show the hardware that might be synthesized for each module using the default parameters.
Include reasonable optimizations, the initially inferred hardware can be omitted. This should be a
human-to-human diagram, don’t show output of a synthesis program.

(b) The two modules differ in their timing. Using your hardware diagrams explain any differences
in:

• The register-to-register delay within the module.

• How far in advance of the positive edge module inputs must become stable.

• How long after the positive edge module outputs will be available.

As with the previous part, this should be done by hand though synthesis tools can be used to
help solve the problem.

An answer might look like this: “For register-to-register delay Module A is slower because its
critical path has two multipliers, whereas in module B the two multiplications are split between
cycles and so at most one multiplier is on the critical path. In module A inputs connect directly to
a divider, and so they must arrive long before the positive edge, whereas in module B inputs can
arrive just before the positive edge because” Of course, this question does not have a module A
or B, nor does it really have multipliers and dividers.

Modules on next page.

1

← → Fall 2015 ← → Homework 3 Homework Solution hw03.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2015/hw03.pdf

module shift_lt_seq_d_live

#(int wid_lg = 6,

int num_shifters = 1,

int wid = 1 << wid_lg)

(output logic [wid-1:0] shifted,

output logic ready,

input [wid-1:0] unshifted,

input [wid_lg-1:0] amt,

input start,

input clk);

localparam int bits_per_seg = wid_lg / num_shifters;

logic [num_shifters-1:0] shift;

wire [wid-1:0] shin[num_shifters-1:-1];

assign shin[-1] = shifted;

for (genvar i=0; i<num_shifters; i++) begin

localparam int fs_amt = 2 ** (i * bits_per_seg);

shift_fixed #(wid_lg, fs_amt) sf(shin[i], shin[i-1], shift[i]);

end

logic [num_shifters-1:0][bits_per_seg-1:0] cnt;

always_ff @(posedge clk) begin

if (start == 1) begin

ready = 0;

cnt = amt;

shift = 0;

shifted = unshifted;

end else begin

if (cnt == 0) ready = 1;

for (int i=0; i<num_shifters; i++) begin

shift[i] = cnt[i] > 0;

if (cnt[i] != 0) cnt[i]--;

end

shifted = shin[num_shifters-1];

end

end

endmodule

Another module on next page.

2

← → Fall 2015 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/ee4755/2015/hw03.pdf

module shift_lt_seq_d

#(int wid_lg = 4,

int num_shifters = 2,

int wid = 1 << wid_lg)

(output logic [wid-1:0] shifted,

output wire ready,

input [wid-1:0] unshifted,

input [wid_lg-1:0] amt,

input start,

input clk);

localparam int cnt_bits = (wid_lg + num_shifters - 1) / num_shifters;

logic [num_shifters-1:0][cnt_bits-1:0] cnt;

wire [wid-1:0] inter_sh[num_shifters-1:-1];

assign inter_sh[-1] = shifted;

for (genvar i = 0; i < num_shifters; i++) begin

localparam int shift_amt = 1 << i * cnt_bits;

wire shift = cnt[i] != 0;

shift_fixed #(wid_lg,shift_amt) sf(inter_sh[i], inter_sh[i-1], shift);

end

always_ff @(posedge clk)

if (start == 1) begin

shifted = unshifted;

cnt = amt;

end else if (cnt > 0) begin

shifted = inter_sh[num_shifters-1];

for (int i=0; i<num_shifters; i++) if (cnt[i]) cnt[i]--;

end

assign ready = cnt == 0;

endmodule

3

← → Fall 2015 ← → Homework 3 Homework Solution hw03.pdf

https://www.ece.lsu.edu/ee4755/2015/hw03.pdf

LSU EE 4755 Homework 4 Due: 12 October 2015

Problem 0: Follow the instructions for account setup and homework workflow on the course
procedures page, http://www.ece.lsu.edu/koppel/v/proc.html. Run the testbench on the un-
modified file. There should be errors on the shift_lt_seq_d_sol module, but the others should
run correctly. Run the Note: There are no points for this problem.

Problem 1: The homework Verilog file, hw04.v, contains a module shift_lt_seq_d_sol which
is based on shift_lt_seq_d. It contains an always_ff block that assigns the same variables that
are assigned in shift_lt_seq_d, however it assigns them from variables of the same name with
next_ prefixed:

always_ff @(posedge clk) begin

ready = next_ready;

shifted = next_shifted;

shift = next_shift;

cnt = next_cnt;

end

Add code so that these next_ objects will be assigned values from combinational logic, and
so that the resulting module describes the same hardware as shift_lt_seq_d. A hand-drawn
diagram of synthesized hardware should be identical, though it’s possible that there will be small
differences in the actual output of a synthesis program.

The added code can be implicit structural or behavioral, but it must synthesize to combina-
tional logic.

Problem 2: Module shift_lt_seq_d_live takes one more cycle to produce a result than module
shift_lt_seq_d. Module shift_lt_seq_d_p2 initially is identical to shift_lt_seq_d_live.

(a) Modify shift_lt_seq_d_p2 so that it uses one less cycle to produce a result without changing
the number of shifters per stage. There are two possible ways of doing this, performing some work
in the same cycle that the start signal arrives, or doing work in the cycle when ready is set to 1.
Either method is fine.

(b) Run syn.tcl and compare the cost and performance of your design and shift_lt_seq_d_live.
Comment on the differences. An answer might start “The cost was about the same because the same
hardware was used...”.

1

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2015/hw04.pdf

LSU EE 4755 Homework 5 Due: 23 October 2015 17:00

Problem 1: The homework Verilog file, hw05.v, contains something similar to the streamlined
multiplier presented in class, mult_seq_stream, and even more streamlined versions of the multi-
plier, mult_seq_stream_2, and mult_seq_stream_3. These modules are reproduced at the end of
this assignment. For an HTML version visit
http://www.ece.lsu.edu/koppel/v/2015/hw05.v.html. See the 2014 midterm exam for similar
problems.

(a) Show the hardware that will be synthesized for each module for the default parameters. Show
the module after optimization.

(b) Estimate the clock frequency of each module based on the following assumptions:
Latch delay: 10 units. Multiplexor latency: 2 units. Latency of a n-bit adder: 5⌈lgn⌉ units.

Latency of an n-input gate: ⌈lgn⌉ units.

(c) Why would module mult_seq_stream_3 provide a result in less time than the other two, even
assuming that the clock frequency for all the modules was the same?

1

← → Fall 2015 ← → Homework 5 Homework Solution hw05.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/2015/hw05.v.html
https://www.ece.lsu.edu/ee4755/2015/hw05.pdf

module mult_seq_stream #(int wid = 16)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier,

input logic [wid-1:0] cand,

input clk);

localparam int wlog = $clog2(wid);

logic [wlog-1:0] pos;

logic [2*wid-1:0] accum;

always @(posedge clk) begin

logic [wid:0] pp;

if (pos == 0) begin

prod = accum;

accum = cand;

pos = wid - 1;

end else begin

pos--;

end

// Note: the multiplicand is in the lower bits of the accumulator.

//

pp = accum[0] ? { 1’b0, plier } : 0;

// Add on the partial product and shift the accumulator.

//

accum = { { 1’b0, accum[2*wid-1:wid] } + pp, accum[wid-1:1] };

end

endmodule

2

← → Fall 2015 ← → Homework 5 Homework Solution hw05.pdf

https://www.ece.lsu.edu/ee4755/2015/hw05.pdf

module mult_seq_stream_2 #(int wid = 16)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier,

input logic [wid-1:0] cand,

input clk);

localparam int wlog = $clog2(wid);

logic [wlog-1:0] pos;

logic [2*wid-1:0] accum;

always @(posedge clk) begin

if (pos == 0) begin

prod = accum;

accum = { 1’b0, cand[0] ? plier : wid’(0), cand[wid-1:1] };

pos = wid - 1;

end else begin

logic [wid:0] pp;

// Note: the multiplicand is in the lower bits of the accumulator.

//

pp = accum[0] ? plier : 0;

// Add on the partial product and shift the accumulator.

//

accum = { { 1’b0, accum[2*wid-1:wid] } + pp, accum[wid-1:1] };

pos--;

end

end

endmodule

3

← → Fall 2015 ← → Homework 5 Homework Solution hw05.pdf

https://www.ece.lsu.edu/ee4755/2015/hw05.pdf

module mult_seq_stream_3 #(int wid = 16)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier,

input logic [wid-1:0] cand,

input clk);

localparam int wlog = $clog2(wid);

logic [wlog-1:0] pos;

logic [2*wid-1:0] accum;

always @(posedge clk) begin

if (pos == 0) begin

accum = { 1’b0, cand[0] ? plier : wid’(0), cand[wid-1:1] };

pos = wid - 1;

end else begin

logic [wid:0] pp;

// Note: the multiplicand is in the lower bits of the accumulator.

//

pp = accum[0] ? plier : 0;

// Add on the partial product and shift the accumulator.

//

accum = { { 1’b0, accum[2*wid-1:wid] } + pp, accum[wid-1:1] };

if (pos == 1) prod = accum;

pos--;

end

end

endmodule

4

← → Fall 2015 ← → Homework 5 Homework Solution hw05.pdf

https://www.ece.lsu.edu/ee4755/2015/hw05.pdf

LSU EE 4755 Homework 6 Due: 2 December 2015

Problem 0: The homework Verilog file, hw06.v, contains something similar to the integer com-
pression modules presented in class. (Follow the homework workflow instructions on the course
procedures page to get a copy of the assignment package.) These modules compress an ASCII
character stream by substituting a binary-encoded integer for a string of ASCII digits. These
modules were based on 2014 Homework 4. Feel free to look at that assignment an solution for help.

Module icomp_none is a version of the module that does no compression at all. It does though
implement the handshaking protocol so that characters can be passed from input to output. This
module can be studied to help understand how the others work.

Module icomp_2cyc is one of the compression modules covered in class. It computes the
encoded value in stage 0, and checks for overflow in stage 1. Don’t modify this module, save if for
reference. Module icomp_sol is initially identical to icomp_2cyc, but it should be modified as part
of this assignment.

The testbench is set to simulate icomp_sol on a sample test string. At the end it will report
the amount of compression and whether there was any errors. The testbench also prints out a
trace showing some module inputs and outputs and the status of internal signals. Examine the
testbench code to see how this is done and feel free to modify it to add signals of your own. A more
detailed trace of execution can be obtained using the SimVision gui. To start that use the com-
mand irun hw06.v -gui. See http://www.ece.lsu.edu/koppel/v/v/s/SimVisionIntro.pdf

for documentation. (On campus access only without password.)
The synthesis script will synthesize the modules icomp_2cyc and icomp_sol. Use the synthesis

script to make sure that your designs are synthesizable and to determine their cost and performance.
(There is nothing to turn in for this assignment.)

Problem 1: In module icomp_sol there is a declaration of a variable named val_encode_size_1,
but no uses of that variable. Add code to that module so that val_encode_size_1 is set to the num-
ber of bytes that are needed for the number currently in the register val_encode_1. For example,
if val_encode_1 has a 0, then val_encode_size_1 should be 0. If val_encode_1 has a 123 then
val_encode_size_1 should be 1 (one byte), if val_encode_1 has a 300 then val_encode_size_1

should be 2 (for 2 bytes), etc.
To help with your solution add code to the testbench to show the value of this variable.

Problem 2: Modify module icomp_sol so that a group of ASCII digits is compressed into the
smallest number of bytes needed, up to max_chars. For example, if max_chars is 4 then just use
one byte to compress 200, two bytes for 4000, and for 1234567890123 use a four-byte integer (for
1234567890) followed by a one byte integer (for 123).

Precede the compressed integer by the character 128 plus the number of bytes in the compressed
number. For example, if the compressed value takes two bytes then where the first character of the
uncompressed value would go emit a 130, then the next two characters should be the compressed
number. (See how char_out is assigned in the unmodified code.)

To solve this problem you’ll need to understand how the existing code works, how to inter-
pret the trace output provided by the simulator, and how to use the SimVision waveform viewer.
Random guesses based on a vague understanding will get you nowhere.

• The module should be written for arbitrary values of max chars.

• Make sure that the testbench is not reporting errors.

1

← → Fall 2015 ← → Homework 6 Homework Solution hw06.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/v/s/SimVisionIntro.pdf
https://www.ece.lsu.edu/ee4755/2015/hw06.pdf

• Make sure that your module is compressing the string.

2

← → Fall 2015 ← → Homework 6 Homework Solution hw06.pdf

https://www.ece.lsu.edu/ee4755/2015/hw06.pdf

10 Fall 2014

167

← → Fall 2014 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2014/hw01.pdf

LSU LSU EE 4755 Homework 1 Due: 15 September 2014

Follow the instructions for class account setup and Verilog Homework Workflow, which can
be found on http://www.ece.lsu.edu/koppel/v/proc.html. Run the simulator code on the un-
modified assignment. The output should show errors for two modules.

Problem1: Module shift_right1 is supposed to perform a logical right shift on a 16-bit quantity,
but it is not working properly, perhaps because the designer left for a vacation before finishing it
and returned thinking that he or she had already finished it. Fix the problem.

Module shift_right1 is written in a behavioral style, and in a way which is not synthesizable.
For this problem, do not try to make the code synthesiable, just get the module to perform the
shift properly so that the testbench does not report an error. (The module for the next problem is
synthesizable.)

Your solution should assign shifted one bit at a time, as does the existing code. (In other
words, don’t just use the right shift operator.) The testbench output might provide clues to what
the problem is. Hint: The problem can be fixed with one or two lines of code.

Problem 2: Module shift_right2 is also supposed to perform a logical right shift. It’s not
working either, because it hasn’t been finished. When finished shift_right2 will make use of four
shift_right_fixed modules. A shift_right_fixed module can shift by two possible amounts,
zero bits (which of course is no shift at all) or fsamt bits, where fsamt is the value of a parameter.

The shift_right2 module so far has instantiated one shift_right_fixed module and set
the parameter to 8 (the #(8) indicates that the parameter is set to 8). The shift_right2 module
should instantiate three more shift_right_fixed modules, one each for shifts of 4, 2, and 1 bit.
Instantiate the modules and connect them together so that shift_right2 works correctly.

Hint: A correct answer will require no additional logic (beyond the three additional shifters)
only declarations.

1

← → Fall 2014 ← → Homework 1 Homework Sol Code hw01.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2014/hw01.pdf

LSU EE 4755 Homework 2 Due: 26 September 2014

The Homework 2 code package contains four unsigned integer floating point modules and a
testbench. The first two modules, mult_behav_1 and mult_behav_2 already work, the other two,
mult_linear and mult_tree, are mostly empty and are to be completed as part of this assignment.
The first two multipliers are synthesizable, though they were not written to be synthesized. If this
assignment is completed correctly the other two multipliers will be synthesizable too.

Multiplier mult_behav_1 is a simple-as-possible implementation, the intent is to provide a
correct result to use to check the other modules. Nevertheless it is synthesizable with Cadence RC,
which will substitute an integer multiply library function from the ChipWare library.

Multiplier mult_behav_2 computes the multiplication itself by adding partial sums. (See
http://www.ece.lsu.edu/ee3755/2013f/l07.v.html for a quick review of integer multiplication.
Don’t go beyond the long-hand procedure for this assignment.)

Warning: DO NOT attempt to find Verilog code for multipliers and use them for the solution. You
will learn nothing by doing so and will be unprepared for the midterm exam.

Problem 0: Copy the code package from /home/faculty/koppel/pub/ee4755/hw/2014f/hw02.
Verify that everything is working by running the simulation on the unmodified file. It should report
a 0% error rate for mult_behav_2 and a 100% error rate for the linear and tree multipliers.

Problem 1: Synthesize mult_behav_1 and mult_behav_2 following the steps for synthesis on the
course procedures page.

(a) Indicate the area and critical path delay for each module.

(b) Explain why one might be better than the other.

Problem 2: Complete mult_linear to that it performs a multiplication using wid instances of
good_adder connected linearly. This module will be sort of a structural version of mult_behav_2.
Use generate statements to instantiate the adders and make sure that the design is synthesiable.

Note that in this multiplier instance i of the adder cannot start until i− 1 finishes (that’s an
oversimplification, but it’s true enough).

Problem 3: Complete mult_tree so that the adders are connected in a tree-like fashion. Let a
and b be the two w-bit operands of the multiplier. There should be w/2 adders near the leaves
which add two partial products. (There are w partial products, partial product i ∈ [0, w− 1] is a2i

if bi is 1, or 0 if bi is 0, where bi is the digit at bit position i.) At the next level there will be w/4
adders which each add the sum of two adders from the lower level, and so on.

First try to solve this using 2w-bit adders. If you are feeling clever optimize your solution by
using (w + 2)-bit adders for the first row, (w + 4)-bit adders for the second row, etc.

As before, the design must be synthesiable.

Problem 4: Perform synthesis on your two modules.

(a) Indicate the area and delay of each module.

(b) Indicate which module you expected to be fastest and explain why. If that’s different than the
one that really is fastest, give a possible reason.

1

← → Fall 2014 ← → Homework 2 Homework Sol Code hw02.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/ee3755/2013f/l07.v.html
https://www.ece.lsu.edu/ee4755/2014/hw02.pdf

LSU LSU EE 4755 Homework 3 Due: 24 October 2014
Updated 18 October 2014, 18:00:29 CDT

The Homework 3 code package contains a simple behavioral multiplier and several sequential multipliers.
It also contains a synthesis script in file syn.cmd.

Problem 0: Copy the code package from /home/faculty/koppel/pub/ee4755/hw/2014f/hw03. Verify
that everything is working by running the simulation on the unmodified file. It should report a 0% error
rate for all modules.

Problem 1: The module mult_seq_csa is a sequential multiplier that instantiates an adder, however
unlike mult_seq_ga shown in class, mult_seq_csa instantiates a carry-save adder from the Chipware library,
CW_csa. The carry save adder computes the sum of three integers, a, b, and c (those are the port names).
It produces two sums, which we’ll call sum_a and sum_b (the port names for these are carry and sum). All
of these ports are w bits wide, where w is a parameter. The actual sum of a, b, and c is obtained by adding
together outputs sum_a and sum_b using a conventional adder. Carry save adders are used when there many
integers to be added. Some arrangement (linear, tree) of many carry-save adders will produce a sum_a and
sum_b, which will be added by a single conventional (called carry-propagate) adder.

The advantage of a carry save adder is that it can compute a sum of w-bit numbers in O(1) time (the
amount of time is not affected by w), which of course is much better than the O(w) time for a ripple adder
or the O(logw) time for much more expensive carry look-ahead adders. The performance advantage of a
CSA is lost for mult_seq_csa because the module only computes one partial product at a time.

(a) Sketch the hardware that will be synthesized for mult_seq_csa. Show the carry-save adder and other
major units as boxes, but be sure to show registers, multiplexors, and other such components. Do not show
the actual output produced by an actual synthesis program. (It’s okay if you look at a synthesis program’s
output.)

(b) Based on this sketch of synthesized hardware, explain why the benefit of using a CSA is lost. Also explain
how the module can be made a little faster (with a small change), but is still not a good way to use a CSA.

Problem 2: Module mult_seq_csa_m initially contains the m-partial-products-per-cycle module that we
did in class. In this problem modify it to use CSA’s, and avoid the issue identified in the previous problem.

(a) Modify mult_seq_csa_m so that it uses the carry-save adder to compute m partial products per cycle.
Use generate statements to instantiate the CSA’s, and of course, connect them appropriately. (In class we
used generate statements for the pipelined adder to instantiate stages, that code is in mult_pipe_ia in the
same file as the assignment.)

(b) Sketch the hardware that you expect to be synthesized for an m = 2 version. Make sure that your design
does not do something foolish with the conventional adder.

Problem 3: Run the synthesis program to compare the cost and performance of mult_seq_csa_m to
mult_seq_m. The synthesis script syn.cmd can be used to synthesize these modules at different sizes. To
run it use the command rc -files syn.cmd. Feel free to modify the script. (It is written in TCL, it should
be easy to find information on this language.)

(a) Show the cost and performance versus m for these modules.

(b) If you solved the previous problem correctly the total delay shown for mult_seq_csa_m should be wrong.
Explain why, and (optional) if you like try modifying syn.cmd to fix it.

(c) Explain how you might expect the delay of mult_seq_csa_m to change with increasing m? Explain your
expectation and whether the synthesis results bear that out.

1

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2014/hw03.pdf

LSU EE 4755 Homework 4 Due: 24 November 2014

Problem 0: Copy the code package from /home/faculty/koppel/pub/ee4755/hw/2014f/hw04. Verify
that everything is working by running the simulation on the unmodified file. It should report that there is
correct output but no compression:

Correct output, strings match. But no compression!

In size 117 bytes, out size 117 bytes.

Problem1: Module asc_to_bin is to filter a stream of ASCII characters so that ASCII decimal numbers are
replaced by binary numbers preceded by an escape character. The idea is to reduce the size of data streams
that contain lots of large numbers. For example, consider the sentence, “There are 31536000 seconds in a
year.” The module asc_to_bin should replace that sequence of eight ASCII characters 31536000 with an
escape character and an integer encoding of the number.

The module has an 8-bit input and output for the character, char_in and char_out. There is a 1-bit
input can_insert which is true when the module can read a character from char_in. If input insert_req
is asserted when can_insert is true then the character on char_in will be read.

There is a 1-bit output can_remove which is true when the character on char_out is valid. (It would
not be valid if the module does not contain any characters and for other reasons.) If input remove_req is set
to 1 and can_remove is true then the character at char_out will change to the next character or, if that’s
the last available character, can_remove will go to zero.

There is also a 1-bit input reset. If reset is high at the positive edge of the clock then the module
should reset itself.

Initially in the homework package, module asc_to_bin passes through characters unchanged. Modify
it so that it converts ASCII decimal numbers to binary as described above.

At the end of the simulation the testbench will indicate whether the output string is correct, and the
original and compressed sizes. For example, the output using the unmodified code package will be:

Correct output, strings match. But no compression!

In size 117 bytes, out size 117 bytes.

The testbench also provides a trace showing some information each time a character is removed. For
the unmodified code,

ncsim> run

c 79 = O tail 1 head 0

c 110 = n tail 3 head 1

c 101 = e tail 4 head 2

c 32 = tail 7 head 3

c 49 = 1 tail 8 head 4

The character removed is shown as a decimal number and as a character, for example 110 and “n” for
the second line. Also shown are the values of two objects in the asc_to_int module, tail and head. Feel
free to add your own variables to the list. Search for “Trace execution” to find the code that prints this
trace.

The parameter max_chars indicates the maximum size of the integer that should be created. Currently
the testbench expects all integers to be of this size.

Keep the following in mind:

• Do not convert a number to binary if it would take more space than the original.

• The module must be synthesizable.

• The synthesized hardware must be reasonably efficient.

For extra credit, modify both the asc_to_bin module and the testbench so that asc_to_bin can
compress a string of ASCII digits to the smallest integer (in multiple of bytes) that can hold the integer.
(The current behavior is to use one size integer, determined by parameter max_chars.)

1

← → Fall 2014 ← → Homework 4 Homework Solution Sol Code hw04.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2014/hw04.pdf

Problem 2: Synthesize your module.

(a) Indicate the cost and performance with and without timing optimization. (With timing optimization
means using define_clock.)

(b) Even if define_clock is used, the synthesis program won’t optimize all paths, only those with both ends
affected by the clock. Show how to use the Encounter external_delay command to get the proper timing
optimization.

2

← → Fall 2014 ← → Homework 4 Homework Solution Sol Code hw04.pdf

https://www.ece.lsu.edu/ee4755/2014/hw04.pdf

11 Spring 2001

173

← → Spring 2001 ← → Homework 1 Homework Sol Code hw01.pdf

https://www.ece.lsu.edu/ee4755/2001/hw01.pdf

EE 4702 Homework 1 Due: 12 February 2001

Solve this problem by modifying a copy of http://www.ee.lsu.edu/v/2001/hw01.html which
can be found in /home/classes/ee4702/files/v/hw01.v. See
http://www.ee.lsu.edu/v/proc.html for instructions on running the simulator. Alternate in-
structions can be found in Lesson 7 of the ModelSim Tutorial, linked to the references web page,
http://www.ee.lsu.edu/v/ref.html. The links are clickable when this assignment is viewed with
Acrobat Reader. The ModelSim tutorial and other documentation can also be accessed from the
Help menu on the ModelSim GUI (started by the command vsim -gui).

Problem 1: Copy the homework template, /home/classes/ee4702/files/v/hw01.v, into a sub-
directory named hw in your class account. Simulate the welcome module in the homework template.
If it works, a message should tell you to proceed to problem 2.

Problem 2: In Homework 2 (yes, this is Homework 1) a priority encoder will be designed which
has an n-bit input and an n-bit output. Let bit positions be numbered from n− 1 to 0 and let bit
zero be the least significant and the rightmost bit when written. Output bit i, n− 1 ≥ i ≥ 1, shall
be 1 if input bit i is 1 and if input bits i− 1, . . . , 0 are all 0, otherwise output bit i is zero. Output
bit 0 is 1 if input bit 0 is 1, otherwise it is 0. Therefore, at most one output bit is 1, corresponding
to the first input bit that is 1. Some examples: 0011 → 0001, 0110 → 0010, 0111 → 0001, and
0000 → 0000, where foo → bar indicates that output bar is expected for input foo.

The encoder will be constructed from n cells in the same way a ripple adder is constructed
from binary full adder cells. These cells will be designed here, in Homework 1.

Complete module priority_encoder_1_es in the homework template so that it is a Verilog
explicit structural description of the priority encoder cell. Do not rename the module or change
any of its ports.

Problem 3: Complete module priority_encoder_1_is in the homework template so that it is
a Verilog implicit structural description of the priority encoder cell. Do not rename the module or
change any of its ports.

Problem 4: Complete module priority_encoder_1_b in the homework template so that it is a
Verilog behavioral description of the priority encoder cell. Do not rename the module or change
any of its ports.

Problem 5: Complete module test_pe in the homework template so that it tests the three mod-
ules designed above. The test should be by exhaustion. That is, apply all possible combinations of
inputs to each module and verify the outputs. (Consider only 0 and 1 for inputs, but watch for x
or z at the outputs, which would indicate an error.)

Module test_pe has four one-bit outputs. Output done should be set to 1 when the tests are
complete. When done is 1 outputs okay_b, okay_is, and okay_es shall be set to 1 if the respective
module works correctly or set to 0 if the respective module does not work correctly.

As before, do not rename the module or change any of its ports.

1

← → Spring 2001 ← → Homework 1 Homework Sol Code hw01.pdf

http://www.ee.lsu.edu/v/2001/hw01.html
http://www.ee.lsu.edu/v/proc.html
http://www.ee.lsu.edu/v/ref.html
https://www.ece.lsu.edu/ee4755/2001/hw01.pdf

EE 4702 Homework 2 Due: 22 Feb 2001, 23:59:59 CST

Solve this problem by modifying a copy of http://www.ee.lsu.edu/v/2001/hw02.html (or
.v) which can also be found in /home/classes/ee4702/files/v/hw02.v. See
http://www.ee.lsu.edu/v/proc.html for instructions on running the simulator. Alternate in-
structions can be found in Lesson 7 of the ModelSim Tutorial, linked to the references web page,
http://www.ee.lsu.edu/v/ref.html. The links are clickable when this assignment is viewed with
Acrobat Reader. The ModelSim tutorial and other documentation can also be accessed from the
Help menu on the ModelSim GUI (started by the command vsim -gui).

In this assignment a priority encoder will be designed which has an n-bit input, called request,
and an n-bit output, called grant. Let bit positions be numbered from n − 1 to 0 and let bit zero
be the least significant and the rightmost bit when written. Output bit i, n − 1 ≥ i ≥ 1, shall be 1

if input bit i is 1 and no lower-order bit, if any, is 1. Otherwise output bit i is zero. Therefore, at
most one output bit is 1, corresponding to the first input bit that is 1. Some examples: 0011 → 0001,
0110 → 0010, 0111 → 0001, and 0000 → 0000, where foo → bar indicates that output bar is expected
for input foo.

Problem 1: Complete the module priority_encoder_8_b so that it is a behavioral description
of an 8-bit priority encoder as described above (and in Homework 1). Just include behavioral code,
do not instantiate other modules.

Problem 2: Modify the priority_encoder_1_es modules from Homework 1 so that each gate
has a delay of one cycle.

Problem 3: Complete the module priority_encoder_8_es so that it is an explicit structural
description of a priority encoder constructed using priority_encoder_1_es modules from the
previous problem. They may be instantiated within priority_encoder_8_es or you can provide an
intermediate module, say priority_encoder_4_es, which instantiates priority_encoder_1_es.

Problem 4: Complete the module test_pe_8 to that it tests priority_encoder_8_b and pri-

ority_encoder_8_es. Unlike the testbench in Homework 1, this testbench can be commanded to
perform the test any number of times. Module test_pe_8 has one input, start, and three outputs,
done, okay_b, and okay_es. Initially, done should be 0. When start is 1 output done should be
set to zero. At this point, no other outputs should change until start goes to zero. After start
goes to zero the modules should be tested. When the tests are complete set okay_b and okay_es

based on the outcome of the test. After setting okay_b and okay_es set done to 1. At this point,
wait for start to go to 1 and repeat the process.

Use module tests_pe_8 (two esses) to test the timing of your testbench. The testbench should
be able to catch all errors, including undefined outputs.

1

← → Spring 2001 ← → Homework 2 Homework hw02.pdf

http://www.ee.lsu.edu/v/2001/hw02.html
http://www.ee.lsu.edu/v/proc.html
http://www.ee.lsu.edu/v/ref.html
https://www.ece.lsu.edu/ee4755/2001/hw02.pdf

EE 4702 Homework 3 Due: 4 April 2001.

Solve this problem by modifying a copy of http://www.ee.lsu.edu/v/2001/hw03.html (or
.v) which can also be found in /home/classes/ee4702/files/v/hw03.v. See
http://www.ee.lsu.edu/v/proc.html for instructions on running the simulator. Alternate in-
structions can be found in Lesson 7 of the ModelSim Tutorial, linked to the references web page,
http://www.ee.lsu.edu/v/ref.html. The links are clickable when this assignment is viewed with
Acrobat Reader. The ModelSim tutorial and other documentation can also be accessed from the
Help menu on the ModelSim GUI (started by the command vsim -gui).

Problem 1: Write a Verilog behavioral description of a microwave oven controller in module
microwave_oven_controller. The module has two inputs, key_code and clk. The user operates
the oven through a keypad, the keypad has a six-bit output which is connected to the controller
through the port named key_code. Values for key_code are given in the template. As with the
calculator described in class, when no key is pressed key_code is key_none (see the template). The
keypad is de-bounced and a user must release one key before pressing another. One-bit input clk
is a 64 Hz clock.

The controller has six outputs, beep, dmt dmu, dst, dsu, and mag_on. When one-bit output
beep is 1 the oven will emit a tone. Four-bit output dmt (display minute tens) is connected to the
tens digit of the oven minutes display, output dmu (display minute units) is connected to the unit
digit of the minutes display, dst is connected to the tens digit of the seconds display, and dsu is
connected to the unit digit of the seconds display. The display will properly render digit values 0-9
and will display nothing for a digit value of 10.

When controller output mag_on is 1 the magnetron is on (and so the oven is heating).
The keypad has keys for each digit key_0 - key_9, and keys key_power, key_start, and

key_reset. There is no popcorn button. The oven operates as follows: When the oven is plugged
in it should be placed in a reset state in which the magnetron is off and the display shows zero
minutes and zero seconds. To cook at full power, the user enters 1 to 4 digits and presses start.
(The digits indicate the cooking time in minutes and seconds. The number of seconds entered must
be in [0, 59], so if the user wants to cook for 90 seconds 130 must be entered, not 90.) To cook at
some other power the user presses a digit, power, then 1 to 4 digits for the time, then start. Digit
9 indicates 90% of full power, 8 indicates 80% of full power, etc.

Once commanded to start, the oven turns the magnetron on and off until the set time has
elapsed. For full power the magnetron stays on over the entire interval. To cook at partial power
the magnetron is turned on for a part of each 2.5-second interval. For example, to cook at 30%
power the magnetron would be on for 0.75 seconds, off for 1.75 seconds, on for 0.75 seconds, and
so on.

The controller must update the display as the user is entering the power and time and while
the oven is heating.

If the user presses reset once while the oven is heating the magnetron is turned off but the
display should show the remaining time. If the user presses reset again the oven should reset, if
the user presses start cooking should resume.

If reset is pressed when the oven is not heating then it will go to the reset state and so any
partially entered time or power will be lost.

When cooking is complete the oven should go into the reset state and sound a 2-second beep.
Whenever an invalid key is pressed, even when heating, the oven should emit a 250 ms beep.

A key is invalid if it has no meaning when pressed, for example, pressing a digit while heating or
pressing start with more than 59 seconds.

1

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03.pdf

http://www.ee.lsu.edu/v/2001/hw03.html
http://www.ee.lsu.edu/v/proc.html
http://www.ee.lsu.edu/v/ref.html
https://www.ece.lsu.edu/ee4755/2001/hw03.pdf

Resist the urge to gold plate your submission, for example, by adding outputs for a power
indicator or using the display for a clock when not cooking. This will only confuse the TA-bot.
Instead, discuss any such ideas with the instructor.

2

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03.pdf

https://www.ece.lsu.edu/ee4755/2001/hw03.pdf

EE 4702 Homework 4 Due: 20 April 2001.

Solve this problem by modifying a copy of http://www.ee.lsu.edu/v/2001/hw04.html (or
.v) which can also be found in /home/classes/ee4702/files/v/hw04.v. See
http://www.ee.lsu.edu/v/proc.html for instructions on running the simulator. Alternate in-
structions can be found in Lesson 7 of the ModelSim Tutorial, linked to the references web page,
http://www.ee.lsu.edu/v/ref.html. This page also has links to manuals for the synthesis pro-
gram, Leonardo. The links are clickable when this assignment is viewed with Acrobat Reader. The
ModelSim tutorial and other documentation can also be accessed from the Help menu on the Mod-
elSim GUI (started by the command vsim -gui).

Problem 1: Write a synthesizable Verilog behavioral description of a microwave oven controller
in module microwave_oven_controller that passes the testbench in test_oven. The module is
the same as the one assigned in Homework 3 with the following differences. There is a third input,
reset. The oven should reset if reset is one at a positive edge of input clk. This is to be used
for a power-on reset, it is not the front-panel reset button, and so the oven should reset regardless
of what it is doing.

Input key_code should only be examined at positive clk edges. Input key_code will be set
to a key’s code as long as a key is pressed. Do not expect users to hold down keys for only 1

64 of a
second. As before key_code will be key_none when no key is pressed.

The module must be synthesizable using the provided synthesis script (see below) and the
synthesized hardware must pass the testbench.

Follow these steps:
(1) Write an oven module that passes the testbench (without synthesis). This can be based on your
submission to Homework 3, a classmate’s submission to Homework 3, or the solution to Homework
3 (when that is posted). Note that the testbench tests the module needed for this homework, which
is slightly different than the one designed for Homework 3.
(2) Synthesize the module. This can be done in three ways:

• In Emacs: press S-F9 (shift f9) while a buffer with the oven module is active. Lines
containing error, warning, and information messages will be highlighted. If mouse-2 (the
middle button) is pressed while the pointer is over a highlighted message Emacs will jump
to the corresponding line in the Verilog description.
• From a shell: type syn.tcl hw04sol.v.
• Using the GUI: start Leonardo by selecting “Leonardo” from the slide-up menu over the
Emacs kitchen-sink icon on the CDE control panel at the bottom of the screen. Select
the SCL05u technology target, under ASIC and Sample. Load the homework solution and
press Run Flow. Additional steps are needed to generate Verilog output. Use the first two
methods when Verilog output is needed. (The GUI can be used, but the scripts are easier.)

Make sure the module synthesizes (look for a “Synthesis Complete” message), correct any
problems if it does not.
(3) Run the testbench on the synthesized module. To do this, load or restart the testbench into
Modelsim without recompiling it. (The synthesis script should have compiled the synthesized
module for you.) If this is done correctly Modelsim should print many lines that look like “Loading
work.OR4T2,” the names of the technology modules. Run the testbench and correct any errors.

1

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04.pdf

http://www.ee.lsu.edu/v/2001/hw04.html
http://www.ee.lsu.edu/v/proc.html
http://www.ee.lsu.edu/v/ref.html
https://www.ece.lsu.edu/ee4755/2001/hw04.pdf

EE 4702 Homework 5 Due: 2 May 2001

Solve this problem by modifying a copy of http://www.ee.lsu.edu/v/2001/hw05.html (or
.v) which can also be found in /home/classes/ee4702/files/v/hw05.v. See
http://www.ee.lsu.edu/v/proc.html for instructions on running the simulator. Alternate in-
structions can be found in Lesson 7 of the ModelSim Tutorial, linked to the references web page,
http://www.ee.lsu.edu/v/ref.html. This page also has links to manuals for the synthesis pro-
gram, Leonardo. The links are clickable when this assignment is viewed with Acrobat Reader. The
ModelSim tutorial and other documentation can also be accessed from the Help menu on the Mod-
elSim GUI (started by the command vsim -gui).

Module bsearch, in the homework template, stores numbers and can find whether a number
had been seen before. The module has four inputs and an output. Input clk is a clock, input reset
is a reset signal, op is a command, and din in the number to store or find. The module checks
commands on a positive edge of the clock, unlike the calculator a command should be present for
just one positive edge. (If it is present for two consecutive positive edges it may be performed
twice.) Output result should be set by the negative edge following the command (though it can
be set right after the positive edge). If the result is ready then result is set to the appropriate
code, explained below, otherwise it is set to re_busy until the result is available. The module
recognizes three commands, plus a nop.

When op = op_insert the module will attempt to store the number present at input din, if
successful result will be set to re_i_inserted. If the module were full result is set to re_i_full.
An inserted number must be strictly greater than the last one inserted, if not result is set to
re_i_misordered. When op = op_find the module will set result to re_i_present if the
number at din was inserted since the last reset, otherwise it is set to re_i_absent. When op =

op_reset the module is emptied.
The homework template contains four copies of a behavioral description of this module, all

named bsearch and each bracketed by an ‘ifdef/‘endif pair.
The module just below ‘ifdef NOT_SYN is complete and does not have to be modified. (If

would have been Problem 1 if there were more time left in the semester. :-)). The other bsearch
modules are to be converted into synthesizable form as explained in the problems below.

Problem 1: Convert the module below ‘ifdef FORM2 to a synthesizable module in Form 2 that
does one iteration of the forever loop per cycle. (The original code does the entire loop in one
cycle.) The synthesized module must pass the testbench. In the appropriate place in the comments
indicate the clock frequency, area (number of gates), and worst-case time needed to find a number
(time from positive edge when op = op_find to when result is set to re_f_present).

Problem 2: Convert the module below ‘ifdef FORM3 to a synthesizable module in Form 3 that
does no more than one iteration of the forever loop per cycle. The synthesized module must
pass the testbench. Show how the critical path (as identified by the synthesis program) can be
shortened by adding an event control @(posedge clk). Include the line if that would improve
performance, otherwise, include it and comment it out. (Remember that performance is more than
just clock frequency.) Next to the line indicate the endpoints of the critical path that is, or would
be, shortened.

In the appropriate place in the comments indicate the clock frequency, number of gates, and
worst-case time needed to find a number.

Problem 3: Convert the module below ‘ifdef FORM3_FAST to a synthesizable module in Form
3. The synthesized module must pass the testbench. Modify the description so that two iterations

1

← → Spring 2001 ← → Homework 5 Homework Sol Code hw05.pdf

http://www.ee.lsu.edu/v/2001/hw05.html
http://www.ee.lsu.edu/v/proc.html
http://www.ee.lsu.edu/v/ref.html
https://www.ece.lsu.edu/ee4755/2001/hw05.pdf

of the original code is done by one iteration (and clock cycle) in the modified code. This module
should take fewer clock cycles than the one in the previous problem (nearly half when the capacity
is large). In the appropriate place in the comments indicate the clock frequency, number of gates,
and worst-case time needed to find a number.

The modules must be synthesizable using the provided synthesis script (see below) and the
synthesized hardware must pass the testbench.

Follow these steps:
(1) Modify the modules as needed. Be sure to include a ‘define FOO when you are working on a
module next to ‘ifdef FOO.
(2) Synthesize the module. This can be done in two ways:

• In Emacs: press S-F9 (shift f9) while a buffer with the Verilog description is active. Lines
containing error, warning, and information messages will be highlighted. If mouse-2 (the
middle button) is pressed while the pointer is over a highlighted message Emacs will jump
to the corresponding line in the Verilog description.
• From a shell: type syn.pl hw05sol.v.

The clock frequency, number of gates, and critical path information are written by the synthesis
program and script.

Make sure the module synthesizes (look for a “Synthesis Complete” message), correct any
problems if it does not.
(3) Run the testbench on the synthesized module. To do this, load or restart the testbench into
Modelsim without recompiling it. (The synthesis script should have compiled the synthesized
module for you.) If this is done correctly Modelsim should print many lines that look like “Loading
work.OR4T2,” the names of the technology modules. Run the testbench and correct any errors.

2

← → Spring 2001 ← → Homework 5 Homework Sol Code hw05.pdf

https://www.ece.lsu.edu/ee4755/2001/hw05.pdf

12 Spring 2000

181

← → Spring 2000 ← → Homework 1 Homework hw01.pdf

https://www.ece.lsu.edu/ee4755/2000/hw01.pdf

EE 4702 Homework 1 Due: 14 February 2000

Solve this problem by modifying a copy of http://www.ee.lsu.edu/v/2000/hw01.v. Use Les-
son 7 of the ModelSim tutorial for instructions on using the simulator as described in the references
web page, http://www.ee.lsu.edu/v/ref.html. Instructions for submitting a solution will be given
later.

Problem 1: Write two Verilog descriptions of the following circuit. The circuit has a four-bit input
on which integers will appear. If the integer is equal to 2 or 9 the output should be 1, otherwise the
output should be zero. One description, in a module named number_detect_es, should be explicit
structural, and the other should be implicit structural in a module named number_detect_is.

Problem 2: Write a testbench for the descriptions above. Test all possible inputs. Name the
testbench module test_number_detect.

Problem 3: The structural module below, when finished, is to produce a pulse of duration 3 ns
on output o starting 4 ns after a positive edge on input i, but only if i is 1 for at least 2 ns. (The
finished module will remain structural.) Correct operation is shown in the sample timing below
where there are three pulses on input i. No output pulse appears at 14 ns because the input is 1

for only 1 ns. Pulses on o are produced for the next two positive edges on i. The testbench code
used to generate the waveforms is in module test_pos_edge, already written.

0 10 20 30 40

/test_pos_edge/i

/test_pos_edge/o

Entity:test_pos_edge Architecture: Date: Wed Feb 02 17:54:43 CST 2000 Row: 1 Page: 1

module pos_edge_trigger(o,i);

input i;

output o;

wire noti;

wire preout;

assign o = preout;

not (noti,i);

and (preout,i,noti);

endmodule // pos_edge_trigger

Add delay specifications so that the module works as described. Add only delay specifi-
cations, nothing else. Don’t add gates, don’t add modules, and especially don’t add behavioral
code.

1

← → Spring 2000 ← → Homework 1 Homework hw01.pdf

https://www.ece.lsu.edu/ee4755/2000/hw01.pdf

EE 4702 Homework 2 Due: 23 February 2000
Homework 2 and 3 are being assigned simultaneously. Homework 3 is really just homework

2a, but calling it that would ruin the numbering scheme. Solution templates can be found in
/home/classes/ee4702/files/v and will be linked to the web page. Instructions for submission
will be posted later.

Problem 1: A tachometer measures rotation rate by detecting marks on a disk using photodetec-
tors as illustrated below.

In the illustration there are two rings of marks,
in this assignment only the outer ring (the one
with lots of marks) will be used.

As the disk spins the number of marks pass-
ing under the disk are counted. At fixed intervals
a rotation rate is updated.

Write a Verilog behavioral description for hard-
ware that determines the rotation rate using the
photodetector output. The module has the fol-
lowing declaration:

module tach1(rpx,pd,clk);

input pd, clk;

output rpx;

wire pd, clk;

reg [9:0] rpx;

parameter freq = 500; // Clock frequency.

parameter marks = 4; // Number of marks on ring.

parameter update_interval = 0.5; // Update every update_interval seconds.

parameter perwhat = 60; // Measure in revolutions per 60 seconds.

// Solution goes here.

endmodule

Input clk is a square wave for use by the module. Input pd is the photodetector output. It
is 1 when a mark is under the photodetector. Output rpx is the rotation rate. Parameter freq is
the frequency of clk and marks is the number of marks on a disk. Parameter update_interval

is the number of seconds between updates of rpx. For example, if update_interval were 3 then
rpx would have to be updated every 3 seconds. Parameter perwhat is the time unit for measuring
revolutions, in seconds. If it is 60 then rpx should be in revolutions per minute, if it is 1 then rpx

should be in revolutions per second, etc.
Consider the instantiation below:

tach1 #(200) s1(rpx,pd,clk);

This instantiates a tachometer which is to use a 200 MHz clock.
Call perwhat

marks×update interval
the precision, p. Let nm denote the number of marks that have been

counted in a time interval of duration update_interval. Then rpx should be set to nm × p.

1

← → Spring 2000 ← → Homework 2 Homework hw02.pdf

https://www.ece.lsu.edu/ee4755/2000/hw02.pdf

In addition to generating rpx the module should also check to make sure its parameters are
suitable. The parameters are not suitable if the precision is not an integer or if any registers would
overflow in normal operation.

Use the testbenches provided in the solution template to test your circuit. Testbench module
test_tach1_fast tests a single instance, while test_tach1_detailed tests several instances (using
different parameters).

Follow the following rules when writing the hardware description. (The rules do not apply to
testbench code.)

• Do not use multipliers or dividers.

• Do not use delays: #3 i=1;. You can use event controls: @(posedge clk).

• Use the initial block for parameter verification and register initialization only.

To be continued in homework 3 . . .

2

← → Spring 2000 ← → Homework 2 Homework hw02.pdf

https://www.ece.lsu.edu/ee4755/2000/hw02.pdf

EE 4702 Homework 3 Due: 3 March 2000
Homework 3 is being split in to homework 3 and 4. Homework 4 is really just homework

2b, but calling it that would ruin the numbering scheme. Solution templates can be found in
/home/classes/ee4702/files/v and will be linked to the web page. Instructions for submission
can be found in the homework template.

Problem 1: Write an implicit structural description of the module designed in homework 2, either
your design or the posted solution. Note: see the template for a workaround to a bug when using
parameters.

Problem 2: Design a behavioral description of hardware similar to the one from homework 2,
but that measures rotation speed by measuring the time between marks. The inputs and output
are the same and the parameters are the same, except that update_interval is missing. In this
module the output should be updated for each detected mark. (The update does not have to occur
on the positive edge of pd, but it does have to be updated sometime.) The output must correctly
indicate zero rotation rate. (You’ll see why that needed to be specified.) Though the number of
marks is known the width of the marks is not.

module tach2(rpx,pd,clk);

input pd, clk;

output rpx;

wire pd, clk;

reg [9:0] rpx;

parameter freq = 500; // Clock frequency.

parameter marks = 4; // Four pulses per revolution.

parameter perwhat = 60; // Measure in revolutions per 60 seconds.

// Code here.

endmodule

Follow the following rules when writing the hardware description. (The rules do not apply to
testbench code.)

• You can use multipliers or dividers. (Just use the usual operators, no need to instantiate
anything.)

• Do not use delays: #3 i=1;. You can use event controls: @(posedge clk).

• Use the initial block for parameter verification and register initialization only.

1

← → Spring 2000 ← → Homework 3 Homework hw03.pdf

https://www.ece.lsu.edu/ee4755/2000/hw03.pdf

EE 4702 Homework 4 Due: 17 March 2000
Homework 4 is really just homework 2b, but calling it that would ruin the numbering scheme.

Solution templates can be found in /home/classes/ee4702/files/v and will be linked to the web
page.

Changes made to this assignment 13 March 2000, 10:02:54 CST. Changes are shown in a
slanted (not italic) font.

Problem 1: Suppose the marks are glued on the disks used in the problems above and that
sometimes they fall off. (Or maybe they’re stolen, or painted over.) Design a behavioral Verilog
module that can compute the correct rotation rate when as few as dm+1

2 e marks are still present,
where m is the original number of marks. The angle subtended by the marks (their width, sort of)
is not known.

Use the same design rules as for tach2. You may base the solution to this problem on your
solution to homework 3 (perhaps corrected) or the posted solution to homework 3.

The module does not have to measure zero correctly, when the rotation rate is below the
minimum measurable speed any output is acceptable.

module tach3(rpx,pd,clk);

input pd, clk;

output rpx;

wire pd, clk;

reg [9:0] rpx;

parameter freq = 500; // Clock frequency.

parameter marks = 12; // Four pulses per revolution, when new.

parameter perwhat = 60; // Measure in revolutions per 60 seconds.

// Code here.

endmodule

Problem 2: Design a testbench for the code above. The testbench should test the ability of tach3
to work with missing marks. The testbench can be based on the tach2 testbench provided with
homework 3.

The testbench should be able to handle a disk with up to one hundred marks. Test at least
these patterns: all marks present, one mark missing, the maximum number of marks missing and
spread out as much as possible (so almost every other mark is missing), and the maximum number
of marks missing where the missing marks are all adjacent (so there will be a big gap). Also, add
a pattern of your own.

See the hint at http://www.ee.lsu.edu/v/2000/hw04hint.html.

1

← → Spring 2000 ← → Homework 4 Homework hw04.pdf

https://www.ece.lsu.edu/ee4755/2000/hw04.pdf

EE 4702 Homework 5 Due: 19 April 2000
Solution templates can be found in /home/classes/ee4702/files/v and will be linked to the

web page. Put your solution in a file named hw05sol.v. Soon after the time the assignment is due
your directory tree will be searched for files named hw05sol.v and the most-recently modified one
will be copied. If no such file is found an attempt will be made to copy a file using a guessed name,
but this is not something to be relied on. Give the file the correct name.

Solutions to the problems below should be synthesized for the following technology: ASIC (type
of target), Sample (manufacturer [usually]), XCL05U (technology family). Do not specify any
optimization or other synthesis options. View the RTL schematic to check your solutions. (Under
the Tools menu or using the toolbar button.) Leonardo is started by typing leonardo & in a shell. To
work around a cosmetic stdout bug start Leonardo by typing leonardo > /dev/null & . Additional
instructions on running Leonardo will be posted later.

The assignments will be graded under the assumption that the schematic was viewed; a sub-
stantial number of points will be deducted for solutions that do not synthesize correctly.

Problem 1: Complete the Leonardo-synthesizable Verilog description of an ALU module shown
below. The module has three inputs, a, b, and op. Inputs a and b are each 8 bits and hold unsigned
integers. Input op specifies an operation to perform; the coding is given by the parameters. The
module has two outputs, res and err. Output res is 8 bits and is the result of performing the
operation; output err is one bit and is 1 if res cannot hold the result of op. That is, err is one if
the sum is more than eight bits or the difference is negative; it is zero otherwise.

Write the description using behavioral code and synthesize it for the target specified above.
The synthesized module should be combinational—no latches allowed. The module should perform
only the three operations indicated, don’t add your own.

module alu(res,err,a,b,op);

input a, b, op;

output res, err;

parameter op_add = 0, // Addition.

op_sub = 1, // Subtraction

op_and = 2; // Bitwise and.

// Insert solution here. It’s okay to delete this comment.

endmodule // alu

1

← → Spring 2000 ← → Homework 5 Homework Sol Code hw05.pdf

https://www.ece.lsu.edu/ee4755/2000/hw05.pdf

Problem 2: Complete the design of a Leonardo-synthesizable Verilog module with four 1-bit
outputs and six one-bit inputs with the following behavior when synthesized:

• Output w is equal to the value input d had at the last negative edge of clk. (In other words,
w is set to d at the negative edge of clk.)

• Output y is equal to the value input a had at the last positive edge of clk.

• Output z is equal to the last value input c had when both clk was high and d = b.

• Output x set to b at positive edge of clk if a=1. Output x is set to 1 if clk=1 and d=a.

• All outputs are set to zero when input r=1 (and will remain zero until set to a new value as
described above).

If might be helpful to figure out what kinds of flip-flops are needed for each output and then
check if Leonardo chooses the correct one (or something equivalent).

module latch_thing(w,x,y,z,a,b,c,d,r,clk);

input a, b, c, d, r, clk;

output w, x, y, z;

// Insert solution here. It’s okay to delete this comment.

endmodule // latch_thing

2

← → Spring 2000 ← → Homework 5 Homework Sol Code hw05.pdf

https://www.ece.lsu.edu/ee4755/2000/hw05.pdf

EE 4702 Homework 6 Due: 28 April 2000
Solution templates can be found in /home/classes/ee4702/files/v and

www.ee.lsu.edu/v/2000/hw06.html Put your solution in a file named hw06sol.v. Soon after the
time the assignment is due your directory tree will be searched for files named hw06sol.v and the
most-recently modified one will be copied. If no such file is found an attempt will be made to copy a
file using a guessed name, but this is not something to be relied on. Give the file the correct name.

Solutions to the problems below should be synthesized for the following technology: ASIC (type
of target), Sample (manufacturer [usually]), XCL05U (technology family). Do not specify any
optimization or other synthesis options. View the RTL schematic to check your solutions. (Under
the Tools menu or using the toolbar button.) Leonardo is started by typing leonardo & in a shell.
To work around a cosmetic stdout bug start Leonardo by typing leonardo > /dev/null & . See
the procedures and FAQ web pages for additional instructions on running Leonardo.

See the FAQ page for instructions on how to write Verilog code of the synthesized module for
simulation using the Leonardo GUI, a TCL script, or Emacs. The process is particularly convenient
using Emacs.

The assignments will be graded under the assumption that the synthesized code was simulated
using the testbench provided; a substantial number of points will be deducted for solutions that do
not pass the testbench correctly.

Problem 1: A Verilog behavioral description of a module similar to the one described in the
first midterm problem appears in http://www.ee.lsu.edu/v/2000/hw06.v. The module cannot
be synthesized by Leonardo (1999.1f). Modify the module so that it can be synthesized while
retaining the benefits of behavioral code. (That is, do not convert it to a structural description.)
The synthesized code must pass the testbench provided with the code.

The module, width_change, describes a FIFO in which data is inserted in 4-bit nibbles (the
technical term for half a byte, no kidding) and removed in 8-bit bytes. The total storage capacity
is 32 bits. In addition to the 4-bit input and 8-bit output there are two 1-bit inputs, inclk and
outclk. On a positive edge of inclk data is read; on a positive edge of outclk data is removed in
FIFO fashion. The low nibble of the output (bits 0-3) holds data that arrived earlier than the high
nibble of the output. Output full is one if the FIFO cannot accept another nibble, output empty
is one if the FIFO is empty (in which case the output must be all zeros), and output complete is 1
if the output has eight bits of data. (Output complete is zero if the FIFO is empty or if it contains
just 4 bits. If the FIFO contains four bits the high nibble of output should be zeros.)

Note that, unlike the test question, the sizes of the input, output, and storage capacity are
digital-logic-friendly powers of two. However like the midterm exam, the input and output each
have their own positive edge triggered clock. Getting this into synthesizable form will take some
thought.

← → Spring 2000 ← → Homework 6 Homework Sol Code hw06.pdf

http://www.ee.lsu.edu/v/2000/hw06.html
https://www.ece.lsu.edu/ee4755/2000/hw06.pdf

13 Fall 2023 Solutions

190

← → Fall 2023 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw01-sol.v.html

//
//
/// LSU EE 4755 Fall 2023 Homework 1 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2023/hw01.pdf

`default_nettype none

//
/// Problem 1
//
 /// Complete minmax2p1 using a compare_lt and mux2 instantiations.

 ///
//
// [✔] Only modify minmax2p1. Use minmax2 for reference.
//
// [✔] minmax2p1 must instantiate a compare_lt module and mux2 modules.
// [✔] minmax2p1 must NOT use assign statements or procedural code.
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter values.
//
// [✔] Code must be written clearly.

module minmax2p1
 #(int w = 4)
 (output uwire [w-1:0] min, max,
 input uwire [w-1:0] a0, a1);

 // Put solution here.

 /// SOLUTION

 uwire lt;
 compare_lt #(w) clt(lt, a0, a1);

 mux2 #(w) mn(max,lt,a0,a1);
 mux2 #(w) mx(min,lt,a1,a0);

endmodule

module compare_lt
 #(int w = 31)
 (output uwire lt,
 input uwire [w-1:0] a0, a1);

 // DO NOT modify this module.

 // Set lt to 0 if a1 < a0, set lt to 1 otherwise.
 //

← → Fall 2023 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/koppel/v/2023/hw01.pdf
https://www.ece.lsu.edu/ee4755/2023/hw01-sol.v.html

 assign lt = a0 <= a1;

endmodule

module mux2
 #(int w = 3)
 (output uwire [w-1:0] x,
 input uwire s,
 input uwire [w-1:0] a0, a1);

 // DO NOT modify this module either.

 assign x = s ? a1 : a0;

endmodule

module minmax2
 #(int w = 10)
 (output uwire [w-1:0] min, max,
 input uwire [w-1:0] a0, a1);

 // DO NOT modify this module either.

 // Assign min to the smaller of a0 and a1, and max to the larger.
 assign { min, max } = a0 <= a1 ? { a0, a1 } : { a1, a0 };

endmodule

//
/// Problem 2
//
 /// Complete minmax4 and minmax8.

//
// [✔] In minmax4, instantiate minmax2.
// [✔] In minmax8, instantiate minmax4.
// [✔] In minmax4 and minmax8, instantiate min2 and max2, as necessary.
//
// [✔] Do not use assign statements or procedural code.
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter values.
//
// [✔] Pay attention to cost.
// [✔] Assume cost of min2 + max2 in more than minmax2.
// [✔] Code must be written clearly.

module minmax4
 #(int w = 20)
 (output uwire [w-1:0] min, max,
 input uwire [w-1:0] a[4]);

← → Fall 2023 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw01-sol.v.html

 // Put solution here.

 /// SOLUTION

 uwire [w-1:0] lomin, lomax, himin, himax;

 minmax2 #(w) mlo(lomin, lomax, a[0], a[1]);
 minmax2 #(w) mhi(himin, himax, a[2], a[3]);

 min2 #(w) m1(min, lomin, himin);
 max2 #(w) m2(max, lomax, himax);

endmodule

module minmax8
 #(int w = 12)
 (output uwire [w-1:0] min, max,
 input uwire [w-1:0] a[8]);

 // Put solution here.

 /// SOLUTION

 uwire [w-1:0] lomin, lomax, himin, himax;

 minmax4 #(w) mlo(lomin, lomax, a[0:3]);
 minmax4 #(w) mhi(himin, himax, a[4:7]);

 min2 #(w) m1(min, lomin, himin);
 max2 #(w) m2(max, lomax, himax);

endmodule

module min2
 #(int w = 10)
 (output uwire [w-1:0] min,
 input uwire [w-1:0] a0, a1);
 assign min = a0 < a1 ? a0 : a1;
endmodule

module max2
 #(int w = 10)
 (output uwire [w-1:0] max,
 input uwire [w-1:0] a0, a1);
 assign max = a0 < a1 ? a1 : a0;
endmodule

//
/// Testbench Code

← → Fall 2023 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw01-sol.v.html

// cadence translate_off

module testbench;

 localparam int npsets = 3; // Number of instantiations.
 localparam int pset[npsets] =
 '{ 2, 4, 8 };

 int t_errs; // Total number of errors.
 initial begin t_errs = 0; end
 final $write("Total number of errors: %0d\n",t_errs);

 uwire d[npsets:-1]; // Start / Done signals.
 assign d[-1] = 1; // Initialize first at true.

 // Instantiate a testbench at each size.
 //
 for (genvar i=0; i<npsets; i++)
 testbench_n #(pset[i]) t2(.done(d[i]), .tstart(d[i-1]));

endmodule

module testbench_n
 #(int n = 5)
 (output logic done, input uwire tstart);

 localparam int w = 13;
 localparam int ntests = 100;

 logic [w-1:0] a[n], sa[n];
 uwire [w-1:0] min, max;

 if (n == 2)
 minmax2p1 #(w) mm(min, max, a[0], a[1]);
 else if (n == 4)
 minmax4 #(w) mm(min, max, a);
 else if (n == 8)
 minmax8 #(w) mm(min, max, a);

 int n_err_min, n_err_max;

 initial begin

 done = 0;
 wait(tstart);

 n_err_min = 0;
 n_err_max = 0;

 for (int i=0; i<ntests; i++) begin

 logic [w-1:0] shadow_min, shadow_max;

← → Fall 2023 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw01-sol.v.html

 for (int i=0; i<n; i++) a[i] = {$random};
 sa = a; sa.sort();
 shadow_min = sa[0];
 shadow_max = sa[n-1];

 #1;
 if (min !== shadow_min) begin
 n_err_min++;
 if (n_err_min < 5)
 $write("Error n=%0d min %d != %d (correct)\n",
 n, min, shadow_min);
 end
 if (max !== shadow_max) begin
 n_err_max++;
 if (n_err_max < 5)
 $write("Error n=%0d max %d != %d (correct)\n",
 n, max, shadow_max);
 end

 end

 testbench.t_errs += n_err_min + n_err_max;

 done = 1;

 $write("Done with n=%0d, tests, %0d min %0d max errors found.\n",
 n, n_err_min, n_err_max);

 end
endmodule

// cadence translate_on

← → Fall 2023 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw01-sol.v.html

//
//
/// LSU EE 4755 Fall 2023 Homework 2 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2023/hw02.pdf

`default_nettype none

//
/// Problem 1
//
 /// Complete comp_p1 so that it computes (1-b/c)/a. See writeup.

 ///
//
// [✔] Perform computation in order given by expression (1-b/c)/a.
// [✔] Only modify comp_p1.
//
// [✔] Use Chipware modules for floating point arithmetic and conversions.
// [✔] Do not perform FP arithmetic with procedural code.
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter values.
//
// [✔] Pay attention to cost. Don't grossly oversize things.
// [✔] Code must be written clearly.

module fp_one
 #(int w_exp=5, w_sig=9, w_fp=1+w_exp+w_sig)(output uwire [w_fp-1:0] one);
 // Output is the constant 1. This module is synthesizable.
 assign one = { 1'b0, (w_exp)'((1 << w_exp-1) - 1), (w_sig)'(0) };
endmodule

typedef enum logic [2:0]
 { Rnd_to_even = 0, Rnd_to_0 = 1, Rnd_to_plus_if = 2,
 Rnd_to_minus_inf = 3, Rnd_to_plus_inf = 4, Rnd_from_0 = 5 }
 Rnd;

module comp_p1
 #(int w = 5, w_exp = 5, w_sig = 5, wfp = 1 + w_exp + w_sig)
 (output uwire [wfp-1:0] h,
 input uwire [w-1:0] a, b, c);

 localparam Rnd rnd = Rnd_to_even;
 uwire logic [wfp-1:0] one;
 fp_one #(w_exp,w_sig) o(one);

 /// SOLUTION

 uwire logic [wfp-1:0] One;
 fp_one #(w_exp,w_sig) O(One);

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/koppel/v/2023/hw02.pdf
https://www.ece.lsu.edu/ee4755/2023/hw02-sol.v.html

 uwire [wfp-1:0] af, bf, cf, boc, numer;
 uwire [7:0] sa, sb, sc, sboc, snumer, sh;

 // Convert inputs to floating-point.
 //
 CW_fp_i2flt #(.sig_width(w_sig), .exp_width(w_exp), .isize(w), .isign(0))
 coa(.z(af), .a(a), .rnd(rnd), .status(sa));
 CW_fp_i2flt #(.sig_width(w_sig), .exp_width(w_exp), .isize(w), .isign(0))
 cob(.z(bf), .a(b), .rnd(rnd), .status(sb));
 CW_fp_i2flt #(.sig_width(w_sig), .exp_width(w_exp), .isize(w), .isign(0))
 coc(.z(cf), .a(c), .rnd(rnd), .status(sc));

 // Compute (1-b/c)/a
 //
 CW_fp_div #(.sig_width(w_sig), .exp_width(w_exp))
 d1(.z(boc), .a(bf), .b(cf), .status(sboc), .rnd(rnd));
 CW_fp_sub #(.sig_width(w_sig), .exp_width(w_exp))
 d2(.z(numer), .a(One), .b(boc), .status(snumer), .rnd(rnd));
 CW_fp_div #(.sig_width(w_sig), .exp_width(w_exp))
 d3(.z(h), .a(numer), .b(af), .status(sh), .rnd(rnd));

endmodule

//
/// Problem 2
//
 /// Complete comp_p2 so that it computes (1-b/c)/a ef�ciently. See writeup.

 ///
//
// [✔] Transform (1-b/c)/a for computation efficiency; implement that.
// [✔] Only modify comp_p2.
//
// [✔] Use Chipware modules for floating point arithmetic and conversions.
// [✔] Do not perform FP arithmetic with procedural code.
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter values.
//
// [✔] Pay attention to cost. Don't grossly oversize things.
// [✔] Pay attention to performance (delay).
// [✔] Code must be written clearly.

module comp_p2
 #(int w = 5, w_exp = 5, w_sig = 5, wfp = 1 + w_exp + w_sig)
 (output uwire [wfp-1:0] h,
 input uwire [w-1:0] a, b, c);

 localparam logic [2:0] rnd = Rnd_to_0;

 /// SOLUTION

 //
 // Summary:
 //

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw02-sol.v.html

 // - Transform (1-b/c)/a into (c - b) / (ac).
 //
 // - Use integer arithmetic for c - b and for ac.
 // Take care to use enough bits in each expression.
 //
 // - Convert c-b and ac to floating point.
 //
 // - Compute (c-b)/ac with one extra bit of precision.

 // Perform integer computations.

 // Note: Width (bits) of integer product is sum of width of operands.
 //
 localparam int wac = 2 * w;
 //
 uwire [wac-1:0] ac = a * c;

 // Use an extra bit for difference because result can be negative.
 //
 uwire [w:0] cmb = c - b;

 // Use one extra bit of precision when doing division.
 //
 localparam int w_Sig = w_sig + 1;
 localparam int wFp = 1 + w_exp + w_Sig;

 uwire [wFp-1:0] acf, cmbf, H;
 uwire [7:0] sa, sb, sboc;

 // Convert to floating point.
 //
 CW_fp_i2flt #(.sig_width(w_Sig), .exp_width(w_exp), .isize(wac), .isign(0))
 coa(.z(acf), .a(ac), .rnd(rnd), .status(sa));
 CW_fp_i2flt #(.sig_width(w_Sig), .exp_width(w_exp), .isize(w+1), .isign(1))
 cob(.z(cmbf), .a(cmb), .rnd(rnd), .status(sb));

 // Compute quotient.
 //
 CW_fp_div #(.sig_width(w_Sig), .exp_width(w_exp))
 di1(.z(H), .a(cmbf), .b(acf), .status(sboc), .rnd(rnd));

 // Remove the extra bit.
 //
 assign h = H[wFp-1:wFp-wfp];

endmodule

//
/// Testbench Code

// cadence translate_off

function automatic int unsigned rand_wid(int max_wid);
 automatic int wid = 1 + {$random()} % max_wid;

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw02-sol.v.html

 return {$random()} & ((1 << wid) - 1);
endfunction

function automatic real fabs(real val);
 fabs = val < 0 ? -val : val;
endfunction

function int min(int a, b);
 min = a <= b ? a : b;
endfunction
function int max(int a, b);
 max = a >= b ? a : b;
endfunction

virtual class conv #(int wexp=6, wsig=10);
 // Convert between real and fp types using parameter-provided
 // exponent and significand sizes.

 localparam int w = 1 + wexp + wsig;
 localparam int bias_r = (1 << 11 - 1) - 1;
 localparam int w_sig_r = 52;
 localparam int w_exp_r = 11;
 localparam int bias_h = (1 << wexp - 1) - 1;

 static function logic [w-1:0] rtof(real r);
 logic [wsig-1:0] sig_f;
 logic [w_sig_r-wsig-2:0] sig_x;
 logic sig_x_msb;
 logic [w_exp_r-1:0] exp_r;
 logic sign_r;
 { sign_r, exp_r, sig_f, sig_x_msb, sig_x } = $realtobits(r);
 // So, what about a rounding mode? Not now!
 rtof = !r ? 0 : { sign_r, wexp'(exp_r + bias_h - bias_r), sig_f };
 endfunction

 static function real ftor(logic [w-1:0] f);
 ftor = !f ? 0.0
 : $bitstoreal
 ({ f[w-1],
 w_exp_r'(bias_r + f[w-2:wsig] - bias_h),
 f[wsig-1:0], (w_sig_r-wsig)'(0) });
 endfunction

 static function int err_bits(logic [w-1:0] a, b);

 logic [wsig-1:0] sig_a, sig_b;
 logic [wsig+2:0] frac_a, frac_b, frac_diff;
 logic [wexp-1:0] exp_a, exp_b;
 logic s_a, s_b;
 int delta_e;

 if ($isunknown(a) || $isunknown(b)) return 1 << wexp;
 if (a == b) return 0;

 { s_a, exp_a, sig_a } = a;
 { s_b, exp_b, sig_b } = b;

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw02-sol.v.html

 if (exp_a == 0 || exp_b == 0) begin
 logic [wsig-1:0] sig = ~ (sig_a | sig_b);
 return 1 + wsig - $clog2(sig + 1);
 end

 delta_e = $abs(0 + exp_a - exp_b);
 if (delta_e > 1) return delta_e + wsig;
 frac_a = exp_a > exp_b ? { 2'b1, sig_a, 1'b0 } : { 3'b1, sig_a };
 frac_b = exp_b > exp_a ? { 2'b1, sig_b, 1'b0 } : { 3'b1, sig_b };
 frac_diff =
 s_a != s_b ? frac_a + frac_b :
 frac_a > frac_b ? frac_a - frac_b : frac_b - frac_a;
 return $clog2(frac_diff + 1);

 endfunction

endclass

// cadence translate_on

// cadence translate_off

// Module names. (Used by the testbench.)
//
typedef enum { M_p1, M_p2 } M_Type;

module testbench;

 localparam int n_tests = 10000;

 localparam int npsets = 5; // This MUST be set to the size of pset.
 // { w_exp, w_sig, w_int }
 localparam int pset[npsets][3] =
 '{
 { 7, 6, 4 },
 { 7, 8, 4 },
 { 8, 10, 5 },
 { 8, 10, 10 },
 { 8, 12, 10 }
 };

 localparam int nmsets = 2;
 localparam M_Type mset[nmsets] = '{ M_p1, M_p2 };

 string mtype_str[M_Type] = '{ M_p1: "comp_p1", M_p2: "comp_p2" };
 string mtype_abbr[M_Type] = '{ M_p1: "p1", M_p2: "p2" };

 int t_errs_mod[M_Type];
 int t_errs_size[int];
 int t_errs_each[M_Type][int];
 int t_mub_each[M_Type][int];
 real t_aub_each[M_Type][int];

 localparam int nsets = npsets * nmsets;

 logic d[nsets:-1]; // Start / Done signals.

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw02-sol.v.html

 int t_errs; // Total number of errors.
 initial begin
 t_errs = 0;
 for (int m=0; m<nmsets; m++)
 for (int i=0; i<npsets; i++) begin
 t_errs_each[mset[m]][i] = -1;
 t_mub_each[mset[m]][i] = -1;
 t_aub_each[mset[m]][i] = -1;
 end

 d[-1] = 1;
 end

 final begin
 $write("\nNumber of tests: %0d.\n", n_tests);
 for (int i=0; i<npsets; i++)
 $write("Total for exp=%2d, sig=%2d, w=%2d: %5d errors.\n",
 pset[i][0], pset[i][1], pset[i][2],
 t_errs_size[i]);
 for (int i=0; i<nmsets; i++)
 $write("Total for mod %4s: %5d errors.\n",
 mtype_str[mset[i]], t_errs_mod[mset[i]]);
 for (int m=0; m<nmsets; m++)
 for (int i=0; i<npsets; i++)
 $write("Total %4s exp=%2d, sig=%2d, w=%2d: %5d errors. Err bits: avg %6.2f, max %3d\n",
 mtype_str[mset[m]],
 pset[i][0], pset[i][1], pset[i][2],
 t_errs_each[mset[m]][i],
 t_aub_each[mset[m]][i], t_mub_each[mset[m]][i]);

 $write("Total number of errors: %0d\n",t_errs);
 end

 for (genvar m=0; m<nmsets; m++)
 for (genvar i=0; i<npsets; i++) begin
 localparam int idx = m * npsets + i;
 testbench_n
 #(.w_exp(pset[i][0]), .w_sig(pset[i][1]), .w_int(pset[i][2]),
 .pset(i), .mtype(mset[m]))
 t2(.done(d[idx]), .tstart(d[idx-1]));
 end

endmodule

module testbench_n
 #(int w_exp = 5, w_sig = 8, w_int = 12, pset = 0, M_Type mtype = M_p1)
 (output logic done, input uwire tstart);

 localparam int w_fp = 1 + w_sig + w_exp;
 localparam int bias = (1 << w_exp-1) - 1;
 logic [w_int-1:0] a, b, c;
 uwire [w_fp-1:0] h;

 case (mtype)
 M_p1: comp_p1 #(w_int, w_exp, w_sig) c1(h, a, b, c);

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw02-sol.v.html

 M_p2: comp_p2 #(w_int, w_exp, w_sig) c2(h, a, b, c);
 endcase

 initial begin

 automatic int n_tests = testbench.n_tests;
 automatic int n_err = 0;
 automatic int ub_max = 0, ub_emax = 0, ub_sum = 0;

 wait(tstart);

 $write("Starting tests for mod %4s exp=%2d, sig=%2d, w=%2d\n",
 testbench.mtype_str[mtype], w_exp, w_sig, w_int);

 for (int i=0; i<n_tests; i++) begin

 automatic bit choose_close_bc = $random() & 1'b1;

 real mut_h, shadow_h, shadow_hr, boc;
 logic [w_fp-1:0] shadow_hf;
 int ub, bit_loss, tol;

 a = rand_wid(w_int);
 if (a == 0) a = 1;
 b = choose_close_bc ? $random() : rand_wid(w_int);
 c = choose_close_bc ? $random() : rand_wid(w_int);
 if (c == 0) c = 1;

 bit_loss = mtype == M_p2 || b == c ? 0
 : $clog2(1 + int'($ceil(1 / fabs(1 - real'(b)/c))));
 tol = 1 + bit_loss;

 shadow_hr = (1 - real'(b)/c) / a;
 shadow_hf = conv#(w_exp,w_sig)::rtof(shadow_hr);
 shadow_h = conv#(w_exp,w_sig)::ftor(shadow_hf);

 #1;

 mut_h = conv#(w_exp,w_sig)::ftor(h);
 ub = conv#(w_exp,w_sig)::err_bits(shadow_hf, h);
 if (ub > 0) ub_sum += ub;

 if (ub > tol) begin
 n_err++;
 if (ub > ub_emax) begin
 ub_emax = ub;
 $write("Error %s #(%0d,%0d,%0d) a=%d b=%d c=%d: Err bits %0d (tol %0d)\n",
 testbench.mtype_abbr[mtype],
 w_exp, w_sig, w_int,
 a, b, c, ub, tol);
 $write(" Output %.4e != %.4e (correct).\n",
 mut_h, shadow_h);
 $write(" Output 'h%h * 2^(%d-%0d) != 'h%h * 2^(%d-%0d) (correct)\n",
 h[w_sig-1:0], h[w_sig+w_exp-1:w_sig], bias,
 shadow_hf[w_sig-1:0], shadow_hf[w_sig+w_exp-1:w_sig],
 bias);

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw02-sol.v.html

 end

 end

 if (ub > ub_max) ub_max = ub;

 end

 $write("Finished tests for mod %4s exp=%2d, sig=%2d, w=%2d. %0d errors.\n",
 testbench.mtype_str[mtype], w_exp, w_sig, w_int, n_err);

 testbench.t_errs += n_err;
 testbench.t_errs_each[mtype][pset] = n_err;
 testbench.t_mub_each[mtype][pset] = ub_max;
 testbench.t_aub_each[mtype][pset] = real'(ub_sum) / n_tests;
 testbench.t_errs_mod[mtype] += n_err;
 testbench.t_errs_size[pset] += n_err;

 done = 1;
 end

endmodule

`define SIMULATION_ON

// cadence translate_on

`default_nettype wire

`ifdef SIMULATION_ON

`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/sim/verilog/CW/CW_fp_mult.v"
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/sim/verilog/CW/CW_fp_add.v"
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/sim/verilog/CW/CW_fp_sub.v"
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/sim/verilog/CW/CW_fp_div.v"
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/sim/verilog/CW/CW_fp_i2flt.v"

`else

`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/syn/CW/CW_fp_mult.v"
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/syn/CW/CW_fp_add.v"
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/syn/CW/CW_fp_sub.v"
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/syn/CW/CW_fp_i2flt.v"
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/syn/CW/CW_fp_div.v"

`endif

← → Fall 2023 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw02-sol.v.html

//
//
/// LSU EE 4755 Fall 2023 Homework 3 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2023/hw03.pdf

`default_nettype none

 //
/// Problem 1
//
 /// Complete perm so that it permutes its inputs and computes the next perm num.

 ///
//
// [✔] Only modify perm.
// [✔] perm must be recursive.
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter values.
//
// [✔] Pay attention to cost. Don't grossly oversize things.
// [✔] Code must be written clearly.

module perm
 #(int w = 8, n = 20, dw = $clog2(n))
 (output uwire [w-1:0] pdata_out[n],
 output uwire [dw-1:0] pnum_out[n],
 output uwire carry_out,
 input uwire [w-1:0] pdata_in[n],
 input uwire [dw-1:0] pnum_in[n]);

 /// SOLUTION

 if (n == 1) begin

 /// SOLUTION -- Problem 1a

 //
 // For n=1 the permutation is always identity ..
 // .. so the pdata out is set to pdata in ..
 // .. the permutation number remains zero (it always is 0 at n=1) ..
 // .. and the carry_out is set to 1.
 //
 assign pdata_out[0] = pdata_in[0];
 assign carry_out = 1;
 assign pnum_out[0] = 0;

 end else begin

 /// SOLUTION -- Problem 1a

← → Fall 2023 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/koppel/v/2023/hw03.pdf
https://www.ece.lsu.edu/ee4755/2023/hw03-sol.v.html

 //
 // Set pos to the position of the element to be moved.
 //
 uwire [dw-1:0] pos = n - 1 - pnum_in[n-1];
 //
 // Copy the element at position pos to position n-1 in the output.
 //
 assign pdata_out[n-1] = pdata_in[pos];
 //
 // Prepare an array of n-1 elements and set to ..
 // .. the elements of pdata_in except for the element at pos.
 //
 uwire [w-1:0] prdata_in[n-1];
 for (genvar i=0; i<n-1; i++)
 assign prdata_in[i] = i < pos ? pdata_in[i] : pdata_in[i+1];

 uwire co;
 perm #(w,n-1,dw) rp(pdata_out[0:n-2], pnum_out[0:n-2], co,
 prdata_in, pnum_in[0:n-2]);

 /// SOLUTION -- Problem 1b

 //
 // Compute a tentative next value of digit n-1.
 //
 uwire [dw-1:0] dnext = pnum_in[n-1] + co;
 //
 // Determine whether there is a carry.
 //
 assign carry_out = dnext >= n;
 //
 // Set the next value of digit n-1 based on whether there is a carry.
 //
 assign pnum_out[n-1] = carry_out ? 0 : dnext;

 end

endmodule

module perm_behavioral
 #(int w = 8, n = 20, dw = $clog2(n))
 (output logic [w-1:0] pdata_out[n],
 output logic [dw-1:0] pnum_out[n],
 output logic carry_out,
 input uwire [w-1:0] pdata_in[n],
 input uwire [dw-1:0] pnum_in[n]);

 /// DO NOT modify this module. The testbench uses it.

 always_comb begin
 // Permute values

 pdata_out = pdata_in;

← → Fall 2023 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw03-sol.v.html

 for (int i=n-1; i>0; i--) begin
 automatic logic [dw-1:0] pos = i-pnum_in[i];
 automatic logic [w-1:0] x = pdata_out[pos];
 for (int j=pos; j<i; j++) pdata_out[j] = pdata_out[j+1];
 pdata_out[i] = x;
 end
 end

 /// DO NOT modify this module. The testbench uses it.

 always_comb begin
 // Compute next permutation number.

 carry_out = 1;

 for (int i=0; i<n; i++) begin
 automatic int radix = i + 1;
 automatic logic [dw:0] next_val = pnum_in[i] + carry_out;
 if (next_val < radix) begin
 pnum_out[i] = next_val;
 carry_out = 0;
 end else begin
 pnum_out[i] = 0;
 end
 end
 end

 /// DO NOT modify this module. The testbench uses it.

endmodule

//
/// Testbench Code

// cadence translate_off

function int char_or_q(int c);
 return c >= "a" && c <= "z" ? c : "?";
endfunction

module testbench;
 localparam int npsets = 4; // This MUST be set to the size of pset.
 // { w n }
 localparam int pset[npsets][2] =
 '{
 { 8, 3 },
 { 7, 4 },
 { 8, 8 },
 { 8, 10 } };

 logic d[npsets:-1]; // Start / Done signals.

 int t_errs_v[npsets];

← → Fall 2023 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw03-sol.v.html

 int t_errs_i[npsets];
 int t_n_tests[npsets];

 int t_errs; // Total number of errors.
 initial begin
 t_errs = 0;
 for (int i=0; i<npsets; i++) begin
 t_errs_v[i] = -1;
 t_errs_i[i] = -1;
 t_n_tests[i] = -1;
 end
 d[-1] = 1;

 wait(d[npsets-1]);

 for (int p=0; p<npsets; p++)
 $write("End of tests n=%2d, %0d perm errors, %0d next idx errors for %0d tests.\n",
 pset[p][1], t_errs_v[p], t_errs_i[p], t_n_tests[p]);

 end

 for (genvar p=0; p<npsets; p++) begin
 testbench_n #(.w(pset[p][0]), .n(pset[p][1]), .idx(p))
 tb(.done(d[p]), .tstart(d[p-1]));
 end

endmodule

module testbench_n
 #(int w=8, n=3, idx=0)
 (output logic done, input uwire tstart);

 localparam int dw = $clog2(n);
 localparam int max_tests = 1000;

 uwire [w-1:0] p_out[n], pb_out[n];
 uwire [dw-1:0] i_out[n], ib_out[n];
 uwire co, cob;
 logic [w-1:0] p_in[n];
 logic [dw-1:0] i_in[n];

 perm_behavioral #(w,n,dw) pb(pb_out, ib_out, cob, p_in, i_in);
 perm #(w,n,dw) pmut(p_out, i_out, co, p_in, i_in);

 initial begin

 automatic int n_v_err = 0, n_i_err = 0;
 automatic longint nfact = 1;
 automatic int run_curr = 0;
 int n_tests;
 int run_length; // Number of consecutive permutations.
 for (int i=2; i<=n; i++) nfact *= i;

 n_tests = nfact <= max_tests ? nfact : max_tests;

← → Fall 2023 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw03-sol.v.html

 run_length = n_tests >= nfact ? n_tests : 4;

 for (int i=0; i<n; i++) p_in[i] = "a" + n - i - 1;
 for (int i=0; i<n; i++) i_in[i] = 0;

 wait(tstart);

 $write("Starting tests for w=%0d, n=%0d\n",w,n);

 for (int i=0; i<n_tests; i++) begin

 automatic int tn_v_err = 0, tn_i_err = 0;
 bit show_v_err, show_i_err, show_trace;

 #1;

 for (int j=0; j<n; j++) if (p_out[j] !== pb_out[j]) tn_v_err++;
 for (int j=0; j<n; j++) if (i_out[j] !== ib_out[j]) tn_i_err++;

 if (tn_v_err) n_v_err++;
 if (tn_i_err) n_i_err++;
 show_trace = i < 10;
 show_v_err = tn_v_err && n_v_err < 5;
 show_i_err = tn_i_err && n_i_err < 5;

 if (show_v_err || show_i_err || show_trace) begin

 if (tn_v_err) $write("Error in permutation: ");
 else $write("Trace of permutation: ");
 for (int j=n-1; j>=0; j--) $write("%1d ", i_in[j]);
 $write(" -> ");
 for (int j=n-1; j>=0; j--) $write("%c ", char_or_q(p_out[j]));
 if (tn_v_err) begin
 $write(" != ");
 for (int j=n-1; j>=0; j--) $write("%c ", pb_out[j]);
 $write(" (correct)");
 end
 $write("\n");

 if (show_i_err) begin

 if (tn_i_err) $write("Error in next index: ");
 else $write("Trace of next index: ");
 for (int j=n-1; j>=0; j--) $write("%1d ", i_in[j]);
 $write(" -> ");
 for (int j=n-1; j>=0; j--) $write("%h ", i_out[j]);
 if (tn_i_err) begin
 $write(" != ");
 for (int j=n-1; j>=0; j--) $write("%h ", ib_out[j]);
 $write(" (correct)");
 end
 $write("\n");
 end

← → Fall 2023 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw03-sol.v.html

 end

 if (run_curr >= run_length) begin

 run_curr = 0;
 for (int j=1; j<n; j++) i_in[j] = {$random()} % (j+1);

 end else begin

 run_curr++;
 i_in = ib_out;

 end

 end

 $write("Finished with n=%0d, %0d perm errors, %0d next idx errors in %0d tests.\n",
 n, n_v_err, n_i_err, n_tests);

 testbench.t_errs_v[idx] = n_v_err;
 testbench.t_errs_i[idx] = n_i_err;
 testbench.t_n_tests[idx] = n_tests;

 done = 1;

 end

endmodule

// cadence translate_on

← → Fall 2023 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw03-sol.v.html

LSU EE 4755 Homework 4 Solution Due: 6 November 2023

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, how a part of the problem might be solved, etc.)
It is also acceptable to seek out digital design resources for help on Verilog, digital design, etc. It
is okay to make use of AI LLM tools such as ChatGPT to answer these questions. Just don’t trust
the answers. (Do not assume LLM output is correct. Treat LLM output the same way one might
treat legal advice given by a lawyer character in a movie: it may sound impressive, but it can range
from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Helpful Examples
See the simple model slides for material on computing cost and delay, and also for a list of some
sample problems. Also see 2022 Homework 3.

1

← → Fall 2023 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2023/hw04_sol.pdf

Permutation Module
This assignment is based on the solution to Homework 3, the recursive permutation module perm,
and the solution to Midterm Exam Problem 1, the inferred hardware for the permutation module.
See Homework 3 for details on what the permutation module does. Appearing below is the Home-
work 3 solution with some comments removed. For the unabridged version visit
https://www.ece.lsu.edu/koppel/v/2023/hw03-sol.v.html.

module perm
#(int w = 8, n = 20, wd = $clog2(n))

(output uwire [w-1:0] pdata_out[n], output uwire [wd-1:0] pnum_out[n],

output uwire carry_out,

input uwire [w-1:0] pdata_in[n], input uwire [wd-1:0] pnum_in[n]);

if (n == 1) begin

assign pdata_out[0] = pdata_in[0];

assign carry_out = 1;

assign pnum_out[0] = 0;

end else begin

// Set pos to the position of the element to be moved.

uwire [wd-1:0] pos = n - 1 - pnum_in[n-1];

// Copy the element at position pos to position n-1 in the output.

assign pdata_out[n-1] = pdata_in[pos];

// Prepare an array of n-1 elements and set to ..

// .. the elements of pdata_in except for the element at pos.

uwire [w-1:0] prdata_in[n-1];

for (genvar i=0; i<n-1; i++)

assign prdata_in[i] = i < pos ? pdata_in[i] : pdata_in[i+1];

// Recursively instantiate perm.

uwire co;

perm #(w,n-1,wd) rp(pdata_out[0:n-2], pnum_out[0:n-2], co,

prdata_in, pnum_in[0:n-2]);

// Compute a tentative next value of digit n-1.

uwire [wd-1:0] dnext = pnum_in[n-1] + co;

// Determine whether there is a carry.

assign carry_out = dnext >= n;

// Set the next value of digit n-1 based on whether there is a carry.

assign pnum_out[n-1] = carry_out ? 0 : dnext;

end

endmodule

2

← → Fall 2023 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/2023/hw03.pdf
https://www.ece.lsu.edu/koppel/v/2023/hw03-sol.v.html
https://www.ece.lsu.edu/ee4755/2023/hw04_sol.pdf

Permutation Module Inferred Hardware
Midterm Exam Problem 1 asked for the inferred hardware for the perm module instantiated with
n=4. The solution appears below on the left. For this assignment the inferred hardware for a
non-specific value of n will be needed, that is shown on the right.

pdata_in[1]

 [2]

 [3]

p
d

a
ta

_in

pnum_in[0]

 [1]

 [2]

 [3]

p
n

u
m

_in

3 pos

2 <

1

0

p
d

a
ta

_in

perm
n=3

rp

p
n
u
m

_in

p
d

a
ta

_o
u
t

p
n
u
m

_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥4

perm n=4

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]
[2]

pnum_out[0]
[1]
[2]

[0]

[2]

[0]

[2]

[0]

[0]

[3]

[3]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[2]

[3]

 [0]

+

p
rd

a
ta

_in
[2

]

prdata_in[0]
pdata_in[1]

[2]

[n-1]

p
d

a
ta

_in

pnum_in[0]

[1]

[n-2]

[n-1]
p

n
u

m
_in

n
-1 pos

n
-2

<

1
0

p
d
a
ta
_in

perm
n=n-1

rp

p
n
u
m
_in

p
d
a
ta
_o
u
t

p
n
u
m
_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥
n

perm n

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]

[n-2]

pnum_out[0]
[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

p
rd
a
ta
_in

[n
-2
]

There’s no need to squint, the diagrams appear again in larger size at the end of this assignment.
Also, SVG source for these modules are at https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg
and https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg.

3

← → Fall 2023 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg
https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg
https://www.ece.lsu.edu/ee4755/2023/hw04_sol.pdf

Problem 1: Compute the cost and delay of the following arithmetic hardware from the perm

module. Assume that ripple units are used for addition, subtraction, and comparison.

(a) Compute the cost and delay of the hardware computing pos = n - 1 - pnum_in[n-1] in terms
of wd, the value of parameter wd. Optimize for constants, including n.

� Cost of hardware in terms of wd. � Delay of hardware in terms of wd.

�Optimize for constants, don’t confuse elaboration-time computation with computation hardware.

The hardware is a subtractor with constant input n-1 and non-constant input pnum in[n-1]. The exact cost of an
adder would depend on the value of n-1, for example if n-1=0 the cost would be zero. But for a subtractor we set the

carry in to 1 and so with a constant input the cost is the cost of wd BHAs. So the cost is 4wd uc (see the midterm
exam solution for details). (The cost can be reduced to 3wd uc by splitting the XOR gate in each BHA.)

The delay is one unit per bit (because the delay from ci to co of a BHA is just one gate delay), for a total delay of wd ut .

(b) Compute the cost and delay of the hardware computing dnext = pnum_in[n-1] + co in terms
of wd, the value of parameter wd. Optimize for constants and for the size of co. Assume in this
problem that pnum_in and co arrive at t = 0.

� Cost of hardware in terms of wd. � Delay of hardware in terms of wd.

�Optimize considering the size of co. � Optimize for constants, don’t confuse elaboration-time
computation with computation hardware.

The dnext value is computed by adding a 1-bit value, co to pnum in[n-1]. So this is equivalent to an adder with a

constant input, 0, with the carry-in connected to co. The cost then will be 4wd uc (or 3wd uc) and the delay wd ut .

(c) Compute the cost and delay of the hardware described by these lines:

uwire [wd-1:0] dnext = pnum_in[n-1] + co;

assign carry_out = dnext >= n;

Assume in this problem that co and pnum_in arrive at t = 0. The cost, of course, includes the
cost of computing dnext in the previous part. The delay must be computed taking both lines into
account.

� Cost of hardware in terms of wd. � Delay of co in terms of wd.

�Optimize considering the size of co. � Optimize for constants, don’t confuse elaboration-time
computation with computation hardware.

The cost of the hardware to compute carry out is the cost of the hardware to compute dnext, 4wd uc, plus the cost
of the comparison module. A comparison module can be constructed from a subtractor with the difference bits eliminated.
For two non-constant w-bit inputs the cost would be 4w uc, but in this case one input is constant dropping the cost to

just wd uc. The total cost is [4wd + wd] uc . As with the subtractor, the carry chain delay is one gate per bit so the
delay of the comparison built using a ripple circuit is wd ut. Because the adder and the ripple circuit are cascadable the

total delay is [2 + wd] ut , where the 2 ut is the time for the adder to compute the first bit of the sum.

There are more problems on the next page.

4

← → Fall 2023 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2023/hw04_sol.pdf

Problem 2: In this problem consider the multiplexors with inputs connecting to pdata_in. (In
the diagram they are the multiplexors on the upper-left including the 2-input muxes the n-input
mux.) Call these the pdata multiplexors. In the solutions to the parts below use w for the value of
parameter w and wd for the value of parameter wd.

(a) Compute the cost of the pdata multiplexors for a module instantiated at size n = N including
only the hardware in the n=N instantiation, not in the recursive instantiations. The answer should
be in terms of N and w. Hint: this is easy.

� Cost of the pdata multiplexors at one level in terms of N , w, and (if needed) wd.

In all of the multiplexors the inputs are w bits each. There are N − 1 2-input multiplexors and one N -input mux.
The cost of a 2-input mux is 3w uc, and there are N − 1 of them so their cost is 3w(N − 1) uc. The cost of an
N -input, w-bit mux is 3w(N − 1) uc, which interestingly is the same as the total cost of the 2-input multiplexors. The

total cost is 6w(N − 1) uc .

(b) This is important. Expect to expend brain energy. Don’t skip. Compute the total cost of the
pdata multiplexors for an instantiation at size n = N including the recursive instantiations all the
way down. The answer should be in terms of N and w.

� Cost of the pdata multiplexors including recursive instantiations in terms of N , w, and (if needed)
wd.

The cost at level n, based on the previous part (but using lower-case n) is 6w(n − 1) uc. The cost of the n = 1
instantiation is zero because all that module does is connect its inputs to its outputs. So the total cost of instantiations

from N to 2, which we’ll call C(N), is
∑N

n=2 6w(n− 1) uc. Proceeding step by step for the benefit of those who are
rusty, even on one of the more storied finite sums

C(N) =

N∑

n=2

6w(n− 1) uc

= 6w uc

N∑

n=2

(n− 1)

= 6w uc

N−1∑

n=1

n

= 6w uc
N(N − 1)

2

= 3wN(N − 1) uc

For those scanning for boxes, the total cost is 3wN(N − 1) uc .

5

← → Fall 2023 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.americanscientist.org/article/gausss-day-of-reckoning
https://www.ece.lsu.edu/ee4755/2023/hw04_sol.pdf

Problem 3: In this problem compute delays for pdata_out and pnum_out. In the solutions use d
for the value of parameter wd. This is also important and even more interesting. Expect to expend
brain energy. Don’t skip.

(a) Assume that the delay of the subtractors computing pos is lgwd, where wd is the value of
parameter wd. (Note that lgwd is not an answer to Problem 1.) Further, suppose the delay of
the less-than units providing a select signal to the 2-input pdata multiplexors is zero. Using these
assumptions compute the delay of the first and last elements of pdata_out for an instantiation at
n=N and show the critical path. The delay should be in terms of N and wd. To solve this problem
it might be helpful to draw two instantiation levels to help find the critical path.

� Delay of pdata out[0] in terms of N and wd accounting for recursive instantiations. � Show
critical path.

� Delay of pdata out[N-1] in terms of N and wd accounting for recursive instantiations. � Show
critical path.

The easier of these to solve is pdata out[N-1] because its value is computed without using data from a recursive
instance. As everyone reading this should know or at least learn now and not forget, the delay of an N -input multiplexor
is 2dlgNe ut. For this problem we were to assume that the subtractor computing pos has a delay of lgwd. We can
safely assume that the inputs to the n = N instance arrive at t = 0, and so pos (the output of the subtractor) arrives

at t = lgwd. Therefore the delay of pdata out[N-1] is [lg(wd) + 2dlgNe] ut . The delays, arrival times, and
critical path are shown in the diagram below.

pdata_in[1]

[2]

[n-1]

pdata_in

pnum_in[0]

[1]

[n-2]

[n-1]

pnum
_in

n-
1 pos

n-
2

<

1
0

pdata_in

perm
n=N-1

rp

pnum
_in

pdata_out
pnum

_out

carry_out

pdata_out
pnum

_out

<

<

−

0

≥
n

perm n=N

carry_out

dnext

pdata_in[pos]

pdata_out[0]
[1]

[n-2]

pnum_out[0]
[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

prdata_in[n-2]

0

lg wd

lg wd

lg wd

lg wd + 2lg N0

2lg N

lg wd + 2lg N

6

← → Fall 2023 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2023/hw04_sol.pdf

To compute the delay of output pdata out[0] we need to find the path it will take through the recursive instantiations.
The illustration below shows the top-level instantiation, for n=N and one level down, for n=N-1. To understand the
solution it is important that you pay attention to the arrival times of signals, shown in circled purple numbers and
expressions. For the top-level instantiation the arrival time of all inputs is at t = 0. But, for the n = N−1 instantiation
notice that some signals arrive at t = 0, such as pnum in, while pdata in arrives later, at t = [lg(wd) + 2] ut.
(The time unit, ut, is not shown on the illustrations.) The fact that pnum in to the n = N − 1 instantiation arrives
at t = 0 means that the select signals to the 2-input multiplexors arrives at t = lgwd at all instantiations. The
pdata in inputs are different. At n = N they arrive at t = 0, while for n = N − 1 they arrive at [lg(wd) + 2] ut.
In the n = N − 1 instance consider the 2-input multiplexors. Whereas at n = N the data inputs arrived before the
select signal, at n = N − 1 the data inputs arrive after the select signal. That means that the arrival time at the
outputs of the 2-input multiplexors at n = N − 1 is at [lg(wd) + 2 + 2] ut = [lg(wd) + 4] ut. Each further level
down adds just 2 units of delay. At level n input pdata in[n-1] does not go through the recursive instantiation.
But input pdata in[0] goes all the way down to n = 1, and at each level before n = 1 another 2 units are added.
(The delay, remember, at n = 1 is zero.) Therefore the total delay down to n = 1 is [lg(wd) + 2(N − 1)] ut. The
pdata out output of the recursive instance connects directly to the pdata out of the containing instance, and so no

further delay is added. Therefore the total delay is [lg(wd) + 2(N − 1)] ut .

pdata_in[1]

[2]

[n-1]

pdata_in
pnum_in[0]

[1]

[n-2]

[n-1]

pnum
_in

n-
1 pos

n-
2

<

1
0

rp

carry_out

pdata_out
pnum

_out

<

<

−

0

≥
n

perm n=N

carry_out

dnext

pdata_in[pos]

pdata_out[0]

[1]

[n-2]

pnum_out[0]

[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

prdata_in[n-2]
pdata_in[1]

[2]

[n-1]

pdata_in

pnum_in[0]

[1]

[n-2]

[n-1]

pn
u

m
_in

n-
1

pos

n-
2

<

1
0

pdata_in

perm n=N-2
rp

pnum
_in

pdata_out
pnum

_out

carry_out

pdata_ou
t

pn
u

m
_ou

t

<

<

−

0

≥
n

perm n=N-1

carry_ou
t

dnext

pdata_in[pos]

pdata_out[0]

[1]

[n-2]

pnum_out[0]

[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

prdata_in[n-2]

2
2

0

0

0

0

0

lg wd

lg wd

lg wd

lg wd

0

lg wd

7

← → Fall 2023 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2023/hw04_sol.pdf

SVG source for the module below is at
https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg.

pdata_in[1]

 [2]

 [3]

p
d

a
ta

_in

pnum_in[0]

 [1]

 [2]

 [3]

p
n

u
m

_in
3 pos

2 <

1

0
p

d
a
ta

_in

perm
n=3

rp

p
n
u
m

_in

p
d

a
ta

_o
u
t

p
n
u
m

_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥4

perm n=4

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]
[2]

pnum_out[0]
[1]
[2]

[0]

[2]

[0]

[2]

[0]

[0]

[3]

[3]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[2]

[3]

 [0]

+

p
rd

a
ta

_in
[2

]

prdata_in[0]

8

← → Fall 2023 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg
https://www.ece.lsu.edu/ee4755/2023/hw04_sol.pdf

SVG source for the module below is at
https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg.

pdata_in[1]

[2]

[n-1]

p
d

a
ta

_in

pnum_in[0]

[1]

[n-2]

[n-1]

p
n

u
m

_in

n
-1 pos

n
-2

<

1
0

p
d
a
ta
_in

perm
n=n-1

rp

p
n
u
m
_in

p
d
a
ta
_o
u
t

p
n
u
m
_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥
n

perm n

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]

[n-2]

pnum_out[0]
[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

p
rd
a
ta
_in

[n
-2
]

9

← → Fall 2023 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg
https://www.ece.lsu.edu/ee4755/2023/hw04_sol.pdf

//
//
/// LSU EE 4755 Fall 2023 Homework 5 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2023/hw05.pdf

`default_nettype none

//
/// Problem 1
//
 /// Complete uniq_vector_seq as described in the handout.

 ///
//
// [✔] Only modify uniq_vector_seq
// [✔] Remove the uniq_vector_comb instantiation.
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter values.
//
// [✔] Code must be written clearly.
// [✔] Pay attention to cost.
// [✔] Make sure that cost is not proportional to n^2.

module uniq_vector_seq
 #(int we = 10, n = 5, wc = $clog2(n+1))
 (output logic [n-1:0] uniq_bvec,
 output logic [wc-1:0] n_match,
 input uwire [we-1:0] element,
 input uwire start, clk);

 /// SOLUTION

 logic [we-1:0] elements [n-1:0];
 logic [n-1:0] occ_bvec;
 logic [wc-1:0] uniq_at [n-1:0];

 always_ff @(posedge clk) begin

 // Find minimum match_pos for which elements[match_pos] == element.
 //
 automatic logic [wc-1:0] match_pos = 0;

 // Number of existing elements matching element.
 n_match = 1;

 for (int i=n-1; i>=1; i--) begin

 automatic logic next_occ_bvec = !start && occ_bvec[i-1];
 //
 // If next_occ_bvec == 0, this element had been reset.

 // Check whether element matches elements[i-1]
 //

← → Fall 2023 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/koppel/v/2023/hw05.pdf
https://www.ece.lsu.edu/ee4755/2023/hw05-sol.v.html

 automatic logic match = next_occ_bvec && element == elements[i-1];
 //
 // There is no match if this elt had been reset.

 n_match += match;

 if (match) match_pos = n - i;

 elements[i] <= elements[i-1];
 occ_bvec[i] <= next_occ_bvec;

 // If match is true then elements[i-1] will never be unique. :-(
 //
 uniq_at[i] <= match ? n : uniq_at[i-1];

 // Update uniqueness
 //
 uniq_bvec[i] <= !next_occ_bvec || !match && i >= uniq_at[i-1];
 //
 // Future elements[i] is unique if:
 // - It had been reset.
 // - It is beyond its unique-at position (uniq_at).

 end

 elements[0] <= element;
 occ_bvec[0] <= 1;
 uniq_at[0] <= match_pos;
 uniq_bvec[0] <= match_pos == 0;
 end

endmodule

module uniq_vector_comb
 #(int we = 10, n = 5, wc = $clog2(n+1))
 (output logic [n-1:0] uniq_bvec,
 output logic [wc-1:0] n_match,
 input uwire [we-1:0] element [n-1:0]);

 /// This module is for reference. It should not be part of your solution.

 // Modify this module only for experimentation.

 // Combinational version.
 always_comb
 for (int i=0; i<n; i++) begin
 automatic logic [wc-1:0] occ = 0;
 for (int j=0; j<n; j++) if (element[i] == element[j]) occ++;
 if (i == 0) n_match = occ;
 uniq_bvec[i] = occ == 1;
 end

endmodule

//

← → Fall 2023 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw05-sol.v.html

/// Testbench Code
//
// It is okay to modify the testbench code to facilitate the coding
// and debugging of your modules. Keep in mind that your submission
// will be tested using a different testbench, so on the one hand no
// one will be accused of dishonesty for modifying the testbench
// below. However be sure to restore any changes to make sure that
// your code passes the original testbench.

// cadence translate_off

program reactivate
 (output uwire clk_reactive, output int cycle_reactive,
 input uwire clk, input var int cycle);
 assign clk_reactive = clk;
 assign cycle_reactive = cycle;
endprogram

module testbench;
 localparam int npsets = 4; // This MUST be set to the size of pset.
 // { n we s }
 localparam int pset[npsets][3] =
 '{
 { 4, 4, 0 },
 { 4, 4, 1 },
 { 7, 6, 0 },
 { 7, 6, 1 }
 };

 logic d[npsets:-1]; // Start / Done signals.

 int t_errs_bvec[npsets];
 int t_errs_n_match[npsets];
 int t_n_tests[npsets];

 int t_errs; // Total number of errors.
 initial begin
 t_errs = 0;
 for (int i=0; i<npsets; i++) begin
 t_errs_bvec[i] = -1;
 t_errs_n_match[i] = -1;
 t_n_tests[i] = -1;
 end
 d[-1] = 1;

 wait(d[npsets-1]);

 for (int p=0; p<npsets; p++)
 $write("End of tests n=%2d, s=%0d: %0d bvec errors, %0d n_match errors for %0d tests.\n",
 pset[p][1], pset[p][2],
 t_errs_bvec[p], t_errs_n_match[p], t_n_tests[p]);

 end

 for (genvar p=0; p<npsets; p++) begin
 testbench_n #(.we(pset[p][0]), .n(pset[p][1]), .s(pset[p][2]), .idx(p))

← → Fall 2023 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw05-sol.v.html

 tb(.done(d[p]), .tstart(d[p-1]));
 end

endmodule

module testbench_n
 #(int n = 12, we = 6, idx = 1, s = 1)
 (output logic done, input uwire tstart);

 localparam int wc = $clog2(n+1);

 localparam int n_tests = 100000;
 localparam int cyc_max = n_tests * 2 + 3*n;

 int seed;
 initial seed = 475501;

 function string sample(input string str);
 sample = str[$dist_uniform(seed, 0, str.len()-1)];
 endfunction

 bit clk;
 int cycle, cycle_limit;
 logic clk_reactive;
 int cycle_reactive;
 reactivate ra(clk_reactive,cycle_reactive,clk,cycle);
 string event_trace;

 initial begin
 clk = 0;
 cycle = 0;
 event_trace = "";

 done = 0;
 cycle_limit = cyc_max;
 wait(tstart);

 fork
 while (!done) #1 cycle += clk++;
 wait(cycle >= cycle_limit)
 $write("Exit from clock loop at cycle %0d, limit %0d. %s\n %s\n",
 cycle, cycle_limit, "** CYCLE LIMIT EXCEEDED **",
 event_trace);
 join_any;

 done = 1;
 end

 typedef logic [we-1:0] Digit;
 Digit element_stream[$];
 bit start_stream[$];
 logic [we-1:0] element_stream_x[$];
 int element_most_recent_t[int];
 logic [n-1:0] shadow_uniq_bvec;
 int element_occ[int];

← → Fall 2023 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw05-sol.v.html

 uwire [n-1:0] uniq_bvec;
 uwire [wc-1:0] n_match;
 Digit element;
 logic start;

 uniq_vector_seq #(we,n) uvs(uniq_bvec, n_match, element, start, clk);

 int n_err_bvec, n_err_n_match;
 localparam int pre_n = 2;
 localparam int trace_len = 5;
 localparam int n_pre_check = 2 * n; // Number of inputs before testing.
 localparam int start_dups = 5 * n + n_pre_check;

 initial begin
 automatic int n_tests_done = 0;
 int tnum_last_start;
 bit err_bvec_here, err_n_match_here, show_trace;

 n_err_bvec = 0;
 n_err_n_match = 0;
 element = 1;
 start = 1;

 @(negedge clk);
 @(negedge clk);

 start = 0;

 wait(cycle > 2);

 @(negedge clk);

 $write("\n** Starting tests for n=%0d, input start used = %0s **\n",
 n, s ? "Yes" : "No");

 for (int tnum=0; tnum<n_tests; tnum++) begin

 automatic bit want_match =
 tnum > start_dups && $dist_uniform(seed,0,2) == 0;
 automatic bit want_reset =
 tnum == 0 || s && $dist_uniform(seed,0,1*n) == 0;

 automatic logic [we-1:0] next_element =
 want_match ? element_stream[{$random} % (n-1)] : {$random} % 100;
 automatic int n_starts_recent = 0;
 automatic int shadow_n_match = 0;
 bit err_here;

 @(negedge clk);

 if (element_stream.size() >= n + pre_n) begin
 automatic int old_element = element_stream.pop_back();
 automatic bit old_start = start_stream.pop_back();
 end

 if (element_stream.size() >= n

← → Fall 2023 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw05-sol.v.html

 && tnum_last_start + n <= tnum)
 element_occ[element_stream[n-1]]--;

 if (want_reset) tnum_last_start = tnum;
 element = next_element;
 start = want_reset;

 if (want_reset) element_occ.delete();

 element_occ[element]++;
 element_stream.push_front(element);
 start_stream.push_front(start);

 for (int i=0; i<n; i++) begin
 if (element_stream[i] == element && !n_starts_recent)
 shadow_n_match++;
 shadow_uniq_bvec[i] =
 n_starts_recent || element_occ[element_stream[i]] == 1;
 n_starts_recent += start_stream[i];
 end

 @(posedge clk_reactive);

 if (tnum < n_pre_check) continue;

 err_n_match_here = n_match !== shadow_n_match;
 if (err_n_match_here) n_err_n_match++;

 err_bvec_here = uniq_bvec !== shadow_uniq_bvec;

 if (err_bvec_here) n_err_bvec++;

 err_here = err_bvec_here || err_n_match_here;

 show_trace = tnum > start_dups + n && tnum < start_dups + n + trace_len
 || err_here && n_err_bvec < 5 && n_err_n_match < 5;

 n_tests_done++;

 if (show_trace) begin
 $write("%s, uniq_bvec: t=%0d, %b",
 err_bvec_here ? "Error" : "Trace", tnum,
 uniq_bvec);
 if (err_bvec_here)
 $write("!= %b (correct)", shadow_uniq_bvec);
 if (err_n_match_here)
 $write("\nError: n_match: %0d != %0d (correct)",
 n_match,shadow_n_match);
 $write("\n[");
 for (int i=n+pre_n-1; i>=n; i--)
 $write("%2s%0s%0s ", "", i == n ? "]" : "", i ? "," : "");
 for (int i=n-1; i>=0; i--)
 $write("%1s%1h%0s%0s ",
 uniq_bvec[i]===shadow_uniq_bvec[i] ? " " : "E",
 uniq_bvec[i],
 i == n ? "]" : "", i ? "," : "");
 $write(" <-- uniq_bvec\n[");

← → Fall 2023 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw05-sol.v.html

 for (int i=n+pre_n-1; i>=0; i--)
 $write("%2d%0s%0s ",
 element_stream[i], i == n ? "]" : "", i ? "," : "");
 $write(" <-- Element\n[");
 for (int i=n+pre_n-1; i>=0; i--)
 $write("%2d%0s%0s ",
 start_stream[i], i == n ? "]" : "", i ? "," : "");

 $write(" <-- Start\n");
 end

 end

 $write
 ("For n=%0d, s=%0d: done with %0d tests. Errors: %0d bvec, %0d n_match.\n",
 n, s, n_tests, n_err_bvec, n_err_n_match);

 testbench.t_errs_bvec[idx] = n_err_bvec;
 testbench.t_errs_n_match[idx] = n_err_n_match;
 testbench.t_n_tests[idx] = n_tests_done;

 done = 1;

 end

endmodule

// cadence translate_on

← → Fall 2023 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2023/hw05-sol.v.html

14 Fall 2022 Solutions

226

← → Fall 2022 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw01-sol.v.html

//
//
/// LSU EE 4755 Fall 2022 Homework 1 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2022/hw01.pdf

`default_nettype none

//
/// Problem 0
//
 /// Look over the modules and enum below.

//
//

 /// Declare Useful Enumeration Constants.

//
typedef enum
 { Char_space = 32, Char_0 = 48, Char_9 = 57,
 Char_A = 65, Char_Z = 90, Char_a = 97, Char_z = 122 }
 Chars_Special;
//
// See digit_valid_09 to see how these constants can be used.

 /// An ordinary two-input multiplexor.

//
module mux2
 #(int w = 3)
 (output uwire [w-1:0] x,
 input uwire s,
 input uwire [w-1:0] a0, a1);

 assign x = s ? a1 : a0;

endmodule

//
/// Problem 1
//
 /// Replace procedural code in atoi1 with modules as described in handout.

 ///
//
// [✔] atoi1 must instantiate and use a digit_valid_az module.
// [✔] atoi1 must instantiate and use a char_to_uc module.
// [✔] atoi1 must instantiate and use mux2 modules.
// [✔] The completed atoi1 must not have procedural code (always_comb, etc.)
//

← → Fall 2022 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/koppel/v/2022/hw01.pdf
https://www.ece.lsu.edu/ee4755/2022/hw01-sol.v.html

// [✔] Complete module digit_valid_az.
// [✔] Complete module char_to_uc.
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter value.
//
// [✔] Code must be written clearly.
// [✔] Pay attention to cost and performance.

module char_to_uc(output uwire [7:0] uc, input uwire [7:0] c);
 uwire is_lc = c >= Char_a && c <= Char_z;
 uwire [7:0] uc_if_lc = c - Char_a + Char_A;
 /// SOLUTION

 mux2 #(8) m(uc, is_lc, c, uc_if_lc);
endmodule

module digit_valid_az
 #(int r = 11, vw = $clog2(r))
 (output uwire valid, output uwire [vw-1:0] val, input uwire [7:0] char);
 /// SOLUTION

 assign val = 10 + char - Char_A;
 assign valid = char >= Char_A && char < Char_A + r - 10;
endmodule

module atoi1
 #(int r = 32, w = $clog2(r))
 (output logic [w-1:0] val,
 output logic is_digit,
 input uwire [7:0] char);

 /// SOLUTION

 logic [w-1:0] val_09, val_az, val_n;
 logic is_09, is_az;

 digit_valid_09 #(r,w) v09(is_09, val_09, char);
 uwire [7:0] char_uc;
 char_to_uc tuc(char_uc,char);
 digit_valid_az #(r,w) vaz(is_az, val_az, char_uc);

 uwire [w-1:0] z = 0;
 mux2 #(w) mval(val_n,is_09,val_az,val_09);
 mux2 #(w) mval0(val,is_digit,z,val_n);

 assign is_digit = is_09 || is_az;

endmodule

module digit_valid_09
 #(int r = 9, vw = $clog2(r))
 (output uwire valid, output uwire [vw-1:0] val, input uwire [7:0] char);

← → Fall 2022 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw01-sol.v.html

 assign val = char - Char_0;
 assign valid = char >= Char_0 && char <= Char_9 && char < Char_0 + r;
endmodule

 /// Reference Module -- Do Not Modify

//
module atoi1_behavioral
 #(int r = 32, w = $clog2(r))
 (output logic [w-1:0] val,
 output logic is_digit,
 input uwire [7:0] char);

 logic [7:0] char_uc;
 logic [w-1:0] val_09, val_az;
 logic is_09, is_az;

 always_comb begin

 char_uc = char >= Char_a && char <= Char_z
 ? char - Char_a + Char_A : char;

 val_09 = char - Char_0;
 val_az = 10 + char_uc - Char_A;

 is_09 = char >= Char_0 && char <= Char_9 && char < Char_0 + r;
 is_az = char_uc >= Char_A && char_uc < Char_A + r - 10;
 is_digit = is_09 || is_az;

 if (is_09) val = val_09;
 else if (is_az) val = val_az;
 else val = 0;

 end

endmodule

//
/// Testbench Code

// cadence translate_off

module testbench;

 localparam int nradices = 6;
 localparam int radices[nradices] =
 '{ 4, 8, 10, 14, 16, 19 };

 int t_errs; // Total number of errors.
 initial t_errs = 0;
 final $write("Total number of errors: %0d\n",t_errs);

 uwire d[nradices:-1]; // Start / Done signals.

← → Fall 2022 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw01-sol.v.html

 assign d[-1] = 1; // Initialize first at true.

 // Instantiate a testbench at each size.
 //
 for (genvar i=0; i<nradices; i++)
 testbench_r #(radices[i]) t2(.done(d[i]), .tstart(d[i-1]));

endmodule

module testbench_r
 #(int r = 16)
 (output logic done, input uwire tstart);

 localparam int wd = 8;
 localparam int w = $clog2(r**wd);
 localparam int w1 = 2 * $clog2(r);
 localparam int ntests = 500;

 logic [1:0][7:0] str;

 uwire [w1-1:0] val1;
 uwire is_digit1;

 atoi1 #(r,w1) a1(val1, is_digit1, str[0]);

 logic [7:0] non_digit[256];

 function string to_string(input logic [w1-1:0] val);

 automatic string result = "";
 if (val == 0) result = "0";
 while (val) begin

 automatic int d = val % r;
 automatic int v = d < 10 ? d + Char_0 : d - 10 + Char_A;
 val = val / r;
 result = { string'(v), result };
 end
 to_string = result;
 endfunction

 initial begin
 automatic int nd_size = 0;
 automatic int rm10 = r > 10 ? 10 : r;
 automatic bit err_silent = 0;
 for (int i=32; i<128; i++) begin
 if (i >= Char_0 && i < Char_0 + rm10) continue;
 if (i >= Char_A && i < Char_A + r - 10) continue;
 if (i >= Char_a && i < Char_a + r - 10) continue;
 non_digit[nd_size++] = i;
 end
 str[1] = Char_space;

← → Fall 2022 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw01-sol.v.html

 wait(tstart);

 for (int tt=0; tt<1; tt++) begin

 automatic bit single_char = tt == 0;
 automatic bit space_pad = single_char || tt == 1;
 automatic int nttests = single_char ? 256 : ntests;
 automatic int n_err = 0, n_lerr = 0;
 automatic string ttype =
 single_char ? "Single_Char (SC)"
 : space_pad ? "Space_Pad (SP)" : "General (GE)";
 automatic string abbrev =
 single_char ? "SC" : space_pad ? "SP" : "GE";

 for (int i=0; i<nttests; i++) begin
 automatic int len = single_char ? 1 : 1 + {$random} % wd;
 automatic logic [w1-1:0] sval = 0;
 automatic bit is_09 = i >= Char_0 && i <= Char_9 && i < Char_0 + r;
 automatic int iuc =
 i >= Char_a && i <= Char_z ? i - Char_a + Char_A : i;
 automatic bit is_az = iuc >= Char_A && iuc < Char_A + r - 10;
 automatic bit sis_digit = is_09 || is_az;

 str[0] = i;
 sval = is_09 ? i - Char_0 : is_az ? 10 + iuc - Char_A : 0;

 #1;

 if (sval !== val1) begin
 n_err++;
 if (!err_silent && n_err < 5)
 $write("R %2d Error val 'h%h or %s != %s (correct) for string \"%s\"\n",
 r, val1, to_string(val1), to_string(sval),
 string'(str));
 end
 if (sis_digit !== is_digit1) begin
 n_lerr++;
 if (!err_silent && n_lerr < 5)
 $write("R %2d Error is_digit %h != %0d (correct) for string \"%s\"\n",
 r, is_digit1, sis_digit, string'(str));
 end

 #1;

 end

 $write("Radix %2d, done with %0d tests, %0d val errors, %0d is_digit errors.\n",
 r, nttests, n_err, n_lerr);

 testbench.t_errs += n_err + n_lerr;
 if (n_err + n_lerr) err_silent = 1;
 end
 done = 1;
 end

← → Fall 2022 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw01-sol.v.html

endmodule

← → Fall 2022 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw01-sol.v.html

//
//
/// LSU EE 4755 Fall 2022 Homework 2 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2022/hw02.pdf

//
/// Problem 0
//
 /// Look over the modules and enum below.

//
//

// Ensure that an omitted type results in an error message.
`default_nettype none

// Module names. (Used by the testbench.)
//
typedef enum { M_proc, M_iter, M_tree, M_iter_sol, M_tree_sol } M_Type;

// Hide the fact that we've memorized ASCII codes.
//
typedef enum
 { Char_0 = 48, Char_9 = 57,
 Char_A = 65, Char_Z = 90, Char_a = 97, Char_z = 122 }
 Chars_Special;

// A function version of atoi1 -- Convert ASCII character to a value.
//
function int atoi1_func(input logic [7:0] char, input int r);
 automatic int char_uc =
 char >= Char_a && char <= Char_z ? char - Char_a + Char_A : char;
 automatic int val_09 = char - Char_0;
 automatic int val_az = 10 + char_uc - Char_A;
 automatic bit is_09 = char>=Char_0 && char <= Char_9 && char < Char_0 + r;
 automatic bit is_az = char_uc >= Char_A && char_uc < Char_A + r - 10;
 atoi1_func = is_09 ? val_09 : is_az ? val_az : -1;
endfunction

module atoi1
 #(int r = 32, w = 10)
 (output logic [w-1:0] val,
 output logic is_digit,
 input uwire [7:0] char);
 always_comb begin
 automatic int valr = atoi1_func(char,r);
 is_digit = valr >= 0;
 val = is_digit ? valr : 0;
 end
endmodule

module mux2
 #(int w = 3)
 (output uwire [w-1:0] x,
 input uwire s,
 input uwire [w-1:0] a0, a1);

← → Fall 2022 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/koppel/v/2022/hw02.pdf
https://www.ece.lsu.edu/ee4755/2022/hw02-sol.v.html

 assign x = s ? a1 : a0;
endmodule

module mult_by_c
 #(int w_in = 8, int c = 16, int w_out = w_in+$clog2(c))
 (output uwire [w_out-1:0] prod, input uwire [w_in-1:0] a);
 assign prod = a * c;
endmodule

module add
 #(int w = 5)
 (output uwire [w-1:0] s, input uwire [w-1:0] a, b);
 assign s = a + b;
endmodule

//
/// Problem 1
//
 /// Complete atoi_it so that it computes the string value as follows.

 ///
//
// [✔] atoi_it must instantiate and use n atoi modules.
// [✔] atoi_it must instantiate and use mult_by_c modules.
// [✔] atoi_it must instantiate and use add modules.
// [✔] Procedural code can be used, but not in place of atoi and mult_by_c.
//
// [✔] DO NOT use atoi1_func in your solution.
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter value.
//
// [✔] Code must be written clearly.
// [✔] Pay attention to cost and performance.

module atoi_it
 #(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))
 (output logic [wv-1:0] val,
 output logic [wd-1:0] nd,
 input uwire [7:0] str [n-1:0]);

 /// SOLUTION

 uwire [wv-1:0] vali[n-1:-1];
 uwire is_valid[n-1:-1];
 uwire [wd-1:0] ndi[n-1:-1];
 assign is_valid[-1] = 1;
 assign ndi[-1] = 0;
 assign vali[-1] = 0;
 assign nd = ndi[n-1];
 assign val = vali[n-1];

 localparam int wcv = $clog2(r);

 for (genvar i=0; i<n; i++) begin

 // Find Value of Digit i

← → Fall 2022 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw02-sol.v.html

 //
 uwire [wcv-1:0] valdr;
 uwire is_digit;
 atoi1 #(r,wcv) a(valdr, is_digit, str[i]);

 // Determine if this digit continues a sequence of valid digits
 // starting at str[0].
 //
 assign is_valid[i] = is_digit && is_valid[i-1];

 // Replace value with zero if str[i] is not a digit, or if the
 // string of valid digits has already ended.
 //
 uwire [wcv-1:0] vald = is_valid[i] ? valdr : 0;

 // Multiply (scale) the digit value based on its position in the number.
 //
 uwire [wv-1:0] vals;
 mult_by_c #(.w_in(wcv), .c(r**i), .w_out(wv)) mc(vals, vald);

 // Add the scaled digit to the value accumulated so far.
 //
 add #(wv) a1(vali[i], vali[i-1], vals);

 // Update the number of digits so far.
 //
 assign ndi[i] = is_valid[i] ? i+1 : ndi[i-1];

 end

endmodule

module atoi_pr
 #(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))
 (output logic [wv-1:0] val,
 output logic [wd-1:0] nd,
 input uwire [7:0] str [n-1:0]);

 /// DO NOT Modify the module. Use it for reference.

 always_comb begin
 val = 0; nd = 0;
 for (int i=0; i<n; i++) begin
 // Get val of current char. If val is < 0 then char is not a digit.
 automatic int dval = atoi1_func(str[i],r);
 if (dval < 0) break;
 val += dval * r**i;
 nd++;
 end
 end

endmodule

//
/// Problem 2
//
 /// Complete atoi_tr so that it computes the string value as follows.

 ///

← → Fall 2022 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw02-sol.v.html

//
// [✔] atoi_tr must recurisvely instantiate two instances of itself.
// [✔] atoi_tr must instantiate and use atoi modules.
// [✔] atoi_tr must instantiate and use mult_by_c modules.
// [✔] Procedural code can be used, but not in place of atoi and mult_by_c.
//
// [✔] DO NOT use atoi1_func in your solution.
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter value.
//
// [✔] Code must be written clearly.
// [✔] Pay attention to cost and performance.

module atoi_tr
 #(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))
 (output uwire [wv-1:0] val,
 output var logic [wd-1:0] nd,
 input uwire [7:0] str [n-1:0]);

 /// SOLUTION

 if (n == 1) begin

 uwire is_dd;
 uwire [wv-1:0] valr;
 atoi1 #(r,wv) a(valr, is_dd, str[0]);
 assign val = is_dd ? valr : 0;
 assign nd = is_dd; // Note: nd may be more than one bit.

 end else begin

 // Prepare to split the input string into two halves. Note that
 // the hi half may be larger, and so we use nhi to compute the
 // number of bits needed in the value output (vwh) and the
 // number of digits output (dwh).
 //
 localparam int nlo = n/2;
 localparam int nhi = n - nlo;
 localparam int vwh = $clog2(r**nhi);
 localparam int dwh = $clog2(nhi+1);
 //
 uwire [vwh-1:0] vallo, valhi;
 uwire [dwh-1:0] ndlo, ndhi;

 // Split input string between two recursive instantiations
 //
 atoi_tr #(r,nlo,vwh,dwh) alo(vallo, ndlo, str[nlo-1:0]);
 atoi_tr #(r,nhi,vwh,dwh) ahi(valhi, ndhi, str[n-1:nlo]);

 // Determine whether the hi half of the string may be part
 // of the number.
 //
 uwire hitoo = ndlo == nlo;
 uwire [vwh-1:0] valhid = hitoo ? valhi : 0;

 // Scale the upper half.
 //
 uwire [wv-1:0] valhis; // VALue HIgh Scaled

← → Fall 2022 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw02-sol.v.html

 mult_by_c #(vwh,r**nlo,wv) mc(valhis, valhid);

 assign val = vallo + valhis;
 assign nd = hitoo ? nlo + ndhi : ndlo;

 end

endmodule

//
/// Testbench Code

// cadence translate_off

module testbench;

 localparam int nnsets = 7;
 localparam int nset[nnsets] = '{ 1, 2, 3, 4, 7, 8, 9 };

 localparam int npsets = 2;
 localparam int pset[npsets] = '{ 10, 16 };

 localparam int nmsets = 2;
 localparam M_Type mset[nmsets] = '{ M_tree, M_iter };

 string mtype_str[M_Type] =
 '{ M_proc:"atoi_pr", M_tree:"atoi_tr", M_iter:"atoi_it",
 M_tree_sol:"a_tr_sol", M_iter_sol:"a_it_sol" };

 int t_errs_len_mod[M_Type];
 int t_errs_val_mod[M_Type];
 int t_errs_len_r[int];
 int t_errs_val_r[int];
 int t_errs_len_n[int];
 int t_errs_val_n[int];

 int t_errs; // Total number of errors.
 initial t_errs = 0;
 final begin
 for (int i=0; i<npsets; i++)
 $write("Total errors for radix %2d: %5d len, %5d val\n",
 pset[i], t_errs_len_r[pset[i]],
 t_errs_val_r[pset[i]]);
 for (int i=0; i<nnsets; i++)
 $write("Total errors for string length %2d: %5d len, %5d val\n",
 nset[i], t_errs_len_n[nset[i]],
 t_errs_val_n[nset[i]]);
 for (int i=0; i<nmsets; i++)
 $write("Total errors for mod %4s: %5d len, %5d val\n",
 mtype_str[mset[i]], t_errs_len_mod[mset[i]],
 t_errs_val_mod[mset[i]]);
 $write("Total number of errors: %0d\n",t_errs);
 end

 localparam int nsets = nnsets * npsets * nmsets;

 uwire d[nsets:-1]; // Start / Done signals.
 assign d[-1] = 1; // Initialize first at true.

← → Fall 2022 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw02-sol.v.html

 // Instantiate a testbench at each size.
 //
 for (genvar m=0; m<nmsets; m++)
 for (genvar n=0; n<nnsets; n++)
 for (genvar i=0; i<npsets; i++)
 begin
 localparam int idx = m * npsets * nnsets + n * npsets + i;
 testbench_r #(pset[i],nset[n],mset[m])
 t2(.done(d[idx]), .tstart(d[idx-1]));
 end

endmodule

module testbench_r
 #(int r = 16, n = 3,
 M_Type mtype = M_proc)
 (output logic done, input uwire tstart);

 localparam int w = $clog2(r**n);
 localparam int ntests = 500;
 localparam int wd = $clog2(n+1);

 uwire [wd-1:0] nd;
 uwire [w-1:0] val;
 logic [7:0] str[n-1:0];

 string mtype_str[M_Type] =
 '{ M_proc:"atoi_pr", M_tree:"atoi_tr", M_iter:"atoi_it",
 M_tree_sol:"a_tr_sol", M_iter_sol:"a_it_sol" };

 case (mtype)
 M_proc: atoi_pr #(r,n,w) a8(val, nd, str);
 M_tree: atoi_tr #(r,n,w) a8(val, nd, str);
 M_iter: atoi_it #(r,n,w) a8(val, nd, str);
 M_tree_sol: atoi_tr_sol #(r,n,w) a8(val, nd, str);
 M_iter_sol: atoi_it_sol #(r,n,w) a8(val, nd, str);
 endcase

 logic [7:0] non_digit[256];

 function string to_string(input logic [w-1:0] val);

 automatic string result = "";
 if (val == 0) result = "0";
 while (val) begin

 automatic int d = val % r;
 automatic int v = d < 10 ? d + Char_0 : d - 10 + Char_A;
 val = val / r;
 result = { string'(v), result };
 end
 to_string = result;
 endfunction

 initial begin
 automatic int nd_size = 0;
 automatic int rm10 = r > 10 ? 10 : r;
 automatic bit err_silent = testbench.t_errs > 10;
 for (int i=32; i<128; i++) begin

← → Fall 2022 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw02-sol.v.html

 if (i >= Char_0 && i < Char_0 + rm10) continue;
 if (i >= Char_A && i < Char_A + r - 10) continue;
 if (i >= Char_a && i < Char_a + r - 10) continue;
 non_digit[nd_size++] = i;
 end

 wait(tstart);

 for (int tt=0; tt<3; tt++) begin

 automatic bit single_char = tt == 0;
 automatic bit space_pad = single_char || tt == 1;
 automatic int nttests = single_char ? r : ntests;
 automatic int n_err = 0, n_lerr = 0;
 automatic string ttype =
 single_char ? "Single_Char (SC)"
 : space_pad ? "Space_Pad (SP)" : "General (GE)";
 automatic string abbrev =
 single_char ? "SC" : space_pad ? "SP" : "GE";

 // $write("Radix %2d, starting %s tests.\n", r, ttype);

 for (int i=0; i<nttests; i++) begin
 automatic int len = single_char ? 1 : 1 + {$random} % n;
 automatic logic [w-1:0] sval = 0;

 for (int j=0; j<len; j++) begin
 automatic int d = {$random} % r;
 automatic int char_a = {$random} % 1 ? Char_A : Char_a;
 if (d == 0 && j == len - 1) d = 1;
 if (single_char) d = i;
 str[j] = d < 10 ? Char_0 + d : char_a + d - 10;
 sval += d * r ** j;
 end

 str[len] = space_pad ? " " : non_digit[{$random}%nd_size];

 for (int j=len+1; j<n; j++)
 str[j] = space_pad ? 32 : 32 + {$random}%(128-32);

 #1;

 if (sval !== val) begin
 n_err++;
 if (!err_silent && n_err < 5)
 $write("Mod-%s R-%2d n-%2d Ty-%s Error val %s != %s (correct) for string \"%s\"\n",
 mtype_str[mtype], r, n, abbrev, to_string(val), to_string(sval), string'(str));
 end
 if (!single_char && len !== nd) begin
 n_lerr++;
 if (!err_silent && n_lerr < 10)
 $write("Mod-%s R-%2d n-%2d Ty-%s Error len %0d != %0d (correct) for string \"%s\"\n",
 mtype_str[mtype],
 r, n, abbrev, nd, len, string'(str));
 end

 #1;

 end

 $write("Mod-%s Radix-%2d n-%2d Ty-%s, done with %0d tests, %0d val errors, %0d len errors.\n",

← → Fall 2022 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw02-sol.v.html

 mtype_str[mtype],
 r, n, abbrev, nttests, n_err, n_lerr);

 testbench.t_errs += n_err + n_lerr;
 testbench.t_errs_len_mod[mtype] += n_lerr;
 testbench.t_errs_val_mod[mtype] += n_err;
 testbench.t_errs_len_r[r] += n_lerr;
 testbench.t_errs_val_r[r] += n_err;
 testbench.t_errs_len_n[n] += n_lerr;
 testbench.t_errs_val_n[n] += n_err;
 if (n_err + n_lerr) err_silent = 1;
 end
 done = 1;
 end

endmodule

// cadence translate_on

← → Fall 2022 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw02-sol.v.html

LSU EE 4755 Homework 3 SolutionDue: 17 Oct 2022, 11:30 CDT

Resources
To help with this assignment review the simple cost model slides and the material in
generate statement demo code.

The following problems ask for both inferred hardware and a cost/performance analysis: 2019
Midterm Exam Problem 3c (equality module with shifted inputs), 2021 Midterm Exam Problem 2
(a concentrator for neural network hardware reading sparse weights).

The following are good cost and performance analysis questions (these are the same ones
mentioned in the simple model slides): The “find oldest” (big mux) problem covered in class can
be found in 2017 Final Exam Problem 3, the knapsack problem hardware covered in class can be
found in 2016 Final Exam Problem 2 and 4.

The following are good inferred hardware and optimization problems. Start with 2019 Midterm
Exam Problem 1 (a recursively described clz [count leading zeros] module). A problem combining
both recursive and iterative generate statements can be found in 202 Midterm Exam Problem 4.

A sequential version of the ASCII-to-value hardware was also assigned in this course. The
hardware was described by procedural code and it operated sequentially, so I don’t suggest that it
specifically be studied for clues on how to solve this assignment.

Problem 1: Compute the cost and delay, using the simple model, of the atoi1 module (from
the solution to Homework 1) instantiated with r=12. Base this on a module with reasonable
optimizations applied and be sure to account for constants when computing cost and delay.

• Base your analysis of ripple implementations of the adder and magnitude comparison units.

• Show cost.

• Show delay of each output and identify the critical path.

• Account for constants when computing cost and delay.

module atoi1
#(int r = 32, w = $clog2(r))

(output logic [w-1:0] val, output logic is_digit,

input uwire [7:0] char);

logic [w-1:0] val_09, val_az, val_n;

logic is_09, is_az;

digit_valid_09 #(r,w) v09(is_09, val_09, char);

uwire [7:0] char_uc;

char_to_uc tuc(char_uc,char);
digit_valid_az #(r,w) vaz(is_az, val_az, char_uc);

uwire [w-1:0] z = 0;

mux2 #(w) mval(val_n,is_09,val_az,val_09);
mux2 #(w) mval0(val,is_digit,z,val_n);

1

← → Fall 2022 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2022/lsli-simple-model.pdf
https://www.ece.lsu.edu/koppel/v/2022/l025-gen-elab.v.html
https://www.ece.lsu.edu/ee4755/2022/hw03_sol.pdf

assign is_digit = is_09 || is_az;

endmodule

typedef enum

{ Char_0 = 48, Char_9 = 57, Char_A = 65, Char_Z = 90, Char_a = 97, Char_z = 122 }

Chars_Special;

module digit_valid_09
#(int r = 9, vw = $clog2(r))

(output uwire valid, output uwire [vw-1:0] val, input uwire [7:0] char);

assign val = char - Char_0;

assign valid = char >= Char_0 && char <= Char_9 && char < Char_0 + r;

endmodule

module char_to_uc(output uwire [7:0] uc, input uwire [7:0] c);

uwire is_lc = c >= Char_a && c <= Char_z;

uwire [7:0] uc_if_lc = c - Char_a + Char_A;

mux2 #(8) m(uc, is_lc, c, uc_if_lc);

endmodule

module digit_valid_az
#(int r = 11, vw = $clog2(r))

(output uwire valid, output uwire [vw-1:0] val, input uwire [7:0] char);

assign val = 10 + char - Char_A;

assign valid = char >= Char_A && char < Char_A + r - 10;

endmodule

module mux2
#(int w = 3)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, a1);

assign x = s ? a1 : a0;

endmodule

To start the solution, lets review the cost and delay of common components using the simple model. Those are
shown below using symbols uc for unit of cost and ut for unit of time. For brevity those symbols are omitted in most
of the analysis.
A w-Bit Ripple Adder: Cost: 9w uc. Delay: 4 ut (lsb), 2(w + 1) ut (msb).
A w-Bit Ripple Adder with One Constant Input: Cost: 4w uc. Delay: 2 ut (lsb), w ut (msb).
A w-Bit Integer Magnitude Unit (Computes a > b, a < b.) Cost: 4w uc. Delay: 2w + 1 ut.
A w-Bit Integer Magnitude Unit with One Constant Input Cost: w uc. Delay: w ut.

In the pages that follow the Verilog descriptions of atoi and the modules that it instantiates include comments
that show the cost and delay analysis. The words Cost and Delay are prefixed with abbreviations that indicate the
degree of optimization applied. Those abbreviations are:
N, No Optimization.
c0, Use constant-input cost or delay formulae for the particular device, but make no further optimizations.
B, Apply basic optimizations. This includes using the constant-input formulae and making further obvious optimizations.
G, Apply good optimizations. These may require careful examination of the computation being performed on that line of
Verilog code or an understanding of how the result of the computation is used elsewhere.

2

← → Fall 2022 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03_sol.pdf

C_
a ≥

C_
z

-C_a + C_A
= 8'b1110_0000

≤

c

uc

char_to_uc

+

8

8 8

3

1

2

Timing analysis
with basic
optimization.

Five LSB are zero,
so only need 3-bit
adder.

8+1+2
= 11

module char_to_uc(output uwire [7:0] uc, input uwire [7:0] c);

uwire is_lc = c >= Char_a && c <= Char_z;

// n Cost: 4*8 1 4*8 = 65

// B Cost: 1*8 1 1*8 = 17

// B Delay: 1*8 1 {1*8} = 9

uwire [7:0] uc_if_lc = c - Char_a + Char_A;

// n Cost: 9*8

// c0 Cost: 4*8

// B Cost: 4*3 // Five LSB of (-Char_a+Char_A) are zero.

// B Delay: 1*3

mux2 #(8) m(uc, is_lc, c, uc_if_lc);

// B Cost: 3*8

// B Delay: 2

/// Module, Basic Optimization
// B Cost 17+12+24 = 53 uc

// B Critical path: is_lc -> mux : 9 + 2 = 11 ut

/// Good Optimization
//

uwire is_lc = c[7:5] == 3’b011 && c[4:0] >= 5’b1 && c[4:0] <= 5’b11010;

// G Cost: 3 1 1*5 1 1*5 = 15

// G Delay: {2} 1 3 1 {3} = 5

assign uc = { char[7:6], char[5] && !is_lc, char[4:0] };

// G Cost: 0 1 0

// G Delay: 1

/// Module, Good Optimization
// G Cost = 15 uc

// G Delay = 5 ut

endmodule

3

← → Fall 2022 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03_sol.pdf

module digit_valid_09
#(int r = 9, vw = $clog2(r))

(output uwire valid, output uwire [vw-1:0] val, input uwire [7:0] char);

assign val = char - Char_0;

// N Cost: 9*8

// c0 Cost: 1*8

// B Cost: 1*4 (Note: -Char_0 = 8’b11010000, so only adding 4 bits.)

// B Delay: 1*4

assign valid = char >= Char_0 && char <= Char_9 && char < Char_0 + r;

// N Cost: 4*8 1 4*8 1 4*8 = 98

// B Cost: 1*8 1 1*8 1 1*8 = 26

// B Delay: 1*8 1 {1*8} 1 {1*8} = 10

/// Module, Basic Optimization
// B Cost: 4+26 = 30 uc

// B Delay: = 10 ut (Valid output)

// B Delay: = 4 ut (Val output)

/// Good Optimizations
//

assign val = char[3:0]; // val can be anything if char isn’t 0-9

// G Cost: 0

// G Delay: 0

assign valid = char[7:4] == 4’h3 && char[3:0] < 10;

// Cost: 3 1 1*4 = 8

// Delay {2} 1 4 = 5

assign valid = char[7:4] == 4’h3 && (!char[3] || !char[2] && !char[1]);

// G Cost: 3 1 1 1 = 6

// G Delay: {2} 1 1 1 = 3

/// Module, Good Optimization
// G Cost: = 6 uc

// G Delay: = 3 ut (Valid output)

// G Delay: = 0 ut (Val output)

endmodule

4

← → Fall 2022 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03_sol.pdf

module digit_valid_az
#(int r = 11, vw = $clog2(r))

(output uwire valid, output uwire [vw-1:0] val, input uwire [7:0] char);

assign val = 10 + char - Char_A;

// N Cost: 9*8

// B Cost: 4*8 = 32

// B Delay: 1*8 = 8

assign valid = char >= Char_A && char < Char_A + r - 10;

// N Cost: 4*8 1 4*8

// B Cost: 1*8 1 1*8 = 17

// B Delay: 1*8 1 {1*8} = 9

/// Module, Basic Optimization
// B Cost = 48 uc

// B Delay = 9 ut

/// Good Optimizations (Optimized for r = 12).
assign valid = char[7:2] == 6’b010000 && (char[1:0] == 2’b1 || char[1:0] == 2’b2)

// G Cost: 6 1 1 1 1 = 10

// G Delay: 3 1 {1} {1} {1} = 4

assign val = { (vw-1)’b101, char[0] };

// G Cost: 0

// G Delay: 0

/// Module, Good Optimization
// G Cost = 10 uc

// G Delay = 4 ut (Valid output)

// G Delay = 0 ut (Val output)

endmodule

5

← → Fall 2022 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03_sol.pdf

char

atoi1

8

char_to_uc

d_val_09

d_val_az
val_az

val_09

is_09

is_az

0 v
a
l

is
_d

ig
it

11 8

4

10

9

19

20

4

10

2

1

21

21

22

1

Timing for basic optimization
module atoi1

#(int r = 32,

int w = $clog2(r))

(output uwire [w-1:0] val,

output uwire is_digit,

input uwire [7:0] char);

// Analysis for r = 12 ..

// .. therefore w = 4

uwire is_09, is_az;

uwire [w-1:0] val_09, val_az, val_n;

digit_valid_09 #(r,w) v09(is_09, val_09, char);

// B Cost: 30 Delay: 10 (is_09), 4 (val_09)

uwire [7:0] char_uc;

char_to_uc tuc(char_uc,char);
// B Cost: 53 Delay: 11

digit_valid_az #(r,w) vaz(is_az, val_az, char_uc);

// B Cost: 48 Delay: 9 (is_az), 8 (val_az)

uwire [w-1:0] z = 0;

mux2 #(w) mval(val_n, is_09, val_az, val_09);

// B Cost: 3*w = 3*4 = 12

// B Delay: 2

mux2 #(w) mval0(val, is_digit, z, val_n);

// N Cost: 3*w = 3*4 = 12

// B Cost: 1*w = 1*4 = 4 (One input is zero.)

// B Delay: 1

assign is_digit = is_09 || is_az;

// B Cost 1, Delay 1

/// Module, Basic Optimization
// B Cost: 30 + 53 + 48 + 12 + 12 + 1 = 156 uc

// B A Critical Path: char → char_uc → is_az → is_digit → val

// B Delay: 11 + 9 + 1 + 1 = 22 ut

// B A Critical Path: char → char_uc → val_az → val_n → val

// B Delay: 11 + 8 + 2 + 1 = 22 ut

endmodule

6

← → Fall 2022 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03_sol.pdf

Problem 2: Appearing further below is the atoi_it from the solution to Homework 2.

(a) Show the hardware inferred for an atoi_it module instantiated with r=14 (yes, radix 14) and
n=3.

• Show atoi1, mult_by_c, and add instances as modules, do not show what is inside.

• Show the hardware inferred for the operators, such as && and ?:.

• Do not confuse parameters and ports.

• Omit hardware that does not belong, such as “hardware” to compute values needed at
elaboration time.

• Be sure to show the inferred logic. Remember that generate statements describe what hap-
pens at elaboration time, not what happens at simulation time nor does it describe operations
performed by the hardware.

Solution on the next page.

7

← → Fall 2022 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03_sol.pdf

Solution appears below. The first diagram shows the inferred logic and shows hardware that can easily be removed
by optimization in gray. The hardware corresponding to each iteration of the generate loop is shown within a green dotted
outline.

In the second diagram the easy optimizations are applied. One easy optimization is the mult_by_c module
instantiated with c=1. Since it would be multiplying by one the output would match the input, and so no hardware is
needed. One input to the add module on the upper left is zero, so that adder isn’t needed. An AND gate is also optimized
out.

str
0

atoi
.r(14)

str[0]

m_b_c
.c(1)

add

1

0
atoi

.r(14)

str[1]

m_b_c
.c(14)

add

2

0
atoi

.r(14)

str[2]

m_b_c
.c(196)

add

3

i=0 i=1 i=20

1
0
ndi[-1] ndi[0] ndi[1] ndi[2]

nd

val

is_valid[0] is_valid[1] is_valid[2]is_valid[-1]

vali[-1] vali[0]

vali[1]

atoi_it .r(14), .n(3)

valdr valdr valdrvald vald vald

vals vals vals

str
0

atoi
.r(14)

str[0]

1

0
atoi

.r(14)

str[1]

m_b_c
.c(14)

add

2

0
atoi

.r(14)

str[2]

m_b_c
.c(196)

add

3

i=0 i=1 i=2

0
ndi[-1] ndi[0] ndi[1] ndi[2]

nd

val

is_valid[0] is_valid[1] is_valid[2]

vali[0]

vali[1]

atoi_it .r(14), .n(3)

valdr valdr valdrvald vald vald

vals vals

8

← → Fall 2022 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03_sol.pdf

(b) Show the hardware inferred for an atoi_it module instantiated with r=16 (hexadecimal this
time) and n=3, and show the hardware after optimization. Consider the impact of optimization on
the mult_by_c and add modules, which should be considerable since r is a power of 2.

The solution appears below. The first diagram shows the inferred logic before optimization. The second diagram
shows the optimized hardware, which is substantially less costly since both the mult by c and add modules can be
eliminated.

The mult by c modules can be eliminated because they are multiplying by a power of 2, which can be accomplished
simply by re-labeling bit positions. The add modules can be eliminated because the two adder inputs will never have a
1 in the same bit position.

For example, consider ASCII input 24’h393635 which should decode to value 12’h965, in binary 12’b1001 0110 0101.
For this input vali[0] = 0000 0000 0101 and for i=1, vald=0000 0110 0000. So all the i=1 adder really
has to do is concatenate the high 8 bits of vald with the low 8 bits of vali[0]. No addition is necessary. That is
shown in the optimized hardware, where each vald output is connected directly to their four bit positions in the module
output.

str
0

atoi
.r(16)

str[0]

m_b_c
.c(1)

add

1

0
atoi

.r(16)

str[1]

m_b_c
.c(16)

add

2

0
atoi

.r(16)

str[2]

m_b_c
.c(256)

add

3

i=0 i=1 i=20

1
0
ndi[-1] ndi[0] ndi[1] ndi[2]

nd

val

is_valid[0] is_valid[1] is_valid[2]is_valid[-1]

vali[-1] vali[0]

vali[1]

atoi_it .r(16), .n(3)

valdr valdr valdrvald vald vald

vals vals vals

str
0

atoi
.r(16)

str[0]

1

0
atoi

.r(16)

str[1]

2

0
atoi

.r(16)

str[2]

3

i=0 i=1 i=2

0
ndi[-1] ndi[0] ndi[1] ndi[2]

nd

val

is_valid[0] is_valid[1] is_valid[2]

vali[0]
vali[1]

atoi_it .r(16), .n(3)

valdr valdr valdrvald vald vald

4
msb

lsb

4

4

12

vali[2]

9

← → Fall 2022 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03_sol.pdf

module atoi_it
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))

(output logic [wv-1:0] val,

output logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n-1:-1];

uwire is_valid[n-1:-1];

uwire [wd-1:0] ndi[n-1:-1];

assign is_valid[-1] = 1;

assign ndi[-1] = 0;

assign vali[-1] = 0;

assign nd = ndi[n-1];

assign val = vali[n-1];

localparam int wcv = $clog2(r);

for (genvar i=0; i<n; i++) begin

// Find Value of Digit i

//

uwire [wcv-1:0] valdr;

uwire is_digit;

atoi1 #(r,wcv) a(valdr, is_digit, str[i]);

// Determine if this digit continues a sequence of valid digits

// starting at str[0].

//

assign is_valid[i] = is_digit && is_valid[i-1];

// Replace value with zero if str[i] is not a digit, or if the

// string of valid digits has already ended.

//

uwire [wcv-1:0] vald = is_valid[i] ? valdr : 0;

// Multiply (scale) the digit value based on its position in the number.

//

uwire [wv-1:0] vals;

mult_by_c #(.w_in(wcv), .c(r**i), .w_out(wv)) mc(vals, vald);

// Add the scaled digit to the value accumulated so far.

//

add #(wv) a1(vali[i], vali[i-1], vals);

// Update the number of digits so far.

//

assign ndi[i] = is_valid[i] ? i+1 : ndi[i-1];

end

endmodule

10

← → Fall 2022 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03_sol.pdf

Problem 3: Appearing further below is the atoi_tr from the solution to Homework 2. Show the
inferred logic for an instantiation with r=10 and n=9.

• Show the logic for one level. That is, show the two instantiations of atoi tr, alo and ahi,
but don’t show what is inside of alo nor ahi.

• Show the mult by c instantiations as modules, do not show what is inside.

• Show the hardware inferred for the operators, such as && and ?:.

• Omit hardware that does not belong, such as “hardware” to compute values needed at
elaboration time.

• Do not confuse parameters and ports.

• Be sure to show the inferred logic. Remember that generate statements describe what hap-
pens at elaboration time, not what happens at simulation time nor does it describe activities
performed by the hardware.

Solution appears below. Note that the equality module and adder that operate on the nd outputs each have one
constant input ndlo, which will result in lower-cost and faster hardware. Also note that the value of nlo here is 4, and
that no hardware is shown computing it. The value is computed by the synthesis (or simulation) program at elaboration
time and used to create the module.

str

m_b_c
.c(10000)

nd
va
l

atoi_tr .r(10), .n(9)

+
ndlo

+

0

atoi_tr
.r(10),
.n(4)

atoi_tr
.r(10),
.n(5)

alo

ahi
=

str[3:0]

str[8:4]

str va
l

nd

str va
l

nd ndhi

vallo

valhi

4
(n

lo
)

4
(n

lo
)

11

← → Fall 2022 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03_sol.pdf

module atoi_tr
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))

(output uwire [wv-1:0] val, output var logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

if (n == 1) begin

uwire is_dd;

uwire [wv-1:0] valr;

atoi1 #(r,wv) a(valr, is_dd, str[0]);

assign val = is_dd ? valr : 0;

assign nd = is_dd; // Note: nd may be more than one bit.

end else begin

// Prepare to split the input string into two halves. Note that

// the hi half may be larger, and so we use nhi to compute the

// number of bits needed in the value output (vwh) and the

// number of digits output (dwh).

//

localparam int nlo = n/2;

localparam int nhi = n - nlo;

localparam int vwh = $clog2(r**nhi);

localparam int dwh = $clog2(nhi+1);

//

uwire [vwh-1:0] vallo, valhi;

uwire [dwh-1:0] ndlo, ndhi;

// Split input string between two recursive instantiations

//

atoi_tr #(r,nlo,vwh,dwh) alo(vallo, ndlo, str[nlo-1:0]);

atoi_tr #(r,nhi,vwh,dwh) ahi(valhi, ndhi, str[n-1:nlo]);

// Determine whether the hi half of the string may be part

// of the number.

//

uwire hitoo = ndlo == nlo;

uwire [vwh-1:0] valhid = hitoo ? valhi : 0;

// Scale the upper half.

//

uwire [wv-1:0] valhis; // Value High Scaled

mult_by_c #(vwh,r**nlo,wv) mc(valhis, valhid);

assign val = vallo + valhis;

assign nd = hitoo ? nlo + ndhi : ndlo;

end

endmodule

12

← → Fall 2022 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw03_sol.pdf

//
//
/// LSU EE 4755 Fall 2022 Homework 4 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2022/hw04.pdf

typedef enum
 { Char_escape = 128, Char_escape_stop = 200, Char_EOS = 255,
 Char_A = 65, Char_Z = 90, Char_a = 97, Char_z = 122,
 Char_0 = 48, Char_9 = 57,
 Char_space = 32, Char_underscore = 95, Char_cr = 13
 } Chars_Special;

`default_nettype none

//
/// Problem 1
//
 /// Complete word_count as described in the handout.

 ///
//
// [✔] Do not use more adders than are necessary, especially for len_avg.
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter value.
//
// [✔] Code must be written clearly.
// [✔] Pay attention to cost and performance.

module word_count
 #(int wl = 5, wn = 6, n_avg_of = 10)
 (output logic word_start, word_part, word_ended,
 output logic [wl-1:0] len_word,
 output logic [wn-1:0] num_words,
 output logic [wl-1:0] len_avg,
 input uwire [7:0] char,
 input uwire reset, clk);

 uwire char_az = char >= Char_a && char <= Char_z
 || char >= Char_A && char <= Char_Z;
 uwire char_09 = char >= Char_0 && char <= Char_9;
 uwire char_wd_start = char_az;
 uwire char_wd_part = char_wd_start || char_09 || char == Char_underscore;

 /// SOLUTION

 logic prev_char_wd_part;

 uwire next_word_start = char_wd_start && !prev_char_wd_part;
 uwire next_word_part = word_part && char_wd_part || next_word_start;
 uwire next_word_ended = word_part && !char_wd_part;

 always_ff @(posedge clk) begin
 prev_char_wd_part <= reset ? 0 : char_wd_part;
 word_start <= reset ? 0 : next_word_start;
 word_part <= reset ? 0 : next_word_part;
 word_ended <= reset ? 0 : next_word_ended;

← → Fall 2022 ← → Homework 4 Homework Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/koppel/v/2022/hw04.pdf
https://www.ece.lsu.edu/ee4755/2022/hw04-sol.v.html

 end

 logic [wl-1:0] len_recent[n_avg_of];
 logic [wl+$clog2(n_avg_of):0] len_sum;
 assign len_avg = len_recent[n_avg_of-1] ? len_sum / n_avg_of : 0;

 always_ff @ (posedge clk) if (reset) begin

 num_words <= 0;
 len_word <= 0;

 for (int i=0; i<n_avg_of; i++) len_recent[i] = 0;
 len_sum = 0;

 end else begin

 len_word <= next_word_start ? 1 : next_word_part ? len_word+1 : len_word;
 num_words <= next_word_ended ? num_words + 1 : num_words;

 if (next_word_ended) begin
 len_sum -= len_recent[n_avg_of-1];
 len_sum += len_word;
 for (int i=n_avg_of-1; i>0; i--) len_recent[i] = len_recent[i-1];
 len_recent[0] = len_word;
 end

 end

endmodule

module word_count_blank
 #(int wl = 5, wn = 6, n_avg_of = 10)
 (output logic word_start, word_part, word_ended,
 output logic [wl-1:0] len_word,
 output logic [wn-1:0] num_words,
 output logic [wl-1:0] len_avg,
 input uwire [7:0] char,
 input uwire reset, clk);

 uwire char_az = char >= Char_a && char <= Char_z
 || char >= Char_A && char <= Char_Z;
 uwire char_09 = char >= Char_0 && char <= Char_9;
 uwire char_wd_start = char_az;
 uwire char_wd_part = char_wd_start || char_09 || char == Char_underscore;

endmodule

//
/// Testbench Code
//
// It is okay to modify the testbench code to facilitate the coding
// and debugging of your modules. Keep in mind that your submission
// will be tested using a different testbench, so on the one hand no
// one will be accused of dishonesty for modifying the testbench
// below. However be sure to restore any changes to make sure that
// your code passes the original testbench.

// cadence translate_off

program reactivate
 (output uwire clk_reactive, output int cycle_reactive,

← → Fall 2022 ← → Homework 4 Homework Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw04-sol.v.html

 input uwire clk, input var int cycle);
 assign clk_reactive = clk;
 assign cycle_reactive = cycle;
endprogram

module testbench;

 localparam int npsets = 3;
 localparam int pset[npsets][2] =
 '{ { 2, 5 }, { 1, 6}, {9, 7 } };

 int n_err_shown; // Number of times error info printed to console.
 int n_err_sh_nc, n_err_sh_nw, n_err_sh_avg, n_err_sh_state;
 initial begin
 n_err_sh_nc = 0;
 n_err_sh_nw = 0;
 n_err_sh_avg = 0;
 n_err_sh_state = 0;
 end
 int t_errs; // Total number of errors.
 initial begin t_errs = 0; n_err_shown = 0; end
 final $write("Total number of errors: %0d\n",t_errs);

 uwire d[npsets:-1]; // Start / Done signals.
 assign d[-1] = 1; // Initialize first at true.

 // Instantiate a testbench at each size.
 //
 for (genvar i=0; i<npsets; i++)
 testbench_n #(pset[i][0],pset[i][1]) t2(.done(d[i]), .tstart(d[i-1]));

endmodule

module testbench_n
 #(int win_sz = 10, wd_len_max = 5)
 (output logic done, input uwire tstart);

 localparam int wl = $clog2(wd_len_max+1);
 localparam int wn = $clog2(win_sz) + 5;
 localparam int n_tests = 10000;
 localparam int cyc_max = n_tests * 2;

 // Number of starting trace lines shown.
 localparam int tr_initial_lines = 12;
 // Number of trace lines to show when there is an error.
 localparam int tr_err_context = 5;

 int seed;
 initial seed = 4755;

 function string sample(input string str);
 sample = str[$dist_uniform(seed, 0, str.len()-1)];
 endfunction

 function string fbit(input logic b, input string s);
 fbit = b === 1 ? s : b === 0 ? "_" : b === 1'bx ? "x" : "z";
 endfunction

 bit clk;
 int cycle, cycle_limit;
 logic clk_reactive;
 int cycle_reactive;

← → Fall 2022 ← → Homework 4 Homework Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw04-sol.v.html

 reactivate ra(clk_reactive,cycle_reactive,clk,cycle);
 string event_trace;

 initial begin
 clk = 0;
 cycle = 0;
 event_trace = "";

 done = 0;
 cycle_limit = cyc_max;
 wait(tstart);

 fork
 while (!done) #1 cycle += clk++;
 wait(cycle >= cycle_limit)
 $write("Exit from clock loop at cycle %0d, limit %0d. %s\n %s\n",
 cycle, cycle_limit, "** CYCLE LIMIT EXCEEDED **",
 event_trace);
 join_any;

 done = 1;
 end

 uwire [wl-1:0] len, lavg;
 uwire [wn-1:0] nw;
 uwire w_start, w_part, w_ended;
 logic [7:0] char;
 logic reset;

 string test_one = "I II III 2not o_wd four cinco a b c d ";
 // string test_one = "A or bee ";

 word_count #(wl,wn,win_sz) wd_cnt
 (w_start, w_part, w_ended, len, nw, lavg, char,reset,clk);

 bit char_wd_start[256];
 bit char_wd_part[256];
 string str_wd_start, str_wd_part, str_wd_notstart;
 localparam string str_wd_not = " ,!.-";
 int lens[$];

 initial begin

 automatic logic [wl-1:0] shadow_nc = 0;
 automatic logic [wn-1:0] shadow_nw = 0;
 automatic logic [wl-1:0] shadow_avg = 0;
 automatic int len_sum = 0;
 automatic int n_err_nc = 0, n_err_w_st=0, n_err_w_pa=0, n_err_w_en=0;
 automatic logic shadow_w_st, shadow_w_pa, shadow_w_en;
 automatic int n_err = 0, n_err_lavg = 0, n_err_nw = 0;
 automatic int str_idx = 0;
 automatic string str_win = {10{" "}};
 automatic string test_str_buffer;
 automatic int n_err_pre;
 automatic logic pw_start, pw_part, pw_ended; // State before + edge.
 automatic string tr_recent[$];
 automatic bit need_reset = 0;
 bit in_word, was_in_word, was_word_char;

 for (int i=0; i<256; i++)
 begin char_wd_start[i] = 0; char_wd_part[i] = 0; end
 for (int i=Char_a; i<=Char_z; i++)
 begin
 char_wd_start[i] = 1; char_wd_part[i] = 1;

← → Fall 2022 ← → Homework 4 Homework Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw04-sol.v.html

 end
 for (int i=Char_A; i<=Char_Z; i++)
 begin
 char_wd_start[i] = 1; char_wd_part[i] = 1;
 end
 for (int i=Char_0; i<=Char_9; i++) char_wd_part[i] = 1;
 char_wd_part[Char_underscore] = 1;

 for (int i=0; i<256; i++) begin
 if (!char_wd_start[i] && char_wd_part[i])
 str_wd_notstart = { str_wd_notstart, string'(byte'(i)) };
 if (char_wd_start[i])
 str_wd_start = { str_wd_start, string'(byte'(i)) };
 if (char_wd_part[i])
 str_wd_part = { str_wd_part, string'(byte'(i)) };
 end

 test_str_buffer = { test_one, test_one };
 str_idx = 0;

 in_word = 0;
 was_in_word = 0;
 was_word_char = 0;
 char = Char_A;
 reset = 1;
 @(posedge clk_reactive); @(posedge clk_reactive);
 reset = 0;

 for (int i=0; i<n_tests; i++) begin

 automatic int round = i / test_one.len();
 automatic bit do_reset =
 round == 1 && $dist_uniform(seed,1,7) == 1
 || round > 1 && $dist_uniform(seed,1,(wd_len_max+4)/2*win_sz*2)==1;
 automatic bit show_err = 0;

 @(negedge clk);

 if (str_idx >= test_str_buffer.len()) begin
 automatic int wd_sz = $dist_uniform(seed,1,wd_len_max);
 automatic int wd_ws = $dist_uniform(seed,1,4);
 automatic bit fake_word = $dist_uniform(seed,1,10) == 1;

 test_str_buffer = "";
 str_idx = 0;

 if (fake_word)
 test_str_buffer = { test_str_buffer, sample(str_wd_notstart) };
 else
 test_str_buffer = { test_str_buffer, sample(str_wd_start) };
 for (int j=1; j<wd_sz; j++)
 test_str_buffer = { test_str_buffer, sample(str_wd_part) };
 for (int j=0; j<wd_ws; j++)
 test_str_buffer = { test_str_buffer, sample(str_wd_not) };

 end

 reset = do_reset;
 char = test_str_buffer[str_idx++];

 if (round < 1) begin

 end else begin

← → Fall 2022 ← → Homework 4 Homework Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw04-sol.v.html

 end
 str_win = { str_win.substr(1,9), char };

 pw_start = w_start;
 pw_part = w_part;
 pw_ended = w_ended;

 @(posedge clk_reactive);

 if (do_reset) begin

 was_in_word = 0;
 was_word_char = 0;
 in_word = 0;
 shadow_w_en = 0;
 shadow_w_pa = 0;
 shadow_w_st = 0;

 end else begin

 was_in_word = in_word;
 shadow_w_st = !was_word_char && char_wd_start[char];
 in_word =
 was_in_word && char_wd_part[char] || shadow_w_st;
 shadow_w_pa = in_word;
 shadow_w_en = was_in_word && !in_word;
 was_word_char = char_wd_part[char];

 end
 if (do_reset) begin

 shadow_nc = 0;
 shadow_nw = 0;
 shadow_avg = 0;
 lens.delete();
 len_sum = 0;

 end else if (was_in_word && in_word) begin

 shadow_nc++;

 end else if (shadow_w_en) begin

 shadow_nw++;
 len_sum += shadow_nc;
 lens.push_front(shadow_nc);
 if (lens.size() > win_sz)
 len_sum -= lens.pop_back();
 if (lens.size() == win_sz)
 shadow_avg = len_sum / win_sz;

 end else if (shadow_w_st) begin
 shadow_nc = 1;
 end

 n_err_pre = n_err;
 if (w_start !== shadow_w_st) begin
 n_err_w_st++;
 n_err++;
 end
 if (w_part !== shadow_w_pa) begin
 n_err_w_pa++;
 n_err++;
 end

← → Fall 2022 ← → Homework 4 Homework Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw04-sol.v.html

 if (w_ended !== shadow_w_en) begin
 n_err_w_en++;
 n_err++;
 end
 if (n_err_pre != n_err) begin
 if (testbench.n_err_sh_state++ < 4) show_err = 1;
 end

 if (shadow_nw !== nw)
 begin
 n_err_nw++; n_err++; need_reset = 1;
 if (testbench.n_err_sh_nw++ < 4) show_err = 1;
 end
 if (shadow_avg !== lavg)
 begin
 n_err_lavg++; n_err++; need_reset = 1;
 if (testbench.n_err_sh_avg++ < 4) show_err = 1;
 end
 if (shadow_nc !== len) begin
 n_err_nc++; n_err++;
 if (testbench.n_err_sh_nc++ < 4) show_err = 1;
 end

 begin
 automatic string hd =
 " W-M I Text---->| SPE L N A {D}";
 automatic string item =
 $sformatf
 ("Trace %2d-%1d %4d \"%10s\" %s %s%s%s %s%s%s %1d %2d %1d {%1d}",
 win_sz, wd_len_max, i, str_win,
 do_reset ? "R" : " ",
 fbit(pw_start,"s"), fbit(pw_part,"p"), fbit(pw_ended,"e"),
 fbit(w_start,"S"), fbit(w_part,"P"), fbit(w_ended,"E"),
 len, nw, lavg,
 wd_cnt.char_az
);

 if (n_err != n_err_pre)
 item =
 { item,
 $sformatf(" <-Error Correct-> %s%s%s %1d %2d %1d",
 shadow_w_st ? "S" : "_", shadow_w_pa ? "P" : "_",
 shadow_w_en ? "E" : "_",
 shadow_nc, shadow_nw, shadow_avg) };
 if (i == 0) $write("%s\n",hd);
 if (i < tr_initial_lines)
 $write("%s\n",item);
 else begin
 if (tr_recent.size() > tr_err_context) tr_recent.delete(0);
 tr_recent.push_back(item);
 end
 end

 if (n_err != n_err_pre && show_err) begin
 while (tr_recent.size() > 0)
 $write("%s\n",tr_recent.pop_front());
 end

 end

 $write
 ("Done with n_avg_of=%0d, max wd len=%0d. Errors: st %0d, pa %0d, en %0d, nc %0d, nw %0d, av %0d\n",
 win_sz, wd_len_max,
 n_err_w_st, n_err_w_pa, n_err_w_en,

← → Fall 2022 ← → Homework 4 Homework Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw04-sol.v.html

 n_err_nc, n_err_nw, n_err_lavg);

 testbench.t_errs += n_err;
 done = 1;

 end

endmodule

// cadence translate_on

← → Fall 2022 ← → Homework 4 Homework Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw04-sol.v.html

LSU EE 4755 Homework 5 Solution Due: 22 November 2022

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2022/hw05.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw05.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Assignment Background
As we should know the synthesis program, given a Verilog description of a module, writes a design
file with an optimized version of the module mapped to the chosen technology. For this assignment
the chosen technology is the same Oklahoma University ASIC process we’ve been using throughout
the semester.

An important skill for those writing Verilog descriptions is to estimate the cost and performance
of those synthesized modules. In this assignment we’ll look at how well the synthesis program
handles the different modules we considered for computing the floating-point expression v20 +v0v1 +
v21 . We will consider the combinational, sequential, and pipelined modules covered in class.

A synthesis script will be used to synthesize these modules, plus three arithmetic unit modules,
plus additional modules created for the solution to this problem. To complete the assignment the
output of the script must be understood and the synthesis script must be modified. The output of
the synthesis script is similar to the output of the scripts used in prior assignments, so it should be
familiar. Modifying the script will be something new, and might be a challenge for some of you. It
is okay to seek help modifying the script from classmates and others, though the solutions to the
problems themselves must be completed individually.

Modules
This assignment includes modules for the combinational, sequential, and pipelined implementations
of the multi-step computation. They are named ms_comb, ms_seq, and ms_pipe. For compari-
son the assignment also includes modules containing a single floating-point unit, they are named
try_mult, try_add, and try_sq (square).

Four additional modules are provided for experimentation, m1_func, m1_comb, m1_seq, and
m1_pipe. These modules initially perform the computation v0+v0v1+v21 , but they can be modified
to perform other computations. Module m1_func is used by the testbench to obtain a correct value,
so modify it first so that it computes the desired computation. Then modify the others that you
want to synthesize. (The synthesis program does not care whether a module passes the testbench,
but no conclusion can be drawn from the area and delay of module that does not work correctly.)

All of these modules have the same parameters and ports, though not every module uses every
port. For example, only ms_seq and ms_pipe are sequential so that the clk and reset ports on
the others serve no function. These unused ports will be eliminated during optimization so they
won’t affect cost or timing.

Module Parameters and Floating Point Format
The modules used in this assignment all have the same parameters, these parameters specify the
floating-point number format to be used. The first parameter, wsig, specifies the number of bits
in the significand (fractional part) of the floating point number. The default value is 23, which is
the same as an IEEE 754 single (C float). The second parameter, wexp, is the number of bits in
the exponent. The default value is 8, which matches an IEEE single. The third parameter, ieee,
specifies whether the IEEE floating-point format should be strictly followed. The default value

1

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2022/hw05.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2022/hw05_sol.pdf

is 1, which means yes; a 0 means that special cases do not have to be handled correctly. These
include NaN (not a number) and subnormal values. The size of the floating point number using
these parameters is 1+wexp+wsig, the extra 1 is for the sign bit.

For this assignment all modules are instantiated with ieee=0. This is done to explore the
fuller range of optimization possibilities and also to reduce the time needed for synthesis.

The sample synthesis runs consider two formats, IEEE single in which wsig=23 and wexp=8,
and the ML-friendly BF16 (informally known as brain float) in which wsig=7 and wexp=8. The
advantage of BF16 for machine learning is that it is half the size of a single, and with a 7-bit
significand, requires half the energy for multiplication than the older 16-bit FP16 format. For us
the big advantage is that it takes less time to synthesize than a single.

Testbench
The testbench exercises the six modules, ms_comb, ms_seq, ms_pipe, m1_comb, m1_seq, and m1_pipe

instantiated with a significand size of 7 and 23. They should all initially pass. As with other test-
benchs in this class, a line will be printed for the first few module errors, and a tally will be provided
for each module and size. The testbench uses ms_func to determine the correct output of the ms

modules and m1_func to determine the correct output of the m1 modules. When modifying the m1

modules be sure to also modify m1_func so that the testbench can show you whether your modified
modules do what you think they are doing.

The Synthesis Script
As with past assignments, the modules in the assignment file should be synthesized using the script
syn.tcl. Unlike other assignments, this script will have to be modified.

The synthesis script itself is written in TCL (Tool Control Language, the abbreviation is pro-
nounced tickle) a scripting language chosen by Cadence for scripting their EDA software. (Nowa-
days Python would be used. If it were up to me it would be Perl. But it’s TCL.) Documentation for
TCL can be found at https://tmml.sourceforge.net/doc/tcl/. This describes TCL, not the
functionality needed to run Genus or other tools. For Genus-specific commands see the synthesis
documentation linked to https://www.ece.lsu.edu/koppel/v/ref.html.

For this assignment it should not be necessary to use new Genus commands, just to change
which modules are synthesized and which parameters to instantiate with. For that, one needs only
a rudimentary knowledge of TCL, perhaps what can be learned just by looking at syn.tcl.

The synthesis script starts by setting some script variables, using the TCL set command, and
by setting Genus attributes, using the Genus set_db command:

set verilog_source hw05.v

set syn_level "high"

set spew_file "spew.log"

set report_file "syn-report.log"

set_db syn_global_effort $syn_level

set rpt_chan [open $report_file w]

puts "Synthesizing at effort level \"$syn_level\"\n"

As one might guess syn_level is the amount of effort used for synthesis. Possible values are
none, low, medium, and high. These initial lines are followed by the definition of a TCL procedure
syn_mod, which emits the commands needed to synthesize a module, followed by commands to
retrieve the area and delay of the synthesized module. A line of text is written showing the area
and delay. It should not be necessary to modify syn_mod for this assignment.

Module syn_mod is called in a loop nest near the end of the file:

List of combinational modules.

2

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05 sol.pdf

https://tmml.sourceforge.net/doc/tcl/
https://www.ece.lsu.edu/koppel/v/ref.html
https://www.ece.lsu.edu/ee4755/2022/hw05_sol.pdf

set mods_comb { ms_comb try_mult try_add try_sq }

set delay_targets { 100 0.1 }

set mods { try_mult try_add try_sq }

set mods { ms_comb ms_seq ms_pipe try_mult try_add try_sq }

set wsigs { 7 14 23 }

foreach delay_target $delay_targets {

foreach ws $wsigs {

foreach mod $mods {

syn_mod $mod $delay_target " $ws 8 0 "

}

}

}

The loop nest above synthesizes each of the modules listed in mods (that’s the inner loop). Each
of these six modules is synthesized for each significand size found in wsigs. These modules are
synthesized with each delay constraint in delay_target. For the code above there would be a total
of 2× 6× 3 synthesis runs. That would probably take hours.

The first set line writes variable mods_comb with a list of combinational modules. This variable
must be updated with any new combinational modules that you use. Variable mods is set twice,
first to a list of the arithmetic modules, then those are replaced with a list of the arithmetic modules
and our multi-step modules. (Because of the second assignment the first assignment has no effect.)
If one wanted to only synthesize the arithmetic modules one would comment out the second mods

line. There is no need to use a loop nest. It is possible to write a syn_mod call for each synthesis,
for example:

set delay_targets { 100 }

set wsigs { 7 14 23 }

syn_mod try_mult 5 "7 8 0"

syn_mod try_mult 5 "7 6 0"

Exit before the loop nest.

close $rpt_chan

quit

foreach delay_target $delay_targets {}

The example above does two synthesis runs. The 5 is the delay target and the quoted part are
the parameters. (The parameters must be quoted so that they are read as a single argument to
syn_mod.) In the example above, try_mult is synthesized with two exponent sizes, 8 bits and 6
bits, both are synthesized with a delay target of 5 ns.

To synthesize a new module (for example, one you wrote) add the name to one of the mod

lists, or just use the name on a direct call to syn_mod as in the example above. Iff the module is
combinational add the module to mods_comb. Not adding a combinational module to mods_comb

will result in an error. Adding a sequential module to mods_comb will result in incorrect timing.

Synthesis Script Output
The synthesis script syn.tcl is run using the command genus -files syn.tcl. The run starts
with a substantial amount of header output, including warnings, copyright information, and system
information. Some is shown below:

[cyc.ece.lsu.edu] % genus -files syn.tcl

3

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw05_sol.pdf

2022/11/13 16:52:05 WARNING This OS does not appear to be a Cadence supported Linux configuration.

2022/11/13 16:52:05 For more info, please run CheckSysConf in <cdsRoot/tools.lnx86/bin/checkSysConf <productId>

TMPDIR is being set to /tmp/genus_temp_566634_cyc.ece.lsu.edu_koppel_nvftYI

Cadence Genus(TM) Synthesis Solution.

Copyright 2022 Cadence Design Systems, Inc. All rights reserved worldwide.

Cadence and the Cadence logo are registered trademarks and Genus is a trademark

of Cadence Design Systems, Inc. in the United States and other countries.

[16:52:12.338826] Configured Lic search path (21.01-s002): /apps/linux/cadence/share/license/license.dat:/opt/pgi/license.dat

The output of the script proper (as opposed to Genus, the synthesis program) starts with an
announcement of the synthesis effort level followed by a table of synthesis results:

Synthesizing at effort level "high"

Module Name Area Delay Delay Synth

Actual Target Time

ms_comb_wsig7_wexp8_ieee0 600190 12.219 0.1 ns 423 s

ms_seq_wsig7_wexp8_ieee0 445400 5.754 0.1 ns 236 s

ms_pipe_wsig7_wexp8_ieee0 797327 5.678 0.1 ns 309 s

ms_comb_wsig14_wexp8_ieee0 1363980 14.391 0.1 ns 707 s

Each line of the table shows the result of one synthesis run. The Module Name column shows
the name of the module followed by the parameter values used in its instantiation. In the sample
above three different modules are synthesized, ms_comb, ms_seq, and ms_pipe. Module ms_comb is
synthesized once with significand of 7 bits and once with a significand of 14 bits.

The Area column shows the area given by the Genus report area command. The units are
relative to the OSU technology. The Delay Actual column shows the length of critical path through
the module in units of nanoseconds. The Delay Target column shows the delay constraint that the
synthesis program was set to meet. In the example above the constraint is 0.1 ns, which means the
critical path can be no longer than 0.1 ns. This constraint was intentionally set to an impossibly
low value, to determine the minimum delay that the synthesis program could achieve. Normally
the delay constraint is set to something achievable, perhaps 4 ns in the example above, and the
synthesis program would generate the least expensive design that meets the delay constraint. The
Synth Time column shows the wall-clock (elapsed) time needed to perform the synthesis. The
wall-clock time is shown to help plan the synthesis runs, it does not directly affect or describe the
design itself.

4

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw05_sol.pdf

Problem 1: In class we considered three ways of implementing multi_step, the modules that
computed v20 + v0v1 + v21 : A combinational version, a sequential version, and a pipelined version.
Appearing below are the results from synthesizing these three modules, named ms_comb, ms_seq,
and ms_pipe, followed by results of synthesizing modules consisting only of the Chipware floating-
point multiplier, adder, and a multiplier with the same value used for both operands. These are
synthesized with a large delay constraint, meaning that the cost has been minimized.

Module Name Area Delay Delay Synth

Actual Target Time

ms_comb_wsig23_wexp8_ieee0 1597692 75.142 100.0 ns 229 s

ms_seq_wsig23_wexp8_ieee0 945919 29.324 100.0 ns 111 s

ms_pipe_wsig23_wexp8_ieee0 1866509 28.273 100.0 ns 205 s

try_mult_wsig23_wexp8_ieee0 525991 28.231 100.0 ns 62 s

try_add_wsig23_wexp8_ieee0 339036 27.396 100.0 ns 53 s

try_sq_wsig23_wexp8_ieee0 297753 25.504 100.0 ns 38 s

ms_comb_wsig7_wexp8_ieee0 375767 34.708 100.0 ns 75 s

ms_seq_wsig7_wexp8_ieee0 275858 15.305 100.0 ns 34 s

ms_pipe_wsig7_wexp8_ieee0 526000 14.466 100.0 ns 62 s

try_mult_wsig7_wexp8_ieee0 94274 9.346 100.0 ns 13 s

try_add_wsig7_wexp8_ieee0 140221 14.196 100.0 ns 21 s

try_sq_wsig7_wexp8_ieee0 57802 6.085 100.0 ns 8 s

(a) Based on the data above, show the latency and throughput of each module for the 23-bit
significand. It might be necessary to look at the module descriptions (Verilog code) to answer this
question.

In the discussion below call the value in the Delay Actual column of the synthesis results table the clock period
and let tc denote its value. For example, for ms comb with the 23-bit significand the clock period is tc = 75.142 ns.
Also, let L denote latency and θ denote throughput.

Combinational Module, ms comb: Latency: L = tc = 75.142 ns and throughput θ = 1
tc

= 1
75.142 ns . The

combinational module computes the entire result in one cycle and so the clock period is the latency. It can compute a
new result every cycle and so the throughout is the reciprocal of the latency.

Sequential Module, ms seq: Latency: L = nctc = 5 × 29.324 ns = 146.62 ns, where nc is the number
of cycles needed to compute a result. Throughput: θ = 1

nctc
= 1

146.62 ns . The sequential module needs five cycles
(nc = 5) to compute a result, so its latency is five times its clock period. Because a new computation cannot start while
a computation is in progress the throughput is one over the latency.

Pipelined Module, ms pipe: Latency L = nstc = 4×28.273 ns, where ns is the number of stages. Throughput
θ = 1

tc
= 1

28.273 ns . Like the sequential circuit, the latency of the pipelined unit is the clock period times the number of
cycles needed to compute a result. Unlike the sequential circuit, the pipelined circuit can start a new computation every
cycle, and so the throughput is the reciprocal of the clock period.

5

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw05_sol.pdf

(b) For each of the two significand sizes, show that the delay of the three ms modules are what one
would expect given the delays of the three arithmetic modules.

Combinational Module, ms comb: To solve this problem one needs to find the critical path through the module.
Refer to the Verilog description and the diagram of the inferred hardware below.

v0

v1

clk

CW_fp_mult
m00

CW_fp_add
a1

rnd

3'b0

1'd1

re
s
u
lt

start

re
a
d
y

ms_comb

rnd

3'b0

CW_fp_mult
m01

rnd

CW_fp_mult
m11

rnd

3'b0

3'b0

CW_fp_add
a2

rnd

3'b0

U
n
u
se
d

module ms_comb
#(int wsig = 23, wexp = 8,

int ieee = 1,

int wf = 1 + wexp + wsig)

(output uwire [wf-1:0] result,

output uwire ready,

input uwire [wf-1:0] v0, v1,

input uwire start, clk);

localparam logic [2:0] rm = 0;

assign ready = 1;

uwire [7:0] mul_s1, mul_s2, mul_s3;

uwire [7:0] a_s1, a_s2;

uwire [wf-1:0] v00, v01, v11, s1;

CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

m00(.a(v0), .b(v0), .rnd(rm), .z(v00), .status(mul_s1));

CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

m01(.a(v0), .b(v1), .rnd(rm), .z(v01), .status(mul_s2));

CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

m11(.a(v1), .b(v1), .rnd(rm), .z(v11), .status(mul_s3));

CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

a1(.a(v00), .b(v11), .rnd(rm), .z(s1), .status(a_s1));

CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

a2(.a(s1), .b(v01), .rnd(rm), .z(result), .status(a_s2));

endmodule

Based on the timings given in the synthesis results table the critical path goes through m00, a1, and a2. Both
m00 and m11 compute the square of their inputs, and based on the data in the synthesis results table computing a square
takes slightly less time than computing a product, 25.504 ns versus 28.321 ns.

Using the timings from the synthesis table, the delay (critical path) through ms comb is tsq+2tadd = 25.504 ns+
2 × 27.396 ns = 80.296 ns. This is about 5 ns longer than the delay for ms comb reported in the synthesis table,
75.142 ns, a difference of only about 6%.

6

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw05_sol.pdf

v0

v1

clk

CW_fp_mult
m1

CW_fp_add
a1

ac0

ac1

re
s
u
lt

start

ready

prob1_seq
step < 2

3'b0
3'd1

2:2

en

1:1

0:0

2:2

en

+

en
step

st
e
p

step = 3

step ≠ 0

step < 3

1

0

step < 4

step < 4

start

st
e
p

3
2

'd
0

Sequential Module, ms seq: The inferred hardware is shown above, taken from the solution to the 2020 final exam
(the module name was prob1 seq in the exam). For ms seq the critical path cannot pass through both the mutliplier
and adder, it must pass through one or the other. In addition to these arithmetic units there is also one multiplexor delay
and some logic gates. Assuming that the multiplexor and logic gates’ delays are small compared to the arithmetic unit,
the critical path will be the larger of the two delays, 28.231 ns for the multiplier and 27.396 ns for the adder. So the
clock period would be a bit over 28.231 ns. This is very close to the results from the table, 29.324 ns.
Pipelined Module, ms pipe: As with the sequential module, the critical path will be through the arithmetic unit
that takes the most time, the multiplier. Unlike the sequential version, there are no multiplexors or logic between the
arithmetic units and the pipeline latches, and so we would expect the delay to be even closer to the multiplier delay,
28.231 ns. The reported delay, 28.273 ns is indeed very close.

(c) Using the cost of the arithmetic units, show that the cost of ms_comb is lower than expected, but
the cost of ms_seq and ms_pipe are about or perhaps a little more than what one would expect.
Combinational Module, ms comb: This consists of one multiplier, two square units and two adders. The expected
cost is 525991 + 2× 339036 + 2× 297753 = 1799569. The reported cost is 1597692, which is lower by 11.2%.
Sequential Module, ms seq: This module has one multipler and one adder. Their costs are 525991 + 297753 =
823744. This estimated cost ignores the cost of registers, multiplexors, and miscellaneous logic. The reported cost is
945919, which is higher, perhaps due to the ignored hardware.
Pipelined Module, ms pipe: This module has the same arithmetic units as the combinational module, and so the
estimated cost, ignoring registers, would be the same, 525991+2×339036+2×297753 = 1799569. The reported
cost is 1866509 which is higher. The higher cost is probably due to ignoring the cost of registers.

7

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw05_sol.pdf

Problem 2: It is welcome that the cost of ms_comb is lower than what one would expect based
on the cost of the arithmetic units. There are several possible reasons for this, for example the
synthesis program may be simplifying the two adders used in computations such as a+ b+ c or it
may be sharing hardware used to process the common b operand in expressions like a× b and b× c,
or perhaps it may even be transforming v20 + v0v1 + v21 into (v0 + v1)2 − v0v1. Or maybe the costs
for the arithmetic units shown in the table are higher than they should be.

Perform a set of synthesis runs to provide evidence for a reason that ms_comb cost less than its
constituent parts. Consider the possible reasons given above, or one of your own. These synthesis
runs can operate on one of the existing modules, a slightly modified version of the modules, or some-
thing wholly different. The modules m1_comb, m1_seq, m1_pipe can be used for experimentation.
See the Modules section above.

Describe the results of these experiments and how they convincingly support a particular
reason for the lower cost. Data from a single synthesis run, or a series of very similar runs will not
be considered convincing.

The Verilog file for this assignment will be collected, but submit the answers to this question
on paper or by E-mail. Please E-mail PDF files. Sending word processor source files as a final
product is unprofessional, even if they are TEX files.

In your writeup:

• Indicate how you believe the synthesis program is optimizing ms comb.

• Describe the modules you synthesized to come to this conclusion, and the results of synthesis.
Most credit will be given for this part of the assignment.

• Explain why your experiments show that the lower cost was not due to other optimizations.

Based on the experiments described below, it appears that the synthesis program can significantly reduce the cost
of computations of the form a2 + b2 computed using the ChipWare FP arithmetic modules. The optimization is not
applied to similar computations such as (a+ c)2 + b2.

To determine why the cost of ms comb was more than 11% less than the estimated cost, a number of new modules
were simulated. The modules were designed to test various hypotheses, including those suggested in the problem. The
modules’ names all start with m1 , followed by an abbreviation that may suggest what it does. (In the table of synthesis
results the name is appended with the parameter values used.) For example, m1 a3 is a module that computes a+b+c.
Each module was tested for correctness by updating m1 functional so that it computes the same value as the test
module. A wrapper module, m1 comb, provides a third input for modules that take three data inputs, such as m1 a3.
The third input value is just v0*v1, so m1 functional uses v0*v1 in places where v2 might go. All of the tested
modules were combinational. The synthesis script output shown below (near the end of the solution) is for runs using
these modules.

The Verilog code used for these experiments can be found at
https://www.ece.lsu.edu/koppel/v/2022/hw05-sol.v.html and the synthesis script is at
https://www.ece.lsu.edu/koppel/v/2022/syn-sol.tcl.html.

Appearing below (on the next page) is the m1 a3 module, its wrapper, and m1 functional.

8

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05 sol.pdf

https://www.ece.lsu.edu/koppel/v/2022/hw05-sol.v.html
https://www.ece.lsu.edu/koppel/v/2022/syn-sol.tcl.html
https://www.ece.lsu.edu/ee4755/2022/hw05_sol.pdf

/// This module is synthesized.
module m1_a3

#(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)

(output uwire [wf-1:0] result, output uwire ready,

input uwire [wf-1:0] v0, v1, v2, input uwire start, clk);

localparam logic [2:0] rm = 0; // Rounding Mode

uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;

uwire [wf-1:0] v00, v01, v11, s1;

CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

a1(.a(v0), .b(v1), .rnd(rm), .z(s1), .status(a_s1));

CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

a2(.a(s1), .b(v2), .rnd(rm), .z(result), .status(a_s2));

assign ready = 1;

endmodule

/// This module is simulated
module m1_comb

#(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)

(output uwire [wf-1:0] result, output uwire ready,

input uwire [wf-1:0] v0, v1, input uwire start, clk);

localparam logic [2:0] rm = 0; // Rounding Mode

uwire [wf-1:0] v01;

uwire [7:0] mul_s2;

// Generate a third input for m1_a3.

CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

m01(.a(v0), .b(v1), .rnd(rm), .z(v01), .status(mul_s2));

m1_a3 #(.wsig(wsig), .wexp(wexp), .ieee(ieee))

a3(result, ready, v0, v1, v01, start, clk);

endmodule

// cadence translate_off

module m1_functional
(output real mag, input real v0, v1);

// The testbench uses this module to test the others, so set

// the computation to match the others.

localparam string name = "A3 Func";

// Note: The third value is v0*v1.

always_comb mag = v0 + v1 + v0 * v1;

endmodule

// cadence translate_on

9

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw05_sol.pdf

The results of each experiment are described below. The value inputs to the modules are called v0, v1, and v2.
The original multi-step modules only had two data inputs, v0 and v1. The third input, v2, is set to v0v1 by the wrapper
module, m1 comb, for testing purposes. The synthesis program operates on modules such as m1 a3 and so to it the
value on third input, v2, is unrelated to the other two values.

In the discussion below let ca, cm, and cs denote the cost of the adder, multiplier, and square unit. Those costs
are cm = 525991, ca = 339036, and cs = 297753 for the 23-bit significand and cm = 94274, ca = 140221,
and cs = 57802 for the 7-bit significand.

Module m1 a3: Computes v0 + v1 + v2
To test for any benefit of computing a+ b+ c use a module that computes this sum, m1 a3. The expected cost is two
adders, 3ca, which is 280442 for 7 bits and 678072 for 23 bits. The synthesized costs are 278532 and 668518, respectively
or .68% and 1.41% lower than estimated. So there is not much optimization benefit from combining two adders.

Module m1 mad: Computes v0 ∗ v1 + v2
To test whether adder and multiplier hardware is shared, try a module that computes v0 × v1 + v− 2, called m1 mad.
The expected cost is cm + c + a or 234495 for 7 bits and 865027 for 23 bits. The synthesized hardware is just 2.58%
and 1.48% less costly than the estimate, not enough to explain ms comb.

Module m1 mm: Computes v0 ∗ v1 and v0 ∗ v2
Perhaps two multipliers that have a common multiplier can share some hardware. Module m1 mm tests that by using v0 in
both multiplies. This module has two outputs, one for each product. So the estimated cost is 2cm: 188548 and 1051982
for the 7- and 23-bit versions. The synthesized cost is just 1.76% and .59% less than the estimates.

Module m1 comb v3: Computes v20 + v0v2 + v21
To rule out whether the cost reduction is due to an algebraic transformation, a version of ms comb which has three value
inputs was tried. The new value, v2, replaces v1 in the v0v1 term. The estimated cost is 2cs + cm + 2ca, the same as
the ms comb estimate. The synthesized costs are 22.24% and 10.79% lower than the estimated costs, which means that
the synthesis program is not doing an algebraic transformation that depends on the middle term, v0v1, sharing a variable
with the other two.

Module m1 comb sos: Computes v20 + v21
Perhaps there’s something special about a sum of squares. The estimated cost is 2cs + ca, or 255825 and 934542 for
the 7- and 23-bit versions. The synthesized costs are substantially lower, 38.3% and 8.61%. The fact that the benefit is
larger for the smaller significand suggests that the savings is with the handling of the exponents, which are eight bits in
both versions.

Module m1 comb sop: Computes v0v2 + v1v3
Are squares special? To rule that out a module computing a sum of two products was tried. This module has four
value inputs. The estimated cost is 2cm + c1 or 328769 and 1391018. The synthesized costs are 1.99% and 1.58% less,
suggesting that there is something special about a sum of squares.

Module m1 comb ssp: Computes v20 + v1v2
Perhaps one square can be optimized, m1 comb ssp tests that. The expected cost is cm + cs + c+ a or 292297 and
1162780. The synthesized costs are 7.48% and 2.31% less, so there is some benefit to one square, but not nearly as much
as the benefit from both adder inputs being squares.

Module m1 comb alt: Computes (v20 + v0v1) + v21
Finally, just to be sure, re-do ms comb so the two squares are not operands of the same adder. The expected cost is
2cs + cm + 2ca or 441037 and 1726894. The synthesized costs are lower, 10.05% and 4.04%, suggesting that there
is some benefit of using a square input to an adder, but that the benefit is substantially larger when both inputs are a
square.

Synthesis Data on Next Page

10

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw05_sol.pdf

Module Name Area Delay Delay Synth

Actual Target Time

m1_a3_wsig7_wexp8_ieee0 278532 28.162 100.0 ns 54 s

m1_a3_wsig23_wexp8_ieee0 668518 54.005 100.0 ns 117 s

m1_mad_wsig7_wexp8_ieee0 228453 23.283 100.0 ns 36 s

m1_mad_wsig23_wexp8_ieee0 852191 53.147 100.0 ns 114 s

m1_mm_wsig7_wexp8_ieee0 185236 9.346 100.0 ns 20 s

m1_mm_wsig23_wexp8_ieee0 1045808 28.231 100.0 ns 80 s

m1_comb_v3_wsig7_wexp8_ieee0 381271 34.077 100.0 ns 79 s

m1_comb_v3_wsig23_wexp8_ieee0 1605466 74.753 100.0 ns 276 s

m1_comb_sos_wsig7_wexp8_ieee0 157807 19.544 100.0 ns 34 s

m1_comb_sos_wsig23_wexp8_ieee0 854120 48.375 100.0 ns 128 s

m1_comb_sop_wsig7_wexp8_ieee0 322223 23.763 100.0 ns 48 s

m1_comb_sop_wsig23_wexp8_ieee0 1369003 53.049 100.0 ns 169 s

m1_comb_ssp_wsig7_wexp8_ieee0 270427 23.781 100.0 ns 44 s

m1_comb_ssp_wsig23_wexp8_ieee0 1135920 53.306 100.0 ns 152 s

m1_comb_alt_wsig7_wexp8_ieee0 441037 38.112 100.0 ns 103 s

m1_comb_alt_wsig23_wexp8_ieee0 1726894 80.177 100.0 ns 281 s

11

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2022/hw05_sol.pdf

//
//
/// LSU EE 4755 Fall 2022 Homework 5 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2022/hw05.pdf

 /// Solution writeup https://www.ece.lsu.edu/koppel/v/2022/hw05_sol.pdf

`default_nettype none

//
/// All Problems
//
 /// Arithmetic-Unit-Only Modules

//
// These modules have a single arithmetic module.
//
// Use these to estimate the cost of the multi-step complex modules.
//
// The ports and parameters match the multi-step for convenience.

module try_mult
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1,
 input uwire start, clk);

 localparam logic [2:0] rm = 0; // Rounding Mode
 uwire [7:0] mul_s1;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m00(.a(v0), .b(v1), .rnd(rm), .z(result), .status(mul_s1));

 assign ready = 1;

endmodule

module try_sq
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0,
 input uwire start, clk);

 try_mult #(wsig,wexp,ieee) tm(result, ready, v0, v0, start, clk);

endmodule

module try_add
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1,
 input uwire start, clk);

 localparam logic [2:0] rm = 0; // Rounding Mode
 uwire [7:0] add_s1;

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/koppel/v/2022/hw05.pdf
https://www.ece.lsu.edu/koppel/v/2022/hw05_sol.pdf
https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a00(.a(v0), .b(v1), .rnd(rm), .z(result), .status(add_s1));

 assign ready = 1;

endmodule

 /// Multi-Step Modules

//
// These compute the function in three different ways.
//
// Do not modify these modules.
// Modify the m1 modules instead.

// cadence translate_off
module ms_functional
 (output real mag, input real v0, v1);

 localparam string name = "Func";

 always_comb mag = v0 * v0 + v0 * v1 + v1 * v1;

endmodule
// cadence translate_on

module ms_comb
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode

 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [wf-1:0] v00, v01, v11, s1;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m00(.a(v0), .b(v0), .rnd(rm), .z(v00), .status(mul_s1));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m01(.a(v0), .b(v1), .rnd(rm), .z(v01), .status(mul_s2));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m11(.a(v1), .b(v1), .rnd(rm), .z(v11), .status(mul_s3));

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.a(v00), .b(v11), .rnd(rm), .z(s1), .status(a_s1));
 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a2(.a(s1), .b(v01), .rnd(rm), .z(result), .status(a_s2));

 assign ready = 1;

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

endmodule

module ms_seq
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output logic [wf-1:0] result, output logic ready,
 input uwire [wf-1:0] v0, v1, input uwire start, clk);

 // cadence translate_off
 localparam string name = "Seq";
 // cadence translate_on

 uwire [7:0] mul_s, add_s; // Operation status. Ignored.
 uwire [wf-1:0] mul_a, mul_b, add_a, add_b, prod, sum;

 logic [2:0] step;
 logic [wf-1:0] ac0, ac1;

 localparam int last_step = 4;

 always_ff @(posedge clk)
 if (start) step <= 0;
 else if (step < last_step) step <= step + 1;

 localparam logic [2:0] rm = 0; // Rounding Mode
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m1(.z(prod), .a(mul_a), .b(mul_b), .rnd(rm), .status(mul_s));
 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.z(sum), .a(add_a), .b(add_b), .rnd(rm), .status(add_s));

 assign mul_a = step < 2 ? v0 : v1;
 assign mul_b = step == 0 ? v0 : v1;
 assign add_a = ac0, add_b = ac1;

 always_ff @(posedge clk)
 begin
 ac0 <= prod;
 if (step < 3) ac1 <= step ? sum : 0;
 if (start) ready <= 0; else if (step == last_step-1) ready <= 1;
 end

 assign result = sum;

endmodule

module ms_pipe
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "Pipe";
 // cadence translate_on

 localparam int nstages = 4;
 localparam logic [2:0] rm = 0; // Rounding Mode

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [wf-1:0] v00, v01, v11, s1, s2;
 logic [wf-1:0] pl_1_v00, pl_1_v01, pl_1_v11;
 logic [wf-1:0] pl_2_v0001, pl_2_v11;
 logic [wf-1:0] pl_3_sum;
 logic pl_1_occ, pl_2_occ, pl_3_occ;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m00(.z(v00), .a(v0), .b(v0), .rnd(rm), .status(mul_s1));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m01(.z(v01), .a(v0), .b(v1), .rnd(rm), .status(mul_s2));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m11(.z(v11), .a(v1), .b(v1), .rnd(rm), .status(mul_s3));

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.z(s1), .a(pl_1_v00), .b(pl_1_v01), .rnd(rm), .status(a_s1));
 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a2(.z(s2), .a(pl_2_v0001), .b(pl_2_v11), .rnd(rm), .status(a_s2));

 assign ready = pl_3_occ;
 assign result = pl_3_sum;

 always_ff @(posedge clk) begin

 pl_1_v00 <= v00;
 pl_1_v01 <= v01;
 pl_1_v11 <= v11;
 pl_1_occ <= start;

 pl_2_v0001 <= s1;
 pl_2_v11 <= pl_1_v11;
 pl_2_occ <= pl_1_occ;

 pl_3_sum <= s2;
 pl_3_occ <= pl_2_occ;

 end

endmodule

 /// Experimentation Modules

//
// These compute a different function in three different ways.
//
// Modify these modules.
//

// cadence translate_off
module m1_functional
 (output real mag,
 input real v0, v1);

 // The testbench uses this module to test the others, so set
 // the computation to match the others.

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 localparam string name = "A3 Func";
 // always_comb mag = v0 + v0 * v1 + v1 * v1;
 // always_comb mag = v0 * v1 + v1 + v0;
 // always_comb mag = v0 * v1 + v0 * v1 * v0 ;
 // always_comb mag = v0 * v0 + v0 * v1 * v0 + v1 * v1;
 // always_comb mag = v0 * v0 + v0 * v1;
 always_comb mag = v0 * v0 + v0 * v1 + v1 * v1;

endmodule
// cadence translate_on

module m1_comb_alt
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "Alt Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode

 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [wf-1:0] v00, v01, v11, s1;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m00(.a(v0), .b(v0), .rnd(rm), .z(v00), .status(mul_s1));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m01(.a(v0), .b(v1), .rnd(rm), .z(v01), .status(mul_s2));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m11(.a(v1), .b(v1), .rnd(rm), .z(v11), .status(mul_s3));

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.a(v00), .b(v01), .rnd(rm), .z(s1), .status(a_s1));
 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a2(.a(s1), .b(v11), .rnd(rm), .z(result), .status(a_s2));

 assign ready = 1;

endmodule

module m1_comb_ssp
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1, v2,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [wf-1:0] v00, v01, v11, s1;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m00(.a(v0), .b(v0), .rnd(rm), .z(v00), .status(mul_s1));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m11(.a(v1), .b(v2), .rnd(rm), .z(v11), .status(mul_s3));

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.a(v00), .b(v11), .rnd(rm), .z(result), .status(a_s1));

 assign ready = 1;

endmodule

module m1_comb_sop
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1, v2, v3,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode

 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [wf-1:0] v00, v01, v11, s1;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m00(.a(v0), .b(v2), .rnd(rm), .z(v00), .status(mul_s1));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m11(.a(v1), .b(v3), .rnd(rm), .z(v11), .status(mul_s3));

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.a(v00), .b(v11), .rnd(rm), .z(result), .status(a_s1));

 assign ready = 1;

endmodule

module m1_comb_sos
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [wf-1:0] v00, v01, v11, s1;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m00(.a(v0), .b(v0), .rnd(rm), .z(v00), .status(mul_s1));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m11(.a(v1), .b(v1), .rnd(rm), .z(v11), .status(mul_s3));

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.a(v00), .b(v11), .rnd(rm), .z(result), .status(a_s1));

 assign ready = 1;

endmodule

module m1_comb_v3
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1, v2,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode

 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [wf-1:0] v00, v01, v11, s1;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m00(.a(v0), .b(v0), .rnd(rm), .z(v00), .status(mul_s1));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m01(.a(v0), .b(v2), .rnd(rm), .z(v01), .status(mul_s2));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m11(.a(v1), .b(v1), .rnd(rm), .z(v11), .status(mul_s3));

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.a(v00), .b(v11), .rnd(rm), .z(s1), .status(a_s1));
 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a2(.a(s1), .b(v01), .rnd(rm), .z(result), .status(a_s2));

 assign ready = 1;

endmodule

module m1_a3
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1, v2,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "One Comb";
 // cadence translate_on

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode

 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [wf-1:0] v00, v01, v11, s1;

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.a(v0), .b(v1), .rnd(rm), .z(s1), .status(a_s1));
 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a2(.a(s1), .b(v2), .rnd(rm), .z(result), .status(a_s2));

 assign ready = 1;

endmodule

module m1_mad
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1, v2,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "One Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode

 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [wf-1:0] v00, v01, v11, s1;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.a(v0), .b(v1), .rnd(rm), .z(s1), .status(a_s1));
 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a2(.a(s1), .b(v2), .rnd(rm), .z(result), .status(a_s2));

 assign ready = 1;

endmodule

module m1_mm
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] p1, p2,
 output uwire ready,
 input uwire [wf-1:0] v0, v1, v2,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "One Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode

 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [wf-1:0] v00, v01, v11, s1;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 a1(.a(v0), .b(v1), .rnd(rm), .z(p1), .status(a_s1));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a2(.a(v0), .b(v2), .rnd(rm), .z(p2), .status(a_s2));

 assign ready = 1;

endmodule

module m1_comb
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "MM Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode
 uwire [wf-1:0] v01, p1, p2;
 uwire [7:0] mul_s2, a_s3;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m01(.a(v0), .b(v1), .rnd(rm), .z(v01), .status(mul_s2));

 m1_comb_ssp #(.wsig(wsig), .wexp(wexp), .ieee(ieee))
 a3(result, ready, v0, v1, v0, start, clk);

 // assign ready = 1;

endmodule

module m1_v3
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "MM Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode
 uwire [wf-1:0] v01, p1, p2;
 uwire [7:0] mul_s2, a_s3;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m01(.a(v0), .b(v1), .rnd(rm), .z(v01), .status(mul_s2));

 m1_comb_v3 #(.wsig(wsig), .wexp(wexp), .ieee(ieee))
 a3(result, ready, v0, v1, v01, start, clk);

 // assign ready = 1;

endmodule

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

module m1_comb_mm
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "MM Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode
 uwire [wf-1:0] v01, p1, p2;
 uwire [7:0] mul_s2, a_s3;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m01(.a(v0), .b(v1), .rnd(rm), .z(v01), .status(mul_s2));

 m1_mm #(.wsig(wsig), .wexp(wexp), .ieee(ieee))
 a3(p1, p2, ready, v0, v1, v01, start, clk);

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a2(.a(p1), .b(p2), .rnd(rm), .z(result), .status(a_s3));

 // assign ready = 1;

endmodule

module m1_comb_a3
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "A3 Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode
 uwire [wf-1:0] v01;
 uwire [7:0] mul_s2;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m01(.a(v0), .b(v1), .rnd(rm), .z(v01), .status(mul_s2));

 m1_a3 #(.wsig(wsig), .wexp(wexp), .ieee(ieee))
 a3(result, ready, v0, v1, v01, start, clk);

 // assign ready = 1;

endmodule

module m1_comb_orig
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "One Comb";
 // cadence translate_on

 localparam int nstages = 1;
 localparam logic [2:0] rm = 0; // Rounding Mode

 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [wf-1:0] v00, v01, v11, s1;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m01(.a(v0), .b(v1), .rnd(rm), .z(v01), .status(mul_s2));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m11(.a(v1), .b(v1), .rnd(rm), .z(v11), .status(mul_s3));

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.a(v0), .b(v11), .rnd(rm), .z(s1), .status(a_s1));
 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a2(.a(s1), .b(v01), .rnd(rm), .z(result), .status(a_s2));

 assign ready = 1;

endmodule

module m1_seq
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output logic [wf-1:0] result, output logic ready,
 input uwire [wf-1:0] v0, v1, input uwire start, clk);

 // cadence translate_off
 localparam string name = "One Seq";
 // cadence translate_on

 uwire [7:0] mul_s, add_s; // Operation status. Ignored.
 uwire [wf-1:0] mul_a, mul_b, add_a, add_b, prod, sum;

 logic [2:0] step;
 logic [wf-1:0] ac0, ac1;

 localparam int last_step = 4;

 always_ff @(posedge clk)
 if (start) step <= 0;
 else if (step < last_step) step <= step + 1;

 localparam logic [2:0] rm = 0; // Rounding Mode
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m1(.z(prod), .a(mul_a), .b(mul_b), .rnd(rm), .status(mul_s));
 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.z(sum), .a(add_a), .b(add_b), .rnd(rm), .status(add_s));

 localparam logic [wf-1:0] one = { (1 << wexp - 1) - 1, wsig'(0) };
 assign mul_a = step < 2 ? v0 : v1;

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 assign mul_b = step == 0 ? one : v1;
 assign add_a = ac0, add_b = ac1;

 always_ff @(posedge clk)
 begin
 ac0 <= prod;
 if (step < 3) ac1 <= step ? sum : 0;
 if (start) ready <= 0; else if (step == last_step-1) ready <= 1;
 end

 assign result = sum;

endmodule

module m1_pipe
 #(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)
 (output uwire [wf-1:0] result,
 output uwire ready,
 input uwire [wf-1:0] v0, v1,
 input uwire start, clk);

 // cadence translate_off
 localparam string name = "One Pipe";
 // cadence translate_on

 localparam int nstages = 4;
 localparam logic [2:0] rm = 0; // Rounding Mode

 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [wf-1:0] v00, v01, v11, s1, s2;
 logic [wf-1:0] pl_1_v00, pl_1_v01, pl_1_v11;
 logic [wf-1:0] pl_2_v0001, pl_2_v11;
 logic [wf-1:0] pl_3_sum;
 logic pl_1_occ, pl_2_occ, pl_3_occ;

 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m01(.z(v01), .a(v0), .b(v1), .rnd(rm), .status(mul_s2));
 CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 m11(.z(v11), .a(v1), .b(v1), .rnd(rm), .status(mul_s3));

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a1(.z(s1), .a(pl_1_v00), .b(pl_1_v01), .rnd(rm), .status(a_s1));
 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))
 a2(.z(s2), .a(pl_2_v0001), .b(pl_2_v11), .rnd(rm), .status(a_s2));

 assign ready = pl_3_occ;
 assign result = pl_3_sum;

 always_ff @(posedge clk) begin

 pl_1_v00 <= v0;
 pl_1_v01 <= v01;
 pl_1_v11 <= v11;
 pl_1_occ <= start;

 pl_2_v0001 <= s1;
 pl_2_v11 <= pl_1_v11;
 pl_2_occ <= pl_1_occ;

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 pl_3_sum <= s2;
 pl_3_occ <= pl_2_occ;

 end

endmodule

//
/// Testbench Code
//
// It is okay to modify the testbench code to facilitate the coding
// and debugging of your modules.

// cadence translate_off

function automatic real rand_real(real minv, real maxv);
 rand_real = minv + (maxv - minv) * (real'({$random})) / 2.0**32;
endfunction

function automatic real fabs(real val);
 fabs = val < 0 ? -val : val;
endfunction

virtual class conv #(int wexp=6, wsig=10);
 // Convert between real and fp types using parameter-provided
 // exponent and significand sizes.

 localparam int w = 1 + wexp + wsig;
 localparam int bias_r = (1 << 11 - 1) - 1;
 localparam int w_sig_r = 52;
 localparam int w_exp_r = 11;
 localparam int bias_h = (1 << wexp - 1) - 1;

 static function logic [w-1:0] rtof(real r);
 logic [wsig-1:0] sig_f;
 logic [w_sig_r-wsig-1:0] sig_x;
 logic [w_exp_r-1:0] exp_r;
 logic sign_r;
 { sign_r, exp_r, sig_f, sig_x } = $realtobits(r);
 rtof = !r ? 0 : { sign_r, wexp'(exp_r + bias_h - bias_r), sig_f };
 endfunction

 static function real ftor(logic [w-1:0] f);
 ftor = !f ? 0.0
 : $bitstoreal
 ({ f[w-1],
 w_exp_r'(bias_r + f[w-2:wsig] - bias_h),
 f[wsig-1:0], (w_sig_r-wsig)'(0) });
 endfunction

endclass

program reactivate
 (output uwire clk_reactive, output int cycle_reactive,
 input uwire clk, input var int cycle);
 assign clk_reactive = clk;

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 assign cycle_reactive = cycle;
endprogram

module testbench;

 localparam int npsets = 4; // Number of instantiations.
 localparam int pset[npsets][2] =
 '{ { 7, 0 }, { 23, 0}, {7, 1 }, {23, 1} };
 //
 // Above: First number in each pair is value of n_avg_of,
 // second number is maximum word length.

 int n_err_shown; // Number of times error info printed to console.
 int n_err_sh_nc, n_err_sh_nw, n_err_sh_avg, n_err_sh_state;
 initial begin
 n_err_sh_nc = 0;
 n_err_sh_nw = 0;
 n_err_sh_avg = 0;
 n_err_sh_state = 0;
 end
 int t_errs; // Total number of errors.
 initial begin t_errs = 0; n_err_shown = 0; end
 final $write("Total number of errors: %0d\n",t_errs);

 uwire d[npsets:-1]; // Start / Done signals.
 assign d[-1] = 1; // Initialize first at true.

 // Instantiate a testbench at each size.
 //
 for (genvar i=0; i<npsets; i++)
 testbench_n #(pset[i][0],pset[i][1]) t2(.done(d[i]), .tstart(d[i-1]));

endmodule

module testbench_n
 #(int w_sig = 7, use_one = 0)
 (output logic done, input uwire tstart);

 typedef enum { MT_comb, MT_seq, MT_pipe } Module_Type;

 localparam int w_exp = 8;
 localparam int wid = w_sig + w_exp + 1;
 localparam int max_latency = 10;
 localparam int num_tests = 16;
 localparam int nmuts = 10;
 int err[nmuts];

 uwire [wid-1:0] mag[nmuts];
 uwire ready[nmuts];
 real magr;
 real vr[2];
 logic [wid-1:0] v[2], vp[2];
 logic start;

 typedef struct
 {
 int idx;

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 int err_count = 0;
 int ncyc = 0;
 Module_Type mt = MT_comb;
 logic [wid-1:0] sout = 'h111;
 int cyc_tot = 0;
 } Info;
 Info pi[string];

 localparam int cycle_limit = num_tests * max_latency * 4;
 int cycle, cyc_start;
 logic clock;
 bit use_others;

 logic clk_reactive;
 int cycle_reactive;
 reactivate ra(clk_reactive,cycle_reactive,clock,cycle);

 task pi_seq(input int idx, input string name);
 automatic string m = $sformatf("%s", name);
 pi[m].idx = idx; pi[m].mt = MT_seq;
 endtask

 task pi_comb(input int idx, input string name);
 automatic string m = $sformatf("%s", name);
 pi[m].idx = idx; pi[m].mt = MT_comb;
 endtask

 task pi_pipe(input int idx, input string name, input int ncyc);
 automatic string m = $sformatf("%s", name);
 pi[m].idx = idx; pi[m].mt = MT_pipe;
 pi[m].ncyc = ncyc;
 endtask

 initial begin
 clock = 0;
 cycle = 0;

 done = 0;
 wait(tstart);

 fork
 while (!done) #10 cycle += clock++;
 wait(done);
 wait(cycle >= cycle_limit)
 $write("*** Cycle limit exceeded, ending.\n");
 join_any;

 done = 1;
 end

 if (use_one) begin

 m1_functional mf(magr, vr[0], vr[1]);
 m1_seq #(.wsig(w_sig), .wexp(w_exp), .ieee(0))
 m2(mag[1], ready[1], v[0],v[1], start, clock);
 initial begin pi_seq(1,m2.name); end

 m1_comb_alt #(.wsig(w_sig), .wexp(w_exp), .ieee(0))
 m5r(mag[5], ready[5], v[0],v[1], start, clock);

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 initial begin pi_comb(5,m5r.name); end

 m1_pipe #(.wsig(w_sig), .wexp(w_exp), .ieee(0))
 m3(mag[3], ready[3], vp[0],vp[1], start, clock);
 initial begin pi_pipe(3,m3.name,m3.nstages); end

 end else begin

 ms_functional mf(magr, vr[0], vr[1]);
 ms_seq #(.wsig(w_sig), .wexp(w_exp), .ieee(0))
 m2(mag[1], ready[1], v[0],v[1], start, clock);
 initial begin pi_seq(1,m2.name); end

 ms_comb #(.wsig(w_sig), .wexp(w_exp), .ieee(0))
 m5r(mag[5], ready[5], v[0],v[1], start, clock);
 initial begin pi_comb(5,m5r.name); end

 ms_pipe #(.wsig(w_sig), .wexp(w_exp), .ieee(0))
 m3(mag[3], ready[3], vp[0],vp[1], start, clock);
 initial begin pi_pipe(3,m3.name,m3.nstages); end

 end

 initial begin

 while (!done) @(posedge clk_reactive) #2

 if (use_others) begin

 vp = v;
 use_others = 0;
 start = 1;

 end else begin

 vp[0] = conv#(w_exp,w_sig)::rtof(real'(cycle-cyc_start));
 vp[1] = cycle - cyc_start;
 start = 0;

 end
 end

 initial begin

 automatic int n_err = 0;

 use_others = 0;
 start = 0;

 @(posedge clk_reactive);

 for (int i=0; i<num_tests; i++) begin

 automatic int awaiting = pi.num();

 cyc_start = cycle;

 if (i < 4) begin

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 // In first eight test vector components are zero or one.
 //
 for (int j=0; j<2; j++) vr[j] = i & 1 << j ? 1.0 : 0.0;

 end else begin

 // In other tests vector components are randomly chosen.
 //
 for (int j=0; j<2; j++) vr[j] = rand_real(-10,+10);

 end

 for (int j=0; j<2; j++) v[j] = conv#(w_exp,w_sig)::rtof(vr[j]);

 vp = v;
 use_others = 1;

 /// Collect Result (mag) From Each Module Under Test (mut)

 //
 foreach (pi[muti]) begin

 // Note: need to make a local copy of muti because of the
 // fork below.
 automatic string mut = muti;

 // Create a child thread to get response from current mut.
 // The parent thread, without delay, proceeds to join_none.
 //
 fork begin

 if (pi[mut].mt == MT_seq) begin

 wait (!ready[pi[mut].idx]);
 wait (ready[pi[mut].idx]);

 end else begin

 // Compute time at which result should be ready or
 // when to start examining a READY output.
 //
 automatic int latency =
 pi[mut].mt == MT_comb ? 1 : pi[mut].ncyc;
 automatic int eta = cyc_start + latency;

 wait (cycle_reactive == eta);

 end

 // Decrement count of the number of modules we are waiting for.
 //
 awaiting--;

 // Store the module MAG output, it will be checked later
 // for correctness.
 //
 pi[mut].sout = mag[pi[mut].idx];

 pi[mut].cyc_tot += cycle - cyc_start;

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 // This thread ends execution here.
 end join_none;

 end

 // Wait until data collected from all modules under test.
 //
 wait (awaiting == 0);

 // Check the output of each Module Under Test.
 //
 foreach (pi[mut]) begin

 // Assign module output to a real.
 //
 automatic real mmagr = conv#(w_exp,w_sig)::ftor(pi[mut].sout);
 //
 // Note: pi[mut].sout is type logic which is assumed to be
 // an unsigned integer. However, the contents is really an
 // float.

 // Compute difference between module output and expected
 // output. With FP small differences can be okay, they might
 // occur, for example, due to differences in the order of
 // operations.
 //
 automatic real err_mag =
 fabs(mmagr - magr) / fabs(magr ? magr : 1);
 localparam real tol = real'(4) / (1 << w_sig);
 automatic bit okay = err_mag < tol;

 if (!okay) begin
 pi[mut].err_count++;
 n_err++;
 if (pi[mut].err_count < 5)
 $write("%s (%0d) test #%0d vec (%.1f,%.1f) error: h'%8h %7.4f != %7.4f (correct)\n",
 mut, w_sig, i, vr[1], vr[0],
 pi[mut].sout, mmagr, magr);
 end
 end

 while ({$random} & 1 == 1) @(posedge clk_reactive);
 //
 // Note: By waiting for reactive clock we can be sure that
 // modules under test have completed all work due to the
 // positive edge of the regular clk. Wait a random amount of
 // time in case any modules are only correct at some stride.

 end

 foreach (pi[mut])
 $write("Ran %4d tests for (%0d) %-0s, %4d errors found. Avg cyc %.1f\n",
 num_tests, w_sig, mut,
 pi[mut].err_count,
 pi[mut].mt == MT_comb ? 1 : real'(pi[mut].cyc_tot) / num_tests);

 done = 1;
 testbench.t_errs += n_err;

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

 end

endmodule

`define SIMULATION_ON

// cadence translate_on

`default_nettype wire

`ifdef SIMULATION_ON

`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/sim/verilog/CW/CW_fp_mult.v"
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/sim/verilog/CW/CW_fp_add.v"

`else

`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/syn/CW/CW_fp_mult.v"
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/syn/CW/CW_fp_add.v"

`endif

← → Fall 2022 ← → Homework 5 Homework Solution Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2022/hw05-sol.v.html

15 Fall 2021 Solutions

291

← → Fall 2021 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2021/hw01_sol.pdf

LSU EE 4755 Homework 1 Solution Due: 24 September 2021

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2021/hw01.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw01.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Problem 1: The partially completed insert_at module below and in the homework assignment
file has three inputs, a wa-bit input ia, a wb-bit input ib, and a dlg(wa+1)e-bit input pos, and there
is one output, a wa+wb-bit output o. Complete the module following the coding requirements given
further below so that o consists of the bits of ia with ib inserted at pos. That is, o[pos-1:0]
should be set to ia[pos-1:0], o[wb+pos-1:pos] should be set to ib, and o[wa+wb-1:wb+pos]

should be set to ia[wa-1:pos].
For example, let wa=6 and wb=2, ia=111111, ib=00, and pos = 2. Then o=11110011. For

pos=5, o=10011111. For those still not 100% sure of what o should be set to should look at how
o_shadow is computed in the testbench module. Also, the testbench will show what the output
should be when it isn’t.

module insert_at
#(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia, input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

// The line assigning mask_low must be replaced with a mask module.

uwire [wo-1:0] mask_low = (1 << pos) - 1; // REPLACE ME!

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, pos);

assign o = ia & mask_low | ib_at_pos;

endmodule

The insert_at module must be synthesizable and must not use procedural code and must
not use shift operators. (That includes the line assigning mask_low, it must be replaced.) Instead,
rely on instantiations of the provided shift and mask modules.

The testbench will test your module and report the first few errors. For example, here is the
testbench output for the unmodified module:

Error for ia=11111111 ib=000 pos= 0 00000000000 != 11111111000 (correct)

Error for ia=11111111 ib=000 pos= 1 00000000001 != 11111110001 (correct)

Error for ia=11111111 ib=000 pos= 2 00000000011 != 11111100011 (correct)

Error for ia=11111111 ib=000 pos= 3 00000000111 != 11111000111 (correct)

Error for ia=11111111 ib=000 pos= 4 00000001111 != 11110001111 (correct)

Done with 27 tests, 15 errors found.

The text 00000001111 != 11110001111 (correct) shows the output of insert_at to the left
of the != and the correct answer to the right. So in this case 00000001111 is the module output

1

← → Fall 2021 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2021/hw01.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2021/hw01_sol.pdf

and 11110001111 is what the module output should have been. Only the first few errors are shown,
but the total number of errors is reported at the end, 15 in this case.

Synthesizability can be checked by running the synthesis script using the command genus

-files syn.tcl. If the module is synthesizable (though not necessarily correct) a table of area
and delay will be shown, for example:
Module Name Area Delay Delay

Actual Target

insert_at 51832 0.987 1.000 ns

insert_at_1 97968 0.616 0.100 ns

Normal exit.

One common problem encountered by beginners is setting the correct port sizes. For example,
the shift_left module the port sizes are wi, wo, and wolg:

module insert_at #(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia, input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, pos);

So the first connection to a shift_left instantiation must be wi bits, the second must be wo

bits, and the third wolg bits. In the unmodified insert_at these parameters to insert_at were
set explicitly to match the connection sizes. Sometimes it may be necessary to use an intermediate
object or to cast in order to get the correct connection size. For example, if we wanted to shift by
pos+1 the following would not work:

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, pos + 1);

because the 1 in the pos+1 expression implicitly expands it to 32 bits. (This results in a warning,
but it’s not good to clutter compiler output with ignorable warnings.) The problem can be solved
using a cast:

shift_left #(wb,wo,walg) sl1(ib_at_pos, ib, walg’(pos + 1));

Solution starts on the next page.

2

← → Fall 2021 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2021/hw01_sol.pdf

The solution appears below, and can be found in the assignment directory, and on the course Web pages at
https://www.ece.lsu.edu/koppel/v/2021/hw01-sol.v.html. Immediately below is the solution without
extensive comments. On the following pages is the same solution, but with sample values shown in the comments.

module insert_at
#(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia,

input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

/// SOLUTION
uwire [wa-1:0] mask_low;

mask_lsb #(wa) ml(mask_low, pos);

uwire [wa-1:0] ia_low = ia & mask_low;

uwire [wa-1:0] ia_high_low = ia & ~mask_low;

localparam int wblg = $clog2(wb);

uwire [wo-1:0] ia_high;

shift_left #(wa,wo,wblg) slc(ia_high, ia_high_low, wblg’(wb));

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) slb(ib_at_pos, ib, pos);

assign o = ia_high | ib_at_pos | ia_low;

endmodule

The challenge in this assignment was refreshing your knowledge of Verilog and digital logic. If you can’t follow the
module above, look at the one on the following pages and in particular use the sample values to figure out what is going
one.

The solution here makes use of a single mask unit (named ml) creating mask mask low. This mask is used twice,
in its original form to extract the lowest pos bits of ia into ia low and in inverted form to extract the high bits of
ia into ia high low. Note that both ia low and ia high_low are wa-bit quantities. The “shifter” slc writes
a shifted value of ia high low into ia high. Notice that the shift-amount input to slc (the last port) is wb, a
constant (since it’s a module parameter). That brings the cost of slc to zero.

A real shifter, slb, is used to move ib into the correct position in its output ib at pos. The assign statement
puts all of these together.

Common Mistakes: In a few solutions the shift amounts or mask sizes were set assuming that wa=8 and wb=3.
That is not correct because insert at can be instantiated with other possible values of wa and wb.

Another common mistake was to set the width of the shift amount port to a value much larger than needed. For
example, consider:

shift_left #(wb,wa+wb,wo) slb(ib_at_pos, ib, phat_pos);

The third parameter of the shift left module has been set to wo, which is overkill. (The shift amount input
has been renamed phat pos to emphasize its new size.) For this use of shift left the most by which we would shift
is ia bits, so at most the position would take dlog 2wae (or as a Verilog expression, $clog2(wa)) bits. Setting a
parameter like this to too large a value will not affect correctness (in cases like this) but it can increase the cost of the
synthesized hardware. That depends on the synthesis programs ability to recognize that high-order bits will always be
zero. So for that reason it is best to set parameters to appropriate values. That does mean taking the time to learn what
each parameter is for and to set it properly, but that is what you would be paid for.

3

← → Fall 2021 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/koppel/v/2021/hw01-sol.v.html
https://www.ece.lsu.edu/ee4755/2021/hw01_sol.pdf

Solution with sample values appearing in the comments:

module insert_at
#(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia,

input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

/// SOLUTION
/// :Example: Input Values:
//

// ia = aaaaaaaa (Each a is a bit of ia, it can be 0 or 1 .)

// ib = bbb (Each b is a bit of ib, it can be 0 or 1 .)

// pos = 2

//

/// Desired Output Value
//

// o = aaaaaabbbaa (Notice that ib is insert at pos 2)

uwire [wa-1:0] mask_low;

mask_lsb #(wa) ml(mask_low, pos);

uwire [wa-1:0] ia_low = ia & mask_low;

uwire [wa-1:0] ia_high_low = ia & ~mask_low;

// ia = aaaaaaaa

// mask_low = 00000011 (Two low bits are 1 because pos=2.)

// ia_low = 000000aa (ia_low has the bits to the right of pos.)

// ia_high_low = aaaaaa00 (ia_high_low: the bits to the left of pos.)

localparam int wblg = $clog2(wb);

uwire [wo-1:0] ia_high;

shift_left #(wa,wo,wblg) slc(ia_high, ia_high_low, wblg’(wb));

// ia_high_low = aaaaaa00

// ia_high = aaaaaa00000 (Shift wb bits to make room for ib.)

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) slb(ib_at_pos, ib, pos);

// ib = bbb

// ib_at_pos = 000000bbb00 (Shifted pos bits, and widened to wo bits.)

assign o = ia_high | ib_at_pos | ia_low;

// ia_high = aaaaaa00000

// ib_at_pos = 000000bbb00

// ia_low = 000000aa

// o = aaaaaabbbaa

endmodule

4

← → Fall 2021 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2021/hw01_sol.pdf

//
//
/// LSU EE 4755 Fall 2021 Homework 1
/// SOLUTION

 /// Assignment https://www.ece.lsu.edu/koppel/v/2021/hw01.pdf

 /// Solution Discussion https://www.ece.lsu.edu/koppel/v/2021/hw01_sol.pdf

`default_nettype none

//
/// Problem 1
//
 /// Complete insert_at so that output o is set to ia with ib inserted at pos.

 ///
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Do not use procedural code.
// [✔] Do not use the << or >> operators (or anything similar).
// [✔] Use the shift and mask modules to provide shifted values
// and bitmasks.
//
// [✔] Don't assume any particular parameter value.
//
// [✔] Code must be written clearly.
// [✔] Pay attention to cost and performance.

module insert_at
 #(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))
 (output logic [wo-1:0] o,
 input uwire [wa-1:0] ia,
 input uwire [wb-1:0] ib,
 input uwire [walg-1:0] pos);

 /// SOLUTION

 /// :Example: Input Values:

 //
 // ia = aaaaaaaa (Each a is a bit of ia, it can be 0 or 1.)
 // ib = bbb (Each b is a bit of ib, it can be 0 or 1.)
 // pos = 2
 //
 /// Desired Output Value

 //
 // o = aaaaaabbbaa (Notice that ib is inserted at pos 2.)

 uwire [wa-1:0] mask_low;
 mask_lsb #(wa) ml(mask_low, pos);

← → Fall 2021 ← → Homework 1 Homework Solution Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/koppel/v/2021/hw01.pdf
https://www.ece.lsu.edu/koppel/v/2021/hw01_sol.pdf
https://www.ece.lsu.edu/ee4755/2021/hw01-sol.v.html

 uwire [wa-1:0] ia_low = ia & mask_low;
 uwire [wa-1:0] ia_high_low = ia & ~mask_low;

 // ia = aaaaaaaa
 // mask_low = 00000011 (Two low bits are 1 because pos=2.)
 // ia_low = 000000aa (ia_low has the bits to the right of pos.)
 // ia_high_low = aaaaaa00 (ia_high_low: the bits to the left of pos.)

 localparam int wblg = $clog2(wb);
 uwire [wo-1:0] ia_high;
 shift_left #(wa,wo,wblg) slc(ia_high, ia_high_low, wblg'(wb));

 // ia_high_low = aaaaaa00
 // ia_high = aaaaaa00000 (Shift wb bits to make room for ib.)

 uwire [wo-1:0] ib_at_pos;
 shift_left #(wb,wo,walg) slb(ib_at_pos, ib, pos);

 // ib = bbb
 // ib_at_pos = 000000bbb00 (Shifted pos bits, and widened to wo bits.)

 assign o = ia_high | ib_at_pos | ia_low;

 // ia_high = aaaaaa00000
 // ib_at_pos = 000000bbb00
 // ia_low = 000000aa
 // o = aaaaaabbbaa

endmodule

module shift_left
 #(int wi = 4, wo = wi, wolg = $clog2(wo))
 (output uwire [wo-1:0] o,
 input uwire [wi-1:0] i,
 input uwire [wolg-1:0] amt);
 assign o = i << amt;
endmodule

module shift_right
 #(int wi = 4, wo = wi, wolg = $clog2(wo))
 (output uwire [wo-1:0] o,
 input uwire [wi-1:0] i,
 input uwire [wolg-1:0] amt);
 assign o = i >> amt;
endmodule

module mask_lsb
 #(int wo = 6, wp = $clog2(wo+1))
 (output logic [wo-1:0] o, input uwire [wp-1:0] n1);
 always_comb for (int i=0; i<wo; i++) o[i] = i < n1;
endmodule

module mask_msb

← → Fall 2021 ← → Homework 1 Homework Solution Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw01-sol.v.html

 #(int wo = 6, wp = $clog2(wo+1))
 (output logic [wo-1:0] o, input uwire [wp-1:0] n1);
 always_comb for (int i=0; i<wo; i++) o[wo-i-1] = i < n1;
endmodule

//
/// Testbench Code

// cadence translate_off

module testbench;

 logic done [1:-1];
 initial done[-1] = 1;

 testbench_size #(8,3, "Set 1") tb1(done[0],done[-1]);
 testbench_size #(4,5, "Set 2") tb2(done[1],done[0]);

endmodule

module testbench_size
 #(int wa = 8, int wb = 3, string label = "set me")
 (output logic done_me,
 input uwire logic done_pred);

 localparam int wo = wa+wb;
 localparam int walg = $clog2(wa+1);

 localparam int n_tests = (wa+1) * 3;

 logic [wa-1:0] ia;
 logic [wb-1:0] ib;
 uwire [wo-1:0] o;
 logic [walg-1:0] pos;

 insert_at #(wa,wb) iat(o, ia, ib, pos);

 initial begin

 automatic int n_err = 0;

 wait (done_pred === 1);

 for (int tn = 0; tn < n_tests; tn++) begin

 automatic int rnd = tn / (wa+1);

 logic [wo-1:0] o_shadow;

 pos = tn % (wa+1);
 case (rnd)

← → Fall 2021 ← → Homework 1 Homework Solution Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw01-sol.v.html

 0: begin ia = -1; ib = 0; end
 1: begin ia = 0; ib = -1; end
 default: {ia,ib} = {$random};
 endcase

 #1;

 for (int i=0; i<pos; i++) o_shadow[i] = ia[i];
 for (int i=0; i<wb; i++) o_shadow[i+pos] = ib[i];
 for (int i=pos; i<wa; i++) o_shadow[i+wb] = ia[i];

 if (o_shadow !== o) begin
 n_err++;
 if (n_err < 6)
 $write("Error %s for ia=%b ib=%b pos=%d %b != %b (correct)\n",
 label,
 ia, ib, pos, o, o_shadow);
 end

 end

 $write("For %s, done with %0d tests, %0d errors found.\n",
 label, n_tests, n_err);

 done_me = 1;

 end

endmodule

// cadence translate_on

← → Fall 2021 ← → Homework 1 Homework Solution Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw01-sol.v.html

//
//
/// LSU EE 4755 Fall 2021 Homework 2
//
 /// SOLUTION

 /// Assignment https://www.ece.lsu.edu/koppel/v/2021/hw02.pdf

`default_nettype none

//
/// Problem 1
//
 /// Complete nn_sparse so that it computes both dense (fmt=4'b1111)

 /// and sparse (fmt= 4'b1100, 4'b0110, 4'b1010, etc.) products.

 ///
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] To achieve the fastest speed a sparse product computation
// should not go through two adders.
//
// [✔] Don't assume any particular parameter value.
//
// [✔] Code must be written clearly.
// [✔] Pay attention to cost and performance.

module nn_sparse
 #(int nn = 4, wexp = 6, wsig_ac = 15, wsig_in = 10, wsig_wd = 6,
 wo = 1 + wexp + wsig_ac,
 wi = 1 + wexp + wsig_in,
 ww = nn * (1 + wexp + wsig_wd))
 (output logic [wo-1:0] o,
 input uwire [wi-1:0] i[nn],
 input uwire [ww-1:0] w,
 input uwire [nn-1:0] fmt);

 // Compute size of significand of sparse weights.
 localparam int wsig_ws = 2 * wsig_wd + wexp + 1;

 // Separate w into dense weights.
 //
 localparam int wwd = ww / nn;
 uwire [3:0][wwd-1:0] wd;
 assign wd = w;

 // SOLUTION
 //
 // Separate w into sparse weights
 //

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/koppel/v/2021/hw02.pdf
https://www.ece.lsu.edu/ee4755/2021/hw02-sol.v.html

 localparam int wws = wwd * 2;
 uwire [1:0][wws-1:0] ws = w;

 // Dense
 uwire [wo-1:0] acc1, acc2, od, os;
 nn2 #(wexp,wsig_in,wsig_wd,wsig_ac) nn2d1(acc1, i[0], i[1], wd[0], wd[1]);
 nn2 #(wexp,wsig_in,wsig_wd,wsig_ac) nn2d2(acc2, i[2], i[3], wd[2], wd[3]);
 fp_add #(wexp,wsig_ac) add(od,acc1,acc2);

 // SOLUTION
 //
 // Select the two inputs that will participate in the sparse
 // computation ..
 //
 uwire [wi-1:0] is0 = fmt[0] ? i[0] : fmt[1] ? i[1] : i[2];
 uwire [wi-1:0] is1 = fmt[3] ? i[3] : fmt[2] ? i[2] : i[1];
 //
 // .. and connect them to an nn2 instantiation in which the weight
 // input size parameters are wsig_ws instead of wsig_wd.
 //
 nn2 #(wexp,wsig_in,wsig_ws,wsig_ac) nn2s(os, is0, is1, ws[0], ws[1]);

 // SOLUTION
 //
 // Route the appropriate value to the output.
 //
 assign o = fmt[2:0] == 3'b111 ? od : os;

endmodule

module nn_sparse_cheap
 #(int nn = 4, wexp = 6, wsig_ac = 15, wsig_in = 10, wsig_wd = 6,
 wo = 1 + wexp + wsig_ac,
 wi = 1 + wexp + wsig_in,
 ww = nn * (1 + wexp + wsig_wd))
 (output logic [wo-1:0] o,
 input uwire [wi-1:0] i[nn],
 input uwire [ww-1:0] w,
 input uwire [nn-1:0] fmt);

 // This module is less expensive than nn_sparse because it
 // instantiates only two nn2 modules, but it has a longer
 // critical path.

 localparam int wwd = ww / nn;

 localparam int wsig_ws = 2 * wsig_wd + wexp + 1;
 localparam int wws = 1 + wexp + wsig_ws;

 uwire sparse = &fmt[2:0] == 0;

 uwire [3:0][wwd-1:0] wd; // Xcelium bug?: can't assign on decl line.
 assign wd = w;
 uwire [1:0][wws-1:0] ws = w;

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw02-sol.v.html

 // Dense
 uwire [wo-1:0] acc1, acc2, od, os;

 nn2 #(wexp,wsig_in,wsig_wd,wsig_ac) nn2d2(acc2, i[2], i[3], wd[2], wd[3]);
 fp_add #(wexp,wsig_ac) add(od,acc1,acc2);

 uwire [wi-1:0] is0 = fmt[0] ? i[0] : fmt[1] ? i[1] : i[2];
 uwire [wi-1:0] is1 = !sparse ? i[1] : fmt[3] ? i[3] : fmt[2] ? i[2] : i[1];

 uwire [wws-1:0] ws0 = sparse ? ws[0] : wd[0] << wsig_ws - wsig_wd;
 uwire [wws-1:0] ws1 = sparse ? ws[1] : wd[1] << wsig_ws - wsig_wd;

 // Sparse
 nn2 #(wexp,wsig_in,wsig_ws,wsig_ac) nn2s(acc1, is0, is1, ws0, ws1);

 assign o = sparse ? acc1 : od;

endmodule

module nn2
 #(int wexp = 9, wsig_in = 10, wsig_w = 5, wsig_ac = 12,
 wi = 1 + wexp + wsig_in,
 ww = 1 + wexp + wsig_w,
 wo = 1 + wexp + wsig_ac)
 (output uwire [wo-1:0] o,
 input uwire [wi-1:0] i0, i1,
 input uwire [ww-1:0] w0, w1);

 uwire [wo-1:0] p0, p1;
 hy_mult #(wexp, wsig_in, wsig_w, wsig_ac) m0(p0,i0,w0);
 hy_mult #(wexp, wsig_in, wsig_w, wsig_ac) m1(p1,i1,w1);
 fp_add #(wexp,wsig_ac) a(o,p0,p1);

endmodule

module fp_add
 #(int wexp = 3, wsig = 50, w = 1 + wexp + wsig)
 (output uwire [w-1:0] sum,
 input uwire [w-1:0] i0, i1);

 uwire [7:0] s;
 localparam logic [2:0] rnd_to_0 = 3'b1;

 CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(0))
 a(.a(i0),.b (i1), .rnd (rnd_to_0), .z (sum), .status (s));

endmodule

module hy_mult

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw02-sol.v.html

 #(int wexp = 5, int wsig_a = 6, int wsig_b = 7,
 int wsig_p = wsig_a + wsig_b)
 (output uwire [wexp+wsig_p:0] prod,
 input uwire [wexp+wsig_a:0] a,
 input uwire [wexp+wsig_b:0] b);

 uwire [7:0] s;
 localparam logic [2:0] rnd_to_0 = 3'b1;
 localparam logic [2:0] rnd_to_plus_inf = 3'b10;
 localparam logic [2:0] rnd_to_minus_inf = 3'b11;

 localparam int wm = 1 + wexp + wsig_p;
 localparam int wsig_diff_a = wsig_p - wsig_a;
 localparam int wsig_diff_b = wsig_p - wsig_b;
 uwire [wm-1:0] ea = wsig_diff_a >= 0
 ? a << wsig_diff_a : a[wexp+wsig_a:-wsig_diff_a];
 uwire [wm-1:0] eb = wsig_diff_b >= 0
 ? b << wsig_diff_b : b[wexp+wsig_b:-wsig_diff_b];

 CW_fp_mult #(.sig_width(wsig_p), .exp_width(wexp), .ieee_compliance(0))
 U1(.a(ea),.b (eb), .rnd (rnd_to_0), .z (prod), .status (s));

endmodule

//
/// Testbench Code

// cadence translate_off

virtual class conv #(int wexp=6, wsig=10);
 // Convert between real and fp types using parameter-provided
 // exponent and significand sizes.

 localparam int w = 1 + wexp + wsig;
 localparam int bias_r = (1 << 11 - 1) - 1;
 localparam int w_sig_r = 52;
 localparam int w_exp_r = 11;
 localparam int bias_h = (1 << wexp - 1) - 1;

 static function logic [w-1:0] rtof(real r);
 logic [wsig-1:0] sig_f;
 logic [w_sig_r-wsig-1:0] sig_x;
 logic [w_exp_r-1:0] exp_r;
 logic sign_r;
 { sign_r, exp_r, sig_f, sig_x } = $realtobits(r);
 rtof = !r ? 0 : { sign_r, wexp'(exp_r + bias_h - bias_r), sig_f };
 endfunction

 static function real ftor(logic [w-1:0] f);
 ftor = !f ? 0.0
 : $bitstoreal
 ({ f[w-1],

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw02-sol.v.html

 w_exp_r'(bias_r + f[w-2:wsig] - bias_h),
 f[wsig-1:0], (w_sig_r-wsig)'(0) });
 endfunction

endclass

function real fabs(real a);
 fabs = a < 0 ? -a : a;
endfunction

function int min(int a, b);
 min = a < b ? a : b;
endfunction

function int min3(int a, b, c);
 automatic int ab = a < b ? a : b;
 min3 = ab < c ? ab : c;
endfunction

module testbench_nn_sparse;

 localparam int npsets = 3;
 localparam int pset[npsets][4] =
 '{ {5, 20, 15, 4}, {6, 18, 10, 5}, {6, 18, 12, 3} };
 // wexp, wsig_ac, wsig_in, wsig_wd
 logic done[npsets:0];

 initial done[0] = 1;

 for (genvar i = 0; i<npsets; i++)
 testbench_nn_sparse_p
 #(pset[i][0],pset[i][1],pset[i][2],pset[i][3])
 tb(done[i+1],done[i]);

endmodule

module testbench_nn_sparse_p
 #(int wexp = 5, wsig_ac = 10, wsig_in = 6, wsig_wd = 4)
 (output logic done, input uwire start);

 localparam int ni = 4;
 localparam int wo = 1 + wexp + wsig_ac;
 localparam int wi = 1 + wexp + wsig_in;
 localparam int ww = ni * (1 + wexp + wsig_wd);

 localparam int wsig_ws = 2 * wsig_wd + wexp + 1;
 localparam int ws = 1 + wexp + wsig_ws;
 localparam int wd = 1 + wexp + wsig_wd;

 localparam real tol_s = real'(2) / (1 << min(wsig_in,wsig_ws));
 localparam real tol_d = real'(2) / (1 << wsig_wd);

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw02-sol.v.html

 localparam int n_tests = 5000;
 localparam real hot_val[] = { 1, 2, 0.1, 10.1 };
 localparam int n_one_hot = 4;
 localparam int n_two_hot = n_one_hot;
 initial if (n_one_hot != hot_val.size())
 $fatal(1,"Fix n_one_hot and file a Cadence bug.");

 logic [wo-1:0] o;
 logic [wi-1:0] ia[ni];
 logic [ww-1:0] wht;
 logic [ni-1:0] fmt;

 localparam logic [5:0][3:0] fmts =
 { 4'b11, 4'b110, 4'b1100, 4'b101, 4'b1010, 4'b1001 };

 nn_sparse #(ni, wexp, wsig_ac, wsig_in, wsig_wd) nnsp(o, ia, wht, fmt);

 initial begin

 automatic int n_errd = 0, n_errs = 0;
 automatic real max_diffs = 0, max_diffd = 0;
 automatic string abbrev =
 $sformatf("ex%0d,ac%0d,in%0d,wd%0d",wexp,wsig_ac,wsig_in,wsig_wd);
 wait (start);
 $write("Testing %s: wexp=%0d, wsig_ac=%0d, wsig_in=%0d, wsig_wd=%0d\n",
 abbrev, wexp, wsig_ac, wsig_in, wsig_wd);

 for (int tn = 0; tn < n_tests; tn++) begin

 automatic int sidx = 0;
 automatic int hot = tn % 4;
 automatic int rnd = tn / 4;
 automatic int one_hot = rnd < n_one_hot;
 automatic int two_hot = !one_hot && rnd - n_one_hot < n_two_hot;
 automatic int sparse = one_hot || two_hot || {$random} & 1;

 automatic int h2 = (hot + 1 + {$random}%3) % 4;

 real shadow_ia[4], shadow_w[4], shadow_o, diff, oreal, tol;
 real max_diff;
 logic [3:0][wd-1:0] wht4;
 logic [1:0][ws-1:0] wht2;
 fmt = one_hot || two_hot ? (1<<hot) | (1<<h2)
 : sparse ? fmts[{$random}%6] : 4'hf;
 tol = sparse ? tol_s : tol_d;
 shadow_o = 0;
 for (int i=0; i<4; i++) begin
 automatic real iav = real'({$random}) / (1 << 30);
 automatic real w = real'({$random}) / (1 << 30);
 if (one_hot || two_hot)
 begin
 iav = 1.0 + real'(i)/10;
 w = i == hot || two_hot && i == h2 ? hot_val[rnd] : 0;

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw02-sol.v.html

 end
 shadow_w[i] = w;
 shadow_ia[i] = iav;
 wht4[i] = conv#(wexp,wsig_wd)::rtof(w);
 ia[i] = conv#(wexp,wsig_in)::rtof(iav);
 if (sparse && fmt[i]) wht2[sidx++] = conv#(wexp,wsig_ws)::rtof(w);
 if (fmt[i]) shadow_o += iav * w;
 end
 wht = sparse ? wht2 : wht4;
 #1;
 oreal = conv#(wexp,wsig_ac)::ftor(o);
 diff = fabs(shadow_o - oreal) / fabs(shadow_o ? shadow_o : 1);
 max_diff = sparse ? max_diffs : max_diffd;

 if (! (diff < tol)) begin
 automatic int n_err = sparse ? ++n_errs : ++n_errd;
 if (n_err < 5 || 0 && diff > max_diff) begin
 automatic int ilast = fmt[3] ? 3 : fmt[2] ? 2 : 1;
 $write("Error tn=%0d for fmt %4b %h = %7.4f != %7.4f (correct)\n",
 tn, fmt, o, oreal, shadow_o);
 $write(" ");
 for (int i=0; i<4; i++)
 if (fmt[i])
 $write("%.4f %.4f%s", shadow_ia[i], shadow_w[i],
 i < ilast ? " + " : "\n");
 $write(" ");
 for (int i=0; i<4; i++)
 if (fmt[i])
 $write("%.4f %s", shadow_ia[i] * shadow_w[i],
 i < ilast ? " + " : "\n");
 if (0)
 $write(" diff %.8f, tol %.8f\n",diff,tol);

 // Feel free to modify or add to this to help with your solution.
 $write(" acc1 = %h = %.4f\n",
 nnsp.acc1, conv#(wexp,wsig_ac)::ftor(nnsp.acc1));

 end
 end

 if (diff > max_diff) begin
 if (sparse) max_diffs = diff; else max_diffd = diff;
 end

 end

 $write("Done with %s %0d tests, %0d, %0d sp, den errors found.\n",
 abbrev, n_tests, n_errs, n_errd);
 $write("For %s max diff %f, %f sp, den.\n",
 abbrev, max_diffs, max_diffd);
 done = 1;

 end

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw02-sol.v.html

endmodule

module testbench_hy;

 localparam int n_tests = 5;

 localparam int w_sig_a = 10;
 localparam int w_sig_b = 20;
 localparam int w_sig_p = 25;
 localparam int w_exp = 5;
 localparam int wa = 1 + w_exp + w_sig_a;
 localparam int wb = 1 + w_exp + w_sig_b;
 localparam int wp = 1 + w_exp + w_sig_p;
 localparam int bias_hy = (1 << w_exp - 1) - 1;
 localparam int bias_sr = (1 << 8 - 1) - 1;
 localparam int bias_r = (1 << 11 - 1) - 1;
 localparam int w_sig_r = 52;
 localparam int w_exp_r = 11;
 localparam int w_sig_min = min3(w_sig_a, w_sig_b, w_sig_p);
 localparam real tol = 1.0 / (longint'(1) << w_sig_min);

 logic [wa-1:0] a;
 logic [wb-1:0] b;
 uwire [wp-1:0] prod;

 hy_mult #(w_exp,w_sig_a,w_sig_b,w_sig_p) hm1(prod,a,b);

 initial begin

 automatic int n_err = 0;
 automatic real diff_max = 0;

 for (int i=0; i<n_tests; i++) begin

 automatic real a_shadow = real'($random()) / (1<<31);
 automatic real b_shadow = real'($random()) / (1<<31);
 automatic real prod_correct = a_shadow * b_shadow;
 real prodf, diff;

 a = conv#(w_exp,w_sig_a)::rtof(a_shadow);
 b = conv#(w_exp,w_sig_b)::rtof(b_shadow);

 #1;

 prodf = conv#(w_exp,w_sig_p)::ftor(prod);
 diff = fabs(prodf - prod_correct);
 if (diff > diff_max) diff_max = diff;

 if (! (diff < tol)) begin
 n_err++;
 if (n_err < 4)
 $write("Error for %.3f * %.3f: %.4f != %.4f (correct)\n",
 a_shadow, b_shadow, prodf, prod_correct);

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw02-sol.v.html

 end

 end

 $write("Done with hy %d tests, %d errors found. Max diff %f\n",
 n_tests, n_err, diff_max);

 end

endmodule

// cadence translate_on

`default_nettype wire
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/sim/verilog/CW/CW_fp_mult.v"
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/sim/verilog/CW/CW_fp_add.v"

← → Fall 2021 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw02-sol.v.html

LSU EE 4755 Homework 3 Solution Due: 18 October 2021

To help solve the problems below, look at problems listed in the simple model slides, 2020 Homework
4, 2019 Midterm Exam Problem 2b and c, and especially 2018 Final Exam problems 1 and 2.

Problem 1: As requested in the subproblems below use the simple model to determine the cost
and delay of the insert_at module from the solution to Homework 1 (see last page) instantiated
with wa = wa and wb = wb, and using Clsb(wa) for the cost of the mask_lsb module and Dlsb(wa)
for the delay of the mask_lsb module. The wo and walg parameters are not set so you can use
their default values, wo = wa + wb, la = dlg(wa + 1)e, and lb = dlgwbe, in your answers.

For partial credit, and to help you solve the problems provide a sketch of the inferred hardware.
It may help to first solve the problem for specific values of wa and wb, and then to generalize for
arbitrary wa and wb.

(a) Find the cost and delay of the hardware inferred for the line of Verilog from insert_at shown
below. Just for the hardware described on the line. There’s no trick, this part is easy. Just
remember to express your answers in terms of wa, wb, and wo.

assign o = ia_high | ib_at_pos | ia_low;

Suppose for a moment that each of the quantities being ORd, ia high, ib at pos, and ia low, are wo bits.
Then for each of the wo bit positions in o there will be a 3-input OR gate (or possibly two 2-input OR gates) and the
total cost would be 2wo uc. But while ia high and ib at pos are wo bits, ia low is only wa bits. So the cost of
the hardware computing the low wa bits of o will be 2wa uc. Each of the remaining wo − wa = wb bits will just be

an OR of a bit of ia high with a bit of ib at pos, for a cost of wb uc. So the total cost will be [2wa + wb] uc

or equivalently [wo + wa] uc .

The low wa bits are computed using either two 2-input OR gates or a 3-input OR gate, either way the delay is 2 ut .
Note that the delay should be based on the critical path, and in this case it is one of the low wa bits. I suppose it’s nice
that those other bits are computed in just 1 ut but the important number is when all bits are done.

Grading Note: Many gave the delay as dlg 3e ut. Normally I don’t expect numbers to be computed for arithmetic
expressions, but that’s for complex ones. In this case, please just give the answer as 2, lest I assume you don’t know what
dlg 3e ut means.

Common Mistake: A common mistake was to OR together all 2wo + wa bits in one big OR gate, or perhaps
two large OR gates. That’s wrong because that’s not what a bitwise OR does.

(b) Find the cost and delay of the shift_left module instances slc and slb taking into account any
constant inputs and assuming that the synthesis program infers a logarithmic shifter. Don’t forget
that your answer must be in terms of wa, wb, wo, la, and lb, and that these denote the parameters
of insert_at, not the parameters of the shifters. For more information on the logarithmic shifter
see the additional material provided for the Set 1 lectures on the course lectures page.

Before cutting-and-pasting simple-model cost and delay expressions for a logarithmic shifter,
take a close look at the parameters set for slc and slb and be sure to optimize for them. Notice
that unlike typical shifters, the shift-out and shift-in ports are not the same size and that the shift
amount is not necessarily ceiling-log-two of the input width.

Hint: The cost and delay for one of these shifters will be really easy to compute.
Notice that the shift amount connection (amt) to slc is an elaboration-time constant, wb. Therefore, the cost of

slc is zero. A bit in the output ia high is either connected to a bit of input ia high low or to the constant zero.

1

← → Fall 2021 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/ln.html
https://www.ece.lsu.edu/ee4755/2021/hw03_sol.pdf

Grading Note: Most people did not see that the shifter required no hardware at all (other than something to
generate a constant zero which would be optimized away). A few that did notice that the shift amount was zero did not
properly optimize the multiplexors to which the shift amount is connected. If one of the data inputs of a mux is constant
the cost drops from 3 uc to 1 uc per bits. But if the select input is constant the cost goes to zero. If that’s not obvious
please review what a mux does.

Next, consider slb, in which none of inputs are constant. The width of the input is wb, the width of the output is
wo, and the input can be shifted by at most 2dlg(wa+1)e bits. Let la = dlg(wa + 1)e, that’s the number of bits used
to represent the shift amount. The value of the shift amount is at most 2la − 1.

A logarithmic shifter with an la-bit shift amount consists of la multiplexors, one multiplexor for each bit in the shift
amount. Multiplexor 0 shifts by either 0 or 20 = 1 bit, mux 1 shifts by either 1 or 21 = 2 bits, mux i shifts by either 0
or 2i bits, and mux la − 1 shifts by 0 or 2la−1 bits. In a conventional logarithmic shifter with la = 4, the input and
output would each be 24 = 16 bits, and as a whole the shifter could shift by an amount ranging from 0 bits to 15 bits
(but not by 16 bits). (Why not 16 bits? That’s a convention, but why not allow a shift amount that would shift away all
of the bits. Good question, I’m sure it was debated.)

Lets consider the shifter needed for slb. Let the first multiplexor making up this shifter shift by 0 or 1 bits. In
a conventional shifter the mux has two w-bit inputs and a w-bit output. But in slb the output will be larger than the
input, wo bits. So we need to make the mux large enough to handle the largest value produced at that stage. For the
first stage, since it can shift by one bit, we need to make the mux wb + 1 bits (remembering that input is wb bits). The
second mux can shift by 0 or 2 bits, and to it needs to be wb + 1 + 2 = wb + 3 bits. Because the output is wo bits the
maximum mux size is wo bits, which will be the last mux. That last mux can shift by 0 or 2la−1 bits. (Because wa and
wb are not constrained, it is not always true that 2la−1 = wa/2.) The diagram below shows such a shifter in which wi
would be used for wb and wamt would be used for la.

1'b0

Shift by 0 or 1

m
sb

lsb

amt

i o

shift_left_log (wi, wo, wamt)

amt[0] amt[1] amt[2] amt[wamt-1]

Shift by 0 or 2 Shift by 0 or 4

wi

wamt

wo

min(wo,wi+1)

1'b0

lsb
m
sb 2'b0

m
sb

lsb2'b0

lsb
m
sb

min(wo,wi+3)

4'b0

m
sb

lsb4'b0

lsb
m
sb

min(wo,wi+7)

2wamt-1'b0

m
sb

lsb
lsb

m
sb

2wamt-1'b0

Drawn for wo=2wamt

A general w-bit 2-input mux has cost 3w uc. But in a shifter some mux input bits are zero, and at those positions
the cost is 1 ut each. First lets assume that all bits have cost w ut. Also, lets restrict ourselves to the case where
wo = wb + 2la−1.

The cost under that assumption and restriction is

Csl−noopt(wb, wo, la) =

la−1∑

i=0

3

wb +

i∑

j=0

2j

 uc

=

la−1∑

i=0

3(wb + 2i+1 − 1) uc

=

[
3(wb − 1)la +

3

2
(2la − 1)

]
uc

2

← → Fall 2021 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2021/hw03_sol.pdf

For a tighter cost estimate, consider the number of zero bits in stage i. Stage i shifts by 2i bits and so 2i zeros
must be appended to the most-significant side of the unshifted input and 2i zeros are appended to the least-significant
side of the shifted input. So there are 2× 2i mux bits with a zero at either input, and so the cost is

[3(wb + 2i+1− 1)− 2× 2× 2i] uc or [3(wb + 2i+1− 1)− 2× 2i+1] uc or [3(wb− 1) + (3− 2)2i+1] uc

or [3(wb − 1) + 2i+1] uc.
The total cost is

Csl−opt(wb, wo, la) =

la−1∑

i=0

[3(wb − 1) + 2i+1] uc

= [3(wb − 1)la +
1

2
(2la − 1)] uc

Grading Note: No one computed the cost completely correctly. A small deduction, 0.5, was given for a cost of
wola uc since that overstates the cost of all but the last mux. A much larger deduction was given if the cost was based
on muxen that were too small.

The delay is far less tedious to compute because regardless of the size of each multiplexor, the critical path through
a mux passes through two 2-input gates. Under the simple model their delay is 2 ut, and so the total delay is 2la ut.
That’s it.

(c) Find the cost and delay of insert_at. Use the answers above and work out cost and delay for
the remaining hardware in the module. Don’t forget to use Clsb(wa) for the cost of the mask_lsb

module and Dlsb(wa) for the delay of the mask_lsb module.
For this discussion refer to the insert at module below which includes labels such as Line 1 in the comments.

In the sub-problems above the cost and delay of hardware described by Lines 7, 5, and 6 has been found. The cost and
delay of the ml instance, Line 1, are given in this problem as Clsb(wa) and Dlsb(wa). The Verilog on Line 4 is executed
at elaboration time and so does not describe hardware. All that remains to work out is the hardware described on Lines
2 and 3.

Each of these lines is a bitwise AND of two wa-bit quantities, for a cost of wa uc each. Their delay is 1 ut.
Combining all of these yields the total cost,

Cinsertat(wa, wb) =
[
ml – L1︷ ︸︸ ︷

Clsb(wa) +

L2-3︷︸︸︷

2wa +

L5︷︸︸︷

0 +

slb – L6︷ ︸︸ ︷

3(wb − 1)la +
1

2
(2la − 1) +

o – L7︷ ︸︸ ︷

2wa + wb

]
uc

Collecting terms and using Clsb from the problem below:

Cinsertat(wa, wb) =

[
Clsb(wa) + 2wa + 0 + 3(wb − 1)la +

1

2
(2la − 1) + 2wa + wb

]
uc

= [wa + 2la − 4 + 2wa + 0 + 3(wb − 1)la +
1

2
(2la − 1) + 2wa + wb] uc

= [wa + wa − 4 + 2wa + 0 + 3(wb − 1)la +
1

2
(wa − 1) + 2wa + wb] uc

= [6.5wa − 4.5 + 3(wb − 1)la + wb] uc

= [3(wb − 1)la + wb + 6.5wa − 4.5] uc

The dominant term is 3wbla, which isn’t so bad.

3

← → Fall 2021 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2021/hw03_sol.pdf

// SOLUTION -- Line numbers are referenced in the solution discussion.

module insert_at #(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia, input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

uwire [wa-1:0] mask_low;

mask_lsb #(wa) ml(mask_low, pos); // Line 1.

uwire [wa-1:0] ia_low = ia & mask_low; // Line 2.

uwire [wa-1:0] ia_high_low = ia & ~mask_low; // Line 3.

localparam int wblg = $clog2(wb); // Line 4. No Hardware. (Computed during elaboration.)

uwire [wo-1:0] ia_high;

shift_left #(wa,wo,wblg) slc(ia_high, ia_high_low, wblg’(wb)); // Line 5

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) slb(ib_at_pos, ib, pos); // Line 6

assign o = ia_high | ib_at_pos | ia_low; // Line 7

endmodule

To find the total delay we need to find the critical path. Note: Emphasis added after grading. The
critical path is easy to find because the parts taking a substantial amount of time, ml (the mask lsb instance) and slb,
connect only to insert at module inputs. The default assumption for timing analysis is that module inputs arrive at
t = 0, and so the output of ml is available at Dlsb(w) and the output of slb is available at 2la ut. Peeking ahead to
the solution of the next problem, we know that ml has a delay of la ut.

The output of both ml and slb each connect only to the o expression, Line 7, and so the critical path is from slb

to Line 7. That would add a delay of 1 (if connected intelligently), and so the delay is Dinsertat(wa, wb) = [2la+1] ut,
where la = dlg(wa + 1)e.

Problem 2: Some of you may have seen this coming: Find expressions for Clsb(w), the cost of the
mask_lsb module and Dlsb(w), the delay of the mask_lsb module, in both cases wo = w, where wo

is the parameter used in the mask_lsb definition. Assume a well-optimized design, not something
that uses w dlgwe-bit magnitude comparison units.

Hint: Think about the problem for about 30 minutes, then look at 2018 Final Exam Problems
1 and 2.

The gtd rec module from the 2018 final exam is similar to mask lsb but has three differences. In mask lsb

the input value, n1, specifies that there should be n1 ones followed by zeros. In gtd the input value, iter, specifies that
there should be iter+1 zeros followed by ones. The second difference (or a consequence of the first) is that while the
output of mask lsb can be all zeros or all ones, the output of gtd rec must have at least one zero. Finally, gtd rec

can only be instantiated at power-of-two sizes.
Those minor differences are easy to fix. For example, inverting the output (change each zero to a one) will fix the

first difference. The non-power-of-two issue can be fixed by making sure that the size of the recursive instantiation is
always a power of two. The initial instantiation does not have to be a power of two. Also a special case can be added to
the initial instantiation to handle the all ones case.

I’m tempted to show the recursive version of mask lsb, but I might make it a midterm exam problem. (Not the
whole thing, just a small part.) If I do I’ll provide a warning in class on Monday, 25 October 2021.

4

← → Fall 2021 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2021/hw03_sol.pdf

For cost, the easiest thing to do is assume that w is a power of 2 and then just use the expressions from the exam.
Using this assumption: Clsb(w) = [2w − 4] uc. For arbitrary positive w the cost of the initial instantiation is w uc

and the cost of the recursive instantiation (one level down) is 2dlgwe−1 uc. The terminal case for recursion is for w = 2,
and the cost of that hardware is zero under the simple model. So the summation will end at w = 4 (which is i = 2 in
the summation). The total cost is

Clsb(w) = [w +
2∑

i=lw−1
2i] uc

= [w + 2lw − 4] uc

where lw = dlgwe.
Each level has a delay of 1, and so the total delay is [dlgwe − 1] ut for w ≥ 4.

5

← → Fall 2021 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2021/hw03_sol.pdf

An uncommented Homework 1 solution appears below.
For the full version visit https://www.ece.lsu.edu/koppel/v/2021/hw01-sol.v.html.

module insert_at
#(int wa = 20, wb = 10, wo = wa+wb, walg = $clog2(wa+1))

(output logic [wo-1:0] o,

input uwire [wa-1:0] ia,

input uwire [wb-1:0] ib,

input uwire [walg-1:0] pos);

uwire [wa-1:0] mask_low;

mask_lsb #(wa) ml(mask_low, pos);

uwire [wa-1:0] ia_low = ia & mask_low;

uwire [wa-1:0] ia_high_low = ia & ~mask_low;

localparam int wblg = $clog2(wb);

uwire [wo-1:0] ia_high;

shift_left #(wa,wo,wblg) slc(ia_high, ia_high_low, wblg’(wb));

uwire [wo-1:0] ib_at_pos;

shift_left #(wb,wo,walg) slb(ib_at_pos, ib, pos);

assign o = ia_high | ib_at_pos | ia_low;

endmodule

module shift_left
#(int wi = 4, wo = wi, wolg = $clog2(wo))

(output uwire [wo-1:0] o,

input uwire [wi-1:0] i,

input uwire [wolg-1:0] amt);

assign o = i << amt;

endmodule

module mask_lsb
#(int wo = 6, wp = $clog2(wo+1))

(output logic [wo-1:0] o, input uwire [wp-1:0] n1);

always_comb for (int i=0; i<wo; i++) o[i] = i < n1;

endmodule

6

← → Fall 2021 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/koppel/v/2021/hw01-sol.v.html
https://www.ece.lsu.edu/ee4755/2021/hw03_sol.pdf

LSU EE 4755 Homework 4 Solution Due: 11 November 2021

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2021/hw04.v.html.

Problem 0: If necessary, follow the instructions at https://www.ece.lsu.edu/koppel/v/proc.html
to set up your class account, copy the assignment, and run the Verilog simulator and synthesis pro-
gram on the unmodified homework file, hw04.v. Do this early enough so that minor problems (e.g.,
password doesn’t work) are minor problems.

Teamwork
Students can work on this assignment in teams. Each student should submit his or her own
assignment but list team members. It is recommended that one team member be responsible for
learning SimVision.

Every member of a team that has completed a project, must be capable of re-solving the
problem. It is recommended that all team members re-solve the problem on their own for their
own pedagogical benefit.

Problem 1: Module bit_keeper has a wb-bit output bits (b is for width of buffer) and a 1-bit
output ready. Think of output bits as a long bit vector (wb bits long) that is edited using the
module’s inputs. Commands to edit bits are given using four-bit input cmd (command), wi-bit
input din (data in), and ws-bit input pos (position). The module is to operate sequentially using
input clk.

Complete bit_keeper as described below, and make sure that it is synthesizable. As always,
code should be written clearly, and designs should not be costly or slow.

When completed bit_keeper should operate as follows. On a positive edge of clk action is
taken based on the value of cmd. The possible values of cmd are: Cmd_Reset, Cmd_None, Cmd_Write,
and Cmd_Rot_To. (These can be used as constants in your code. The constants are defined by enum

Command.) Some commands will be complete in one cycle (the cycle in which the cmd is set up to
the positive edge of clk). Other commands will take multiple cycles.

Be sure to understand the details of how multi-cycle commands execute. When a multi-cycle
command starts the ready output must be set to zero and must be held at zero until the command
completes. The command and its arguments will only be held at the inputs for one cycle, and so at
the next positive clock edge they will be gone. The cmd input will be set to Cmd_Nop, and the pos

and din inputs will be set to random values. This means that the inputs of multi-cycle commands
that will be needed in subsequent cycles must be saved in registers.

The testbench can emit a trace of commands and their effects. This trace is used below to
illustrate what the module is supposed to do. The trace is collected after the command completes.
A trace entry starts with the word Cycle. The cycle number is shown, followed by command
details, followed by the state of bits.

For Cmd_Reset output bits should be set to zero. Also, any internal registers should be set
to zero. The command should complete at the positive edge. This should set ready to 1. In the
trace below the reset command set bits back to zero. Notice that the command completes in one
cycle (based on the cycle numbers).
Cycle 307 -- test 73: Cmd_Nop : bits = 01401f4

Cycle 308 -- test 74: Cmd_Reset : bits = 0000000

1

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2021/hw04.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2021/hw04_sol.pdf

For Cmd_Rot_To the value in bits must be rotated so that the contents of bits[0] is moved
to bits[pos], bits[1] is moved to bits[(pos+1)%wb], and so on. This is like a left shift of pos
bits, except that the most significant pos bits of bits are rotated into the the pos least significant
bits. In the trace below the rotate command rotates four bits (one hexadecimal digit). Notice that
the most-significant digit on the first line is rotated to the least significant digit after the rotation
command.
Cycle 301 -- test 71: Cmd_Nop : bits = 401401f

Cycle 306 -- test 72: Cmd_Rot_To pos 4 : bits = 01401f4

This rotation must be performed using two instances of module rot_left. One instance
should rotate by 1, the other rotates by a larger value, call it rb, of your choosing. Each clock cycle
the value of bits is rotated using one of these, but never both in the same clock cycle. Use the
rb-bit rotate instance until the number of bit positions to shift is ≤ rb, then use the 1-bit rotate
instance.

Command Cmd_Write has two forms based on the value of input pos. If pos is zero then the
least significant wb bits of bits should be written with din. This should complete at the positive
edge. Otherwise, bits pos through pos+wi-1 of bits should be written with din—but not directly.
Instead, bits should be rotated so that bit pos is at the least-significant position, then the data
should be written, then bits should be rotated back to its original position. Use only the two
rot_left instances.

The trace below shows a write with pos=0:
Cycle 417 -- test 86: Cmd_Nop : bits = 0000240000

Cycle 418 -- test 87: Cmd_Write pos 0, data 7 : bits = 0000240007

When pos is non-zero the writes take longer:
Cycle 96 -- test 20: Cmd_Nop : bits = 0a0000003c

Cycle 107 -- test 21: Cmd_Write pos 27, data 4 : bits = 0a2000003c

No action is needed for command Cmd_Nop. In fact, this is the command that will be present
while the external hardware, including the testbench, is waiting for other commands to complete.

The testbench will test bit_keeper at two sizes. At each size detailed information is given for
the first few errors. That includes a trace of commands leading up to the error, followed by the
erroneous command, and what the bits should have been. After each error the testbench sets its
shadow value of bits to the erroneous output so that subsequent tests can pass. Here is in example
of the output:
Cycle 22 -- test 0: Cmd_Rot_To pos 20 : bits = 0000000000

Cycle 54 -- test 1: Cmd_Rot_To pos 31 : bits = 0000000000

Cycle 55 -- test 2: Cmd_Nop : bits = 0000000000

Cycle 96 -- test 3: Cmd_Write pos 37, data 2 : bits = 4000000000

Cycle 97 -- test 4: Cmd_Nop : bits = 4000000000

Cycle 103 -- test 5: Cmd_Rot_To pos 5 : bits = 0000000008

Cycle 104 -- test 6: Cmd_Write pos 0, data 3 : bits = 0000000003

Error in test 7: Cmd_Write pos 1, data 2 : 0000000c04 != 0000000005 (correct)

For multi-cycle commands the testbench will wait for ready to go to zero and then back to
one. If that does not happen after a certain number of cycles the testbench will timeout, meaning
that it will give up waiting and print a CYCLE LIMIT EXCEEDED message. If there is a timeout
while a command is in progress (meaning that ready did go to zero, but did not return to one) the
testbench will show a trace of recent history, followed by an indication of what it was waiting for:
Exit from clock loop at cycle 16000, limit 16000, ** CYCLE LIMIT EXCEEDED **

2

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2021/hw04_sol.pdf

** Preceding Commands **

Cycle 7 -- test 0: Cmd_Rot_To pos 20 : bits = 0000000000

Cycle 14 -- test 1: Cmd_Rot_To pos 31 : bits = 0000000000

Cycle 15 -- test 2: Cmd_Nop : bits = 0000000000

** In-Progress Command **

test 3: Cmd_Write pos 37, data 2

-- Awaiting ready = 1.

If the testbench does not timeout then it will print a tally of the number of errors after testing
each bit_keeper instance. Also, as a measure of quality, the testbench reports the average number
of cycles to perform Cmd_Rot_To and Cmd_Write (with non-zero pos). For example,
Starting tests for (wb=40,wi=4)

Finished 200 tests for (wb=40,wi=4), 0 errors.

Avg cyc Cmd_Rot_To 5.5 (67) Cmd_Write 10.6 (35)

Starting tests for (wb=28,wi=8)

Finished 140 tests for (wb=28,wi=8), 0 errors.

Avg cyc Cmd_Rot_To 4.2 (57) Cmd_Write 8.2 (18)

The lines starting Avg cyc report timing. The number in parentheses is the number of times
the command was issued. So for the first set of tests Cmd_Rot_To was tried 67 times, and the
average number of cycles taken to complete it was 5.5.

A lower number for Avg cyc can indicate a good design, or that certain rules were not followed.
It is very important that debugging tools are used. Take advantage of the testbench messages

to see what is going wrong. Run SimVision to get a detailed look at what your module is doing.

The solution has been copied to the homework directory, and an htmlized version has been posted at
https://www.ece.lsu.edu/koppel/v/2021/hw04-sol.v.html. For the discussion below the solution is
shown in pieces, shorn of most comments. Following that is the complete solution. The solution starts by specifying
rotate amounts for the two rotation modules, followed by their instantiation.

localparam int rot_amt_a = 1;

localparam int rot_amt_b = 1 << (ws >> 1);

uwire [wb-1:0] ra, rb;

rot_left #(wb,rot_amt_a) rl1(ra,bits);
rot_left #(wb,rot_amt_b) rl8(rb,bits);

The rotate amount of the first module is set to 1, but a localparam is used for its value. To minimize the number
of rotations the rotate amount for the second module, rot amt b, should be set to the square root of wb. To minimize
delay it should be set to a power of 2. Here it is set to a power of 2 close to the square root of wb.

Rotations are to be done over several cycles. As stated in the problem commands are presented at the inputs for just
for one cycle, and are then replaced with a Cmd Nop until the ready returns to 1. To remember what needs to be done
three registers will be used, rot to do, rot to return, and wval. Register rot to do is set to the number of
bits of rotation that still need to be done. For Cmd Rot To it is initialized to pos and for Cmd Write with pos!=0

it is initialized to wb - pos. Register rot to return is set to the amount of rotation needed after the write is
performed. Register wval is the value to write.

The ready output is set to 1 when both rot to do and rot to return are both zero.

logic [ws-1:0] rot_to_do; // Remaining amount of rotation to do.

logic [ws-1:0] rot_to_return; // Amount of rotation needed after write.

3

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/2021/hw04-sol.v.html
https://www.ece.lsu.edu/ee4755/2021/hw04_sol.pdf

logic [wi-1:0] wval; // Value to write.

assign ready = rot_to_do == 0 && rot_to_return == 0;

The main always ff has just a single case statement. Cmd Reset is straightforward:

always_ff @(posedge clk) begin

case (cmd)

Cmd_Reset: begin

bits = 0;

rot_to_do = 0;

rot_to_return = 0;

end

For Cmd Rot To the rotate amount is saved in rot to do. The work of rotating is done when cmd is Cmd Nop.

Cmd_Rot_To: begin rot_to_do = pos; end

What Cmd Write does depends on pos. If it’s zero the write is done immediately. Otherwise rot to do is set
to an amount that will bring bit pos to the least-significant position. Variable rot to return is set to the rotation
to use after the write completes, one which moves the least-significant bit back to where it was. Also, the write value is
saved.

Cmd_Write:

if (pos == 0) begin

bits[wi-1:0] = din;

end else begin

rot_to_do = wb - pos;

wval = din;

rot_to_return = pos;

end

The work of rotating is done when cmd is set to Cmd Nop. If rot to do is non-zero (which means≥ rot amt a)
then bits is set to the output of the appropriate rotation module and rot to do is decremented. Note that the rotation
being performed can be for one of three purposes: a Cmd Rot To, the rotation before a write, or the rotation after a
write.

Cmd_Nop: begin

if (rot_to_do >= rot_amt_b) begin

bits = rb; // Use output of larger rot module.

rot_to_do -= rot_amt_b; // Decrement remaining rot amt.

end else if (rot_to_do >= rot_amt_a) begin

bits = ra; // Use output of smaller rot module.

rot_to_do -= rot_amt_a; // Decrement remaining rot amt.

end

// More Cmd_Nop code below

Next, Cmd Nop needs to check whether a write needs to be done now. (A write needs to be done if rot to return

is non-zero and it needs to be done now if also rot to do is zero.) If so, the write is performed and rot to do is set
so that bits is rotated back to its original position.

if (rot_to_do == 0 && rot_to_return !=0) begin

bits[wi-1:0] = wval;

rot_to_do = rot_to_return;

rot_to_return = 0;

4

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2021/hw04_sol.pdf

end

The entire solution with more comments appears below.
Grading Notes: In many solutions there were three separate pieces of code to perform rotate: one used for

Cmd Rot To, one used before a write, and one used after a write. That code duplication makes it harder for humans to
read, and could also lead to more costly and slower designs.

module bit_keeper
#(int wb = 64, wi = 8, ws = $clog2(wb))

(output logic [wb-1:0] bits,

output uwire ready,

input uwire [3:0] cmd,

input uwire [wi-1:0] din,

input uwire [ws-1:0] pos,

input uwire clk);

/// SOLUTION

// Specify Rotation Amounts

//

localparam int rot_amt_a = 1;

localparam int rot_amt_b = 1 << (ws >> 1);

//

// To minimize the number of rotations, rot_amt_b should be set to

// the square root of wb. But, to minimize delay it should be set

// to a power of 2. Here it is set to a power of 2 close to the

// square root of wb.

// Instantiate Rotation Modules

//

uwire [wb-1:0] ra, rb;

rot_left #(wb,rot_amt_a) rl1(ra,bits);
rot_left #(wb,rot_amt_b) rl8(rb,bits);

logic [ws-1:0] rot_to_do; // Remaining amount of rotation to do.

logic [ws-1:0] rot_to_return; // Amount of rotation needed after write.

logic [wi-1:0] wval; // Value to write.

// The module is ready if there is no remaining rotation to do.

//

assign ready = rot_to_do == 0 && rot_to_return == 0;

5

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2021/hw04_sol.pdf

always_ff @(posedge clk) begin

case (cmd)

Cmd_Reset: begin

//

// Perform Reset

bits = 0;

rot_to_do = 0;

rot_to_return = 0;

end

Cmd_Rot_To: begin

//

// Set Amount of Rotation

//

// The rotation will be performed in subsequent cycles.

rot_to_do = pos;

end

Cmd_Write:

if (pos == 0) begin

//

// Perform Write Immediately

bits[wi-1:0] = din;

end else begin

//

// Perform Write Later

// Set amount of rotation needed before the write, ..

//

rot_to_do = wb - pos;

//

// .. save the value that will be written, ..

//

wval = din;

//

// .. and save the amount of rotation needed after the write.

//

rot_to_return = pos;

end

6

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2021/hw04_sol.pdf

Cmd_Nop: begin

//

// Continue Executing a Cmd_Rot_To or Cmd_Write.

// If necessary, set bits to a rotated value.

//

if (rot_to_do >= rot_amt_b) begin

//

// Still need to rotate by at least rot_amt_b bits.

bits = rb; // Use output of larger rot module.

rot_to_do -= rot_amt_b; // Decrement remaining rot amt.

end else if (rot_to_do >= rot_amt_a) begin

//

// Still need to rotate by at least rot_amt_a (1) bit.

bits = ra; // Use output of smaller rot module.

rot_to_do -= rot_amt_a; // Decrement remaining rot amt.

end

// Check whether a write is pending and can now be performed.

//

if (rot_to_do == 0 && rot_to_return !=0) begin

//

// Write value, and set amount of rotation to return to

// original positioning.

bits[wi-1:0] = wval;

rot_to_do = rot_to_return;

rot_to_return = 0;

end

end

endcase

end

endmodule

7

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2021/hw04_sol.pdf

//
//
/// LSU EE 4755 Fall 2021 Homework 4
//
/// SOLUTION

 /// Assignment https://www.ece.lsu.edu/koppel/v/2021/hw04.pdf

 /// Solution Discussion https://www.ece.lsu.edu/koppel/v/2021/hw04_sol.pdf

`default_nettype none

//
/// Problem 1
//
 /// Complete bit_keeper so that it applies input commands as described

 /// in the handout.

 ///
//
// [✔] Only modify module bit_keeper.
// [✔] Instantiate two rot_left instances two rotate bits.
// [✔] APPLY AT MOST ONE rotate per cycle.
// [✔] ONLY WRITE DATA to the least-significant w bits.
//
// [✔] Use SimVision to debug. Use command: xrun -gui hw04.v
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter values.
//
// [✔] Code must be written clearly.
// [✔] Pay attention to cost and performance.
//
// [] Students can work in teams. List team members in this file

typedef enum
 { Cmd_Reset = 0, Cmd_Nop, Cmd_Write, Cmd_Rot_To, Cmd_SIZE } Command;

module rot_left
 #(int w = 10, amt = 1)
 (output uwire [w-1:0] r, input uwire [w-1:0] a);
 assign r = { a[w-amt-1:0], a[w-1:w-amt] };
endmodule

module bit_keeper
 #(int wb = 64, wi = 8, ws = $clog2(wb))
 (output logic [wb-1:0] bits,
 output uwire ready,
 input uwire [3:0] cmd,
 input uwire [wi-1:0] din,
 input uwire [ws-1:0] pos,

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/koppel/v/2021/hw04.pdf
https://www.ece.lsu.edu/koppel/v/2021/hw04_sol.pdf
https://www.ece.lsu.edu/ee4755/2021/hw04-sol.v.html

 input uwire clk);

 /// SOLUTION

 // Specify Rotation Amounts
 //
 localparam int rot_amt_a = 1;
 localparam int rot_amt_b = 1 << (ws >> 1);
 //
 // To minimize the number of rotations, rot_amt_b should be set to
 // the square root of wb. But, to minimize delay it should be set
 // to a power of 2. Here it is set to a power of 2 close to the
 // square root of wb.

 // Instantiate Rotation Modules
 //
 uwire [wb-1:0] ra, rb;
 rot_left #(wb,rot_amt_a) rl1(ra,bits);
 rot_left #(wb,rot_amt_b) rl8(rb,bits);

 logic [ws-1:0] rot_to_do; // Remaining amount of rotation to do.
 logic [ws-1:0] rot_to_return; // Amount of rotation needed after write.
 logic [wi-1:0] wval; // Value to write.

 // The module is ready if there is no remaining rotation to do.
 //
 assign ready = rot_to_do == 0 && rot_to_return == 0;

 always_ff @(posedge clk) begin

 case (cmd)

 Cmd_Reset: begin
 //
 // Perform Reset

 bits = 0;
 rot_to_do = 0;
 rot_to_return = 0;
 end

 Cmd_Rot_To: begin
 //
 // Set Amount of Rotation
 //
 // The rotation will be performed in subsequent cycles.

 rot_to_do = pos;
 end

 Cmd_Write:

 if (pos == 0) begin
 //
 // Perform Write Immediately

 bits[wi-1:0] = din;

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw04-sol.v.html

 end else begin
 //
 // Perform Write Later

 // Set amount of rotation needed before the write, ..
 //
 rot_to_do = wb - pos;
 //
 // .. save the value that will be written, ..
 //
 wval = din;
 //
 // .. and save the amount of rotation needed after the write.
 //
 rot_to_return = pos;

 end

 Cmd_Nop: begin
 //
 // Continue Executing a Cmd_Rot_To or Cmd_Write.

 // If necessary, set bits to a rotated value.
 //
 if (rot_to_do >= rot_amt_b) begin
 //
 // Still need to rotate by at least rot_amt_b bits.

 bits = rb; // Use output of larger rot module.
 rot_to_do -= rot_amt_b; // Decrement remaining rot amt.

 end else if (rot_to_do >= rot_amt_a) begin
 //
 // Still need to rotate by at least rot_amt_a (1) bit.

 bits = ra; // Use output of smaller rot module.
 rot_to_do -= rot_amt_a; // Decrement remaining rot amt.
 end

 // Check whether a write is pending and can now be performed.
 //
 if (rot_to_do == 0 && rot_to_return !=0) begin
 //
 // Write value, and set amount of rotation to return to
 // original positioning.

 bits[wi-1:0] = wval;
 rot_to_do = rot_to_return;
 rot_to_return = 0;
 end

 end

 endcase

 end

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw04-sol.v.html

endmodule

//
/// Testbench Code

// cadence translate_off

program reactivate
 (output uwire clk_reactive, output int cycle_reactive,
 input uwire clk, input var int cycle);
 assign clk_reactive = clk;
 assign cycle_reactive = cycle;
endprogram

module testbench;

 localparam int npsets = 2;
 localparam int pset[npsets][2] =
 '{ { 40, 4 }, { 28, 8 } };

 int t_errs; // Total number of errors.
 initial t_errs = 0;
 final $write("Total number of errors: %0d\n",t_errs);

 uwire d[npsets:-1]; // Start / Done signals.
 assign d[-1] = 1; // Initialize first at true.

 // Instantiate a testbench at each size.
 //
 for (genvar i=0; i<npsets; i++)
 testbench_n #(pset[i][0],pset[i][1]) t2(.done(d[i]), .tstart(d[i-1]));

endmodule

module testbench_n
 #(int bsize = 40, isize = 5)
 (output logic done, input uwire tstart);

 localparam int bslg = $clog2(bsize);
 localparam int n_tests = bsize * 5;
 localparam int cyc_max = n_tests * bsize * 2;
 bit clk;
 int cycle, cycle_limit;
 logic clk_reactive;
 int cycle_reactive;
 reactivate ra(clk_reactive,cycle_reactive,clk,cycle);

 string cmd_str[int];
 initial begin
 cmd_str[Cmd_Reset] = "Cmd_Reset";

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw04-sol.v.html

 cmd_str[Cmd_Nop] = "Cmd_Nop";
 cmd_str[Cmd_Write] = "Cmd_Write";
 cmd_str[Cmd_Rot_To] = "Cmd_Rot_To";
 end

 string event_trace, history_trace;

 initial begin
 clk = 0;
 cycle = 0;

 done = 0;
 cycle_limit = cyc_max;
 wait(tstart);

 fork
 while (!done) #1 cycle += clk++;
 wait(cycle >= cycle_limit) begin
 $write("Exit from clock loop at cycle %0d, limit %0d, %s\n",
 cycle, cycle_limit, "** CYCLE LIMIT EXCEEDED **");
 $write("** Preceding Commands **\n%s", history_trace);
 $write("** In-Progress Command **\n%s\n", event_trace);
 end
 join_any;

 done = 1;
 end

 uwire [bsize-1:0] bits;
 uwire rdy;
 bit [bsize-1:0] bits_shadow, bcpy;
 logic [bslg-1:0] pos;

 logic [3:0] cmd;
 logic [isize-1:0] din;

 bit_keeper #(bsize,isize) bk1(bits, rdy, cmd, din, pos, clk);

 typedef struct {int pos; int lat_cnt[int];} Lat_Range;

 Lat_Range lat_range[Cmd_SIZE][int];
 Lat_Range pos_range[Cmd_SIZE][int];

 initial begin

 automatic int n_err = 0;
 int n_cmd[Cmd_SIZE], n_cyc[Cmd_SIZE];
 int n_cycles;
 string cmd_info;
 for (int i=0; i<Cmd_SIZE; i++) begin n_cmd[i] = 0; n_cmd[i] = 0; end

 cmd = Cmd_Reset;
 bits_shadow = bsize'(0);

 wait(tstart);

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw04-sol.v.html

 $write("\nStarting tests for (wb=%0d,wi=%0d)\n",bsize,isize);

 @(negedge clk_reactive);
 @(negedge clk_reactive);
 cmd = Cmd_Nop;
 while (rdy !== 1'b1) @(negedge clk_reactive);

 for (int tn = 0; tn < n_tests; tn++) begin

 bit expect_rdy_0;
 logic [bslg-1:0] pos_given;
 logic [3:0] cmd_given;

 event_trace = $sformatf("test %2d: ",tn);

 cmd = {$random} % (Cmd_SIZE - 1) + 1;
 if (({$random} & 15) == 0) cmd = Cmd_Reset;
 pos = {$random} % (bsize-1) + 1;
 if (cmd == Cmd_Write && ({$random} & 1) == 0) pos = 0;
 din = {$random};
 cmd_given = cmd;
 pos_given = pos;

 event_trace = { event_trace, $sformatf("%-10s ",cmd_str[cmd]) };

 case (cmd)

 Cmd_Reset: begin
 bits_shadow = 0; expect_rdy_0 = 0;
 end
 Cmd_Write: begin
 event_trace =
 { event_trace,
 $sformatf("pos %0d, data %h", pos_given, din) };
 expect_rdy_0 = pos != 0;
 for (int i=0; i<isize; i++)
 bits_shadow[(i+pos)%bsize] = din[i];
 end
 Cmd_Rot_To: begin
 event_trace =
 { event_trace,
 $sformatf("pos %0d", pos_given) };
 expect_rdy_0 = pos != 0;
 bcpy = bits_shadow;
 for (int i=0; i<bsize; i++)
 bits_shadow[(i+pos)%bsize] = bcpy[i];
 end
 Cmd_Nop: begin
 expect_rdy_0 = 0;
 end
 default begin
 $write("This can't happen.\n");
 $fatal(1);
 end
 endcase

 cmd_info = event_trace;

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw04-sol.v.html

 event_trace = { event_trace, "\n" };

 @(negedge clk_reactive);

 // Wait for rdy to go to zero.
 if (expect_rdy_0)
 begin
 automatic int cyc_start = cycle;
 event_trace = { cmd_info, "\n -- Awaiting ready = 0.\n" };
 while (rdy !== 1'b0) @(negedge clk_reactive);
 event_trace = { cmd_info, "\n -- Awaiting ready = 1.\n" };
 cmd = Cmd_Nop;
 pos = {$random};
 din = {$random};
 while (rdy !== 1'b1) @(negedge clk_reactive);
 event_trace = { cmd_info, "\n -- About to check outputs.\n" };
 n_cycles = cycle - cyc_start;
 end else begin
 n_cycles = 0;
 end

 if (bits_shadow === bits) begin
 if (expect_rdy_0) begin
 n_cmd[cmd_given]++;
 n_cyc[cmd_given] += n_cycles;
 lat_range[cmd_given][pos_given].lat_cnt[n_cycles]++;
 pos_range[cmd_given][n_cycles].lat_cnt[pos_given]++;
 end
 end else begin
 n_err++;
 if (n_err < 5) begin
 $write("%s",history_trace);
 $write("Error in %-35s: %h != %h (correct)\n",
 cmd_info, bits, bits_shadow);
 end
 history_trace = "";
 bits_shadow = bits;
 end

 if (cmd_given == Cmd_Reset) history_trace = "";

 history_trace =
 { history_trace,
 $sformatf("Cycle %3d -- %-35s: bits = %h\n",
 cycle, cmd_info, bits) };

 end

 $write("Finished %0d tests for (wb=%0d,wi=%0d), %0d data errors.\n",
 n_tests, bsize, isize, n_err);

 begin
 automatic bit double_check = 0;
 automatic Command mcc[] = '{ Cmd_Rot_To, Cmd_Write };
 automatic string err_str =
 $sformatf("Error: (wb=%0d,wi=%0d)",bsize,isize);
 $write("Avg cyc");

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw04-sol.v.html

 foreach (mcc[i])
 $write(" %s %.1f (%0d)",
 cmd_str[mcc[i]],
 n_cmd[mcc[i]] ? real'(n_cyc[mcc[i]])/n_cmd[mcc[i]] : 0.0,
 n_cmd[mcc[i]]);
 $write("\n");
 if (double_check) begin
 $write("Avg cyc");
 foreach (mcc[i]) begin
 automatic Command c = mcc[i];
 automatic int tot_cyc = 0, tot_cmd = 0;
 foreach (lat_range[c][pos]) begin
 foreach (lat_range[c][pos].lat_cnt[nc]) begin
 automatic int ncmd = lat_range[c][pos].lat_cnt[nc];
 tot_cyc += nc * ncmd;
 tot_cmd += ncmd;
 end
 end
 $write(" %s %.1f (%0d)",
 cmd_str[mcc[i]],
 real'(tot_cyc)/tot_cmd, tot_cmd);
 end
 end
 $write("\n");
 foreach (mcc[i]) begin
 automatic Command c = mcc[i];
 automatic int n_one = 0, n_zero = 0;
 string n_z_str, n_o_str;
 n_o_str = $sformatf(" %s 1-cyc pos ",cmd_str[c]);
 foreach (pos_range[c][1].lat_cnt[pos]) begin
 n_o_str = { n_o_str, $sformatf("%0d ",pos) };
 n_one++;
 end
 n_z_str = $sformatf(" %s 1-cyc pos ",cmd_str[c]);
 foreach (pos_range[c][0].lat_cnt[pos]) begin
 n_z_str = { n_z_str, $sformatf("%0d ",pos) };
 n_zero++;
 end
 if (n_one) $write("%s\n",n_o_str);
 if (n_zero)
 $write("%s\n%s Zero-Cycle %s. Should never be zero when pos!=0\n",
 n_z_str,err_str,cmd_str[c]);
 if (c == Cmd_Rot_To && n_one > 2)
 $write("%s One-Cycle Cmd_Rot_To for more than 2 pos values.\n",
 err_str);
 if (c == Cmd_Write && n_one > 0)
 $write("%s One-Cycle Cmd_Write at least one time. Should never happen.\n",err_str);
 end
 end
 testbench.t_errs += n_err;
 done = 1;

 end

endmodule

// cadence translate_on

← → Fall 2021 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw04-sol.v.html

LSU EE 4755 Homework 5 Solution Due: 17 November 2021

Problem 1: Solve 2020 Solve-Home Final Exam Problem 1, which asks for the inferred hard-
ware for the v20 + v0v1 + v21 module that we covered in class. For those who may have for-
gotten how to use a pencil, or never learned, an SVG version of the illustration is available at
https://www.ece.lsu.edu/koppel/v/2020/fe-ms.svg. Use Inkscape or your favorite SVG edi-
tor on the file.

See the 2020 Final Exam Solution.

Problem 2: This assignment does not have a Problem 2. I know that’s confusing but the alter-
native is also confusing.

Problem 3: Solve 2020 Solve-Home Final Exam Problem 3, which asks for a timing analysis of
the v20 + v0v1 + v21 module. An SVG version of the diagram is at
https://www.ece.lsu.edu/koppel/v/2020/fe-ms-t.svg.

See the 2020 Final Exam Solution for this problem too.

1

← → Fall 2021 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2020/fe.pdf
https://www.ece.lsu.edu/koppel/v/2020/fe-ms.svg
https://www.ece.lsu.edu/koppel/v/2020/fe_sol.pdf
https://www.ece.lsu.edu/koppel/v/2020/fe-ms-t.svg
https://www.ece.lsu.edu/koppel/v/2020/fe_sol.pdf
https://www.ece.lsu.edu/ee4755/2021/hw05_sol.pdf

//
//
/// LSU EE 4755 Fall 2021 Homework 6
//
 /// SOLUTION

 /// Assignment https://www.ece.lsu.edu/koppel/v/2021/hw06.pdf

 /// Additional Resources

 //
 // Verilog Documentation
 // The Verilog Standard
 // https://ieeexplore.ieee.org/document/8299595/
 // Introductory Treatment (Warning: Does not include SystemVerilog)
 // Brown & Vranesic, Fundamentals of Digital Logic with Verilog, 3rd Ed.
 //
 // Account Setup and Emacs (Text Editor) Instructions
 // https://www.ece.lsu.edu/koppel/v/proc.html
 // To learn Emacs look for Emacs tutorial.
 //

`default_nettype none

//
/// Problem 1
//
 /// Complete multi_step_pipe so that it computes the same value as

 /// ms_functional, but does so in a pipelined fashion.

 ///
//
// [✔] Only modify module multi_step_pipe.
// [✔] Module must operate in pipelined fashion ..
// [✔] .. meaning it should accept a new set of inputs each cycle ..
// [✔] .. and provide the result several cycles later.
// [✔] Be sure to pass the start signal from input to output.
//
// [✔] Instantiate as many Chipware mult and add units as needed.
// [✔] The critical path can go through at most one Chipware module.
//
// [✔] Use SimVision to debug. Use command: xrun -gui hw06.v
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Code must be written clearly.
// [✔] Pay attention to cost and performance.
//
// [] Students can work in teams. List team members in this file

module multi_step_pipe
 (output logic [31:0] result,
 output logic ready,
 input uwire [31:0] v0, v1,
 input uwire start, clk);

 /// SOLUTION

 //
 // Part of the solution is changing the object kind of the result
 // and ready outputs from uwire to var (logic).

 localparam int nstages = 3;

 localparam logic [2:0] rm = 0; // Rounding Mode

 // Wires for fp unit outputs.
 //
 uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;
 uwire [31:0] v00, v01, v11, s1, s2;

 /// Pipeline Latch Declarations

 //
 logic [31:0] pl_1_v00, pl_1_v01, pl_1_v11;
 logic [31:0] pl_2_v0001, pl_2_v11;
 logic pl_1_occ, pl_2_occ;
 //
 // By convention pipeline latch names start with "pl_" followed by
 // the stage in which their value is used (read). So pl_1_v00 holds

← → Fall 2021 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/koppel/v/2021/hw06.pdf
https://ieeexplore.ieee.org/document/8299595/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2021/hw06-sol.v.html

 // a value that will be used in stage 1. The value of pl_1_v00
 // would have to have been written in stage 0.

 /// Floating-Point Functional Unit Instantiations

 //
 // Instantiate one functional unit for each operation:
 // v0 * v0 + v0 * v1 + v1 * v1
 // Three multiplications, two additions.
 //
 // The multipliers' operands come directly from the module inputs ..
 // .. and so the multipliers are in stage 0.
 //
 CW_fp_mult m00(.z(v00), .a(v0), .b(v0), .rnd(rm), .status(mul_s1));
 CW_fp_mult m01(.z(v01), .a(v0), .b(v1), .rnd(rm), .status(mul_s2));
 CW_fp_mult m11(.z(v11), .a(v1), .b(v1), .rnd(rm), .status(mul_s3));
 //
 // The adders' operands come from the pipeline latches.
 //
 // Adder a1 is in stage 1.
 CW_fp_add a1(.z(s1), .a(pl_1_v00), .b(pl_1_v01), .rnd(rm), .status(a_s1));
 //
 // Adder a2 is in stage 2.
 CW_fp_add a2(.z(s2), .a(pl_2_v0001), .b(pl_2_v11), .rnd(rm), .status(a_s2));

 always_ff @(posedge clk) begin

 /// Stage 0

 //
 // Stage 0 computes:
 //
 // v00 <- v0 * v0 (Instance m00)
 // v01 <- v0 * v1 (Instance m01)
 // v11 <- v1 * v1 (Instance m11)
 //
 // Write values from stage 0 into pipeline latches.
 //
 pl_1_v00 <= v00;
 pl_1_v01 <= v01;
 pl_1_v11 <= v11;
 pl_1_occ <= start; // Note that start is passed down pipeline.

 /// Stage 1

 //
 // Stage 1 computes: s1 <- pl_1_v00 + pl_1_v01
 //
 pl_2_v0001 <= s1;
 pl_2_v11 <= pl_1_v11;
 pl_2_occ <= pl_1_occ;

 /// Stage 2

 //
 // Stage 2 computes: s2 <- pl_2_v0001 + pl_2_v11
 //
 result <= s2;
 ready <= pl_2_occ;
 //
 // Note: result and ready could have been named pl_3_result and
 // pl_3_ready.

 end

endmodule

 /// Non-Synthesizable Mag Module --- Complete, Don't Edit

// cadence translate_off
module multi_step_functional
 (output shortreal mag,
 input shortreal v0, v1);

 always_comb mag = v0 * v0 + v0 * v1 + v1 * v1;

endmodule
// cadence translate_on

 /// Non-Synthesizable Mag Module --- Complete, Don't Edit

//
// This is provided for reference.
//

← → Fall 2021 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw06-sol.v.html

module multi_step_seq
 (output logic [31:0] result,
 output logic ready,
 input uwire [31:0] v0, v1,
 input uwire start,
 input uwire clk);

 localparam logic [2:0] rnd = 0; // 1 is round towards zero.

 uwire [7:0] mul_s, add_s;

 logic [2:0] step;

 uwire [31:0] mul_a, mul_b;
 uwire [31:0] add_a, add_b;
 uwire [31:0] prod, sum;

 logic [31:0] ac0, ac1;

 localparam int last_step = 4;

 always_ff @(posedge clk)
 if (start) step <= 0;
 else if (step < last_step) step <= step + 1;

 CW_fp_mult m1(.a(mul_a), .b(mul_b), .rnd(rnd), .z(prod), .status(mul_s));
 CW_fp_add a1(.a(add_a), .b(add_b), .rnd(rnd), .z(sum), .status(add_s));

 assign mul_a = step < 2 ? v0 : v1;
 assign mul_b = step == 0 ? v0 : v1;
 assign add_a = ac0, add_b = ac1;

 always_ff @(posedge clk)
 begin

 ac0 <= prod;

 case (step)
 0: ac1 <= 0;
 1: ac1 <= sum;
 2: ac1 <= sum;
 endcase

 if (start) ready <= 0; else if (step == last_step-1) ready <= 1;

 end

 assign result = sum;

endmodule

//
/// Testbench Code

// cadence translate_off

function automatic real rand_real(real minv, real maxv);
 rand_real = minv + (maxv - minv) * (real'({$random})) / 2.0**32;
endfunction

function automatic shortreal fabs(shortreal val);
 fabs = val < 0 ? -val : val;
endfunction

program reactivate
 (output uwire clk_reactive, output int cycle_reactive,
 input uwire clk, input var int cycle);
 assign clk_reactive = clk;
 assign cycle_reactive = cycle;
endprogram

module testbench;

 typedef enum { MT_comb, MT_seq, MT_pipe } Module_Type;

 localparam int num_tests = 400;
 localparam int NUM_MUT = 4;

← → Fall 2021 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw06-sol.v.html

 localparam int err_limit = 7;
 localparam int trace_max_lines = 10;

 shortreal magr, vr[2];
 logic [31:0] vp[NUM_MUT][2];
 uwire [31:0] mag[NUM_MUT];

 uwire availn[NUM_MUT];
 logic avail[NUM_MUT];
 logic in_valid[NUM_MUT];

 typedef struct { int tidx; int cycle_start; int eta; } Test_Vector;

 typedef struct { int idx;
 int err_count = 0;
 int err_timing = 0;
 Module_Type mt = MT_comb;
 Test_Vector tests_active[$];
 string trace_lines[$];
 int eta_to_test[int];
 bit all_tests_started = 0;
 bit seq = 0; bit pipe = 0;
 bit bpipe = 0;
 int ncyc = 0;
 int ncompleted = 0;
 int cyc_tot = 0;
 int latency = 0;
 } Info;
 Info pi[string];

 localparam int cycle_limit = num_tests * 10;
 int cycle;
 bit done;
 logic clock;

 logic clk_reactive;
 int cycle_reactive;
 reactivate ra(clk_reactive,cycle_reactive,clock,cycle);

 initial begin
 clock = 0;
 cycle = 0;

 fork
 forever #10 cycle += ++clock;
 wait(done);
 wait(cycle >= cycle_limit)
 $write("*** Cycle limit exceeded, ending.\n");
 join_any;

 $finish();
 end

 task pi_seq(input int idx, input string name);
 automatic string m = $sformatf("%s", name);
 pi[m].idx = idx; pi[m].mt = MT_seq;
 pi[m].seq = 1; pi[m].bpipe = 0; pi[m].pipe = 0;
 endtask

 task pi_pipe(input int idx, input string name, input int ncyc);
 automatic string m = $sformatf("%s", name);
 pi[m].idx = idx; pi[m].mt = MT_pipe;
 pi[m].ncyc = ncyc;
 pi[m].seq = 1; pi[m].pipe = 1; pi[m].bpipe = 0;
 endtask

 multi_step_pipe m3(mag[3], availn[3], vp[3][0],vp[3][1], in_valid[3], clock);
 initial begin pi_pipe(3,"MS Pipe",m3.nstages); end

 always @*
 foreach (availn[i]) if (availn[i] !== 1'bz) avail[i] = availn[i];

 initial begin

 automatic int awaiting = pi.size();

 logic [31:0] vs[num_tests][2];
 shortreal vrs[num_tests][2];

 done = 0;

← → Fall 2021 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw06-sol.v.html

 foreach (pi[mut]) begin
 automatic int midx = pi[mut].idx;
 automatic int steps = pi[mut].ncyc;
 automatic int latency =
 !pi[mut].seq ? 1 : !pi[mut].pipe ? 2 * steps : steps;
 pi[mut].latency = latency;
 in_valid[midx] = 0;
 end

 for (int i=0; i<num_tests; i++) begin

 if (i < 4) begin

 // In first eight tests vector components are zero or one.
 //
 for (int j=0; j<2; j++) vrs[i][j] = i & 1 << j ? 1.0 : 0.0;

 end else begin

 // In other tests vector components are randomly chosen.
 //
 for (int j=0; j<2; j++) vrs[i][j] = rand_real(-10,+10);

 end

 for (int j=0; j<2; j++) vs[i][j] = $shortrealtobits(vrs[i][j]);

 end

 fork forever @(negedge clk_reactive) foreach (pi[mut]) begin
 automatic int midx = pi[mut].idx;
 if (!in_valid[midx] && pi[mut].pipe) begin
 vp[midx][0] = cycle;
 vp[midx][1] = 1;
 end
 end join_none;

 repeat (2 * 10) @(negedge clock);

 foreach (pi[mutii]) begin
 automatic string muti = mutii;

 fork begin
 automatic string mut = muti;
 automatic int midx = pi[mut].idx;
 for (int i=0; i<num_tests; i++) begin
 automatic int gap_cyc =
 ({$random} % 2) ? {$random} % (5) : 0;
 automatic Test_Vector tv;
 repeat (gap_cyc) @(negedge clock);
 vp[midx] = vs[i];
 in_valid[midx] = 1;
 tv.tidx = i;
 tv.cycle_start = cycle;
 tv.eta = tv.cycle_start + pi[mut].latency;
 pi[mut].eta_to_test[tv.eta] = i;
 pi[mut].tests_active.push_back(tv);
 @(negedge clock);
 in_valid[midx] = 0;
 end
 pi[mut].all_tests_started = 1;
 end join_none;

 fork begin
 automatic string mut = muti;
 automatic int midx = pi[mut].idx;
 automatic int n_timing_errs = 0;
 automatic int n_correct_val = 0; // Reset when test over.
 while (!pi[mut].all_tests_started || pi[mut].tests_active.size())
 @(negedge clk_reactive) begin
 automatic shortreal v0 = $bitstoshortreal(vp[midx][0]);
 automatic shortreal v1 = $bitstoshortreal(vp[midx][1]);
 automatic shortreal r_future = v0*v0+v0*v1+v1*v1;
 automatic shortreal r = $bitstoshortreal(mag[midx]);
 automatic Test_Vector tv = pi[mut].tests_active[0];
 automatic bit avail_sh = pi[mut].eta_to_test.exists(cycle);
 automatic int ita = tv.tidx;
 automatic int ieta =
 avail_sh ? pi[mut].eta_to_test[cycle] : -1;
 automatic int i = ita > ieta ? ita : ieta;

← → Fall 2021 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw06-sol.v.html

 automatic shortreal v0p = vrs[i][0], v1p = vrs[i][1];
 automatic shortreal shadow_magr = v0p*v0p+v0p*v1p+v1p*v1p;
 automatic string in_txt = in_valid[midx]
 ? $sformatf("In: %5.1f,%5.1f -> %5.1f", v0, v1, r_future)
 : "start=0";
 automatic shortreal err_mag = fabs(r - shadow_magr);
 automatic bit okay = err_mag < 1e-4;
 automatic bit err_rdy = avail_sh !== avail[midx];
 automatic bit err_val = avail_sh && !okay;
 automatic string tr_txt =
 $sformatf
 ("%-8s Cyc %3d %-24s Rdy %1d%s, Res: %5.1f %0s\n",
 mut, cycle, in_txt,
 avail[midx],
 err_rdy ? "X" : " ",
 r,
 okay && avail[midx] && avail_sh ? "Good" :
 okay && !avail[midx] && avail_sh ? "XX: Need Rdy" :
 okay && avail[midx] && !avail_sh ? "XX: Early" :
 !okay && avail_sh ? "XX: Wrong" :
 avail[midx] && !avail_sh ? "XX: Unexpected" : ""
);

 if (err_rdy) n_timing_errs++;
 if (okay) n_correct_val++;

 if (pi[mut].ncompleted < 3)
 $write("%s",tr_txt);
 else
 pi[mut].trace_lines.push_back(tr_txt);

 if (pi[mut].err_count < err_limit
 && pi[mut].err_timing < err_limit
 && (err_rdy || err_val))
 while (pi[mut].trace_lines.size())
 $write("%s", pi[mut].trace_lines.pop_front());

 if (avail_sh) begin
 pi[mut].tests_active.delete(0);
 pi[mut].ncompleted++;

 if (n_timing_errs) begin
 pi[mut].err_timing++;
 n_timing_errs = 0;
 end

 if (n_correct_val == 0) begin
 pi[mut].err_count++;
 if (pi[mut].err_count <= err_limit) begin
 $write
 ("%-8s test %0d: Inputs at cyc %0d, result expected at cyc %0d. Wrong val: h'%8h %7.4f != %7.4f (correct)\n",
 mut, i, tv.cycle_start, tv.eta,
 mag[midx], r, shadow_magr);
 end
 end
 n_correct_val = 0;
 end

 if (pi[mut].trace_lines.size() > trace_max_lines)
 pi[mut].trace_lines.delete(0);
 end
 awaiting--;
 end join_none
 end

 wait(awaiting == 0 || cycle > cycle_limit);

 foreach (pi[mut])
 $write("For %0s ran %0d tests: Errors: %0d wrong val, %0d bad timing\n",
 mut, num_tests,
 pi[mut].err_count, pi[mut].err_timing);

 done = 1;

 $finish(2);

 end

endmodule

← → Fall 2021 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw06-sol.v.html

// cadence translate_on

`default_nettype wire

`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/sim/verilog/CW/CW_fp_mult.v"
`include "/apps/linux/cadence/GENUS211/share/synth/lib/chipware/sim/verilog/CW/CW_fp_add.v"

← → Fall 2021 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2021/hw06-sol.v.html

16 Fall 2020 Solutions

338

← → Fall 2020 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2020/hw01_sol.pdf

LSU EE 4755 Homework 1 Solution Due: 16 September 2020
Paper copies will not be accepted. E-mail your solution to koppel@ece.lsu.edu. A single PDF

file is preferred.

Problem 1: In the Module-Port-versus-Module-Parameter section of lecture code
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html there are several module de-
signs for computing c1x + c2y, where c1 and c2 are constants and x and y are module inputs. The
point of that section and of the modules was to illustrate the SystemVerilog differences between
module parameters and ports (syntax issues, for example) and also how they relate to the hardware
being modeled.

(a) Draw a diagram of module c1x_c2y_good, shown below, using its default parameter values
(which are different than the ones in the lecture code). Show the contents of all instantiated
modules and appropriately label ports and wires. (See 2016 Homework 1 Problem 3 for a dia-
gram showing instantiated modules. Also see module arb_exp and the illustration that follows in
https://www.ece.lsu.edu/koppel/v/2020/l015-syn-comb-str.v.html.)

• Use the default parameter values of the module c1x_c2y_good shown below.

• Use the appropriate parameter values for the mult_by_c instances. Hint: appropriate is not
a synonym for default.

• Show the ports for all modules.

• Show the number of bits in each wire.

• Label wires with the symbols used below (such as p1 and prod) and take care to place
the label on the correct side of a module boundary. (In the two_pie illustration from
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html look at the wire carrying
labels x, i1, and a.).

Continued on next page.

1

← → Fall 2020 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html
https://www.ece.lsu.edu/koppel/v/2020/l015-syn-comb-str.v.html
https://www.ece.lsu.edu/koppel/v/2020/l005-review.v.html
https://www.ece.lsu.edu/ee4755/2020/hw01_sol.pdf

module mult_by_c
#(int w = 8, int c = 16, int w2 = w+$clog2(c))

(output uwire signed [w2-1:0] prod, input uwire signed [w-1:0] a);

assign prod = a * c;

endmodule

module c1x_c2y_good
#(int c1 = 4, int c2 = 7, int w = 15,

int w2 = w + $clog2(c1) + $clog2(c2))

(output logic signed [w2-1:0] s, input uwire signed [w-1:0] x, y);

uwire [w2-1:0] p1, p2;

mult_by_c #(w,c1,w2) m1(p1,x);
mult_by_c #(w,c2,w2) m2(p2,y);

assign s = p1 + p2;

endmodule

Solution appears below. Notice that parameters are not shown as module inputs. For example, c1 is not shown as
an input to m1.

mult_by_c
(w=15, c=4, w2=20)

×
a

prod p1

p2

x

y

15
4 20

m1

mult_by_c
(w=15, c=7, w2=20)

×
a

prod
15

7 20

m2 s
20

+

20

20

15

15

c1x_c2y_good
(c1=4, c2=7, w=15)

2

← → Fall 2020 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2020/hw01_sol.pdf

(b) Draw a diagram of module c1x_c2y_okay below using its default parameter values (which are
different than the defaults used in the lecture code). Show the same details, such as ports, as was
requested for the previous part.

module mult
#(int w = 8, int w2 = 2 * w)

(output uwire signed [w2-1:0] prod, input uwire signed [w-1:0] a, b);

assign prod = a * b;

endmodule

module c1x_c2y_okay
#(int c1 = 4, int c2 = 7, int w = 15,

int w2 = w + $clog2(c1) + $clog2(c2))

(output logic signed [w2-1:0] s, input uwire signed [w-1:0] x, y);

uwire [w2-1:0] p1, p2;

uwire [w:1] C1 = c1, C2 = c2; // Convert constants to desired size.

mult #(w,w2) m1(p1, x, C1);

mult #(w,w2) m2(p2, y, C2);

assign s = p1 + p2;

endmodule

Solution appears below. Here, C1 and C2 are inputs to m1 and m2. A lazy synthesis program, or less judgmentally,
a synthesis program set to optimize at a low effort level might not take advantage of the fact that in m1 the b input is 4.
That would result in much more expensive hardware.

p1

p2

x

y

m1

mult (w=15, w2=20)
a

prod
15

1
5

'd
7 20

m2 s
20

+

20

20

15

15

c1x_c2y_okay
(c1=4, c2=7, w=15)

b
15

×
C2
15

mult (w=15, w2=20)
a

prod
15

20b
151

5
'd

4 C1
15

×

3

← → Fall 2020 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2020/hw01_sol.pdf

Problem 2: Synthesis programs optimize a design to minimize cost while meeting timing con-
straints. The illustration below for the mult and mult_by_c modules (used in the slides) show how
the multiplier can be simplified when one of the inputs is a convenient constant, 1.

Show how the c1x_c2y_good module from the first problem can be optimized based on the
default c1=4 and c2=7 values. To do so show the multiplier replaced by much simpler hardware,
such as adder(s). A correct solution uses only one adder for both multipliers, bit relabeling, plus
the adder used to combine p1 and p2.

Note: As originally assigned, and until Tuesday, 15 September 2020 at about 16:15, the problem
stated that a correct solution uses only one adder, implying but not specifically stating that the one
adder was the replacement for the multipliers and that there would also be and adder computing
p1+p2, for a total of two adders.

×

a

b

prod

mult (w,w2)

w

w

× w2

a
prod

mult_by_c (w,c,w2)

w × w2
C

a

b

prod

mult (w=8,w2)

8

8

× 16

a
prod

mult_by_c (w=8,c=1,w2)

8
8

1

Before instantiation and optimization.

After instantiation and optimization.

Solution on next page.

4

← → Fall 2020 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2020/hw01_sol.pdf

Two solutions appear below. The first is easier to understand, but uses two adders for m2. The second uses one
adder for m2.

Both solutions take advantage of the fact that multiplication by a power of 2, such as 4, can be achieved by left-
shifting. To compute 4x the value of x is left-shifted by two positions. The hardware for achieving that is trivial: relabel
bit position i to i + 2 and set bits at positions 0 and 1 to the constant 0. Both solutions do this in m1. Make sure that
the notation for re-labeling bits used in m1 is understood.

The solution below computes 7y using two adders: 4y + 2y + y = 7y.
Both solutions use adders that have unequal port sizes. For example in the first solution the adder computing s has

one 17-bit input and one 20-bit input. That’s not an unreasonable assumption to make.

mult_by_c
(w=15, c=4, w2=20)
a

prod p1

p2

x

y

15
17

m1

mult_by_c
(w=15, c=7, w2=20)

a

p
ro
d

15

20

m2 s
20

+

17

20

15

15

c1x_c2y_good
(c1=4, c2=7, w=15)

2
'b

0

2
'b

0

msb

+17

Compute 4x
by shifting left
by two bits.

1
'b

0

16

msb
+

Compute 4y.

Compute 2y. Compute
4y+2y+y = 7y

msb

Better one-adder-m2 solution on next page.

5

← → Fall 2020 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2020/hw01_sol.pdf

The solution using one adder for m2 appears below. Recall that m2 computes 7y. That can be done with one adder
by computing 8y + (−y) = 7y. But to compute a 2’s complement representation of −y one needs to negate each bit
and then add 1. Negating each bit is easy. A wasteful solution would use an adder just to compute (−y−1)+1. There’s
no need for that here, instead the solution computes (8y + 1) + (−y− 1) = 7y. The quantity 8y + 1 is obtained by
left-shifting by 3 bits and then putting a 1 in the least-significant bit position. Negating the bits of 2’s complement number
y results in −y − 1, which is what we need. Notice that the hardware computing −y − 1 produces an 18-bit quantity
by sign-extending the 15-bit quantity. The need to do sign extension in the diagram below could have been eliminated by
using an adder with an 18- and 15-bit input. The adder would do the sign-extension internally.

mult_by_c
(w=15, c=4, w2=20)
a

prod p1

p2

x

y

15
17

m1

mult_by_c
(w=15, c=7, w2=20)

a

p
ro
d

15 18

m2 s
20

+

17

18

15

15

c1x_c2y_good
(c1=4, c2=7, w=15)

2'b0 lsb

3'b1

msb

+

[13]

[0]

18

18

lsb

Compute 4x
by shifting left
by two bits.

[14]

Compute
8y+1 by
shifting left
by 3 bits and
putting a 1
in LSB.

Compute
(8y+1)-(y+1)=7y.

S
ig

n
-e

x
te

n
d

 t
o
 1

8
 b

it
s.

Compute -(y+1)
using a bitwise
NOT.

6

← → Fall 2020 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2020/hw01_sol.pdf

//
//
/// LSU EE 4755 Fall 2020 Homework 2 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2020/hw02.pdf

`default_nettype none

//
/// Problem 1
//
 /// Modify

 ///
//
// [✔] nn4x4b must instantiate exactly four nn1x4b modules.
// [✔] nn1x4b must instantiate exactly two nn1x2 modules.
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter value.
// [✔] Pay attention to port widths. Do not make them larger than needed.
//
// [✔] Code must be written clearly.

module nn4x4
 #(int wa = 10, ww = 5)
 (output uwire [wa-1:0] ao[4],
 input uwire [wa-1:0] ai[4],
 input uwire [ww-1:0] wht[4][4]);

 /// DO NOT MODIFY THIS ROUTINE.

 assign ao[0] = ai[0] * wht[0][0] + ai[1] * wht[0][1]
 + ai[2] * wht[0][2] + ai[3] * wht[0][3];

 assign ao[1] = ai[0] * wht[1][0] + ai[1] * wht[1][1]
 + ai[2] * wht[1][2] + ai[3] * wht[1][3];

 assign ao[2] = ai[0] * wht[2][0] + ai[1] * wht[2][1]
 + ai[2] * wht[2][2] + ai[3] * wht[2][3];

 assign ao[3] = ai[0] * wht[3][0] + ai[1] * wht[3][1]
 + ai[2] * wht[3][2] + ai[3] * wht[3][3];

endmodule

module nn4x4b
 #(int wa = 10, ww = 5)

← → Fall 2020 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/koppel/v/2020/hw02.pdf
https://www.ece.lsu.edu/ee4755/2020/hw02-sol.v.html

 (output uwire [wa-1:0] ao[4],
 input uwire [wa-1:0] ai[4],
 input uwire [ww-1:0] wht[4][4]);

 /// SOLUTION

 nn1x4b #(wa,ww) n0(ao[0], ai, wht[0]);
 nn1x4b #(wa,ww) n1(ao[1], ai, wht[1]);
 nn1x4b #(wa,ww) n2(ao[2], ai, wht[2]);
 nn1x4b #(wa,ww) n3(ao[3], ai, wht[3]);

endmodule

module nn1x4b
 #(int wa = 10, ww = 5)
 (output uwire [wa-1:0] ao,
 input uwire [wa-1:0] ai[4],
 input uwire [ww-1:0] wht[4]);

 /// SOLUTION

 uwire [wa-1:0] aoa, aob;
 nn1x2b #(wa,ww) n0(aoa, ai[0:1], wht[0:1]);
 nn1x2b #(wa,ww) n1(aob, ai[2:3], wht[2:3]);
 assign ao = aoa + aob;

endmodule

module nn1x2b
 #(int wa = 10, ww = 5)
 (output uwire [wa-1:0] ao,
 input uwire [wa-1:0] ai[2],
 input uwire [ww-1:0] wht[2]);

 /// SOLUTION

 assign ao = ai[0] * wht[0] + ai[1] * wht[1];

endmodule

//
/// Testbench Code

module nnOxI
 #(int no = 4, ni = 4, wa = 10, ww = 5)
 (output logic [wa-1:0] ao[no],
 input uwire [wa-1:0] ai[ni],
 input uwire [ww-1:0] wht[no][ni]);

 /// DO NOT MODIFY THIS ROUTINE.

 always_comb

← → Fall 2020 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2020/hw02-sol.v.html

 for (int o = 0; o < no; o++) begin
 ao[o] = 0;
 for (int i=0; i<ni; i++) ao[o] += ai[i] * wht[o][i];
 end

endmodule

// cadence translate_off

module testbench;

 localparam int wa = 16;
 localparam int ww = 8;
 localparam int ni = 4; // Number of input neurons.
 localparam int no = 4; // Number of output neurons.
 localparam int nmut = 3;

 localparam int ntests = 10;

 logic [wa-1:0] ai[ni];
 uwire [wa-1:0] ao[nmut][no];
 logic [ww-1:0] wht[no][ni];

 string mname[] = { "Behav", "Flat", "Sol" };

 typedef struct { string name; int no, ni; } Test_Set;
 Test_Set ts[] = '{ '{ "n12", 1, 2 }, '{ "n14", 1, 4 }, '{ "n44", 4, 4 } };

 nnOxI #(no,ni,wa,ww) nn1i(ao[0],ai,wht);
 nn4x4 #(wa,ww) nn2i(ao[1],ai,wht);
 nn4x4b #(wa,ww) nn3i(ao[2],ai,wht);

 initial begin

 automatic int mut = 2;
 automatic string test_summary = "";

 $write("Testing module %s\n", mname[mut]);

 foreach (ts[ti]) begin

 automatic Test_Set tinfo = ts[ti];
 automatic int n_err = 0;

 $write("\n** Starting test set %s (%0d outputs, %0d inputs) **\n",
 tinfo.name, tinfo.no, tinfo.ni);

 for (int tnum=0; tnum < ntests; tnum++) begin

 for (int io=0; io<no; io++)
 for (int ii=0; ii<ni; ii++)
 wht[io][ii] = io < tinfo.no && ii < tinfo.ni ? {$random} : 0;

 for (int ii=0; ii<ni; ii++)

← → Fall 2020 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2020/hw02-sol.v.html

 ai[ii] = ii < tinfo.ni ? {$random} : 0;

 #1;

 for (int io=0; io<tinfo.no; io++) begin

 if (ao[0][io] !== ao[mut][io]) begin
 n_err++;
 if (n_err < 4)
 $write
 ("Error test # %0d, output %0d: %0d != %0d (correct)\n",
 tnum, io, ao[mut][io], ao[0][io]);
 end
 end
 end

 begin
 automatic string msg =
 $sformatf("%0d %s tests on %s: %0d errors found.",
 ntests, tinfo.name, mname[mut], n_err);
 $write("Done with %s\n",msg);
 test_summary = { test_summary, $sformatf("Results of %s\n", msg) };
 end

 end

 $write("\n** Summary of Results **\n%s", test_summary);

 end

endmodule

// cadence translate_on

← → Fall 2020 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2020/hw02-sol.v.html

//
//
/// LSU EE 4755 Fall 2020 Homework 3 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2020/hw03.pdf

`default_nettype none

//
/// Problem 1
//
 /// Modify nnOxI and nn1xI so they compute same output as nnOxIbe.

 ///
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] Don't assume any particular parameter value.
// [✔] Don't make ports wider than necessary.
//
// [✔] Code must be written clearly.

 /// Module Connection Names

 //
 // no: Number of elements in Output array.
 // ni: Number of elements in Input array.
 // wo: Width (number of bits) in each element of output array.
 // wi: Width (number of bits) in each element of input array.
 // ww: Width (number of bits) in each element of weight array.
 // sat: If 0, on overflow use low wo bits of result.
 // If 1, on overflow set result to maximum possible value,
 // do this where overflow occurs.
 // If 2, on overflow set result to maximum possible value,
 // do this in nnOxI (not in nn1xI nor in nnAdd, nnMult, etc.)
 // tr: If 0, generate a linear connection of nnMADD modules in nn1xI.
 // If 1, generate a tree connection of arithmetic units by
 // recursively defining nn1xI.
 // ao: Activation (neuron) Output array.
 // ai: Activation (neuron) Input array.
 // wht: Weights.

module nnOxI
 #(int no = 4, ni = 2, wo = 10, wi = 4, ww = 5, tr = 0, sat = 0)
 (output uwire [wo-1:0] ao[no],
 input uwire [wi-1:0] ai[ni],
 input uwire [ww-1:0] wht[no][ni]);

 // [✔] Instantiate nn1xI modules here.
 // [✔] If sat == 2 replace overflow values with max possible value.

← → Fall 2020 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/koppel/v/2020/hw03.pdf
https://www.ece.lsu.edu/ee4755/2020/hw03-sol.v.html

 // [✔] Don't forget to set appropriate parameter values.

 /// SOLUTION

 // Compute number of bits to represent largest possible value that
 // can appear on an ao.
 //
 localparam int wr = $clog2((2**wi - 1) * (2**ww - 1) * ni);

 if (sat < 2 || wr <= wo) begin

 // If overflow is not possible turn off check for saturation.
 //
 localparam int satp = wr <= wo ? 0 : sat;

 for (genvar i = 0; i < no; i++)
 nn1xI #(wo,wi,ww,ni,tr,satp) row(ao[i], ai, wht[i]);

 end else begin

 for (genvar i = 0; i < no; i++) begin

 uwire [wr-1:0] ar;
 nn1xI #(wr,wi,ww,ni,tr,0) row(ar, ai, wht[i]);

 // If there is an overflow substitute maximum value.
 //
 assign ao[i] = ar[wr-1:wo] ? ~wo'(0) : ar[wo-1:0];

 end

 end

endmodule

module nn1xI
 #(int wo = 10, wi = 4, ww = 5, ni = 2, tr = 0, sat = 0)
 (output uwire [wo-1:0] ao,
 input uwire [wi-1:0] ai[ni],
 input uwire [ww-1:0] wht[ni]);

 // [✔] If tr == 0 use generate loop to instantiate nnMADD modules.
 // [✔] If tr == 1 use recursion to describe a tree structure ..
 // [✔] .. and use nnMADD, nnMult, and nnAdd where appropriate.
 // [✔] Don't forget to set appropriate parameter values.

 /// SOLUTION

 //
 if (tr) begin

 if (ni == 1) begin

 nnMult #(wi,ww,wo,sat) mult(ao, ai[0], wht[0]);

← → Fall 2020 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2020/hw03-sol.v.html

 end else begin

 localparam int nlo = ni / 2;
 localparam int nhi = ni - nlo;
 uwire [wo-1:0] aolo, aohi;
 nn1xI #(wo,wi,ww,nlo,1,sat) nnlo(aolo, ai[0:nlo-1], wht[0:nlo-1]);
 nn1xI #(wo,wi,ww,nhi,1,sat) nnhi(aohi, ai[nlo:ni-1], wht[nlo:ni-1]);
 nnAdd #(wo,sat) add(ao,aolo,aohi);

 end

 end else begin

 uwire [wo-1:0] s[ni-1:-1];
 assign s[-1] = 0;
 assign ao = s[ni-1];

 for (genvar i = 0; i < ni; i++)
 nnMADD #(ww,wi,wo,sat) madd(s[i], wht[i], ai[i], s[i-1]);

 end

endmodule

module nnMADD
 #(int wa = 10, wb = 5, ws = wa + wb, sat = 0)
 (output uwire [ws-1:0] so,
 input uwire [wa-1:0] a, input uwire [wb-1:0] b, input uwire [ws-1:0] si);

 /// DO NOT MODIFY THIS MODULE.

 uwire [ws-1:0] p;
 nnMult #(wa,wb,ws,sat) mu(p, a, b);
 nnAdd #(ws,sat) ad(so, si, p);

endmodule

module nnAdd
 #(int w = 5, sat = 0)
 (output uwire [w-1:0] so,
 input uwire [w-1:0] a, b);

 /// DO NOT MODIFY THIS MODULE.

 uwire [w:0] s = a + b;
 localparam logic [w-1:0] smax = ~w'(0);
 assign so = sat && s[w] ? smax : s[w-1:0];

endmodule

module nnMult
 #(int wa = 5, wb = 6, wp = wa + wb, sat = 0)
 (output uwire [wp-1:0] p,

← → Fall 2020 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2020/hw03-sol.v.html

 input uwire [wa-1:0] a, input uwire [wb-1:0] b);

 /// DO NOT MODIFY THIS MODULE.

 localparam logic [wp-1:0] pmax = ~wp'(0);
 localparam int wmx = wp > wa+wb ? wp : wa+wb;
 uwire [wmx-wp:0] phi;
 uwire [wp-1:0] plo;
 assign {phi,plo} = a * b;
 assign p = sat && wp < wa + wb && phi ? pmax : plo;

endmodule

// Synthesizing at effort level "medium"

// Module Name Area Delay Delay
// Actual Target

// nnOxI_no2_ni16_wo12_wi5_ww4_sat0_tr0 588304 6.972 90.000 ns
// nnOxI_no2_ni16_wo12_wi5_ww4_sat0_tr1 588304 6.972 90.000 ns
// nnOxI_no2_ni16_wo12_wi5_ww4_sat1_tr0 753136 63.864 90.000 ns
// nnOxI_no2_ni16_wo12_wi5_ww4_sat1_tr1 631611 7.043 90.000 ns
// nnOxI_no2_ni16_wo12_wi5_ww4_sat2_tr0 594261 7.450 90.000 ns
// nnOxI_no2_ni16_wo12_wi5_ww4_sat2_tr1 594261 7.450 90.000 ns

// nnOxI_no2_ni16_wo12_wi5_ww4_sat0_tr0 783094 4.828 1.000 ns
// nnOxI_no2_ni16_wo12_wi5_ww4_sat0_tr1 779386 4.852 1.000 ns
// nnOxI_no2_ni16_wo12_wi5_ww4_sat1_tr0 951332 9.503 1.000 ns
// nnOxI_no2_ni16_wo12_wi5_ww4_sat1_tr1 916787 5.136 1.000 ns
// nnOxI_no2_ni16_wo12_wi5_ww4_sat2_tr0 800554 4.980 1.000 ns
// nnOxI_no2_ni16_wo12_wi5_ww4_sat2_tr1 771789 4.981 1.000 ns

// Normal exit.

module nnOxIbe
 #(int no = 4, ni = 4, wo = 10, wi = 4, ww = 5, sat = 0)
 (output logic [wo-1:0] ao[no],
 input uwire [wi-1:0] ai[ni], input uwire [ww-1:0] wht[no][ni]);

 /// DO NOT MODIFY THIS MODULE

 //
 // Study the code in this module to get a better understanding
 // of what the output of nnOxI should be.

 // Determine the maximum possible value of each element of ao.
 //
 localparam logic [wo-1:0] smax = ~wo'(0);

 always_comb
 for (int o = 0; o < no; o++) begin

← → Fall 2020 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2020/hw03-sol.v.html

 automatic int unsigned acc = 0;
 for (int i=0; i<ni; i++) acc += ai[i] * wht[o][i];
 ao[o] = sat && acc > smax ? smax : acc;
 end

endmodule

//
/// Testbench Code

// cadence translate_off

typedef struct { int ni, no, wa, ww; } Config;

module testbench;

 localparam int nc = 2;
 localparam int configs[nc][4] = '{ '{ 4,4, 16,9 }, '{ 5,3, 15,8 } };
 `ifdef grrr
 initial if (nc != configs.size())
 $fatal(1, "Constant nc should be %0d.\n", configs.size());
 `endif

 int t_errs; // Total number of errors.
 int t_errs_cat[string]; // Total errors by configuration category.
 string test_summary;
 initial begin
 t_errs = 0;
 test_summary = "";
 end

 final begin

 automatic int mlen = 0;
 foreach (t_errs_cat[key]) if (mlen < key.len()) mlen = key.len();

 $write("\n** Summary of Results **\n%s", test_summary);
 foreach (t_errs_cat[key])
 $write("%0s%0s %5d errors.\n",
 key, { mlen - key.len() {" "}}, t_errs_cat[key]);
 $write("Total number of errors: %0d\n",t_errs);

 end

 localparam int maxsat = 3;

 uwire d[maxsat*nc:-1]; // Start / Done signals.
 assign d[-1] = 1; // Initialize first at true.

 // Instantiate a testbench at each size.
 //
 for (genvar i=0; i<nc; i++) begin
 localparam int c[4] = configs[i];

← → Fall 2020 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2020/hw03-sol.v.html

 for (genvar sat=0; sat<maxsat; sat++) begin
 localparam int idx = maxsat*i + sat;
 testbench_x #(c[0],c[1],c[2],c[3],sat)
 t2(.done(d[idx]), .start(d[idx-1]));
 end
 end

endmodule

module testbench_x
 #(int ni = 4, no = 4, wo = 16, ww = 8, sat = 0)
 (output logic done, input uwire start);

 localparam int wi = ww + 1;

 localparam int nmut = 3;

 localparam int ntests = 10;

 logic [wi-1:0] ai[ni];
 uwire [wo-1:0] ao[nmut][no];
 logic [ww-1:0] wht[no][ni];

 string mname[] = { "Behav", "Linear", "Tree" };

 typedef struct { string name; int no, ni; } Test_Set;
 Test_Set ts[] = '{ '{ "n12", 1, 2 }, '{ "n1*", 1, ni }, '{ "n**", no, ni } };

 nnOxIbe #(no,ni,wo,wi,ww,sat) nn0(ao[0],ai,wht);
 nnOxI #(no,ni,wo,wi,ww,0,sat) nn1(ao[1],ai,wht);
 nnOxI #(no,ni,wo,wi,ww,1,sat) nn2(ao[2],ai,wht);

 initial begin

 automatic string config_label =
 $sformatf("no=%0d, ni=%0d, wo=%0d, wi=%0d, ww=%0d, sat=%0d",
 no, ni, wo, wi, ww, sat);

 wait(start);

 $write("\n** Starting tests for %s\n", config_label);
 testbench.test_summary =
 { testbench.test_summary, $sformatf("Results from %s\n",config_label) };

 for (int mut = 1; mut < nmut; mut++) begin

 $write("Testing module %s\n", mname[mut]);

 foreach (ts[ti]) begin

 automatic Test_Set tinfo = ts[ti];
 automatic int n_err = 0;

 $write("\n** Starting test set %s (%0d outputs, %0d inputs) for %s **\n",

← → Fall 2020 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2020/hw03-sol.v.html

 tinfo.name, tinfo.no, tinfo.ni, mname[mut]);

 for (int tnum=0; tnum < ntests; tnum++) begin

 for (int io=0; io<no; io++)
 for (int ii=0; ii<ni; ii++)
 wht[io][ii] = io < tinfo.no && ii < tinfo.ni ? $random : 0;

 for (int ii=0; ii<ni; ii++)
 ai[ii] = ii < tinfo.ni ? $random : 0;

 #1;

 for (int io=0; io<tinfo.no; io++) begin

 if (ao[0][io] !== ao[mut][io]) begin
 n_err++;
 if (n_err < 4)
 $write
 ("Error test # %0d, output %0d: %0d != %0d (correct)\n",
 tnum, io, ao[mut][io], ao[0][io]);
 end
 end

 end

 begin
 automatic string sat_key =
 $sformatf("Sat %0d",sat);
 automatic string long_key =
 $sformatf("%s %s",mname[mut],sat_key);
 automatic string msg =
 $sformatf("%0d %s tests on %s: %0d errors found.",
 ntests, tinfo.name, mname[mut], n_err);
 $write("Done with %s\n",msg);
 testbench.test_summary =
 { testbench.test_summary, $sformatf("Results of %s\n", msg) };
 testbench.t_errs += n_err;
 testbench.t_errs_cat[{"All ",sat_key}] += n_err;
 testbench.t_errs_cat[long_key] += n_err;
 testbench.t_errs_cat[mname[mut]] += n_err;
 end

 end

 end

 done = 1;

 end

endmodule

← → Fall 2020 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2020/hw03-sol.v.html

// cadence translate_on

← → Fall 2020 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2020/hw03-sol.v.html

LSU EE 4755 Homework 4 Solution Due: 28 October 2020
Paper copies will not be accepted. E-mail your solution to koppel@ece.lsu.edu. A single PDF

file is preferred.

This assignment refers to the solution to Homework 3. Pieces are shown below, the complete
solution can be found at https://www.ece.lsu.edu/koppel/v/2020/hw03-sol.v.html and in
the directory where the original assignment was copied from.

This solution was prepared 3 Nov 2020 at 16:23. A more detailed solution may be posted later.

Problem 1: Using the simple model compute the cost and delay of the nnAdd module from Home-
work 3 (shown below) for both sat=0 and sat=1. Do so after applying optimizations for constants.
Show the cost and delay in terms of w. Hint: See the simple model notes,
https://www.ece.lsu.edu/koppel/v/2020/lsli-simple-model.pdf, for the cost of a ripple adder.

• Show cost and delay in terms of w.

• Don’t forget to optimize for constant values.

• Assume that the adder will be implemented using a ripple circuit.

• Indicate both the delay of the least-significant bit of the sum and the delay of the most
significant bit of the sum. Answering this part correctly and applying it to the other problems
in this assignment will reveal something important about the impact of detecting overflow
and of the different methods of doing so.

module nnAdd #(int w = 5, sat = 0)

(output uwire [w-1:0] so, input uwire [w-1:0] a, b);

uwire [w:0] s = a + b;

localparam logic [w-1:0] smax = ~w’(0);

assign so = sat && s[w] ? smax : s[w-1:0];

endmodule

Under the simple model the cost of a w-bit ripple adder is 9w uc, the delay of the least-significant bit is 4 ut and
the delay of the entire sum is 2(w + 1) ut.

For sat=0 the cost and delay are those of the w-bit adder described above: The cost of the sat=0 module is 9w uc ,

the delay of the LSB in the sat=0 module is 4 ut , and the delay of the MSB in the sat=0 module is 2(w + 1) ut .
When sat=1 the overflow logic must be taken into account too. That overflow logic synthesizes into a multi-

plexor with the select signal connected to s[w], the zero input connected to smax, and the one input connected to
the sum, s[w-1:0]. Because smax is a constant, the cost of the multiplexor is w and the added delay is 1. So,

the cost with sat=1 is 10w uc .
Because the multiplexor control signal is connected to the carry out of the adder (which would be bit position w of

the sum), all bits of the sum must wait for the MSB to arrive. That means that

the delay for all bits in the sat=1 module is [2(w + 1) + 1] ut . Sure, if all you cared about was the MSB this would
be no big deal. But it precludes getting a faster result with cascaded ripple adders.

There are more problems on the next pages.

1

← → Fall 2020 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2020/hw03-sol.v.html
https://www.ece.lsu.edu/koppel/v/2020/lsli-simple-model.pdf
https://www.ece.lsu.edu/ee4755/2020/hw04_sol.pdf

Problem 2: Using the simple model compute the cost and delay of the nnMult module from
Homework 3 for sat=1. Let w denote the setting of both wa and wb (they are to be set to the same
value), and let y denote the setting of wp. Solve this for y < 2w. Do so after applying optimizations
for constants.

Solve this using the following cost for an unsigned integer multiplier with two w-bit inputs
and a 2w-bit output: the cost using the simple model is 10w2 uc and the delay is [8w + 2] ut

for the complete product and [4i + 2] ut for bit position i. (The LSB is at position i = 0.)
(For more details on how those were derived see the comments after the Linear Multiplier in
https://www.ece.lsu.edu/koppel/v/2020/mult-seq.v.html.)

• Show the cost and delay in terms of w and y.

• Solve this for y < 2w.

• Don’t forget to optimize for constant values.

module nnMult #(int wa = 5, wb = 6, wp = wa + wb, sat = 0)

(output uwire [wp-1:0] p, input uwire [wa-1:0] a, input uwire [wb-1:0] b);

localparam logic [wp-1:0] pmax = ~wp’(0);

localparam int wmx = wp > wa+wb ? wp : wa+wb;

uwire [wmx-wp:0] phi;

uwire [wp-1:0] plo;

assign {phi,plo} = a * b;

assign p = sat && wp < wa + wb && phi ? pmax : plo;

endmodule

In order to detect overflow the multiplier must compute a 2w-bit product. The problem statement helpfully gives
the cost of such hardware as 10w2 uc and the delay as [8w + 2] ut.

The only difference with the saturation logic is that it must examine 2w − y bits of the product. If any of those
2w − y bits are 1 then there is overflow. As in the previous problem there is a multiplexor with the result (product in
this case) at the zero input and pmax at the one input. The select signal is generated by ORing the 2w− y high bits of
the product together. The cost of the multiplexor is y uc, and the cost of the OR gate is [2w − y − 1] uc. Ordinarily
under the simple model the delay for an a-input OR gate would be dlg ae. But in this case we know the less significant
bits of the product arrive earlier than the more significant bits. To implement an a-input OR gate for such a situation
the OR gates can be connected linearly (rather than using a reduction tree). The MSB of the product would connect to
the last OR gate, and so the delay for checking whether any of the 2w − y bits is 1 would just be 1 ut.

The total cost of nnMult is [10w2 + y] uc and the delay of all bits is [8w + 2 + 1] ut .

There are more problems on the next pages.

2

← → Fall 2020 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/2020/mult-seq.v.html
https://www.ece.lsu.edu/ee4755/2020/hw04_sol.pdf

Problem 3: Using the simple model determine the cost and performance of module nn1xI (shown
on the next page) for the configurations described below. In all cases, let n denote the value of ni,
w denote the value of ww and wi (which are the same) and y denote the value of wo. Assume the
same hardware costs as the first two problems (modifying sizes and accounting for cascading where
appropriate).

(a) Find the cost (not delay in this part) for sat=0, tr=0, and y > 2w (that’s one configuration) and
for sat=0, tr=1, and y > 2w (that’s a second configuration). The two costs will be very similar.

• Show the costs in terms of n, w, and y.

Short answer: The cost for tr=0 and tr=1 is [10nw2 + 9(n− 1)y] uc (or lower, see detailed answer).

Detailed Answer: The y > 2w condition means that the multiplier will not overflow and that all bits of the
product are needed. (If y were smaller, say y = w, then some of the adders used to implement the multiplier would be
less than w bits and so would cost less.)

The nnMADD module consists of both an nnAdd and nnMult module. So the cost of the tr=0 solution will be
discussed in terms of the nnAdd and nnMult modules.

For both the tr=0 and tr=1 cases there will be n multipliers each having two w-bit inputs. The total cost of
these multipliers is 10nw2 uc.

For the tr=0 case there are n nnAdd units but the input to the first adder is zero (because s[-1]=0), so
after optimization there are n − 1 adders. When n is a power of 2, the number of adders for the tr=1 case is∑(lgn)−1

l=0 2l = n− 1. So the number of adders is the same in both cases.
The code instantiates y-bit adders, but good synthesis programs—and good students—will have noticed that not

all adders need y bits to avoid overflow. For the tr=0 case the i=1 adder has two 2w-bit inputs and so only needs to
compute a sum of 2w + 1 bits to avoid overflow. So if y > 2w + 1 the cost can be reduced by using a 2w + 1 bit
adder rather than a y bit adder. Call this a trim optimization.

First, compute the cost without the trim optimization. The cost of each of these adders is 9y uc. The total cost of
the adders for both tr=0 and tr=1 is 9y(n− 1) uc.

The total cost of the nn1xI module without the trim optimization is [10nw2 + 9(n− 1)y] uc.
The cost with the trim optimization will be computed for tr=1. Let l indicate a level in the recursion tree with

l corresponding to a level in which n = 2l. The base case is l = 0, for which there are no adders. For l > 0
there are n/2l adders each need 2w + l bits, so the cost at level l is

[
n
2l

9(2w + l)
]

uc. The total adder cost is∑(lgn)
l=1

[
n
2l

9(2w + l)
]

uc = [9(2w + 2)(n− 1)− 9 lg n] uc.

(b) Find the delay (not cost in this part) for sat=0, tr=0, and y > 2w (that’s one configuration)
and for sat=0, tr=1, and y > 2w (that’s a second configuration). The two delays will be very
different.

• Show the delays in terms of n, w, and y.

• When computing the total delay don’t forget to take into account the time that inputs arrive
at each port, especially for the multiplier.

• When computing total delay account for cascading of ripple units.

At launch time (t = 0) inputs are available at all of the multipliers. As stated in the problem, bit i is correct at
time [4i + 2] ut.

First consider tr=0. For i=1 (the i from the generate loop) the two inputs to the adder are from multipliers
(because for i=0 there is no need for an adder), and so bit i arrives at 4i + 2. Because the inputs to the adder aren’t
all available at the same time we can’t rely on the ripple adder formula for when bit i of the sum is available. We know
that each BFA requires 4 units of time to compute both the sum and carry output from its inputs when those inputs are
available at the same time. Therefore, bit i of that first adder is available at 4i + 2 + 4 = 4i + 6. Accounting for

3

← → Fall 2020 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2020/hw04_sol.pdf

n− 1 adders, bit i is available at 4i + 2 + 4(n− 1) = 4(i + n)− 2 and the most-significant bit, y − 1 is available
at [4(y − 1) + 4n− 2] ut = [4(y + n)− 6] ut.

So, the delay for the LSB when tr=0 is [4n− 2] ut and the delay for the MSB when tr=0 is [4(y + n)− 6] ut .
For tr=1 the computation is similar, except that the critical path passes through lg n adders rather than n − 1

adders. Therefore the delay for bit i is [4i + 2 + 4 lg n] ut and the MSB is available at [4(y − 1) + 2 + 4 lg n] ut.

So, the delay for the LSB when tr=1 is [2 + 4 lg n] ut and the

delay for the MSB when tr=1 is [4(y − 1) + 2 + 4 lg n] ut .

(c) Find the delay for sat=1, tr=0, and y > 2w (that’s one configuration) and for sat=1, tr=1, and
y > 2w (that’s a second configuration). The two delays should be very different from each other
and from the delays from the previous problem.

Since y > 2w there will be no saturation penalty for the multiplier. Therefore bit i of the product is stable at
4i + 2.

Because of the multiplexor, the delay though one saturating adder (an nnAdd module with sat=1) is the same for
all bits. That delay is [2(y + 1) + 1] ut.

First consider tr=0. For i=1 (the genvar, not a bit position) bit i of the sum (before saturation, and accounting
for the multiplier delay) is ready at time 4i+ 2 + 4 = 4i+ 6. The MSB, y− 1, is available at 4y + 2, and the output
of the mux is available at [4y + 3] ut. The delay computation is different for the remaining n− 2 adders. Consider the
i=2 (the genvar) adder. One input is from the i=1 adder and the other is from a multiplier. The input from the i=1
adder arrives at [4y + 3] ut (which we just calculated). By then all bits from the multiplier will have arrived. So the
time at which the LSB can be computed is 4y + 3, there is no early start. The sum will be computed 2(y + 1) later, or
at a total delay of [4y + 3 + 2(y + 1) + 1] ut = [6y + 5 + 1] ut including the mux. The complete sum is available
at [4y + 3 + (n− 2)(2(y + 1) + 1)] ut or [n(2y + 3)− 3] ut.

Notice that with without saturation the time is O(n+y) and that with saturation the time is O(ny), much worse!
The computation is similar for the tr=1 case. The critical path starts with a multiply, add, saturate (same as for

tr=0) with a delay of [4y+ 3] ut. After that the critical path passed through (lg n)−1 additional adders, so the total
time is [4y + 3 + (lg n− 1)(2(y + 1) + 1)] ut or [(2y + 3) lg n+ 2y] ut. Here the time is order O(y lg n) which
is better than O(ny) but not nearly as good as O(n + y).

4

← → Fall 2020 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2020/hw04_sol.pdf

module nn1xI #(int wo = 10, wi = 4, ww = 5, ni = 2, tr = 0, sat = 0)

(output uwire [wo-1:0] ao,

input uwire [wi-1:0] ai[ni],

input uwire [ww-1:0] wht[ni]);

if (tr) begin

if (ni == 1) begin

nnMult #(wi,ww,wo,sat) mult(ao, ai[0], wht[0]);

end else begin

localparam int nlo = ni / 2;

localparam int nhi = ni - nlo;

uwire [wo-1:0] aolo, aohi;

nn1xI #(wo,wi,ww,nlo,1,sat) nnlo(aolo, ai[0:nlo-1], wht[0:nlo-1]);

nn1xI #(wo,wi,ww,nhi,1,sat) nnhi(aohi, ai[nlo:ni-1], wht[nlo:ni-1]);

nnAdd #(wo,sat) add(ao,aolo,aohi);

end

end else begin

uwire [wo-1:0] s[ni-1:-1];

assign s[-1] = 0;

assign ao = s[ni-1];

for (genvar i = 0; i < ni; i++)

nnMADD #(ww,wi,wo,sat) madd(s[i], wht[i], ai[i], s[i-1]);

end

endmodule

module nnMADD #(int wa = 10, wb = 5, ws = wa + wb, sat = 0)

(output uwire [ws-1:0] so,

input uwire [wa-1:0] a, input uwire [wb-1:0] b, input uwire [ws-1:0] si);

uwire [ws-1:0] p;

nnMult #(wa,wb,ws,sat) mu(p, a, b);

nnAdd #(ws,sat) ad(so, si, p);

endmodule

There are even more problems on the next pages.

5

← → Fall 2020 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2020/hw04_sol.pdf

Problem 4: Consider module nnOxI instantiated with no=1, tr=0, for both sat=1 and sat=2. (A
slightly simplified version appears below.) Let n denote the value of ni, w denote the value of wi
and ww (which are the same), and let y denote the value of wo.

Assume that 2w < y < dlg n(2w− 1)2e. That is, y is large enough so that the multipliers can’t
overflow but not so large that the adders can’t overflow.

(a) Compute the cost and delay for both the sat=1 and sat=2 cases. For sat=1 just re-use answers
from the previous problems.

• Show answers in terms of n, w, and y.

• Don’t forget that the value of wo in the nn1xI instantiations depends upon sat.

When sat=1 and no=1 the hardware for nnOxI is the same as that of nn1xI.
The cost of the sat=0 instantiation based on the answer to Problem 3 is [10nw2 + 9(n − 1)y] uc. The cost

of the saturation hardware is that of n − 1 2-input, y-bit multiplexors in which one input is a constant. The cost
of these is [(n − 1)y] uc. So the total cost for nnOxI with sat=1 is [10nw2 + 9(n − 1)y + (n − 1)y] uc =
[10nw2 + 10(n− 1)y] uc.

The delay has been computed in Problem 3, it is [n(2y + 3)− 3] ut.
When sat=2 the nn1xI modules are instantiated with sat=0, and so their cost and delay are [10nw2 +

9(n − 1)r] uc and [4(r + n) − 6] ut where r is the value of wr for which they were instantiated. Note that r =
dlg n(2w − 1)2e.

Module nnOxI checks for saturation by checking whether the high r−y bits of ar are non-zero. That can be done
using an OR gate, with a cost of [r− y − 1] uc. If the OR used a tree reduction the delay would be lg(r− y) ut, but
if we expect bit i+ 1 to arrive at least one ut later than bit i a linear connection of OR gates would be faster, and have
a net delay of just 1. So the total delay is [4(r + n)− 6 + 1] ut.

The total cost includes a 2-input, y-bit multiplexor and the (r − y)-input OR gate. One input to the mux is
constant, so its cost is y. The total cost with this hardware is [10nw2 + 9(n − 1)r + y + (r − y − 1)] uc or
[10nw2 + 9(n− 1)r + r − 1] uc where r = dlg n(2w − 1)2e.
(b) In terms of the costs computed above is sat=2 always better, always worse, or sometimes better
than sat=1? Be specific of course.

Recall that for sat=1 the cost is C(1, n, w, y) = [10nw2+10(n−1)y] uc and for sat=2 the is c(2, n, w, y) =
[10nw2 + 9(n− 1)r + r − 1] uc.

To solve this compute C(1, n, w, y) − C(2, n, w, y). If the result is always positive then sat=2 always costs
less, etc.

C(1, n, w, y)− C(2, n, w, y) = 10(n− 1)y − 9(n− 1)r − r + 1
Recall r = dlg n(2w−1)2e and that the assumption is that 2w < y < r. We can approximate r ≈ 2w+lg n.
The cost benefit for sat=2 is less favorable larger when y is smaller. Consider one minus the smallest value of y,

which is y = 2w Then C(1, n, w, y)−C(2, n, w, y) = 10(n−1)2w−9(n−1)(2w+lg n)−(2w+lg n)+1 =
(n − 1)2w − 9(n − 1) lg n − 2w − lg n + 1 ≈ (n − 1)2w − 9(n − 1) lg n. This expression is positive when
w > 2.25 lg n. Generally when w is large sat=2 works better, when n is large sat=1 works better.

module nnOxI #(int no = 4, ni = 2, wo = 10, wi = 4, ww = 5, tr = 0, sat = 0)

(output uwire [wo-1:0] ao[no],

input uwire [wi-1:0] ai[ni], input uwire [ww-1:0] wht[no][ni]);

// Compute number of bits to represent largest possible value that

// can appear on an ao.

localparam int wr = $clog2((2**wi - 1) * (2**ww - 1) * ni);

if (sat < 2) begin

6

← → Fall 2020 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2020/hw04_sol.pdf

for (genvar i = 0; i < no; i++)

nn1xI #(wo,wi,ww,ni,tr,sat) row(ao[i], ai, wht[i]);

end else begin

for (genvar i = 0; i < no; i++) begin

uwire [wr-1:0] ar;

nn1xI #(wr,wi,ww,ni,tr,0) row(ar, ai, wht[i]);

assign ao[i] = ar[wr-1:wo] ? ~wo’(0) : ar[wo-1:0];

end

end

endmodule

Problem 5: Zero points will be given for the answer to this question, but please try your very best
to answer it. Suggest a method of saturating ao that avoids the extra wo bits needed (for nn1xI)
when sat=2 but also avoids the critical-path-killing saturation logic used when sat=1. Your solution
could add extra ports to all modules except nnOxI. A correct solution would detect overflow under
the same conditions as nnOxI does with sat=1.

7

← → Fall 2020 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2020/hw04_sol.pdf

17 Fall 2019 Solutions

364

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw01_sol.pdf

LSU EE 4755 Homework 1 Solution Due: 18 September 2019

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2019/hw01.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw01.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Overview
In class you were told that for common operations, such as shifting, addition, and multiplication,
it’s better to use Verilog operators in procedural code than to re-invent the wheel by writing
Verilog to implement those operations. This point was made when covering the shift module in the
introductory lectures. For example, if you need a shifter it’s better to just use the shift operator:
module shift_right_operator

(output uwire [15:0] shifted,

input uwire [15:0] unshifted, input uwire [3:0] amt);

assign shifted = unshifted >> amt;

endmodule

than to write code for your own shifter:
module shift_right_logarithmic

(output uwire [15:0] sh, input uwire [15:0] s0, input uwire [3:0] amt);

uwire [15:0] s1, s2, s3;

mux2 st0(s1, amt[0], s0, {1’b0, s0[15:1]});

mux2 st1(s2, amt[1], s1, {2’b0, s1[15:2]});

mux2 st2(s3, amt[2], s2, {4’b0, s2[15:4]});

mux2 st3(sh, amt[3], s3, {8’b0, s3[15:8]});

endmodule

module mux2(output uwire [15:0] x,

input uwire select, input uwire [15:0] a0, a1);

assign x = select ? a1 : a0;

endmodule

The reason for showing the implementation of shifters, and other common operations, was to
teach general design concepts using operations that you should be familiar with. That will be the
approach in this homework, in which a multiplier is to be implemented.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests the multiply modules. Modules mult_operator and mult16

should pass, mult16_tree awaits your solution. A sample of the end of the testbench output
appears below:

Starting testbench...

Error in mult16_tree test 0: xxxxxxxx != 00000001 (correct)

Error in mult16_tree test 1: xxxxxxxx != 00000002 (correct)

Error in mult16_tree test 2: xxxxxxxx != 00000020 (correct)

Error in mult16_tree test 3: xxxxxxxx != 00000020 (correct)

1

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2019/hw01.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2019/hw01_sol.pdf

Error in mult16_tree test 4: xxxxxxxx != 139dff24 (correct)

Error in mult16_tree test 5: xxxxxxxx != 4839cb7b (correct)

Mut mult_operator , 0 errors (0.0% of tests)

Mut mult16_flat , 0 errors (0.0% of tests)

Mut mult16_tree , 1000 errors (100.0% of tests)

Memory Usage - 38.6M program + 154.6M data = 193.2M total

CPU Usage - 0.0s system + 0.0s user = 0.1s total (70.4% cpu)

Simulation complete via $finish(2) at time 10 US + 0

./hw01.v:218 $finish(2);

ncsim> exit

A count of the number of tests and errors is shown for three modules. The testbench shows
the first six errors it finds on each module. To see more than six modify the testbench (search
for err_limit). In the output above the testbench is showing that the module outputs are x

(uninitialized) which of course don’t match the expected outputs.
Use Simvision to debug your modules. Feel free to modify the testbench so that it presents

inputs that facilitate debugging.

Synthesis
The synthesis script, syn.tcl, will synthesize the three modules each with two delay targets, an
easy 10 ns and a un-achievable 0.1 ns. If the module doesn’t synthesize −.001 s is shown for the
delay. The script is run using the shell command genus -files syn.tcl, which invokes Cadence
Genus.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew.log. Sample synthesis script output appears
below:

Problem 1 on next page.

2

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw01_sol.pdf

mult2

16

1:0

mult2

16

3:2

<<
2

+

mult2

16

5:4

mult2

16

7:6

<<
2

+
<<

4

+

mult2

16

9:8

mult2

16

11:10

<<
2

+

mult2

16

13:12

mult2

16

15:14

<<
2

+
<<

4

+
<<

8

+

16b by 4b

16b by 8b

mult16

a

b

p
ro
d

16

16

32

There are four of these.

T
h
e
re

 a
re

 tw
o
 o

f th
e
se

.

Problem 1: The illustration to the
right shows a sketch of a multiplier,
mult16, with two 16-bit inputs and a
32-bit output. The multiplier is con-
structed from mult2 modules, shifters
(<<), and adders. The illustrated mod-
ule is similar to the multiplier in
mult16_flat in hw01.v. The mult2

modules have two inputs, one is two
bits, the other is 16 bits. Each input
holds an unsigned integer. The out-
put, 18 bits, is the product of the two
inputs. Notice that each mult2 module
is connected to two bits of a and all bits
of b. The outputs of the mult2 mod-
ules are shifted and added together in
such a way that prod is the correct
product of a and b.

There are two parts of mult16 sur-
rounded by green boxes. The upper
one, labeled 16b by 4b, contains two
mult2 modules. The label is explain-
ing that the boxed material multiplies
a 16-bit number by a 4-bit number. A
similar box could have been put around
the next pair of mult2 modules, etc.
The hardware within each of these four boxes would be identical. (The bit slices at the upper
mult2 inputs, such as 1:0 and 5:4 are different, but that can be taken care of outside the green
box.) Think about the poor soul who might have just typed in all the Verilog for mult16 and then
suddenly realizes this. All that person would have had to do would be to code one module, call it
mult4_tree, and just instantiate it four times. Here is an almost empty version of mult4_tree:

module mult4_tree
(output uwire [0:0] prod, // Need to change output size.

input uwire [3:0] a, input uwire [15:0] b);

mult2 mlo(/* finish */);

mult2 mhi(/* finish */);

endmodule

Alert students might suspect that we don’t actually instantiate mult4_tree four times because
the 16b by 8b section itself could be a module which would contain only two instantiations of
mult4_tree. That would be correct.

Modify modules mult16_tree, mult8_tree, and mult4_tree found in hw01.v so that they
implement the multiplier described above. Module mult16_tree must instantiate exactly two
mult8_tree modules, module mult8_tree must instantiate exactly two mult4_tree modules, and

3

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw01_sol.pdf

mult4_tree must use the two mult2 modules that are already instantiated (but with the ports
missing).

In each module use implicit structural code or behavioral code to combine the outputs of that
module’s two instantiated modules. It might be helpful to look at mult16_flat for examples of
instantiation and implicit procedural code.

Start with module mult16_tree. You can test your changes to mult16_tree by putting
placeholder code in mult8_tree, such as assign prod = a*b;. Don’t forget to change the port
sizes on mult8_tree to what they should be based on the diagram.

Once the testbench reports zero errors move the placeholder to mult4_tree and complete
mult8_tree. Continue until the three modules are finished.

Some of the port sizes are set to 1 bit, [0:0]. Those are placeholders, change those to the
correct sizes, but no larger. Credit will be deducted for oversized ports, especially if all ports are
made 32 bits.

Pay attention to port-size warnings when running the simulator.
The solution Verilog code has been placed in the assignment directory, and on the Web at

https://www.ece.lsu.edu/koppel/v/2019/hw01-sol.v.html.
To solve the problem one needed to see that a was split between the two modules, mlo and mhi, but that a

complete version of b was used in each. Another important element to work out was the size of the product. When
an x-bit unsigned integer is multiplied by a y-bit unsigned integer, the maximum sized product is x + y bits. So the
mult8 tree output, and the wire that connects to it, must be 8 + 16 = 24 bits. Therefore in the solution (shown
below) prod lo and prod hi are 24 bits, as is the output of the mult8 tree module.

module mult16_tree
#(int wa = 16, int wb = 16, int wp = wa + wb)

(output uwire [31:0] prod, input uwire [15:0] a, input uwire [15:0] b);

/// SOLUTION

// Declare properly-sized connections to mult8_tree outputs.

uwire [23:0] prod_lo, prod_hi;

// Instantiate two mult8_tree multipliers, each handles 8 bits of a.

mult8_tree mlo(prod_lo, a[7:0], b);

mult8_tree mhi(prod_hi, a[15:8], b);

// Compute the full product using the two partial products.

assign prod = prod_lo + (prod_hi << 8);

endmodule

module mult8_tree
(output uwire [23:0] prod,

input uwire [7:0] a, input uwire [15:0] b);

/// SOLUTION
uwire [19:0] prod_lo, prod_hi;

mult4_tree mlo(prod_lo, a[3:0], b);

mult4_tree mhi(prod_hi, a[7:4], b);

assign prod = prod_lo + (prod_hi << 4);

endmodule

module mult4_tree

4

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/koppel/v/2019/hw01-sol.v.html
https://www.ece.lsu.edu/ee4755/2019/hw01_sol.pdf

(output uwire [19:0] prod,

input uwire [3:0] a, input uwire [15:0] b);

/// SOLUTION
uwire [17:0] prod_lo, prod_hi;

mult2 mlo(prod_lo, a[1:0], b);

mult2 mhi(prod_hi, a[3:2], b);

assign prod = prod_lo + (prod_hi << 2);

endmodule

Problem 2: The synthesis script will synthesize mult16_tree from Problem 1, plus two already
working modules, mult16_flat and mult_operator, which just uses the multiply operator.

If the synthesis program were perfect then all three modules would have the same cost and
delay because they each do exactly the same thing (multiply) and so the optimization algorithms
would have found the same lowest-cost circuit from each one. Spoiler alert: Genus is not perfect.

Guess which module you think will be the fastest or least expensive, and explain why. Then
run the synthesis script and comment on whether the results met your expectations.

Solution on next page.

5

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw01_sol.pdf

I would expect that mult operator would be fastest with the 0.1 ns delay target and least expensive with the
10 ns target because integer multiplication is a common operation and so the synthesis program should have a well-tuned
multiply module in its library for situations such as these.

If optimization was not very good, then I’d expect mult16 flat to have a longer delay than mult16 tree

because of the expression adding together the partial products:

assign prod = prod00 + (prod02 << 2) + (prod04 << 4) + (prod06 << 6) + (prod08 <<

8) + (prod10 << 10) + (prod12 << 12) + (prod14 << 14);

This expression has seven additions. If the order of additions follows the expression above then each addition after
the first will not have its operands ready until the previous addition finishes. Therefore the critical path passes through
seven additions. In the tree version the critical pass passes through just three additions, and so would be faster.

Modern optimizers, however, should be able to re-associate the expression to reduce the critical path. For example,
internally the optimizer might convert the expression into:

assign prod =

(

((prod00) + (prod02 << 2))

+

((prod04 << 4) + (prod06 << 6))

)

+

(

((prod08 << 8) + (prod10 << 10))

+

((prod12 << 12) + (prod14 << 14))

);

In the expression above the four inner additions (the ones where the plus sign is in the middle of the line) can start
at the same time, when they finish two more additions can start and proceed in parallel, followed by the last addition in
the center of the expression.

Below is the actual synthesis output:

Module Name Area Delay Delay

Actual Target

mult_operator 235272 9.266 10.000 ns

mult16_flat 403519 9.982 10.000 ns

mult16_tree 294419 8.861 10.000 ns

mult_tree 240616 7.934 10.000 ns

mult_operator_1 491053 3.103 0.100 ns

mult16_flat_1 817229 4.502 0.100 ns

mult16_tree_1 590500 3.360 0.100 ns

mult_tree_3 510150 3.150 0.100 ns

The results indicate that optimizers are not as good as I thought. As expected, the library routine, and so
mult operator was least expensive. But mult tree was almost as good, and for some reason was better than
mult16 tree, perhaps because it does not use a multiplier in its terminal case. For delay the library routine also wins
out and our tree-structured modules outperform the flat ones.

6

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw01_sol.pdf

//
//
/// LSU EE 4755 Fall 2019 Homework 1 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2019/hw01.pdf

`default_nettype none

//
/// Problem 1 -- SOLUTION
//
 /// Modify mult16_tree, mult8_tree, and mult4_tree to implement multiplier.

 ///
//
// [✔] Make sure that the testbench does not report errors.
// [✔] mult16_tree must use exactly two mult8_tree modules, etc.
// [✔] Pay attention to port widths. Do not make them larger than needed.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl

module mult16_tree
 #(int wa = 16, int wb = 16, int wp = wa + wb)
 (output uwire [31:0] prod,
 input uwire [15:0] a,
 input uwire [15:0] b);

 /// Problem 1 solution goes here, and in other modules.

 // [✔] Instantiate two mult8_tree's.
 // [✔] Use implicit structural or behavioral code to combine their outputs.

 /// SOLUTION

 // Declare properly-sized connections to mult8_tree outputs.
 //
 uwire [23:0] prod_lo, prod_hi;
 //
 // They are 24 bits wide because that's the maximum size of the
 // product of an 8-bit unsigned integer (such as a[7:0]) and a
 // 16-bit unsigned integer (b): 8+16 =24.

 // Instantiate two mult8_tree multipliers, each handles 8 bits of a.
 //
 mult8_tree mlo(prod_lo, a[7:0], b);
 mult8_tree mhi(prod_hi, a[15:8], b);

 // Compute the full product using the two partial products.
 //
 assign prod = prod_lo + (prod_hi << 8);
 //
 // Because prod is 32-bits wide the right-hand side computation
 // will be computed with a 32-bit precision.

endmodule

module mult8_tree
 (output uwire [23:0] prod,
 input uwire [7:0] a,
 input uwire [15:0] b);
 // [✔] Pay attention to port widths. Do not make them larger than needed.

 /// Problem 1 solution goes here, and in other modules.

 // [✔] Instantiate two mult4_tree's.
 // [✔] Use implicit structural or behavioral code to combine their outputs.

 /// SOLUTION

 //
 // See the solution comments description in mult16_tree.

 uwire [19:0] prod_lo, prod_hi;
 mult4_tree mlo(prod_lo, a[3:0], b);
 mult4_tree mhi(prod_hi, a[7:4], b);
 assign prod = prod_lo + (prod_hi << 4);

endmodule

module mult4_tree
 (output uwire [19:0] prod,
 input uwire [3:0] a,

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/koppel/v/2019/hw01.pdf
https://www.ece.lsu.edu/ee4755/2019/hw01-sol.v.html

 input uwire [15:0] b);
 // [✔] Pay attention to port widths. Do not make them larger than needed.

 /// Problem 1 solution goes here, and in other modules.

 // [✔] Use implicit structural or behavioral code to combine their outputs.

 /// SOLUTION

 //
 // See the solution comments description in mult16_tree.

 uwire [17:0] prod_lo, prod_hi;

 mult2 mlo(prod_lo, a[1:0], b);
 mult2 mhi(prod_hi, a[3:2], b);
 assign prod = prod_lo + (prod_hi << 2);

endmodule

 /// Bonus Solution:

module mult_tree
 #(int wa = 16, int wb = 16, int wp = wa + wb)
 (output uwire [wp:1] prod,
 input uwire [wa:1] a,
 input uwire [wb:1] b);

 /// BONUS SOLUTION

 //
 // This answers a question that was almost but not quite asked:
 // Using generate statements design a single module that can be
 // instantiated into a module equivalent to mult16_tree,
 // mult8_tree, mult4_tree, and mult2, and also mult32_tree, etc.

 if (wa == 1) begin

 // Terminal case: 1 bit partial product.
 //
 assign prod = a ? b : 0;
 //
 // Equivalent to: prod = a * b;

 end else begin

 // Split a in half and recursively instantiate a module for each
 // half.

 localparam int wn = wa / 2;
 localparam int wx = wb + wn;

 uwire [wx:1] prod_lo, prod_hi;

 mult_tree #(wn,wb) mlo(prod_lo, a[wn:1], b);
 mult_tree #(wn,wb) mhi(prod_hi, a[wa:wn+1], b);

 // Combine the partial products.
 //
 assign prod = prod_lo + (prod_hi << wn);

 end

endmodule

 /// Do not modify the code below this point.

module mult2
 (output uwire [17:0] prod, input uwire [1:0] a, input uwire [15:0] b);

 /// DO NOT MODIFY THIS ROUTINE.

 assign prod = a * b;

endmodule

module mult16_�at
 #(int wa = 16, int wb = 16, int wp = wa + wb)
 (output uwire [31:0] prod, input uwire [15:0] a, b);

 /// DO NOT MODIFY THIS ROUTINE.

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2019/hw01-sol.v.html

`ifdef NEVER_DEFINE_ME
 // Emacs Lisp code to generate Verilog code for mult16_flat.
 (cl-loop for i from 0 to 14 by 2
 concat (if (= i 0) " assign prod = prod00"
 (format " + (prod%02d << %d)" i i)) into prod
 concat (format "%s prod%02d" (if (= i 0) "" ",") i) into decl
 concat (format " mult2 m%d(prod%02d, a[%d:%d], b);\n" i i (+ i 1) i)
 into inst
 finally (insert (concat "\n uwire [17:0]" decl ";\n" inst "\n" prod ";\n")))
`endif

 uwire [17:0] prod00, prod02, prod04, prod06, prod08, prod10, prod12, prod14;
 mult2 m0(prod00, a[1:0], b);
 mult2 m2(prod02, a[3:2], b);
 mult2 m4(prod04, a[5:4], b);
 mult2 m6(prod06, a[7:6], b);
 mult2 m8(prod08, a[9:8], b);
 mult2 m10(prod10, a[11:10], b);
 mult2 m12(prod12, a[13:12], b);
 mult2 m14(prod14, a[15:14], b);

 assign prod = prod00 + (prod02 << 2) + (prod04 << 4) + (prod06 << 6) + (prod08 << 8) + (prod10 << 10) + (prod12 << 12) + (p

endmodule

module mult_operator
 #(int wa = 16, int wb = 16, int wp = wa + wb)
 (output uwire [wp:1] prod, input uwire [wa:1] a, input uwire [wb:1] b);
 /// DO NOT MODIFY THIS ROUTINE.

 assign prod = a * b;
endmodule

//
/// Testbench Code

// cadence translate_off

module testbench;

 localparam int wid = 16;
 localparam int num_tests = 1000;
 localparam int NUM_MULT = 4;
 localparam int err_limit = 7;

 logic [wid-1:0] plier, cand;
 logic [2*wid-1:0] prod[NUM_MULT], shadow_prod;

 mult_operator mb0(prod[0], plier, cand);
 mult16_flat mb1(prod[1], plier, cand);
 mult16_tree mb2(prod[2], plier, cand);
 multw_tree #(wid,wid) mb3(prod[3], plier, cand);

 string names[] = '{ "mult_operator", "mult16", "tree16", "treep" };

 int err_cnt[NUM_MULT];

 // Array of multiplier/multiplicand values to try out.
 // After these values are used a random number generator will be used.
 //
 int tests[$] = {1,1, 1,2, 1,32, 32, 1};

 initial begin

 $display("Starting testbench.\n");

 for (int i=0; i<num_tests; i++) begin

 // Set multiplier and multiplicand values.
 //
 plier = tests.size() ? tests.pop_front() : $random();
 cand = tests.size() ? tests.pop_front() : $random();

 shadow_prod = plier * cand;

 #10;

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2019/hw01-sol.v.html

 // Make sure each module's output is correct.
 //
 for (int mut=0; mut<NUM_MULT; mut++) begin

 if (shadow_prod !== prod[mut]) begin

 err_cnt[mut]++;

 if (err_cnt[mut] < err_limit)
 $display("Error in %s test %4d: %x != %x (correct)\n",
 names[mut], i, prod[mut], shadow_prod);
 end

 end

 end

 // Tests completed, report error count for each device.
 //
 for (int mut=0; mut<NUM_MULT; mut++) begin

 $display("Mut %s, %d errors (%.1f%% of tests)\n",
 names[mut], err_cnt[mut],
 100.0 * err_cnt[mut]/real'(num_tests));

 end

 $finish(2);

 end

endmodule

// cadence translate_on

← → Fall 2019 ← → Homework 1 Homework Solution Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2019/hw01-sol.v.html

LSU EE 4755 Homework 2 Solution Due: 8 October 2019

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2019/hw02.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw02.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Correction (December 2019)
When assigned in October 2019 this assignment defined clz backward, starting at the least-significant
bit. That has been corrected in this version and in the posted code.

Homework Overview
A count leading zeros (clz) operation returns the number of consecutive zeros starting at the most
significant bit of an integer’s binary representation. For example, the clz of 001012 is 2, the clz of
1012 is 0, and the clz of 32-bit number 02 is 32. The Verilog module below computes the clz of its
input:

module clz
#(int w = 19, int ww = $clog2(w+1))

(output var logic [ww-1:0] nlz, input uwire logic [w-1:0] a);

uwire [w:0] aa = { a, 1’b1 };

always_comb for (int i=0; i<=w; i++) if (aa[i]) nlz = w-i;

endmodule

The module was written as behavioral code, but it does turn out to be synthesizable. Nev-
ertheless, one may wonder if the synthesis program will do a good job with this. (Later in the
semester we will learn what kind of hardware will be inferred for the description above.) One way
to find out is to design a module which should be efficient and see how well it compares to what
the synthesis program does with the module above. That, and the use of generate statements, is
the subject of this assignment.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests the clz_tree module at several different widths. All should
initially fail. A shortened sample of the testbench output appears below:

ncsim> run

** Starting tests for width 1.

Error for width 1: input 1: z != 0 (correct).

Error for width 1: input 0: z != 1 (correct).

Error for width 1: input 1: z != 0 (correct).

Error for width 1: input 0: z != 1 (correct).

Width 1, done with 10 tests, 10 errors.

** Starting tests for width 2.

Error for width 2: input 3: z != 0 (correct).

Width 2, done with 20 tests, 20 errors.

** Starting tests for width 5.

1

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2019/hw02.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2019/hw02_sol.pdf

[snip]

Error for width 17: input 08959: z != 0 (correct).

Width 17, done with 170 tests, 170 errors.

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

Total number of errors: 610

The testbench prints the details of the first four errors it finds, and after that prints just one
detail time per width. A total for each width and a grand total are printed, see the transcript
above.

Use Simvision to debug your modules. Feel free to modify the testbench so that it presents
inputs that facilitate debugging.

Synthesis
The synthesis script, syn.tcl, will synthesize clz (for reference) and clz_tree (your solution).
Each module will be synthesized at three widths, and with two delay targets, an easy 10 ns and a
un-achievable 0.1 ns. If a module doesn’t synthesize −.001 s is shown for its delay. The script is
run using the shell command genus -files syn.tcl, which invokes Cadence Genus. If you would
like to synthesize additional modules or sizes edit syn.tcl near the bottom.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew.log.

Problem 1 on next page.

2

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw02_sol.pdf

Problem 1: Complete module clz_tree so that it computes the clz of its input in a tree-like
fashion. For the non-terminal case it should instantiate two clz_tree modules and each should op-
erate on part of the input, a. The outputs of these two modules should be appropriately combined.
To help you get started, a recursive solution to Homework 1, mult_tree, is in hw02.v.

An easy mistake to make is using the wrong sized variable in a module port connection.
Previously the Verilog software (ncelab to be precise) would issue a warning which was easy to
miss. Now a port size mismatch is a fatal error.

For maximum credit do not use adders in your design. Adders can be avoided if the size of
the low module is always a power of 2.

See the Verilog code check boxes for additional items to check for.
The solution appears below. The partial-credit solution, using an adder, appears first.

/// SOLUTION – With Adder. Two points would be deducted.
module clz_tree_fat

#(int w = 19, int ww = $clog2(w+1))

(output uwire [ww:1] nlz, input uwire [w:1] a);

if (w == 1) begin

assign nlz = ~ a;

end else begin

localparam int wlo = w/2;

localparam int whi = w - wlo;

localparam int wwlo = $clog2(wlo+1);

localparam int wwhi = $clog2(whi+1);

uwire [wwlo:1] lz_lo;

uwire [wwhi:1] lz_hi;

clz_tree_fat #(wlo) clo(lz_lo, a[wlo:1]);

clz_tree_fat #(whi) chi(lz_hi, a[w:wlo+1]);

assign nlz = lz_hi < whi ? lz_hi : whi + lz_lo;

end

endmodule

The better solution, without the adder, is on the next page.

3

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw02_sol.pdf

The solution below avoids an adder by setting the size of the hi module to a power of 2. If all of the high bits are
zero, then the clz is the count of the number of low bits, plus a power of 2. The power of 2 to add is parameter lhi (see
the code).

/// SOLUTION – Without Adder
module clz_tree #(int w = 19, int ww = $clog2(w+1))

(output uwire [ww-1:0] nlz, input uwire [w-1:0] a);

if (w == 1) begin

assign nlz = !a[0];

end else if (w == 2) begin

assign nlz = { !a[0] && !a[1], !a[1] && a[0] };

end else begin

// Set whi to the largest power of 2 strictly less than w.

//

localparam int lhi = $clog2(w) - 1;

localparam int whi = 1 << lhi;

localparam int wwhi = lhi + 1;

// Then set wlo to the number of remaining bits.

//

localparam int wlo = w - whi;

uwire [wwhi-1:0] nlz_lo, nlz_hi; // Note: nlz_lo may be 1 bit wider than needed.

// Instantiate recursive modules.

//

clz_tree #(wlo,wwhi) clo(nlz_lo, a[wlo-1:0]);

clz_tree #(whi,wwhi) chi(nlz_hi, a[w-1:wlo]);

// Split the nlz_lo and nlz_hi outputs into "overflow" (MSB) bits,

// ov_lo and ov_hi, and the remaining bits lz_lo and lz_hi.

//

uwire ov_lo, ov_hi;

uwire [lhi-1:0] lz_lo, lz_hi;

assign { ov_lo, lz_lo } = nlz_lo;

assign { ov_hi, lz_hi } = nlz_hi;

assign nlz = !ov_hi ? { 2’b00, lz_hi } : // Case 0

!ov_lo ? { 2’b01, lz_lo } : // Case 1

{ 2’b10, lz_lo }; // Case 2

// Case 0:

// Input to chi has a 1, so just use nlz_hi.

// This case occurs when the MSB of nlz_hi is 0.

// For this case just set nlz to nlz_hi.

//

// Case 1:

// Input to chi is all zeros, and wlo < whi or nlz_lo < whi.

// For this case set nlz = whi + nlz_lo = { 2’b01, lz_lo }.

//

// Case 2:

// Input to chi is all zeros, and nlz_lo == whi.

// If this condition is true then ov_lo = 1

// For this case set

// nlz = whi + nlz_lo = { 2’b1 + ov_lo, lz_lo } = { 2’b10, lz_lo }

4

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw02_sol.pdf

end

endmodule

5

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw02_sol.pdf

Problem 2: Run the synthesis program and indicate how your module compares to the behavioral
module, clz. Indicate which results are expected, and which are not expected, and explain why.

Attention students studying for exams: A good practice problem would be to show the synthesized hardware for
these modules.

The behavioral model looks at bits sequentially, starting at the most-significant bit. The hardware as initially
inferred would have a chain of multiplexors either selecting i if aa[i] were 1, or the prior value of nlz otherwise. The
nlz output would pass through w multiplexors, for a delay of w ut after optimizing for the fact that i is constant.

In contrast the critical path through the tree modules passes through dlgwe units, and so that should be faster.
In the 0.1 ns delay target results, shown below, the behavioral model is fastest at w = 30 bits and the adder-less
clz tree module is only fastest at w = 32 bits. At best, clz tree never does poorly when delay is a priority. The
behavioral module however is consistently more costly than clz tree.

Module Name Area Delay Delay

Actual Target

clz_w30 18540 1.653 10.000 ns

clz_tree_w30 17977 1.653 10.000 ns

clz_tree_fat_w30 17977 1.653 10.000 ns

clz_w32 26290 3.110 10.000 ns

clz_tree_w32 21706 1.425 10.000 ns

clz_tree_fat_w32 21401 1.296 10.000 ns

clz_w35 23140 1.300 10.000 ns

clz_tree_w35 22578 1.300 10.000 ns

clz_tree_fat_w35 26073 2.094 10.000 ns

clz_w30_1 30053 0.504 0.100 ns

clz_tree_w30_4 38532 0.650 0.100 ns

clz_tree_fat_w30_1 37798 0.861 0.100 ns

clz_w32_1 36476 1.007 0.100 ns

clz_tree_w32_5 37356 0.577 0.100 ns

clz_tree_fat_w32_2 32254 0.634 0.100 ns

clz_w35_1 37008 0.606 0.100 ns

clz_tree_w35_6 37008 0.606 0.100 ns

clz_tree_fat_w35_1 37008 0.606 0.100 ns

6

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw02_sol.pdf

//
//
/// LSU EE 4755 Fall 2019 Homework 2 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2019/hw02.pdf
 /// Solution Problem 2: https://www.ece.lsu.edu/koppel/v/2019/hw02_sol.pdf

`default_nettype none

//
/// Problem 1
//
 /// Complete clz_tree so that it computes the clz of its input recursively.
//
// [✔] Split the input between two recursive instantiations ..
// .. and properly combine the results.
// [✔] Don't forget the terminal case, maybe for w == 1.
// [✔] For maximum credit, avoid any use of adders ..
// .. by making the width of the "hi" module a power of 2.
//
// [✔] Make sure that port connections are the correct size ..
// .. mismatched ports are Verilog errors in this assignment.
// [✔] Do not make port widths larger than needed.
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] As always, avoid costly, slow, and confusing code.

 /// Solution Discussion
//
// Two solutions appear below.
//
// The clz_tree_fat module is much simpler, but it uses an adder.
// Two points would be deducted if this were given as a solution
//
// The clz_tree module does not use an adder. It would get full credit.

 /// SOLUTION -- With Adder. Two points would be deducted.
module clz_tree_fat
 #(int w = 19,
 int ww = $clog2(w+1))
 (output uwire [ww:1] nlz,
 input uwire [w:1] a);

 if (w == 1) begin

 assign nlz = ~ a;

 end else begin

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol-try.v.html

https://www.ece.lsu.edu/koppel/v/2019/hw02.pdf
https://www.ece.lsu.edu/koppel/v/2019/hw02_sol.pdf
https://www.ece.lsu.edu/ee4755/2019/hw02-sol-try.v.html

 localparam int wlo = w/2;
 localparam int whi = w - wlo;
 localparam int wwlo = $clog2(wlo+1);
 localparam int wwhi = $clog2(whi+1);

 uwire [wwlo:1] lz_lo;
 uwire [wwhi:1] lz_hi;

 clz_tree_fat #(wlo) clo(lz_lo, a[wlo:1]);
 clz_tree_fat #(whi) chi(lz_hi, a[w:wlo+1]);

 assign nlz = lz_hi < whi ? lz_hi : whi + lz_lo;

 end

endmodule

 /// SOLUTION -- Without Adder
module clz_tree
 #(int w = 19,
 int ww = $clog2(w+1))
 (output uwire [ww-1:0] nlz,
 input uwire [w-1:0] a);

 if (w == 1) begin

 assign nlz = !a[0];

 end else if (w == 2) begin

 assign nlz = { !a[0] && !a[1], !a[1] && a[0] };

 end else begin

 // Set whi to the largest power of 2 strictly less than w.
 //
 localparam int lhi = $clog2(w) - 1;
 localparam int whi = 1 << lhi;
 localparam int wwhi = lhi + 1;

 // Then set wlo to the number of remaining bits.
 //
 localparam int wlo = w - whi;

 uwire [wwhi-1:0] nlz_lo, nlz_hi;
 // Note: nlz_lo may be one bit wider than needed.

 // Instantiate recursive modules.
 //
 clz_tree #(wlo,wwhi) clz_lo(nlz_lo, a[wlo-1:0]);
 clz_tree #(whi,wwhi) clz_hi(nlz_hi, a[w-1:wlo]);

 // Split the nlz_lo and nlz_hi outputs into "overflow" (MSB) bits,

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol-try.v.html

https://www.ece.lsu.edu/ee4755/2019/hw02-sol-try.v.html

 // ov_lo and ov_hi, and the remaining bits lz_lo and lz_hi.
 //
 uwire ov_lo, ov_hi;
 uwire [lhi-1:0] lz_lo, lz_hi;
 //
 assign { ov_lo, lz_lo } = nlz_lo;
 assign { ov_hi, lz_hi } = nlz_hi;

 // Assemble nlz in one of three ways (Case 0, Case 1, Case 1)
 //
 assign nlz = !ov_hi ? { 2'b00, lz_hi } : // Case 0
 !ov_lo ? { 2'b01, lz_lo } : // Case 1
 { 2'b10, lz_lo }; // Case 2
 //
 // Case 0:
 // Input to clz_hi has a 1, so just use nlz_hi.
 // This case occurs when the MSB of nlz_hi is 0.
 // For this case just set nlz to nlz_hi.
 //
 // Case 1:
 // Input to clz_hi is all zeros, and wlo < whi or nlz_lo < whi.
 // For this case set nlz = whi + nlz_lo = { 2'b01, lz_lo }.
 //
 // Case 2:
 // Input to clz_hi is all zeros, and nlz_lo == whi.
 // If this condition is true then ov_lo = 1
 // For this case set
 // nlz = whi + nlz_lo = { 2'b1 + ov_lo, lz_lo } = { 2'b10, lz_lo }
 end

endmodule

 /// A Behavioral CLZ Description
module clz
 #(int w = 19,
 int ww = $clog2(w+1))
 (output var logic [ww-1:0] nlz,
 input uwire logic [w-1:0] a);

 uwire [w:0] aa = { a, 1'b1 };
 always_comb for (int i=0; i<=w; i++) if (aa[i]) nlz = w-i;

endmodule

//
/// Testbench Code

// cadence translate_off

module testbench;

 // The widths (values of w) at which the modules will be instantiated.
 //

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol-try.v.html

https://www.ece.lsu.edu/ee4755/2019/hw02-sol-try.v.html

 localparam int widths[] = { 1, 2, 5, 8, 13, 15, 17 };

 // localparam int nw = widths.size();
 localparam int nw = 7; // Cadence, please fix this.
 initial if (nw != widths.size())
 $fatal(1,"Constant nw should be %0d.\n",widths.size());

 int t_errs; // Total number of errors.
 initial t_errs = 0;
 final $write("Total number of errors: %0d\n",t_errs);

 uwire d[nw:-1]; // Start / Done signals.
 assign d[-1] = 1; // Initialize first at true.

 // Instantiate a testbench at each size.
 //
 for (genvar i=0; i<nw; i++)
 testbench_n #(widths[i]) t2(.done(d[i]), .start(d[i-1]));

endmodule

module testbench_n
 #(int w = 20)
 (output logic done, input uwire start);

 localparam int ww = $clog2(w+1);

 localparam int n_tests = w * 10;

 uwire [ww:1] nlz;
 logic [w-1:0] a;
 clz_tree #(w) c0(nlz,a);
 // clz #(w) c0(nlz,a);

 initial begin

 automatic int n_errs = 0;

 wait(start);

 $write("** Starting tests for width %0d.\n",w);

 for (int t=0; t<n_tests; t++) begin

 automatic int lz = {t} % (w + 1);
 a = { 1'b1, (w)'({$random}) } >> (lz + 1);

 #1;

 if (nlz !== lz) begin
 n_errs++; testbench.t_errs++;
 if (testbench.t_errs < 5 || n_errs < 2)
 $write("Error for width %2d: input %h: %d != %0d (correct).\n",
 w, a, nlz, lz);

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol-try.v.html

https://www.ece.lsu.edu/ee4755/2019/hw02-sol-try.v.html

 end

 end

 $write("Width %0d, done with %0d tests, %0d errors.\n",w,n_tests,n_errs);

 done = 1;

 end

endmodule

// cadence translate_on

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol-try.v.html

https://www.ece.lsu.edu/ee4755/2019/hw02-sol-try.v.html

//
//
/// LSU EE 4755 Fall 2019 Homework 2 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2019/hw02.pdf

 /// Solution Problem 2: https://www.ece.lsu.edu/koppel/v/2019/hw02_sol.pdf

`default_nettype none

//
/// Problem 1
//
 /// Complete clz_tree so that it computes the clz of its input recursively.

//
// [✔] Split the input between two recursive instantiations ..
// .. and properly combine the results.
// [✔] Don't forget the terminal case, maybe for w == 1.
// [✔] For maximum credit, avoid any use of adders ..
// .. by making the width of the "hi" module a power of 2.
//
// [✔] Make sure that port connections are the correct size ..
// .. mismatched ports are Verilog errors in this assignment.
// [✔] Do not make port widths larger than needed.
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] As always, avoid costly, slow, and confusing code.

 /// Solution Discussion

//
// Two solutions appear below.
//
// The clz_tree_fat module is much simpler, but it uses an adder.
// Two points would be deducted if this were given as a solution
//
// The clz_tree module does not use an adder. It would get full credit.

 /// SOLUTION -- With Adder. Two points would be deducted.

module clz_tree_fat
 #(int w = 19,
 int ww = $clog2(w+1))
 (output uwire [ww:1] nlz,
 input uwire [w:1] a);

 if (w == 1) begin

 assign nlz = ~ a;

 end else begin

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/koppel/v/2019/hw02.pdf
https://www.ece.lsu.edu/koppel/v/2019/hw02_sol.pdf
https://www.ece.lsu.edu/ee4755/2019/hw02-sol.v.html

 localparam int wlo = w/2;
 localparam int whi = w - wlo;
 localparam int wwlo = $clog2(wlo+1);
 localparam int wwhi = $clog2(whi+1);

 uwire [wwlo:1] lz_lo;
 uwire [wwhi:1] lz_hi;

 clz_tree_fat #(wlo) clo(lz_lo, a[wlo:1]);
 clz_tree_fat #(whi) chi(lz_hi, a[w:wlo+1]);

 assign nlz = lz_hi < whi ? lz_hi : whi + lz_lo;

 end

endmodule

 /// SOLUTION -- Without Adder

module clz_tree
 #(int w = 19,
 int ww = $clog2(w+1))
 (output uwire [ww-1:0] nlz,
 input uwire [w-1:0] a);

 if (w == 1) begin

 assign nlz = !a[0];

 end else if (w == 2) begin

 assign nlz = { !a[0] && !a[1], !a[1] && a[0] };

 end else begin

 // Set whi to the largest power of 2 strictly less than w.
 //
 localparam int lhi = $clog2(w) - 1;
 localparam int whi = 1 << lhi;
 localparam int wwhi = lhi + 1;

 // Then set wlo to the number of remaining bits.
 //
 localparam int wlo = w - whi;

 uwire [wwhi-1:0] nlz_lo, nlz_hi;
 // Note: nlz_lo may be one bit wider than needed.

 // Instantiate recursive modules.
 //
 clz_tree #(wlo,wwhi) clz_lo(nlz_lo, a[wlo-1:0]);
 clz_tree #(whi,wwhi) clz_hi(nlz_hi, a[w-1:wlo]);

 // Split the nlz_lo and nlz_hi outputs into "overflow" (MSB) bits,

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2019/hw02-sol.v.html

 // ov_lo and ov_hi, and the remaining bits lz_lo and lz_hi.
 //
 uwire ov_lo, ov_hi;
 uwire [lhi-1:0] lz_lo, lz_hi;
 //
 assign { ov_lo, lz_lo } = nlz_lo;
 assign { ov_hi, lz_hi } = nlz_hi;

 // Assemble nlz in one of three ways (Case 0, Case 1, Case 1)
 //
 assign nlz = !ov_hi ? { 2'b00, lz_hi } : // Case 0
 !ov_lo ? { 2'b01, lz_lo } : // Case 1
 { 2'b10, lz_lo }; // Case 2
 //
 // Case 0:
 // Input to clz_hi has a 1, so just use nlz_hi.
 // This case occurs when the MSB of nlz_hi is 0.
 // For this case just set nlz to nlz_hi.
 //
 // Case 1:
 // Input to clz_hi is all zeros, and wlo < whi or nlz_lo < whi.
 // For this case set nlz = whi + nlz_lo = { 2'b01, lz_lo }.
 //
 // Case 2:
 // Input to clz_hi is all zeros, and nlz_lo == whi.
 // If this condition is true then ov_lo = 1
 // For this case set
 // nlz = whi + nlz_lo = { 2'b1 + ov_lo, lz_lo } = { 2'b10, lz_lo }
 end

endmodule

 /// A Behavioral CLZ Description

module clz
 #(int w = 19,
 int ww = $clog2(w+1))
 (output var logic [ww-1:0] nlz,
 input uwire logic [w-1:0] a);

 uwire [w:0] aa = { a, 1'b1 };
 always_comb for (int i=0; i<=w; i++) if (aa[i]) nlz = w-i;

endmodule

//
/// Testbench Code

// cadence translate_off

module testbench;

 // The widths (values of w) at which the modules will be instantiated.
 //

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2019/hw02-sol.v.html

 localparam int widths[] = { 1, 2, 5, 8, 13, 15, 17 };

 // localparam int nw = widths.size();
 localparam int nw = 7; // Cadence, please fix this.
 initial if (nw != widths.size())
 $fatal(1,"Constant nw should be %0d.\n",widths.size());

 int t_errs; // Total number of errors.
 initial t_errs = 0;
 final $write("Total number of errors: %0d\n",t_errs);

 uwire d[nw:-1]; // Start / Done signals.
 assign d[-1] = 1; // Initialize first at true.

 // Instantiate a testbench at each size.
 //
 for (genvar i=0; i<nw; i++)
 testbench_n #(widths[i]) t2(.done(d[i]), .start(d[i-1]));

endmodule

module testbench_n
 #(int w = 20)
 (output logic done, input uwire start);

 localparam int ww = $clog2(w+1);

 localparam int n_tests = w * 10;

 uwire [ww:1] nlz;
 logic [w-1:0] a;
 clz_tree #(w) c0(nlz,a);
 // clz #(w) c0(nlz,a);

 initial begin

 automatic int n_errs = 0;

 wait(start);

 $write("** Starting tests for width %0d.\n",w);

 for (int t=0; t<n_tests; t++) begin

 automatic int lz = {t} % (w + 1);
 a = { 1'b1, (w)'({$random}) } >> (lz + 1);

 #1;

 if (nlz !== lz) begin
 n_errs++; testbench.t_errs++;
 if (testbench.t_errs < 5 || n_errs < 2)
 $write("Error for width %2d: input %h: %d != %0d (correct).\n",
 w, a, nlz, lz);

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2019/hw02-sol.v.html

 end

 end

 $write("Width %0d, done with %0d tests, %0d errors.\n",w,n_tests,n_errs);

 done = 1;

 end

endmodule

// cadence translate_on

← → Fall 2019 ← → Homework 2 Homework Solution Sol Code Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2019/hw02-sol.v.html

LSU EE 4755 Homework 3 Solution Due: 23 October 2019

Problem 1: Appearing below is a module excerpted from the solution to Homework 1. Compute
the cost and delay of this module using the simple model under the following assumptions:

• The inputs arrive at t = 0. Don’t assume that any bit is early or late, they all arrive at
exactly t = 0.

• A ripple adder will be used to implement addition.

• Apply obvious optimizations. In particular, don’t use a BFA if a BHA would suffice. And
only use a BHA if that is needed.

• Don’t overlook the fact that one of the shifter inputs is a constant.

Show the cost and delay in terms of wa and wb, but use symbol a for wa and b for wb. For
example, “The cost is (a + b)9 uc and the delay is (a + b)2 ut.” (Those answers assume that BFAs
are used for the entire module, which is wrong.)

The simple model slides (AOTW) don’t show the cost and delay of a BHA, so work that out
yourselves.

module mult_piece
#(int wa = 16, int wb = 16, int wp = wa + wb,

int wn = wa / 2, int wx = wb + wn)

(output uwire [wp:1] prod,

input uwire [wx:1] prod_lo, prod_hi);

assign prod = prod_lo + (prod_hi << wn);

endmodule

Short answer: Cost: [9b + 3a
2] uc , Delay: [2 + 2b + a

2] ut .

Long answer: Because prod hi is shifted and because prod lo and prod hi are the same width the adder can
be broken into three regions: an a/2-bit low region consisting of the low a/2 bits of prod lo, a b-bit middle region
consisting of the high b bits of prod lo and the low b bits of prod hi, and an a/2-bit region consisting of the high
a/2 bits of prod hi.

There is no hardware at all for the low region. The middle region consists of b binary full adders, and the high
region consists of a/2 binary half adders. (The high region has to handle the carry out from the middle region.)

Under the simple model a BFA cost 9 uc and in a w-bit ripple configuration has a delay of [2 + 2w] ut. A BHA
can be derived from a BFA by setting the a or b input to logic zero and then simplifying. Such a BHA would have a cost
of 3 uc per bit and a delay of 1 ut per bit in a ripple configuration.

The total cost is then [9b + 3a
2] uc and the delay is [2 + 2b + a

2] ut.

There’s another problem on the next page!

1

← → Fall 2019 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2019/hw03_sol.pdf

Problem 2: A w-bit multiplier needs to add together w partial products using w − 1 adders. A
näıve timing analysis of a non-tree ripple adder implementation would compute a delay of w(2 ×
2w + 2) = (4w2 + w) ut for the 2w-bit product using the simple model and ignoring ripple-unit
cascading. As we should know 4w2 is not a good term to have in an expression for time. The goal
of this problem is to see how the tree multiplier compares to this näıve timing analysis.

Appearing below is the Bonus Solution to Homework 1 in which a single mult_tree module
is used rather than separate modules mult16_tree, mult8_tree, etc. Also shown is a module,
my_module, that instantiates the mult_tree. Also shown a page or two ahead is the diagram from
Homework 1. You may want to use this to help work out the solution to this problem.

Analyze the cost and performance of my_module as described below. When computing the
cost and performance don’t forget to account for the full elaboration, not just the top level. For
example, my_module with w=4 consists of one mult_tree at w=4 and two mult_tree modules at
w=2, and four mult_tree modules at w=1.

module mult_tree
#(int wa = 16, int wb = 16, int wp = wa + wb)

(output logic [wp:1] prod,

input uwire [wa:1] a,

input uwire [wb:1] b);

if (wa == 1) begin

assign prod = a ? b : 0;

// Equivalent to: prod = a * b;

end else begin

// Split a in half and recursively instantiate a module for each half.

localparam int wn = wa / 2;

localparam int wx = wb + wn;

uwire [wx:1] prod_lo, prod_hi;

mult_tree #(wn,wb) mlo(prod_lo, a[wn:1], b);

mult_tree #(wn,wb) mhi(prod_hi, a[wa:wn+1], b);

// Combine the partial products.

always_comb prod = prod_lo + (prod_hi << wn);

end

endmodule

module my_module
#(int w = 8, int wp = 2 * w)

(output uwire [wp-1:0] p,

input uwire [w-1:0] x, y);

mult_tree #(w,w) mt1(p,x,y);
endmodule

(a) Compute the cost of my_module using the same assumptions as in Problem 1. The cost must

2

← → Fall 2019 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw03_sol.pdf

be in terms of w. It’s okay, indeed encouraged, to use sample values like w = 16 when working
out the problem, but once you have it figured out give the answer in terms of w. (If you have not
solved Problem 1 then use the incorrect sample answers provided in Problem 1.)

The following identity may be helpful:
∑m−1

i=0 2i = 2m − 1. In such a summation i might
indicate the level of recursion and 2i might indicate the number of modules at that recursion level.
For the top level of the recursion i = 0.

Let j denote the recursion level such that a = 2j , and note that j starts at lgw with the initial instantiation of
mult-tree (the one made by my-module) and ends at j = 0, the terminal case. At level j there are a total of w/2j

instances. For the terminal case, j = 0 and a = 1, mult-tree produces just a mux, which itself will be optimized to
b AND gates. There will be w/20 instances for j = 0, so their total cost will be w2 uc, after setting b = w.

The j > 0 levels consist of binary full and half adders. Each instance has about w BFAs and a/2 = 2j−1 BHAs.
Let cf denote the per-bit cost of a BFA and ch denote the per-bit cost of a BHA. By the simple model cf = 9 uc and
ch = 3 ut. (In the BHA the carry out can be used to compute the sum, reducing the number of additional gates for the
XOR to 2.) Then the total cost of the adders is

lgw∑

j=1

w

2j
(
wcf + 2j−1ch

)

=w

lgw∑

j=1

(wcf
2j

+
ch
2

)

=w2

lgw∑

j=1

cf
2j

+
w

2

lgw∑

j=1

ch

=w2

(
1− 1

w

)
cf +

w

2
(lgw)ch

.

(Note that
∑lgw

j=1 2−j = (1− 1/w).) The total overall cost is

w2 uc + w2

(
1− 1

w

)
cf +

w

2
(lgw)ch

=

[
10w2 − 9w +

3w

2
(lgw)

]
uc

An important point to note is that the cost is proportional to w2. That should not be surprising because we know
that to multiply two w-bit quantities we need w − 1 adders, each costing about wcf .

(b) Compute the delay of the multiplier using a simplifying assumption similar to the one used in
Problem 1: when computing the delay of prod = prod_lo + (prod_hi << wn) assume that
all bits for prod_lo and prod_hi arrive at the same time and that all bits of prod are sent to the
outputs at the same time. (Don’t like simplifying assumptions? The next subproblem is for you!)

Show your answer for w=8 and as an expression in terms of w. Don’t forget to consider the
entire elaboration, not just the top-level module.

The launch point starts at j = 0 (the terminal case), which depends only on the inputs to my-module, a and b.
The delay is just 1 ut.

Level j > 0 has an adder consisting of w BFAs and 2j−1 BHAs. The total delay through that is [2(w − 1) +
2j−1] ut, where the delay through a 2j−1-bit BHA is 2j−1 ut. The total delay including the AND gates is

3

← → Fall 2019 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw03_sol.pdf

1 +

lgw∑

j=1

(
2(w − 1) + 2j−1

)

 ut

= [1 + 2(w − 1)(lgw) + w − 1] ut

= [w + 2(w − 1)(lgw)] ut

≈ 2w lgw ut

The dominant term is 2w lgw which is not as bad as a linear connection of adders which would have a delay of
≈ 2w2 ut under similar assumptions.

(c) Compute the delay of the multiplier without the simplifying assumption. That is, account for
the fact that the less-significant bits of mult_tree will be ready before the more-significant bits.

Show your answer for w=8 and as an expression in terms of w. Don’t forget to consider the
entire elaboration, not just the top-level module.

At level j the least significant BFA (which could actually be a BHA, but we’ll keep it simple) is connected to bit
2j−1 of prod-lo and bit zero of prod-hi. Since level j is waiting for 2j−1 to be ready, the next level, j + 1, must
be waiting for bit 2j . Therefore for level j we need to compute the delay though 2j−1 + 1 BFAs: stating at the least
significant BFA (bit position 2j−1) and ending at the BFA computing bit 2j . The delay for w bits for a ripple adder
under the simple model is 2(w + 1) ut, so the delay at level j before j + 1 can start is 2((2j−1 + 1) + 1) = 2j + 4.

For level j = 0 the delay is 1 ut (an AND gate). For level j = lgw we need to add on the remaining bits in the
ripple adder: w/2− 1 BFA delays and w/2 BHA delays.

The total delay is:

1 +

lgw∑

j=1

2j + 4

+

(w
2
− 1
)

2 +
w

2

 ut

=
[
1 + 2(2w − 1) + 4(lgw) +

(w
2
− 1
)

2 +
w

2

]
ut

= [5.5w + 4(lgw)− 1] ut

Useful diagram on next page.

4

← → Fall 2019 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw03_sol.pdf

Use the diagram below to help work out solutions.

mult2

16

1:0

mult2

16

3:2

<<
2

+

mult2

16

5:4

mult2

16

7:6

<<
2

+
<<

4

+

mult2

16

9:8

mult2

16

11:10

<<
2

+

mult2

16

13:12

mult2

16

15:14

<<
2

+
<<

4

+
<<

8

+

16b by 4b

16b by 8b

mult16

a

b

p
ro
d

16

16

32

There are four of these.

T
h
e
re

 a
re

 tw
o
 o

f th
e
se

.

5

← → Fall 2019 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw03_sol.pdf

LSU EE 4755 Homework 4 Solution Due: 11 November 2019

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2019/hw04.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if for whatever reason you haven’t done so or neeed to do it again), copy the
assignment, and run the Verilog simulator and synthesis program on the unmodified homework
file, hw04.v. Do this early enough so that minor problems (e.g., password doesn’t work) are minor
problems.

Homework Overview
Module best_match_behavioral has two inputs, a longer vector, val, and a short vector, k. It
sets pos to the start of a subvector of val that best matches k and sets err to the number of bit
positions that don’t match. For example, suppose val = 8’b11110000 and k=4’b1100. Then pos

would be set to 2 and err to 0 because there is an exact match at position 2 in val. If k=4’b1101
then there isn’t an exact match for k in val, but at position 2 there is a match with one error. If
k=2’b00 then there are matches at positions 0, 1, and 2, all with zero errors.

Module best_match_behavioral is combinational (and was written as a behavioral module).
In this assignment a sequential version will be written and analyzed.

Testbench Code
The testbench for this assignment, which can be run when visiting the file in Emacs in a properly
set-up account by pressing F9 , tests the modules. Initially, the testbench will exit because module
best_match has not responded in sufficient time. When that happens one of the last lines of the
testbench output shows that the final cycle count is the same as the cycle limit (128 below), and
“CYCLE LIMIT EXCEEDED” is shown.

ncsim> run

Exit from clock loop at cycle 128, limit 128. ** CYCLE LIMIT EXCEEDED **

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

Compilation finished at Mon Nov 4 17:56:24

To get rid of this message best_match must handshake correctly, see Problem 1. If best_match
responds in time, the testbench will check to see if pos is in the right range. The output below shows
errors when pos is out of range: Error in best_match, test # 3, pos out of range:

0xff

Error in best_match, test # 4, pos out of range: 0xff

Done with best_match_behavioral tests, 0 errors found.

Done with best_match tests, 1000 errors found.

Exit from clock loop at cycle 59001, limit 59069.

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

The output err is supposed to be the number of non-matching bits at pos. If not, the testbench
shows output like:
Error in best_match, test # 2, err wrong 1 != 3 (correct) pos 2 84 ^ 01

Error in best_match, test # 3, err wrong 1 != 2 (correct) pos 13 1f ^ 3d

Error in best_match, test # 4, err wrong 1 != 2 (correct) pos 4 78 ^ f9

Done with best_match_behavioral tests, 0 errors found.

1

← → Fall 2019 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2019/hw04.v.html
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2019/hw04_sol.pdf

Done with best_match tests, 972 errors found.

Exit from clock loop at cycle 59001, limit 59069.

ncsim: *W,RNQUIE: Simulation is complete.

ncsim> exit

For test # 4, the testbench reports that err was 1 but should have been 2. The line also shows
that pos was set to 4, and that val at that position was 78 (in hexadecimal) and that k=f9.

The testbench also checks whether the err returned is the minimum error for that value of
val and k.

The testbench prints the details of the first few errors it finds. A grand total is printed at the
end, see the transcript above.

Use Simvision to debug your modules. Feel free to modify the testbench so that it presents
inputs that facilitate debugging.

Synthesis
The synthesis script, syn.tcl, will synthesize best_match_behavioral (for reference) and best_match

(your solution). Each module will be synthesized at three widths, and with two delay targets, an
easy 90 ns and a un-achievable 0.1 ns. If a module doesn’t synthesize −.001 s is shown for its delay.
The script is run using the shell command genus -files syn.tcl, which invokes Cadence Genus.
If you would like to synthesize additional modules or sizes edit syn.tcl near the bottom.

The synthesis script shows area (cost), delay, and the delay target in a neat table. Additional
output of the synthesis program is written to file spew-file.log.

Problem 1 on next page.

2

← → Fall 2019 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw04_sol.pdf

Problem 1: Complete module best_match so that it computes the best match sequentially as
described below. In addition to val and k, the module has 1-bit inputs start and clk and 1-bit
output ready.

Handshaking works as follows: When start=1 at a positive edge the module should set ready
to zero. It should then start scanning for the best match, checking one shifted position per cycle.
The maximum number of cycles needed should be wv-wk plus one or two more needed for hand-
shaking. (The testbench will wait 2*wv cycles before giving up.) The module should set err and
pos to their correct values and ready to 1.

The inputs, val and k will be held steady at least until ready is set to 1.
The module must use the pop (population) module (in hw04.v) to compute possible values for

err. That is, don’t use something like the b loop in best_match_behavioral to accumulate the
sum e. Instead compute the XOR of the appropriate bit range and provide that to the pop module
as an input.

For maximum credit avoid the use of large (such as wv-input) multiplexors in your design, or
the use of a non-constant shifter.

The module must be synthesizable and correct.
The behavioral best match module is shown below for reference.

module best_match_behavioral
#(int wv = 32, int wk = 10, int wvb = $clog2(wv), int wkb = $clog2(wk+1))

(output logic [wvb:1] pos, // Position of best match.

output logic [wkb:1] err, // Number of non-matching bits.

input uwire [wv-1:0] val, input uwire [wk-1:0] k);

always_comb begin

automatic int best_err = wk + 1;

automatic int best_pos = -1;

for (int p=0; p<=wv-wk; p++) begin

automatic int e = 0;

for (int b=0; b<wk; b++) e += k[b] !== val[p+b];

if (e < best_err) begin

best_err = e;

best_pos = p;

end

end

err = best_err;

pos = best_pos;

end

endmodule

Solution on next page.

3

← → Fall 2019 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw04_sol.pdf

The solution appears below. The biggest difference between best match behavioral and best match is
that the p-loop has been eliminated, and the iteration variable, p, has been declared as a variable. The variable p is
initialized to zero when start is asserted and then incremented each cycle until it points to the last position of a possible
match, wv-wp.

Another difference is that the b loop, used to total the number of incorrect bit positions, has been replaced by the
pop module. The input to the pop module is a bit vector, e vec, which is constructed by exclusive-or’ing k with the
low bits of sh val. Bit i of e vec is 1 if the bit i of k is different than bit i of sh val, bit i is 0 if the bits are the
same. Equivalently, e vec[i] = k[i] !== sh val[i], or e vec[i] = k[i] ^ sh val[i]. Rather than
iterating over i the entire value is computed using the bitwise exclusive OR operator: e vec = k ^ sh val.

The register sh val is initialized to val and then shifted right by one bit each iteration. This avoids the need for
a shifter. For example, if the error vector were computed using e vec = k ^ val[p +: wk]; a shifter would
be needed for val[p +: wk], to extract wk bits starting at position p.

module best_match
#(int wv = 32, int wk = 10, int wvb = $clog2(wv), int wkb = $clog2(wk+1))

(output logic [wvb:1] pos, output logic [wkb:1] err, output logic ready,

input uwire [wv-1:0] val, input uwire [wk-1:0] k, input uwire start, clk);

logic [wv-1:0] sh_val;

logic [wvb-1:0] p;

uwire [wk-1:0] e_vec = k ^ sh_val[wk-1:0];

uwire [wkb-1:0] e;

pop #(wk,wkb) p1(e, e_vec);

always_ff @(posedge clk)

if (start == 1) begin

ready = 0;

sh_val = val;

p = 0;

err = wk; // wk+1 might overflow err.

end else if (!ready) begin

if (e < err) begin err = e; pos = p; end

ready = p == wv - wk;

p++;

sh_val >>= 1;

end

endmodule

4

← → Fall 2019 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw04_sol.pdf

Problem 2: Run the synthesis program and indicate how your module compares to the behavioral
module.

Synthesis results appear below.

Module Name Area Delay Delay

Actual Target

best_match_wv16 47923 3.786 90.000 ns

best_match_mux_wv16 46566 5.181 90.000 ns

best_match_behavioral_wv16 87155 10.862 90.000 ns

best_match_wv24 60757 3.675 90.000 ns

best_match_mux_wv24 60566 5.503 90.000 ns

best_match_behavioral_wv24 192546 21.535 90.000 ns

best_match_wv16_2 63287 2.413 0.100 ns

best_match_mux_wv16_3 77134 3.398 0.100 ns

best_match_behavioral_wv16_137 231102 3.504 0.100 ns

best_match_wv24_1 79273 2.652 0.100 ns

best_match_mux_wv24_2 89081 3.590 0.100 ns

best_match_behavioral_wv24_297 563769 6.667 0.100 ns

(a) Compare the amount of time needed for your module compared to the behavioral one. The
answer to this question requires some manipulation of the values in the Delay Actual column.
Indicate which results are expected, and which are not expected, and explain why.

The manipulation alluded to in the question is the multiplying of the delay by the number of cycles needed to
compute the result (the position and error of the best match). The behavioral module is combinational, and so only one
“cycle” is needed. (It’s not really a cycle because the module isn’t clocked.) The best match module, in contrast,
requires wv-wk cycles and so the delay must be multiplied by that number of cycles, 24−10 = 14 for the 24-bit module
and 16− 10 = 6 for the 16-bit module, in order to compute the time needed to find the best match.

Since we are comparing time we should look at the results for a delay target of 0.1 ns because it is in those runs that
the synthesis program is optimizing delay. For the 24-bit module the behavioral module requires 6.667 ns to compute the
best match. For wv=24 and wk=10 the best match module in this solution requires at least 24− 10 = 14 cycles,
for a total time of 14× 2.652 ns = 37.128 ns. So the behavioral module will compute the error and position in much
less time.

Some students submitted solutions that used fewer than wv-wk cycles when a perfect match (err==0) was found
before bit wv-wk was reached. A student eager to showcase this clever shortcut could answer this question by describing
a favorable situation: “For situations in which a perfect match occurs half the time and is uniformly distributed,

The question also asks for a discussion of whether the synthesis delay results were expected. That means we need to
make some kind of a delay estimate for each module and compare it to the delays provided by the synthesis program. A
starting point for the delay comparison is to recognize a key difference between the two modules: the behavioral module
computes the error for each of 24 − 10 = 14 positions (for the 24-bit module) in one cycle while the best match

module computes just one position per cycle. This factor of 14 (or v − k) difference would seem to put the behavioral
module at a disadvantage. An important question to answer is whether the behavioral module’s delay should be 14 times
larger, dlg 14e times larger, or something else. In the module generated by the synthesis program the behavioral delay is
6.667/2.652 ≈ 2.5 times larger.

The question did not explicitly ask us to compute the delay (say using the simple model), so that gives us some
latitude for approximation. Full credit would have been given for all of the key points made so far in this solution. But
having gotten this far, how can we not proceed further into the delay analysis? (Warning: EE 4755 Fall 2019 students are

5

← → Fall 2019 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw04_sol.pdf

expected to read the entire solution. Exam questions will be based on homework assignments and the posted solutions,
even the excessively wordy ones.)

First, consider the b loop in the behavioral module. It is doing the same thing as the assignment to e vec and the
hardware in pop module are doing in best_match. Let’s assume that both will be synthesized to the same hardware
after optimization (though in the case of the behavioral module there will be wv-wk copies of the hardware).

An important thing to remember is that the p loop and the b loop describe how synthesized hardware will be
interconnected. They do not execute and don’t even exist in the synthesized hardware. (The Verilog simulator does
execute the loops as procedural code, but in this part we’re considering synthesis.) The expression k[b] !== val[p+b]

is synthesized into (v − k)k pieces of hardware, one for each possible value of p ((v − k) possible values) and b (k
possible values). Since the values of k and val are available the beginning of a clock cycle all (v − k)k comparisons
are done simultaneously. The b loop describes a series of adders, computing the same sum as the pop module though
describing the sum as a linear sequence of additions. If the synthesis program does its job well, meaning that it can
re-associate the linear sequence of additions into a reduction tree, the delay for this will be 2 lg k BFAs. Because of
the way the BFAs are connected (possible final exam question?) we’ll set the adder delay to 4 per BFA, for a total of
8 lg k ut. The input to each b loop is the same val and k, which are available at the start of a clock cycle. So taking
into account the XOR delay each sum will be available at [2 + 8 lg k] ut.

So far it looks like the time for the behavioral model to compute v − k values of e is the same as the time needed
by best match to compute one. The difference in timing between the two is due to the code starting at if (e <

best err) begin. The problem is best err. The value at iteration p depends on iteration p-1 for p>0. Variable
best err is a live-in and live-out for an iteration. It’s critical path passes through a comparison, e < best err, and
a mux (selecting the old or new best err). If the comparison has delay 2 lg k and the mux 2, the delay for v − k
iterations will be [2 + 8 lg k + (2(lg k) + 2)(v− k)] ut. The delay for best_match is roughly the of one iteration,
[2 + 8 lg k + (2(lg k) + 2)] ut.

When v−k is large the behavioral module would take (v−k) times longer based on this analysis. For for v−k =
24−10 = 14 and lg k = 4 the delays are much closer. For the behavioral delay 2+8×4+(2×8+2)(14) = 316 ut

and for best match delay 2 + 8 × 4 + (2 × 8 + 2) = 82 ut, the modules have less than factor of 4 difference in
delay. The synthesis program gives a difference of 2.5. Perhaps the synthesis program used a reduction tree for the if
(e < best err) code. In that case the critical path would be through dlg(v − k)e = dlg 14e = 4 layers, in
which case delay would be 2 + 8× 4 + (2× 8 + 2)(4) = 136 ut, which works out to 136/82 = 1.66 times longer
than best match. The difference in delays obtained from the synthesis program, 2.5, is somewhere between these two
possibilities.

(b) Compare the area of your design to the behavioral one. Indicate which results are expected,
and which are not expected, and explain why.

For the area comparison the 90 ns delay target runs should be used. For wv=24 and wk=10 the p loop iterates
14 times and so we would expect the behavioral code to have 14× as much addition (including the pop module) and
comparison hardware. The best match module though needs a register for sh val, something which the behavioral
module does not need. Assume that the pop module and the expression totaling e use 2k BFAs each. (Approximated

using
∑lg k

i=1 ik/2i = 2(k − 1)− lg k.) At a cost of 9 uc per BFA, the cost of just the adders would be 18k uc. For
best match there would be only one set of such adders, but for the behavioral module there would be v−k such adders.
For v = 24 and k = 10 the costs would be 180 uc versus 2520 uc for the behavioral module. Using 7 uc per bit for
sh val, pos, and err, best match would also require 7(v + lg v + lg(k + 1)) = 7(24 + 5 + 4) = 231 uc that
the behavioral module lacks. The total so far is 411 uc versus 2520 uc, a factor of 6 difference. The actual difference is
closer to a factor of 3 when optimizing for area.

6

← → Fall 2019 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw04_sol.pdf

LSU EE 4755 Homework 5 Solution Due: 20 November 2019

Problem 1: Solve 2018 Final Exam Problem 3, in which the inferred hardware for a misc module
is to be found (a) and the state of the event queue over time simulating misc (b) is to be found.

See the final exam solution at https://www.ece.lsu.edu/koppel/v/2018/fe_sol.pdf.

Problem 2 on next page.

1

← → Fall 2019 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2018/fe_sol.pdf
https://www.ece.lsu.edu/ee4755/2019/hw05_sol.pdf

Problem 2: Appearing below is a solution to Homework 4 Problem 1. Show the hardware that
will be inferred for this module after some optimization. Show the pop module as a box.

• Clearly show all input and output ports.

• Please don’t get parameters and ports confused.

Solution appears below. The solution uses enable signals on the registers, but it would also be correct to use an
extra mux instead. Because optimization is applied the wv-wk term is shown as a constant, not as a subtraction unit.
The >>=1 is shown as a bit renumbering instead of has a shift unit.
module best_match

#(int wv = 32, int wk = 10, int wvb = $clog2(wv), int wkb = $clog2(wk+1))

(output logic [wvb:1] pos, output logic [wkb:1] err, output logic ready,

input uwire [wv-1:0] val, input uwire [wk-1:0] k, input uwire start, clk);

logic [wvb-1:0] curr_pos;

logic [wv-1:0] sh_val;

uwire [wkb-1:0] e;

pop #(wk,wkb) p(e, k ^ sh_val[wk-1:0]);

val

k

err

start

clk

re
a
d
y

cu
rr_p

o
s

sh
_v
a
l

pos

en

en

en

w
v
-w
k

1

en

enpop
p

1

0
1'b0

wv-1:1

<

~0

w
k-
1
:0

0

ready

best_match
wv,wk,wvb,wkb

sh
_v
a
l

start

msb

lsb

e

=

+

st
a
rt

st
a
rt

wv

wk

wkb

wvbwvb

always_ff @(posedge clk)

if (start == 1) begin

ready = 0;

curr_pos = 0;

sh_val = val;

err = ~0;

end else if (!ready) begin

if (e < err) begin

err = e;

pos = curr_pos;

end

ready = curr_pos == wv-wk;

curr_pos++;

sh_val >>= 1;

end

endmodule

2

← → Fall 2019 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2019/hw05_sol.pdf

//
//
/// LSU EE 4755 Fall 2019 Homework 6 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2019/hw06.pdf

`default_nettype none

//
/// Problem 1
//
 /// Complete add_accum so that it accumulates a sum.

//
// [✔] Put your solution in add_accum. No other modules should
// be modified. (Except the testbench, to help debug.)
//
// [✔] add_accum must use an add_pipe module to compute the sum.
//
// [✔] Make sure that the testbench does not report errors.
// [✔] Module must be synthesizable. Use command: genus -files syn.tcl
//
// [✔] As always, avoid costly, slow, and confusing code.
// [✔] As always, don't assume parameters will be at their default values.

module add_accum
 #(int w = 21, n_stages = 3)
 (output logic [w-1:0] sum,
 output logic sum_valid,
 input uwire [w-1:0] ai,
 input uwire ai_valid, reset, clk);

 /// SOLUTION

 // Register to keep track of which stage of add pipeline is occupied.
 //
 logic [n_stages:0] st_occ;
 //
 // If st_occ[i] == 1 then stage i of pipelined adder is occupied.

 // If none of the adder stages is occupied the value in sum must be valid.
 //
 assign sum_valid = !st_occ;

 // If true, there is a useful result at the adder output.
 //
 uwire aout_valid = st_occ[n_stages-1];

 // Connections to adder.
 //
 uwire [w-1:0] aout;
 uwire [w-1:0] a0 = ai_valid ? ai : sum;
 uwire [w-1:0] a1 = aout_valid ? aout : sum;

 add_pipe #(w,n_stages) add_p0(aout, a0, a1, clk);

 // If true, the value in sum is needed.
 //
 logic sum_occupied;

 // Number of values ready to be added together.
 //
 uwire [1:0] n_values = ai_valid + sum_occupied + aout_valid;
 //
 // If n_values == 0: Nothing to do.
 // If n_values == 1: Put or keep the value in sum.
 // If n_values == 2: Put the two values into the adder.
 // If n_values == 3: Put ai and aout into the adder and leave sum unchanged.

 // If true, a pair of values will be put in the adder in this cycle.

← → Fall 2019 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/koppel/v/2019/hw06.pdf
https://www.ece.lsu.edu/ee4755/2019/hw06-sol.v.html

 //
 uwire start_an_addition = n_values >= 2;

 // If true, write sum with either ai or aout.
 //
 uwire write_sum = !sum_occupied && n_values == 1;

 always_ff @(posedge clk) if (reset) begin

 sum <= 0;
 sum_occupied <= 0;
 st_occ <= 0; // Set occupied bit of every stage to 0.

 end else begin

 if (write_sum) sum <= aout_valid ? aout : ai;

 // sum will be occupied if there are an odd number (1 or 3) values ..
 //
 sum_occupied <= n_values[0];
 //
 // .. because if there were 2 values they both would go into the adder.

 // Advance occupied bit by one stage.
 //
 st_occ <= { st_occ[n_stages-1:0], start_an_addition };

 end

endmodule

`ifdef xxx
Synthesizing at effort level "high"

Module Name Area Delay Delay
 Actual Target
add_pipe_w24_n_stages1 29928 10.174 90.000 ns
add_pipe_w24_n_stages2 47043 5.428 90.000 ns
add_pipe_w24_n_stages3 64159 3.701 90.000 ns
add_pipe_w24_n_stages4 81275 2.837 90.000 ns
add_pipe_w24_n_stages6 115506 1.973 90.000 ns

add_accum_w24_n_stages1 87556 11.449 90.000 ns
add_accum_w24_n_stages2 105305 6.349 90.000 ns
add_accum_w24_n_stages3 123530 4.560 90.000 ns
add_accum_w24_n_stages4 141598 3.696 90.000 ns
add_accum_w24_n_stages6 177545 3.061 90.000 ns

add_pipe_w24_n_stages1 84351 1.114 0.100 ns
add_pipe_w24_n_stages2 83959 1.249 0.100 ns
add_pipe_w24_n_stages3 103383 1.105 0.100 ns
add_pipe_w24_n_stages4 117358 1.001 0.100 ns
add_pipe_w24_n_stages6 150854 0.896 0.100 ns

add_accum_w24_n_stages1 150738 2.023 0.100 ns
add_accum_w24_n_stages2 149544 1.757 0.100 ns
add_accum_w24_n_stages3 183994 1.514 0.100 ns
add_accum_w24_n_stages4 191611 1.444 0.100 ns
add_accum_w24_n_stages6 224175 1.332 0.100 ns
Normal exit.
`endif

module add_pipe
 #(int w = 21, n_stages = 3)
 (output uwire [w-1:0] sum,
 input uwire [w-1:0] a, b,
 input uwire clk);

 localparam int bits_per_stage = (w + n_stages - 1) / n_stages;
 localparam int wr = n_stages * bits_per_stage; // w rounded.

 logic [wr-1:0] pl_a[n_stages+1], pl_b[n_stages+1], pl_sum[n_stages+1];
 logic pl_carry[n_stages+1];

← → Fall 2019 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2019/hw06-sol.v.html

 always_ff @(posedge clk) begin

 pl_a[0] = a;
 pl_b[0] = b;
 pl_carry[0] = 0;

 for (int s=0; s<n_stages; s++) begin

 automatic logic [bits_per_stage:0] sumi =
 pl_a[s][bits_per_stage-1:0] +
 pl_b[s][bits_per_stage-1:0] + pl_carry[s];

 pl_carry[s+1] <= sumi[bits_per_stage];
 pl_sum[s+1] <=
 { sumi[bits_per_stage-1:0], pl_sum[s] } >> bits_per_stage;
 pl_a[s+1] <= pl_a[s] >> bits_per_stage;
 pl_b[s+1] <= pl_b[s] >> bits_per_stage;

 end

 end

 assign sum = pl_sum[n_stages][w-1:0];

endmodule

// cadence translate_off

program reactivate
 (output uwire clk_reactive, output int cycle_reactive,
 input uwire clk, input var int cycle);
 assign clk_reactive = clk;
 assign cycle_reactive = cycle;
endprogram

module testbench;

 localparam int n_stages[] = { 1, 2, 3, 5, 6 };

 localparam int nw = 5; // Cadence, please fix this.
 initial if (nw != n_stages.size())
 $fatal(1,"Constant nw should be %0d.\n",n_stages.size());

 int t_errs; // Total number of errors.
 initial t_errs = 0;
 final $write("Total number of errors: %0d\n",t_errs);

 uwire d[nw:-1]; // Start / Done signals.
 assign d[-1] = 1; // Initialize first at true.

 // Instantiate a testbench at each size.
 //
 for (genvar i=0; i<nw; i++)
 testbench_n #(n_stages[i]) t2(.done(d[i]), .tstart(d[i-1]));

endmodule

module testbench_n
 #(int n_stages = 3)
 (output logic done, input uwire tstart);

 localparam int n_tests = 10000;
 localparam int w = 30;

 localparam int a_in_max = 42;
 localparam int cyc_max = 1 << 30;

 localparam int lat_limit_empty = n_stages + 2;

← → Fall 2019 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2019/hw06-sol.v.html

 localparam int lat_min_empty = n_stages;
 localparam int lat_limit_full = 2 + (1+$clog2(n_stages)) * (n_stages + 1);

 bit clk;
 int cycle, cycle_limit;
 logic clk_reactive;
 int cycle_reactive;
 reactivate ra(clk_reactive,cycle_reactive,clk,cycle);

 string event_trace;

 initial begin
 clk = 0;
 cycle = 0;

 done = 0;
 cycle_limit = cyc_max;
 wait(tstart);

 fork
 while (!done) #1 cycle += clk++;
 wait(cycle >= cycle_limit)
 $write("Exit from clock loop at cycle %0d, limit %0d. %s\n %s\n",
 cycle, cycle_limit, "** CYCLE LIMIT EXCEEDED **",
 event_trace);
 join_any;

 done = 1;
 end

 uwire [w-1:0] sum;
 uwire sum_valid;
 logic [w-1:0] a;
 logic a_valid, reset;

 add_accum #(w,n_stages) fpa(sum, sum_valid, a, a_valid, reset, clk);

 int rsum;
 bit tests_start;
 int series_idx, value_idx, series_n_vals;
 int n_errs, n_underdue_errs, n_overdue_errs, n_tests_done;
 int sum_due_cyc_earliest, sum_due_cyc, n_correct;
 int last_a_cyc;
 int latency_sum, latency_sum_n;
 bit error_val_issued, error_late_issued;

 initial wait (done) begin
 automatic int not_done = n_tests - series_idx;
 $write("Done with %0d-stage tests, %0d series.\n Correct, %0d. Errors: %0d not done, %0d val, %0d/%0d early/late.\n",
 n_stages, series_idx,
 n_correct, not_done, n_errs, n_underdue_errs, n_overdue_errs);
 $write("For %0d stages average latency %.2f cycles.\n",
 n_stages,
 real'(latency_sum) / (latency_sum_n ? latency_sum_n : 1));
 testbench.t_errs += n_errs + n_underdue_errs + n_overdue_errs + not_done;
 end

 initial begin

 wait(tests_start);

 while (!done) @(posedge clk_reactive) begin

 if (sum_valid) begin

 automatic bit pending = sum_due_cyc < cyc_max;

 if (pending) begin
 n_tests_done++;
 sum_due_cyc = cyc_max;
 if (sum === rsum) n_correct++;
 latency_sum += cycle - last_a_cyc;
 latency_sum_n++;
 if (cycle < sum_due_cyc_earliest) begin

← → Fall 2019 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2019/hw06-sol.v.html

 n_underdue_errs++;
 if (n_underdue_errs < 5) begin
 $write
 ("At cyc %0d, value ready too soon, %0d, cyc. (Min cyc %0d.)\n",
 cycle, last_a_cyc - cycle, lat_limit_empty
);
 if (event_trace != "") $write(" %s\n",event_trace);
 end

 end
 end

 if (!error_val_issued && sum !== rsum) begin
 error_val_issued = 1;
 n_errs++;
 if (n_errs < 5) begin
 $write("At cyc %0d, wrong sum, %0d != %g (correct)\n",
 cycle, sum, rsum);
 if (event_trace != "") $write(" %s\n",event_trace);
 end
 end

 end else if (sum_due_cyc <= cycle) begin

 if (!error_late_issued) begin
 error_late_issued = 1;
 n_overdue_errs++;
 sum_due_cyc = cyc_max;
 if (n_overdue_errs < 5) begin
 $write("At cycle %0d, sum overdue.\n",cycle);
 if (event_trace != "") $write(" %s\n",event_trace);
 end
 end
 end

 end

 end

 initial begin

 automatic int seed = 4755;
 automatic int series_sparsity = 0;
 rsum = 0;
 n_errs = 0;
 latency_sum_n = 0;
 latency_sum = 0;
 error_val_issued = 0;
 error_late_issued = 1;
 series_idx = 0;
 value_idx = 0;
 series_n_vals = 0;
 n_overdue_errs = 0;
 n_underdue_errs = 0;
 sum_due_cyc = cyc_max;
 sum_due_cyc_earliest = 0;
 n_tests_done = 0;
 n_correct = 0;
 event_trace = "";

 wait(tstart);
 $write("Starting tests for %0d-stage pipeline.\n",n_stages);

 @(negedge clk);
 reset = 1;
 event_trace = $sformatf("R(%0d)",cycle);
 a_valid = 0;
 a = 0;
 @(negedge clk);
 cycle_limit = cycle + n_stages * 2;
 tests_start = 1;
 reset = 0;
 @(negedge clk);

← → Fall 2019 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2019/hw06-sol.v.html

 wait(sum_valid);

 while (series_idx < n_tests) begin

 @(negedge clk);

 a = $dist_uniform(seed, 1, a_in_max);

 if (value_idx >= series_n_vals) begin

 a_valid = 0;

 if (sum_valid) begin

 series_idx++;
 value_idx = 0;
 event_trace = $sformatf("R(%0d)",cycle);
 reset = 1;
 a_valid = 0;
 rsum = 0;
 series_n_vals = $dist_uniform(seed, 1, 10);
 series_sparsity = series_idx % 6;
 sum_due_cyc = cycle + 1;
 sum_due_cyc_earliest = cycle;
 error_val_issued = 0;
 error_late_issued = 0;
 cycle_limit = cycle + 1;
 end

 end else begin

 reset = 0;
 a_valid = series_sparsity == 0
 || $dist_uniform(seed, 0, series_sparsity) == 0;
 cycle_limit = cycle + lat_limit_full;

 end

 if (a_valid) begin
 value_idx++;
 event_trace = {event_trace,$sformatf("+%0d(%0d)",a,cycle)};
 error_val_issued = 0;
 error_late_issued = 0;
 rsum += a;
 last_a_cyc = cycle;
 sum_due_cyc = cycle +
 (sum_valid ? lat_limit_empty : lat_limit_full);
 sum_due_cyc_earliest =
 cycle + (value_idx > 1 ? lat_min_empty : 0);
 end

 end

 done = 1;

 end

endmodule

// cadence translate_on

← → Fall 2019 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2019/hw06-sol.v.html

18 Fall 2018 Solutions

410

← → Fall 2018 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw01-sol.v.html

//

//

/// LSU EE 4755 Fall 2018 Homework 1 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2018/hw01.pdf

`default_nettype none

//

/// Problem 1
//

 /// Modify sort2 so that it implements a 2-input sorting network ..
 /// .. using explicity structural code only.
//

// [✔] Make sure that the testbench does not report errors.

// [✔] Use structural code only: including mux2 and compare_le.

// [✔] Pay attention to bit widths.

// [✔] Module must be synthesizable.

module sort2
 #(int w = 8)

 (output uwire [w-1:0] x0, x1,

 input uwire [w-1:0] a0, a1);

 /// SOLUTION
 //

 // The only common problem was forgetting to specify the width.

 uwire c;

 compare_le #(w) comp(c, a0, a1);

 mux2 #(w) m0(x1,c,a0,a1);

 mux2 #(w) m1(x0,c,a1,a0);

endmodule

module mux2
 #(int w = 4)

 (output uwire [w-1:0] x,

 input uwire select,

 input uwire [w-1:0] a0, a1);

 assign x = select ? a1 : a0;

endmodule

module compare_le
 #(int w = 2)

 (output uwire c,

 input uwire [w-1:0] a, b);

 assign c = a <= b;

endmodule

module sort2_is
 #(int w = 8)

 (output uwire [w-1:0] x0, x1,

 input uwire [w-1:0] a0, a1);

 assign {x0, x1} = a0 <= a1 ? { a0, a1 } : { a1, a0 };

endmodule

← → Fall 2018 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/koppel/v/2018/hw01.pdf
https://www.ece.lsu.edu/ee4755/2018/hw01-sol.v.html

//

/// Problem 2
//

 /// Modify sort4 so that it implements a 4-input sorting network ..
 /// .. using explicity structural code only.
//

// [✔] Make sure that the testbench does not report errors.

// [✔] Use structural code only: including sort2 and sort3 modules.

// [✔] Pay attention to bit widths.

// [✔] Module must be synthesizable.

// [✔] The critical path length should be 4 or fewer sort2 modules.

module sort4
 #(int w = 8)

 (output uwire [w-1:0] x0, x1, x2, x3,

 input uwire [w-1:0] a0, a1, a2, a3);

 /// SOLUTION

 uwire [w-1:0] s10, s11, s12, s13, s20;

 // Connect sort2 modules into a tree, so that the longest path

 // is through 2 sort2 modules.

 //

 sort2 #(w) s2(s10, s11, a0, a1);

 sort2 #(w) s3(s12, s13, a2, a3);

 sort2 #(w) s4(s20, x3, s11, s13);

 // Note that s20 will be available later than s10 and s12 because

 // the path from a0 - a3 to s20 go through two sort2 modules,

 // whereas the paths from a0 - a3 to s10 and s12 only pass through

 // one sort2 module. Since s20 will be available later connect it

 // to sort3 port a2, which is closer to the outputs.

 //

 sort3 #(w) s1(x0, x1, x2, s10, s12, s20);

 //

 // Note that module would be slower if s12 and s20 connections above

 // were reversed:

 // sort3 #(w) s1(x0, x1, x2, s10, s20, s12);

endmodule

module sort3
 #(int w = 8)

 (output uwire [w-1:0] x0, x1, x2,

 input uwire [w-1:0] a0, a1, a2);

 uwire [w-1:0] i10, i11, i21;

 sort2 #(w) s0_01(i10, i11, a0, a1);

 sort2 #(w) s1_12(i21, x2, i11, a2);

 sort2 #(w) s2_01(x0, x1, i10, i21);

endmodule

//

/// Testbench Code
//

// The code below instantiates some of the modules above,

// provides test inputs, and verifies the outputs.

← → Fall 2018 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw01-sol.v.html

//

// The testbench may be modified to facilitate your solution. For

// example, one might modify the testbench so that the first tests it

// performs are those which make it easier to determine what the

// problem is, for example, test inputs that are all 0's or all 1's.

//

// Of course, the removal of tests which your module fails is not a

// method of fixing a broken module. The TA-bot will test your

// code using a fresh copy of the testbench, not the one below.

// cadence translate_off

module sortx
 #(int max_size = 5,

 int modnum = 0,

 int w = 8,

 int max_muts = 3)

 (output uwire [w-1:0] xlong[max_muts][max_size],

 input uwire [w-1:0] a[max_size]);

 uwire [w-1:0] x[max_size];

 assign xlong[modnum] = x;

 if (modnum == 0) begin:A

 localparam int s_size = 2;

 localparam string name = "sort2";

 sort2 #(w) s(x[0],x[1],a[0],a[1]);

 end else if (modnum == 1) begin:A

 localparam int s_size = 2;

 localparam string name = "sort2_is";

 sort2_is #(w) s(x[0],x[1],a[0],a[1]);

 end else if (modnum == 2) begin:A

 localparam int s_size = 3;

 localparam string name = "sort3";

 sort3 #(w) s(x[0],x[1],x[2],a[0],a[1],a[2]);

 end else begin:A

 localparam int s_size = 4;

 localparam string name = "sort4";

 sort4 #(w) s(x[0],x[1],x[2],x[3],a[0],a[1],a[2],a[3]);

 end

endmodule

module testbench;

 localparam int w = 8;

 localparam int n_tests = 100;

 localparam int max_size = 4;

 localparam int max_muts = 4;

 logic [w-1:0] a[max_size];

 uwire [w-1:0] x[max_muts][max_size];

 typedef struct { int idx; string name; int s_size; } Info;

 Info pi[$];

← → Fall 2018 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw01-sol.v.html

 for (genvar i=0; i<4; i++) begin

 sortx #(max_size,i,w,max_muts) s(x,a);

 initial pi.push_back('{ i, s.A.name, s.A.s_size});

 end

 initial begin

 automatic int g_elt_err_count = 0;

 automatic int g_sort_err_count = 0;

 $write("Starting testbench.");

 // Initialize the input to a recognizable pattern, which should

 // be overwritten but if not, we can tell. If we print the value in

 // hex.

 for (int e = 0; e < max_size; e++) a[e] = 'haaaaaaaa;

 foreach (pi[idx]) begin

 automatic Info p = pi[idx];

 automatic string mut = p.name;

 automatic int s_size = p.s_size;

 automatic logic [w-1:0] shadow[] = new[s_size];

 for (int i = 0; i < n_tests; i++) begin

 automatic int this_elt_err_count = 0;

 // To make sure that the comparison is correct restrict the

 // key to a subset of bits.

 automatic int n_bits = {$random} % w + 1;

 automatic int mask = (1 << n_bits) - 1;

 for (int i=0; i<w; i++) begin

 automatic int b = {$random} % w;

 {mask[b],mask[i]} = {mask[i],mask[b]};

 end

 for (int e = 0; e < s_size; e++)

 begin a[e] = {$random} & mask; shadow[e] = a[e]; end

 #1;

 shadow.sort();

 for (int e = 0; e < s_size; e++) begin

 automatic logic [w-1:0] elt = x[p.idx][e];

 if (shadow[e] === elt) continue;

 this_elt_err_count++;

 g_elt_err_count++;

 if (g_elt_err_count > 5) continue;

 $write

 ("Mod %s, sort %2d index %2d, wrong elt %d != %d (correct)\n",

 mut,i, e, elt, shadow[e]);

 end

 if (this_elt_err_count) g_sort_err_count++;

 end

 $write("Tests for %s done, errors in %d of %d sorts.\n",

 mut, g_sort_err_count, n_tests);

 end

← → Fall 2018 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw01-sol.v.html

 end

endmodule

// cadence translate_on

← → Fall 2018 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw01-sol.v.html

LSU EE 4755 Homework 2 Solution Due: 12 September 2018

Problem 1: The Verilog code below is the sort3 module from Homework 1. Draw a diagram of
the hardware as described by sort3, showing the sort2 modules as boxes. Be sure to label the
input and output ports with the same symbols used in the module.

module sort3
#(int w = 8)

(output uwire [w-1:0] x0, x1, x2,

input uwire [w-1:0] a0, a1, a2);

uwire [w-1:0] i10, i11, i21;

sort2 #(w) s0_01(i10, i11, a0, a1);

sort2 #(w) s1_12(i21, x2, i11, a2);

sort2 #(w) s2_01(x0, x1, i10, i21);

endmodule

Solution appears below.

a0

a1

x0

x1

s0_01

sort2

s1_12

sort2

a2

i10

i11 i21

s2_01

sort2

x2

sort3

Problem 2: It is possible to build an n-element sorting network using n
2 lg2 n two-element sorting

networks in such a way that the n-element sorting network has a critical path of lg2 n. (Note:
lg n ≡ log2 n.) But this assignment is concerned with n-element sorting networks using n(n− 1)/2
two-element sorting networks, which we will call n-element bad sorting networks or bad sorters for
short.

An n-element bad sorter has inputs a0, a1, . . . , an−1 and outputs x0, x1, . . . , xn−1. The largest
value is routed to xn−1.

A 2-element bad sorter is a single sort2 module. An n-element bad sorter, n > 2, can be
constructed using an (n − 1)-element bad sorter and n − 1 sort2 modules as follows. The n − 1
sort2 modules are connected to the n inputs and to each other in such a way that the largest
value is routed to a specific output of one of the sort2 modules. That specific sort2 output is
connected to output xn−1 of the n-element sorter. The other values connect to the (n− 1)-element
bad sorter, and the (n − 1)-element bad sorter outputs connect to outputs x0, x1, . . . , xn−2 of the
n-element bad sorter that we are constructing. Note that this generalizes the solution to Homework
1 Problem 2.

The description above is recursive. At level i (the same as n above) another i − 1 sort2

modules are used. For a 4-element sorter we need (4 − 1) + (3 − 1) + 1 = 6 sort2 modules. The

1

← → Fall 2018 ← → Homework 2 Homework Solution hw02 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/hw02_sol.pdf

cost of an n-element bad sorter is found by solving the summation
∑n

i=2 i− 1, which is n(n− 1)/2.
That’s O(n2), which is how the bad sorter got its name.

It gets worse. The critical path through the bad sorter can range from bad to awful. That
depends on two things: How the sort2 modules are used to find the largest value, and how the
sort2 modules connect to the (n− 1)-element bad sorter.

(a) Show the worst way that sort2 modules can be connected to find the largest value. Hint: the
critical path should be n− 1 sort2 modules. Provide a sketch for the general case, and an example
for n = 4.

Call the sort2 modules s0 to sn−2. Connecting output x1 of si to input a0 of si+1 for 0 ≤ i < n− 1 is the
worst way to connect n− 1 modules. See the illustration below. The critical path starts at a0 or a1 and ends at either
output of sorter sn−2.

a[0]

a[1]

x[0]

x[1]

s0

sort2

s1

sort2

a[2]

j[0]

i[1] j[1]

sn_minus_2

sort2

x[n-1]

sort_awful

i[2]

s2

sort2 j[2]

i[n-2]

i[3]a[3]

a[n-1]

i[3]

j[n-2]

(b) Show the worst way that the sort2 modules, as connected above, can connect to the (n − 1)-
element sorter. Provide a sketch.

Notice that the critical path through the sort2 modules starts at a[0] and ends at j[n-2]. So when connecting
j[n-2] to the smaller sort module the worst ports that it can be connected to are a[0] and a[1]. That’s shown
below. Note that n inside the smaller sort awful is equal to n-1 in the larger one.

a[0]

a[1]

x[0]

x[1]

s0

sort2

s1

sort2

a[2]

j[0]

i[1] j[1]

sn_minus_2

sort2

x[n-1]

sort_awful (n)

i[2]

s2

sort2 j[2]

i[n-2]

i[3]a[3]

a[n-1]

i[3]

j[n
-2
]

sort_awful

(n=n-1)

a[0]

a[1]

a[n-1]

a[n-3]

a[n-2]

x[0]

x[1]

a[2]

x[2]x[2]

x[n-1]

x[n-2]

x[n-3]

x[n-2]

x[n-3]

x[n-4]

2

← → Fall 2018 ← → Homework 2 Homework Solution hw02 sol.pdf

https://www.ece.lsu.edu/ee4755/2018/hw02_sol.pdf

(c) Determine the critical path for an n-element bad sorter constructed in the way described in the
last two parts. Hint: The math part should be familiar.

In an n-input awful bad sorter the path from a0 to j[n-2] is of length n − 1. Signal j[n-2] connects to
a0 of an n − 1 element bad sorter where it goes through n − 2 sort2 modules. The total length of the path is∑2

i=n i− 1 = n(n− 2)/2 sort2 modules.

(d) Show a much better way of connecting the sort2 modules to find the largest value. It should
be easy to show that the critical path is the lowest that is possible. Provide a sketch for n = 8.

Connect the sort2 modules in a tree, the solution appears below for n = 8, and showing the recursive connection.

a0

a1

x0

x1

sort2

sort2a2

sort_bad

a3

sort2

a4

a5

sort2

sort2a6

a7

sort2 sort2

x7

sort_bad

x1

x3

x4

x5

x6

The problem with the approach to building the bad sorters described in this assignment is
that each level in the recursion reduces the size by 1 (that is, from n to n− 1), and so the critical
path must be at least O(n). As some students may have realized, a better approach would be to
use recursion in which the n inputs were split between two n

2 -element networks and then somehow
combined. But how? The key insight, described by K. E. Batcher in a landmark 1968 paper, is
not to try to recursively describe a sorting network, but to instead recursively describe a network
that merges two already sorted sequences. The input to a 2-element merge network would be two
1-element sorted sequences. (Of course, every 1-element sequence is sorted.) Pairs of 2-element
merge networks feed a 4-element merge network, and so on. This will be further described later in
the semester.

3

← → Fall 2018 ← → Homework 2 Homework Solution hw02 sol.pdf

https://www.ece.lsu.edu/ee4755/2018/hw02_sol.pdf

//

//

/// LSU EE 4755 Fall 2018 Homework 3 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2018/hw03.pdf

`default_nettype none

//

/// All Problems
//

 /// Modify sort2 so that it implements a 2-input sorting network ..
 /// .. using explicit and implicit structural code only.
//

// [✔] Easy: Modify to compare keys, not data.

// [✔] Easy: Modify to sort pairs of signed integer keys.

// [✔] Medium: Modify to sort pairs of floating-point keys.

// [✔] Medium: Modify to sort one signed int and one FP key.

// [✔] Hard: Keep cost and critical path low.

//

// [✔] Use implicit and explicit structural code only.

// [✔] Use mux2 to swap the values.

// [✔] Add ChipWare Verilog modules to includes at the end of this file.

//

// [✔] Module must be synthesizable. Use command: genus -files syn.tcl

// [✔] Make sure that the testbench does not report errors.

//

// [✔] Use SimVision for debugging.

// DMK: Yes, I used SimVision.

// [✔] Modify testbench to facilitate solution ..

// .. but code must pass original testbench.

module sort2
 #(int w = 30,

 int k = 16,

 int exp = 5,

 int sig = k - exp - 1)

 (output uwire [w-1:0] x0, x1,

 input uwire [w-1:0] a0, a1);

 /// Encoding of a0 and a1
 //

 // Bits Contents

 // --------- --

 // w-1 : k+1 Data

 // k Key type: 0, integer; 1, floating point.

 // k-1 : 0 Key, a signed integer; if Key type = 0.

 // k-1 Sign bit, if key type = 1.

 // k-2 : sig Exponent, if key type = 1.

 // sig-1 : 0 Significand, if key type = 1.

 /// SOLUTION OVERVIEW
 //

 // Compare integer/integer keys using <= operator.

 // Compare fp/fp and fp/integer keys using ChipWare comparison operator.

 // For fp/integer keys that are reported equal use the inexact

 // status bit.

 // Extract key portion of inputs and assign to a logic signed type.

 //

 uwire signed [k-1:0] k0 = a0[k-1:0];

 uwire signed [k-1:0] k1 = a1[k-1:0];

 // Integer / Integer Comparison

 //

 uwire ci = k0 <= k1;

← → Fall 2018 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/koppel/v/2018/hw03.pdf
https://www.ece.lsu.edu/ee4755/2018/hw03-sol.v.html

 //

 // Note that ci is ignored if either input is FP.

 //

 /// Convert Keys to FP
 //

 // Floating-point version of keys. Only valid if key is an integer.

 //

 uwire [k-1:0] kif0, kif1; // Key Integer converted to Float.

 uwire [7:0] si0, si1; // Status output of integer-to-FP modules.

 localparam logic [2:0] rnd_to_0 = 3'b1;

 // Convert using ChipWare integer two floating-point modules.

 //

 CW_fp_i2flt #(.sig_width(sig), .exp_width(exp), .isize(k), .isign(1))

 itof0(.z(kif0), .status(si0), .a(k0), .rnd(rnd_to_0));

 CW_fp_i2flt #(.sig_width(sig), .exp_width(exp), .isize(k), .isign(1))

 itof1(.z(kif1), .status(si1), .a(k1), .rnd(rnd_to_0));

 // Extract the inexact bit.

 //

 uwire inexact0 = si0[5], inexact1 = si1[5];

 //

 // If this bit is 1 the converted value is slightly less in

 // magnitude than the original integer value. Less because the

 // round-towards-zero (rnd_to_0) rounding option was selected.

 // Select the FP version of the key.

 //

 uwire [k-1:0] fk0 = a0[k] ? k0 : kif0;

 uwire [k-1:0] fk1 = a1[k] ? k1 : kif1;

 //

 // Note that k0 is selected if the key in a is already FP,

 // otherwise use the output of the conversion module.

 //

 /// Floating Point Comparison
 //

 uwire gt, lt, eq, un;

 uwire [k-1:0] z0, z1; // Unused

 uwire [7:0] s0, s1;

 CW_fp_cmp #(.sig_width(sig), .exp_width(exp), .ieee_compliance(0))

 fp_comp(.a(fk0),.b(fk1),.agtb(gt),.altb(lt),.aeqb(eq),

 .zctr(1'b0), .unordered(un),.z0(z0),.z1(z1),

 .status0(s0), .status1(s1));

 /// Check whether kif0 <= kif1.
 //

 // Approximate method:

 //

 uwire cf_approx = lt || eq; // Unused, shown to explain solution.

 //

 // cf_approx can be wrong when eq is true because of rounding

 // errors when converting an integer to FP. Wire inexact0 is 1 when

 // there was a rounding error converting k0, etc. If eq is 1 then

 // a0 <= a1 iff one of the two cases below is true:

 //

 // Case 1:

 // k0 is negative

 // k0 is FP (so no rounding)

 // or k0 is an integer and no rounding error in the conversion.

 // -- otherwise kif0 is larger than the value in a0

 //

 // Case 2:

 // k0 is positive

← → Fall 2018 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw03-sol.v.html

 // k1 is FP (so no rounding)

 // or k1 is an integer and no rounding error in the conversion.

 // -- otherwise kif1 is smaller than the value in a1.

 // Determine whether a0 <= a1 accounting for rounding errors, as

 // described above.

 //

 uwire cf = lt || eq &&

 (!kif0[k-1] && (a0[k] || !inexact0) // Case 1

 || kif0[k-1] && (a1[k] || !inexact1) // Case 2

);

 // If at least one input is FP use FP comparison result, else int result.

 //

 uwire c = a0[k] || a1[k] ? cf : ci;

 mux2 #(w) m0(x0,c,a1,a0);

 mux2 #(w) m1(x1,c,a0,a1);

endmodule

module mux2
 #(int w = 4)

 (output uwire [w-1:0] x,

 input uwire select,

 input uwire [w-1:0] a0, a1);

 assign x = select ? a1 : a0;

endmodule

//

/// Testbench Code
//

// The code below instantiates some of the modules above,

// provides test inputs, and verifies the outputs.

//

// The testbench may be modified to facilitate your solution. For

// example, one might modify the testbench so that the first tests it

// performs are those which make it easier to determine what the

// problem is, for example, test inputs that are all 0's or all 1's.

//

// Of course, the removal of tests which your module fails is not a

// method of fixing a broken module. The TA-bot will test your

// code using a fresh copy of the testbench, not the one below.

// cadence translate_off

module testbench;

 var bit s[3];

 testbench_size #(32,16,6) t1(s[1],s[0]);

 testbench_size #(24,14,5) t2(s[2],s[1]);

 initial begin

 s[0] = 1;

 wait(s[2]);

 $write("\nAll done.\n");

 end

endmodule

module testbench_size
 #(int w = 30,

 int k = 16,

← → Fall 2018 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw03-sol.v.html

 int exp = 6,

 int sig_width = k - exp - 1)

 (output var bit done, input var bit start);

 localparam int s_pos = k - 1;

 localparam int exp_hi = s_pos - 1;

 localparam int exp_lo = s_pos - exp;

 localparam int sig_hi = exp_lo - 1;

 localparam int bias = (1 << exp - 1) - 1;

 localparam int exp_i_max = bias + k - 1;

 localparam int exp_max = (1 << exp) - 2;

 localparam int exp_range_ini = exp_i_max - bias;

 localparam int exp_range_gti = exp_max - exp_i_max - 1;

 function real fp_to_val(input logic [k-1:0] a);
 fp_to_val =

 a[exp_hi:0] == 0 ? 0.0 :

 ((1.0 + a[sig_hi:0] / real'(1 << sig_width))

 * 2 ** (0.0 + a[exp_hi:exp_lo]-bias)

 * (a[s_pos] ? -1 : 1));

 endfunction

 localparam int num_tests = 3000000;

 localparam int test_ff_start = num_tests / 3;

 localparam int test_if_start = test_ff_start * 2;

 uwire [w-1:0] x0, x1;

 logic [w-1:0] a[2];

 sort2 #(w,k,exp,sig_width) s2(x0,x1, a[0], a[1]);

 initial begin

 automatic int err_count[string] = '{"ii":0, "ff":0, "if":0 };

 automatic logic [1:0][w-1:0] tests[$];

 /// Add tests below by copying output of testbench.
 // Note: Tests only work at a particular value of exp, k.

 // Put in correct place.

 case (k)

 14: begin

 tests.push_back('h2a823); tests.push_back('h77b7e);

 end

 16: begin

 tests.push_back('hdc641209); tests.push_back('ha0935641);

 end

 endcase

 wait(start);

 $write("Starting testbench for w=%0d, k=%0d, exp=%0d sig width=%0d...\n",

 w, k, exp, exp_lo);

 for (int i=0; i<num_tests; i++) begin

 automatic logic [k-1:0] i_1_mask = 1 << {$random} % k;

 automatic string test_type =

 i < test_ff_start ? "ii" :

 i < test_if_start ? "ff" : "if";

 bit fp[2];

 real val[2];

 bit swap;

 logic [w-1:0] shadow_x0, shadow_x1;

 for (int j=0; j<2; j++)

 fp[j] = test_type == "ff" || test_type == "if" && ((i+j) & 1);

 // FP Options: 0, (0,1), int range, > int range, int, int, int, int

 for (int j=0; j<2; j++) begin

← → Fall 2018 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw03-sol.v.html

 automatic int fp_sz = fp[j] ? {$random} % 4 : 4;

 a[j][w-1:0] = {$random};

 a[j][k] = fp[j];

 case (fp_sz)

 0: a[j][exp_hi:0] = 0;

 1: a[j][exp_hi:exp_lo] = 1 + {$random} % bias;

 2: a[j][exp_hi:exp_lo] = bias + {$random} % exp_range_ini;

 3: a[j][exp_hi:exp_lo] = exp_i_max + {$random} % exp_range_gti;

 default:; // For int leave random value.

 endcase

 end

 // Test cases for floating-point pairs.

 if (a[0][k] && a[1][k] && a[1][exp_hi:0]) begin

 // Generate fp numbers with matching exponents

 if ({$random} & 1) a[0][exp_hi:exp_lo] = a[1][exp_hi:exp_lo];

 // Generate fp numbers with matching significands.

 if ({$random} & 1) a[0][sig_hi:0] = a[1][sig_hi:0];

 end

 // Test cases for integer pairs.

 if (!a[0][k] && !a[1][k]) begin

 case ({$random} % 6)

 // Differ by 1

 0: a[1][k-1:0] = a[0][k-1:0] - 1;

 1: a[1][k-1:0] = a[0][k-1:0] + 1;

 // Differ by 2

 2: a[1][k-1:0] = a[0][k-1:0] - 2;

 3: a[1][k-1:0] = a[0][k-1:0] + 2;

 // Sort key in only 1 bit.

 4: begin a[0][k-1:0] &= i_1_mask; a[1][k-1:0] &= i_1_mask; end

 default:;

 endcase

 end

 // Test cases for int/fp keys.

 if (a[0][k] != a[1][k]) begin

 automatic int opt = {$random} % 32;

 casex (opt)

 'h0xxx: if (a[0][k]) a[1][k-1:0] = fp_to_val(a[0])+opt[2:0]-4;

 'h1xxx: if (a[1][k]) a[0][k-1:0] = fp_to_val(a[1])+opt[2:0]-4;

 endcase

 end

 // Replace the keys found above with user-defined keys, if any.

 if (tests.size()) begin

 a[0] = tests.pop_front();

 a[1] = tests.pop_front();

 end

 case ({a[0][k], a[1][k] })

 'b00: test_type = "ii";

 'b11: test_type = "ff";

 default: test_type = "if";

 endcase

 for (int j=0; j<2; j++)

 val[j] = a[j][k] ? fp_to_val(a[j]) : signed'(a[j][s_pos:0]);

 swap = val[0] > val[1];

 { shadow_x0, shadow_x1 } = { a[swap], a[1-swap] };

 #1;

← → Fall 2018 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw03-sol.v.html

 if (shadow_x0 !== x0 || shadow_x1 !== x1) begin

 err_count[test_type]++;

 if (err_count[test_type] > 5) continue;

 $write

 ("Test %s %4d, error (x0,x1): (%h,%h) != (%h,%h) correct.\n",

 test_type, i,

 x0, x1, shadow_x0, shadow_x1);

 for (int j=0; j<2; j++)

 $write(" a%1d: data %h, key %12.5f = %s %s\n",

 j, a[j][w-1:k], val[j], a[j][k] ? "FP " : "INT",

 a[j][k] ?

 $sformatf("s %b exp %0d-%0d=%0d sig 'h%h",

 a[j][s_pos],

 a[j][exp_hi:exp_lo], bias,

 signed'({1'b0,a[j][exp_hi:exp_lo]}) - bias,

 a[j][sig_hi:0])

 : $sformatf("'h%h",a[j][k-1:0]));

 $write(" To re-run paste: tests.push_back('h%h); tests.push_back('h%h);\n",

 a[0],a[1]);

 end

 end

 $write("Done with %0d tests for k=%0d, exp=%0d:", num_tests,k,exp);

 foreach (err_count[et])

 $write(" %0d %s errs,", err_count[et], et);

 $write("\n");

 done = 1;

 end

endmodule

// cadence translate_on

`default_nettype wire

`include "/apps/linux/cadence/GENUS171/share/synth/lib/chipware/sim/verilog/CW/CW_fp_cmp.v"

`include "/apps/linux/cadence/GENUS171/share/synth/lib/chipware/sim/verilog/CW/CW_fp_i2flt.v"

← → Fall 2018 ← → Homework 3 Homework Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw03-sol.v.html

LSU EE 4755 Homework 4 Solution Due: 3 October 2018

Problem 1: Solve 2017 Final Exam Problem 3, in which the cost and delay of two alternative
designs are to be compared.

See posted final exam solution on the previous work page at https://www.ece.lsu.edu/koppel/v/prev.html.

1

← → Fall 2018 ← → Homework 4 Homework Solution hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/prev.html
https://www.ece.lsu.edu/ee4755/2018/hw04_sol.pdf

//

//

/// LSU EE 4755 Fall 2018 Homework 5 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2018/hw05.pdf

`default_nettype none

//

/// Problem 1
//

 /// Complete batcher_sort so that it recursively implements a Batcher
 /// sorter using a merge module.
//

// [✔] Assume that n is a power of 2.

// [✔] Use implicit and explicit structural code only.

// [✔] Use recursion as described in the handout.

// [✔] Use behav_merge initially and when it's done, batcher_merge.

//

// [✔] Make sure that the testbench does not report errors.

// [✔] Module must be synthesizable. Use command: genus -files syn.tcl

//

// [✔] Use SimVision for debugging.

// [✔] Modify testbench to facilitate solution ..

// .. but code must pass original testbench.

//

// [✔] As always, code should be efficient and clearly written.

module batcher_sort
 #(int n = 4, int w = 8)

 (output uwire [w-1:0] x[n], input uwire [w-1:0] a[n]);

 /// SOLUTION

 if (n == 1) begin

 // Set the terminal case at n==1 ..

 // .. because sorting is easy when there's just one element!

 //

 assign x = a;

 end else begin

 localparam int nh = n/2;

 uwire [w-1:0] xlo[nh], xhi[nh];

 // Recursively instantiate two sorters, slo and shi, ..

 // .. slo will sort elements 0 to nh-1, and ..

 // .. shi will sort elements nh to n-1.

 //

 batcher_sort #(nh,w) slo(xlo, a[0:nh-1]);

 batcher_sort #(nh,w) shi(xhi, a[nh:n-1]);

 // Use a merge module to combine the two sorted sequences.

 //

 batcher_merge #(nh,w) m(x, xlo, xhi);

 end

endmodule

← → Fall 2018 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/koppel/v/2018/hw05.pdf
https://www.ece.lsu.edu/ee4755/2018/hw05-sol.v.html

module behav_merge
 #(int n = 4, int w = 8)

 (output logic [w-1:0] x[2*n], input uwire [w-1:0] a[n], b[n]);

 logic [$clog2(n+1)-1:0] ia, ib;

 always_comb begin

 ia = 0; ib = 0;

 for (int i = 0; i < 2*n; i++)

 x[i] = ib == n || ia < n && a[ia] <= b[ib] ? a[ia++] : b[ib++];

 end

endmodule

//

/// Problem 2
//

 /// Modify batcher_merge so that it recursively implements a Batcher
 /// odd/even merge module.
//

// [✔] Recursively implement a Batcher Odd / Even merge module.

//

// [✔] Assume that n is a power of 2.

// [✔] Use sort2 to swap the values.

//

// [✔] Make sure that the testbench does not report errors.

// [✔] Module must be synthesizable. Use command: genus -files syn.tcl

//

// [✔] Use SimVision for debugging.

// [✔] Modify testbench to facilitate solution ..

// .. but code must pass original testbench.

module batcher_merge
 #(int n = 4, int w = 8)

 (output uwire [w-1:0] x[2*n], input uwire [w-1:0] a[n], b[n]);

 /// SOLUTION

 // Note: Input a and input b are each sorted.

 // Declare the outputs of the recursively instantiated merge modules.

 //

 uwire [w-1:0] xlo[n], xhi[n];

 if (n == 1) begin

 // No need for recursion when each sorted sequence is one element.

 //

 assign xlo[0] = a[0];

 assign xhi[0] = b[0];

 end else begin

 localparam int nh = n/2;

 // Put even elements of a into ae ..

 // .. odd elements of a into ao ..

 // .. and likewise for b.

 uwire [w-1:0] ae[nh], ao[nh], be[nh], bo[nh];

 for (genvar i=0; i<nh; i++)

← → Fall 2018 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw05-sol.v.html

 begin

 assign ae[i] = a[2*i];

 assign ao[i] = a[2*i+1];

 assign be[i] = b[2*i];

 assign bo[i] = b[2*i+1];

 end

 // Use one merge unit to merge the sorted sequences ae and bo ..

 //

 batcher_merge #(nh,w) mlo(xlo, ae, bo);

 //

 // and the other to merge sorted sequences ao and be.

 //

 batcher_merge #(nh,w) mhi(xhi, ao, be);

 //

 // This ensures that one of the two smallest elements is xlo[0] ..

 // .. and the other is xhi[0].

 end

 // Use 2-input sorters to complete the merge.

 //

 for (genvar i=0; i<n; i++)

 sort2 #(w) s2(x[2*i], x[2*i+1], xlo[i], xhi[i]);

endmodule

// Correctly functioning 2-input sorter.

module sort2
 #(int w = 8)(output uwire [w-1:0] x0, x1, input uwire [w-1:0] a0, a1);

 assign {x0, x1} = a0 <= a1 ? { a0, a1 } : { a1, a0 };

endmodule

//

/// Testbench Code
//

// The code below instantiates some of the modules above,

// provides test inputs, and verifies the outputs.

//

// The testbench may be modified to facilitate your solution. For

// example, one might modify the testbench so that the first tests it

// performs are those which make it easier to determine what the

// problem is, for example, test inputs that are all 0's or all 1's.

//

// Of course, the removal of tests which your module fails is not a

// method of fixing a broken module. The TA-bot will test your

// code using a fresh copy of the testbench, not the one below.

// cadence translate_off

module sortx
 #(int n = 5,

 int modnum = 0,

 int mut_idx = 0,

 int w = 10,

 int max_muts = 3,

 int max_n = n)

 (output uwire [w-1:0] xlong[max_muts][max_n],

 input uwire [w-1:0] a[n]);

← → Fall 2018 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw05-sol.v.html

 localparam int nlo = n/2;

 localparam int nhi = n - nlo;

 uwire [w-1:0] x[n];

 assign xlong[mut_idx][0:n-1] = x;

 uwire [w-1:0] alo[nlo] = a[0:nlo-1];

 uwire [w-1:0] ahi[nhi] = a[nlo:n-1];

 if (modnum == 0) begin:A

 localparam string name = "Batcher Merge";

 localparam bit merge = 1;

 batcher_merge #(nlo,w) s(x,alo,ahi);

 end else if (modnum == 1) begin:A

 localparam string name = "Batcher Sort";

 localparam bit merge = 0;

 batcher_sort #(n,w) s(x,a);

 end else if (modnum == 2) begin:A

 localparam string name = "sort3";

 localparam bit merge = 0;

 end else begin:A

 localparam string name = "sort4";

 localparam bit merge = 0;

 end

endmodule

module testbench;

 localparam int w = 8;

 localparam int n_tests = 10;

 localparam int max_n = 32;

 localparam int max_muts = 12;

 logic [w-1:0] a[max_n];

 uwire [w-1:0] x[max_muts][max_n];

 typedef struct { int idx; string name; bit merge; int n; } Info;

 Info pi[$];

 for (genvar i=0; i<2; i++) begin

 for (genvar nlg = 1; nlg < 6; nlg++) begin

 localparam int n = 1 << nlg;

 localparam int idx = i * 6 + nlg;

 sortx #(n,i,idx,w,max_muts,max_n) s(x,a[0:n-1]);

 initial pi.push_back('{ idx, s.A.name, s.A.merge, s.n });

 end

 end

 initial begin

 automatic int g_elt_err_count = 0;

 automatic int g_sort_err_count = 0;

 $write("Starting testbench.\n");

 // Initialize the input to a recognizable pattern, which should

 // be overwritten but if not, we can tell. If we print the value in

← → Fall 2018 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw05-sol.v.html

 // hex.

 for (int e = 0; e < max_n; e++) a[e] = 'haaaaaaaa;

 foreach (pi[idx]) begin

 automatic Info p = pi[idx];

 automatic string mut = p.name;

 automatic int n = p.n;

 automatic int s_size = n;

 automatic int nlo = n/2;

 automatic int nhi = n - nlo;

 automatic logic [w-1:0] shadow[] = new[s_size];

 automatic logic [w-1:0] alo[] = new[nlo];

 automatic logic [w-1:0] ahi[] = new[nhi];

 automatic int this_sort_err_count = 0;

 for (int i = 0; i < n_tests; i++) begin

 automatic int this_elt_err_count = 0;

 // To make sure that the comparison is correct restrict the

 // key to a subset of bits.

 automatic int n_bits = {$random} % w + 1;

 automatic int mask = (1 << n_bits) - 1;

 for (int i=0; i<w; i++) begin

 automatic int b = {$random} % w;

 {mask[b],mask[i]} = {mask[i],mask[b]};

 end

 for (int e = 0; e < s_size; e++)

 begin

 a[e] = {$random} & mask;

 shadow[e] = a[e];

 if (e < nlo) alo[e] = a[e]; else ahi[e-nlo] = a[e];

 end

 if (p.merge) begin

 alo.sort();

 ahi.sort();

 for (int e=0; e<nlo; e++) a[e] = alo[e];

 for (int e=nlo; e<n; e++) a[e] = ahi[e-nlo];

 end

 #1;

 shadow.sort();

 for (int e = 0; e < s_size; e++) begin

 automatic logic [w-1:0] elt = x[p.idx][e];

 if (shadow[e] === elt) continue;

 this_elt_err_count++;

 g_elt_err_count++;

 if (g_elt_err_count > 5) continue;

 $write

 ("Mod %s, n=%0d, sort %2d idx %2d, wrong elt %d != %d (correct)\n",

 mut, n, i, e, elt, shadow[e]);

 end

 if (this_elt_err_count) this_sort_err_count++;

 end

 if (this_sort_err_count) g_sort_err_count++;

← → Fall 2018 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw05-sol.v.html

 $write("Tests for %s (idx %0d) n=%0d done, errors in %0d of %0d sorts.\n",

 mut, p.idx, n, this_sort_err_count, n_tests);

 end

 $write("Done with all tests, errors on %0d sorters.\n",

 g_sort_err_count);

 end

endmodule

// cadence translate_on

← → Fall 2018 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw05-sol.v.html

LSU EE 4755 Homework 6 Solution Due: 10 October 2018

Problem 1: Use the simple model to compute the cost and delay (critical path length) of the
inferred hardware for module behav_merge from Homework 5. This module has two inputs, a and
b, each of which is an n-element sorted sequence of w-bit unsigned integer values. Output x is a
2n-element array of w-bit quantities. The module assigns elements of a and b to x so that x itself
is a sorted sequence of the elements from a and b.

Show the cost and delay of behav_merge in terms of n and w. The Homework 5 module
appears below. Use the tree implementation of multiplexors for cost and delay. (See the simple
model notes.) Make reasonable optimizations, such as using the same multiplexor for a[ia] and
a[ia++]. Avoid tedious optimizations such as varying the number of bits in ia and ib.

Solution on next page.

1

← → Fall 2018 ← → Homework 6 Homework Solution hw06 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/hw06_sol.pdf

module behav_merge
#(int n = 4, int w = 8)

(output logic [w-1:0] x[2*n], input uwire [w-1:0] a[n], b[n]);

logic [$clog2(n+1)-1:0] ia, ib;

always_comb begin

ia = 0; ib = 0;

for (int i = 0; i < 2*n; i++)

x[i] = ib == n || ia < n && a[ia] <= b[ib] ? a[ia++] : b[ib++];

end

endmodule behav_merge, n, w
a

b

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

1 1

+ +

=

0

1

00 11

x[i]

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

1 1

+ +

=

0

1

0

ibia

0 11

x[i+1]

x

w

lg n

w

lg n

The inferred hardware appears above. The problem did not explicitly ask for the inferred hardware, but cost and
delay could not be found without it. The diagram shows the hardware resulting from two for loop iterations, for outputs
i and i+1. The cost is dominated by the cost of the multiplexors implementing a[ia] and b[ib]. Each of these
muxen, before optimization, has n inputs of w bits, for a cost of 3w(n− 1) uc each. Since there are 2n iterations, the
total cost of the a and b multiplexors will be 2n× 2 × 3w(n− 1) uc ≈ 12wn2 uc. That’s expensive. The cost will
be less than that because the muxen for iteration i < n only need i inputs. But accounting for that would not even cut
the cost in half.

The muxen producing the value of x[i] cost 3w uc each for a total cost of 6wn uc. The muxen passing ia and
ib (incremented or not) cost 3 lg n uc each for a total cost of 12n lgn uc.

Magnitude comparison units (≤) of w bits have a cost of 4w uc and a delay of 2w + 1 ut, so the total cost

of these units is 8wn uc. The = n limit units test whether ia and ib have reached their maximum value, n. In
general an ω-bit comparison unit cost 4ω − 1 uc but in this case one input is a constant, and so the first column of

2

← → Fall 2018 ← → Homework 6 Homework Solution hw06 sol.pdf

https://www.ece.lsu.edu/ee4755/2018/hw06_sol.pdf

XOR gates is converted into either NOT gates or wire, and so the cost is reduced to ω − 1 uc. For behav merge

ω → ⌈lg(n + 1)⌉ ≈ lg n. There are two limit units per iteration, for a total of 4n units and so their total cost is
4n lgn uc.

The adders to increment ia and ib operate on lg n-bit quantities. Unoptimized and based on a ripple imple-
mentation they would cost 9 lg n uc. But since one input is the constant 1 the ripple adder can be built using binary
half-adders, at a cost of 3 uc per bit, for a cost of 3 lg n uc. There are 4n adders for a total cost of 12n lgn uc.

The cost of everything is:

2n
[
2× big mux︷ ︸︸ ︷
6w(n− 1) +

x mux︷︸︸︷
3w +

iab muxen︷ ︸︸ ︷
6 lgn +

≤
︷︸︸︷
4w +

2× = n
︷ ︸︸ ︷
2 lg n +

2× +1
︷ ︸︸ ︷
6 lg n

]
uc

= 2n
[
6wn + w + 14 lg n

]
uc

The critical path is shown as a red dashed line. (The critical path also passes through ib, that’s omitted for
clarity and because those two paths are the same length.) Assuming a tree implementation for the mux and a ripple
implementation for the comparison, each section has a critical path length of ((2 lg n) + 2w + 1 + 1 + 2) ut. The
total critical path length is 2n[(2 lg n) + 2w + 1 + 1 + 2] ut ≈ (4n lg n + 4nw) ut. That’s long. Even if the
comparison used a tree-like design with a lgw delay the critical path through the merge unit would still be very long, at
least compared to the Batcher odd/even merger.

Problem 2: As was probably mentioned, a proper n-element Batcher odd/even merge module is
constructed from n

2 ⌈lgn⌉ sort2 modules, and the critical path length through a merge module is
⌈lgn⌉ sort2 delays.

If the previous problem was solved correctly then the cost and critical path length of be-

hav_merge should be much larger than a Batcher merge. But the behavioral code in behav_merge

has a run time of O(2n) running as an ordinary program, and consumes O(2n) memory, both
of which are optimal for an algorithm that must operate on all of 2n items. In fact, recursively
applied code based on behav_merge can sort a sequence in O(n lgn) time, which is the best one
can normally get in many cases.

What is it about the hardware realization of behav_merge that makes it so much less efficient
than the software realization? Your answer should consider how much hardware is being used at
each moment in time.

In the hardware version a piece of hardware is needed for each of the 2n outputs. That can’t be avoided because

this is combinational logic. So, for example, there are 2n ≤ comparison units, whereas in the execution of the software
version there might be one ALU with just one comparison unit which gets used 2n times. This kind of efficiency could
be realized with sequential logic.

3

← → Fall 2018 ← → Homework 6 Homework Solution hw06 sol.pdf

https://www.ece.lsu.edu/ee4755/2018/hw06_sol.pdf

//

//

/// LSU EE 4755 Fall 2018 Homework 7 -- SOLUTION
//

 /// Assignment https://www.ece.lsu.edu/koppel/v/2018/hw07.pdf

`default_nettype none

//

/// Problem 1
//

 /// Complete mult_seq_ds_prob_1 as described in the handout and below.
//

// [✔] Start multiplying when in_valid is 1 at a positive clock edge ..

// [✔] .. even if that means abandoning a multiplication in progress.

// [✔] Set out_avail to 1 when prod holds the result for

// most recent plier*cand.

//

// [✔] The module must pass the testbench.

// Average cycles should be w/m+1

// [✔] The module must be synthesizable.

// [✔] Make sure that synthesized hardware is reasonably fast.

//

// [✔] Code must be reasonably efficient.

// [✔] Do not change module parameters.

// [✔] Do not change ports, EXCEPT changing between var and net kinds.

// [✔] Don't assume that parameter values will match those used here.

// [✔] USE DEBUGGING TOOLS LIKE SimVision.

//

module mult_seq_ds_prob_1
 #(int w = 16, int m = 2)

 (output logic [2*w-1:0] prod,

 // SOLUTION: Change kind of out_avail from net (uwire) to var.

 output var logic out_avail,

 input uwire clk, in_valid,

 input uwire [w-1:0] plier, cand);

 localparam int iterations = (w + m - 1) / m;

 localparam int iter_lg = $clog2(iterations);

 localparam logic [w+m-1:0] zero = 0; // Used to set precision to w+m bits.

 uwire [iterations-1:0][m-1:0] cand_2d = cand;

 bit [iter_lg:0] iter;

 logic [2*w-1:0] accum;

 always_ff @(posedge clk) begin

 /// SOLUTION, Problem 1
 //

 // - Start a new multiplication whenever in_valid is 1.

 // - When multiplication is finished set out_avail to 1.

 //

 if (in_valid) begin

 // If in_valid is 1 start a multiplication.

 accum = cand;

 iter = 0;

 out_avail = 0;

 end else if (!out_avail && iter == iterations) begin

 // If a multiplication is in progress (!out_avail) ..

 // .. and we just finished the last iteration of a multiplication ..

 // .. make the result available.

 out_avail = 1;

 prod = accum;

 end

 // Add on a partial product.

 // Do this whether or not a multiplication is in progress.

 accum = { zero + plier * accum[m-1:0] + accum[2*w-1:w], accum[w-1:m] };

 iter++;

 end

endmodule

← → Fall 2018 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/koppel/v/2018/hw07.pdf
https://www.ece.lsu.edu/ee4755/2018/hw07-sol.v.html

//

/// Problem 2
//

 /// Complete mult_seq_d_prob_2 as described in the handout and below.
//

// [✔] Skip over multiplicand digits that are zero.

// [✔] Start multiplying when in_valid is 1 at a positive clock edge ..

// [✔] .. even if that means abandoning a multiplication in progress.

// [✔] Set out_avail to 1 when prod holds the result for

// most recent plier*cand.

//

// [✔] The module must pass the testbench.

// Average cycles should be less than w/m+1

// [✔] The module must be synthesizable.

// The period should not be too much longer than the original module.

// [✔] Make sure that synthesized hardware is reasonably fast.

//

// [✔] The module must be synthesizable.

// [✔] Code must be reasonably efficient.

// [✔] Do not change module parameters.

// [✔] Do not change ports, EXCEPT changing between var and net kinds.

// [✔] Don't assume that parameter values will match those used here.

// [✔] USE DEBUGGING TOOLS LIKE SimVision.

module mult_seq_d_prob_2
 #(int w = 16, int m = 2)

 (output logic [2*w-1:0] prod,

 // SOLUTION: Change kind of out_avail from net (uwire) to var.

 output logic out_avail,

 input uwire clk, in_valid,

 input uwire [w-1:0] plier, cand);

 localparam int iterations = (w + m - 1) / m;

 localparam int iter_lg = $clog2(iterations);

 uwire [iterations-1:0][m-1:0] cand_2d = cand;

 bit [iter_lg-1:0] iter;

 logic [2*w-1:0] accum;

 always_ff @(posedge clk) begin

 logic [iter_lg-1:0] next_iter;

 /// SOLUTION -- Problem 2
 //

 // Implement handshaking.

 // Computation is completed when iter is zero. (See below.)

 //

 if (in_valid) begin

 iter = 0;

 accum = 0;

 out_avail = 0;

 end else if (!out_avail && iter == 0) begin

 prod = accum;

 out_avail = 1;

 end

 accum += plier * cand_2d[iter] << (iter * m);

 /// SOLUTION -- Problem 2
 //

 // Set iter to ..

 // .. index of next non-zero multiplicand digit ..

 // .. or to zero if multiplication is complete.

 //

 // Scan multiplicand digits starting at most significant digit.

 // Update next_iter whenever ..

 // i > iter (meaning that that partial product not yet use) ..

 // and digit, cand_2d[i], is non-zero.

 //

 next_iter = 0;

 for (int i=iterations-1; i>0; i--)

 if (i>iter && cand_2d[i]) next_iter = i;

 iter = next_iter;

 end

endmodule

//

← → Fall 2018 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw07-sol.v.html

/// Comparison Modules
///

 /// The modules below are for reference.

module mult_seq_ds_prob_1_orig
 #(int w = 16, int m = 2)

 (output logic [2*w-1:0] prod,

 output uwire out_avail,

 input uwire clk, in_valid,

 input uwire [w-1:0] plier, cand);

 /// DO NOT MODIFY THIS MODULE.
 // It is to be used for comparison when performing synthesis.

 localparam int iterations = (w + m - 1) / m;

 localparam int iter_lg = $clog2(iterations);

 localparam logic [w+m-1:0] zero = 0; // Used to set precision to w+m bits.

 uwire [iterations-1:0][m-1:0] cand_2d = cand;

 bit [iter_lg:0] iter;

 logic [2*w-1:0] accum;

 always_ff @(posedge clk) begin

 if (iter == iterations) begin

 prod = accum;

 accum = cand;

 iter = 0;

 end

 // Note: accum[m-1:0] is the same as cand_2d[iter];

 accum = { zero + plier * accum[m-1:0] + accum[2*w-1:w], accum[w-1:m] };

 iter++;

 end

endmodule

module mult_seq_d_prob_2_orig
 #(int w = 16, int m = 2)

 (output logic [2*w-1:0] prod,

 output uwire out_avail,

 input uwire clk, in_valid,

 input uwire [w-1:0] plier, cand);

 /// DO NOT MODIFY THIS MODULE.
 // It is to be used for comparison when performing synthesis.

 localparam int iterations = (w + m - 1) / m;

 localparam int iter_lg = $clog2(iterations);

 uwire [iterations-1:0][m-1:0] cand_2d = cand;

 bit [iter_lg:0] iter;

 logic [2*w-1:0] accum;

 always_ff @(posedge clk) begin

 if (iter == iterations) begin

 prod = accum;

 accum = 0;

 iter = 0;

 end

 accum += plier * cand_2d[iter] << (iter * m);

 iter++;

 end

endmodule

//

/// Testbench Code
// cadence translate_off

← → Fall 2018 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw07-sol.v.html

program reactivate
 (output uwire clk_reactive, output int cycle_reactive,

 input uwire clk, input var int cycle);

 assign clk_reactive = clk;

 assign cycle_reactive = cycle;

endprogram

module testbench;

 localparam int w = 20;

 localparam int num_tests = 400;

 localparam int NUM_MULT = 20;

 localparam int err_limit = 7;

 bit use_others;

 logic [w-1:0] plier, cand;

 logic [w-1:0] plierp[NUM_MULT], candp[NUM_MULT];

 logic [2*w-1:0] prod[NUM_MULT];

 uwire availn[NUM_MULT];

 logic avail[NUM_MULT];

 logic in_valid[NUM_MULT];

 typedef struct { int tidx; int cycle_start; } Test_Vector;

 typedef struct { int idx;

 int err_count = 0;

 int err_timing = 0;

 Test_Vector tests_active[$];

 bit all_tests_started = 0;

 bit seq = 0; bit pipe = 0;

 bit bpipe = 0;

 int deg = 1;

 int ncompleted = 0;

 int cyc_tot = 0;

 int latency = 0;

 } Info;

 Info pi[string];

 localparam int cycle_limit = num_tests * w * 4;

 int cycle;

 bit done;

 logic clock;

 logic clk_reactive;

 int cycle_reactive;

 reactivate ra(clk_reactive,cycle_reactive,clock,cycle);

 initial begin

 clock = 0;

 cycle = 0;

 fork

 forever #10 cycle += clock++;

 wait(done);

 wait(cycle >= cycle_limit)

 $write("*** Cycle limit exceeded, ending.\n");

 join_any;

 $finish();

 end

 task pi_seq(input int idx, input string name, input int deg);

 automatic string m = $sformatf("%s Deg %0d", name, deg);

 pi[m].deg = deg;

 pi[m].idx = idx; pi[m].seq = 1; pi[m].bpipe = 0;

 endtask

 task pi_bseq(input int idx, input string name, input int deg);

 automatic string m = $sformatf("%s Deg %0d", name, deg);

 pi[m].deg = deg;

 pi[m].idx = idx; pi[m].seq = 1; pi[m].bpipe = 1;

 endtask

 task pi_pipe(input int idx, input string name, input int deg);

 automatic string m = $sformatf("%s Deg %0d", name, deg);

 pi[m].deg = deg;

 pi[m].idx = idx; pi[m].seq = 1; pi[m].pipe = 1; pi[m].bpipe = 0;

 endtask

 task pi_bpipe(input int idx, input string name, input int deg);

 automatic string m = $sformatf("%s Deg %0d", name, deg);

 pi[m].deg = deg;

 pi[m].idx = idx; pi[m].seq = 1; pi[m].pipe = 1; pi[m].bpipe = 1;

 endtask

 mult_seq_ds_prob_1 #(w,1) prob1_m1(prod[6], availn[6], clock,

← → Fall 2018 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw07-sol.v.html

 in_valid[6], plierp[6], candp[6]);

 initial pi_bseq(6,"Prob 1",prob1_m1.m);

 mult_seq_ds_prob_1 #(w,2) prob1_m2(prod[7], availn[7], clock,

 in_valid[7], plierp[7], candp[7]);

 initial pi_bseq(7,"Prob 1",prob1_m2.m);

 mult_seq_ds_prob_1 #(w,4) prob1_m4(prod[9], availn[9], clock,

 in_valid[9], plierp[9], candp[9]);

 initial pi_bseq(9,"Prob 1",prob1_m4.m);

 mult_seq_ds_prob_1_orig #(w,1) ms14(prod[14], availn[14], clock,

 in_valid[14], plierp[14], candp[14]);

 initial pi_seq(14,"Seq",ms14.m);

 mult_seq_ds_prob_1_orig #(w,2) ms4(prod[4], availn[4], clock,

 in_valid[4], plierp[4], candp[4]);

 initial pi_seq(4,"Seq",ms4.m);

 mult_seq_ds_prob_1_orig #(w,4) ms5(prod[5], availn[5], clock,

 in_valid[5], plierp[5], candp[5]);

 initial pi_seq(5,"Seq",ms5.m);

 mult_seq_d_prob_2 #(w,1) prob2_m1(prod[17], availn[17], clock,

 in_valid[17], plierp[17], candp[17]);

 initial pi_bseq(17,"Prob 2",prob2_m1.m);

 mult_seq_d_prob_2 #(w,2) prob2_m2(prod[16], availn[16], clock,

 in_valid[16], plierp[16], candp[16]);

 initial pi_bseq(16,"Prob 2",prob2_m2.m);

 mult_seq_d_prob_2 #(w,4) prob2_m4(prod[15], availn[15], clock,

 in_valid[15], plierp[15], candp[15]);

 initial pi_bseq(15,"Prob 2",prob2_m4.m);

 always @* begin

 foreach (availn[i]) begin

 if (availn[i] !== 1'bz) avail[i] = availn[i];

 end

 end

 // Array of multiplier/multiplicand values to try out.

 // After these values are used a random number generator will be used.

 //

 int tests[$] = {1,1, 1,2, 1,3, 1,4, 1,5, 1,32, 32, 1};

 initial begin

 automatic int awaiting = pi.size();

 logic [w-1:0] pliers[num_tests], cands[num_tests];

 done = 0;

 foreach (pi[mut]) begin

 automatic int midx = pi[mut].idx;

 automatic int steps = (w + pi[mut].deg - 1) / pi[mut].deg;

 automatic int latency =

 !pi[mut].seq ? 1 : !pi[mut].pipe ? 2 * steps : steps;

 pi[mut].latency = latency;

 if (pi[mut].bpipe == 0) begin

 avail[midx] = 1;

 end

 in_valid[midx] = 0;

 end

 for (int i=0; i<num_tests; i++) begin

 automatic int num_bits_c = {$random()}%w + 1;

 automatic logic [w-1:0] mask_c = ((w+1)'(1) << num_bits_c) - 1;

 automatic int num_bits_p = {$random()}%w + 1;

 automatic logic [w-1:0] mask_p = ((w+1)'(1) << num_bits_p) - 1;

 pliers[i] = tests.size() ? tests.pop_front() : {$random()}&mask_p;

 cands[i] = tests.size() ? tests.pop_front() : {$random()}&mask_c;

 end

 fork begin

 forever @(negedge clk_reactive) begin

 foreach (pi[mut]) begin

 automatic int midx = pi[mut].idx;

 if (!in_valid[midx] && pi[mut].pipe) begin

 plierp[midx] = cycle;

← → Fall 2018 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw07-sol.v.html

 candp[midx] = 1;

 end

 end

 end

 end join_none;

 repeat (2 * w) @(negedge clock);

 foreach (pi[mutii]) begin

 automatic string muti = mutii;

 fork begin

 automatic string mut = muti;

 automatic int midx = pi[mut].idx;

 for (int i=0; i<num_tests; i++) begin

 automatic int gap_cyc =

 !pi[mut].pipe ? w * 2 :

 ({$random} % 2) ? {$random} % (w + 2) : 0;

 automatic Test_Vector tv;

 repeat (gap_cyc) @(negedge clock);

 plierp[midx] = pliers[i];

 candp[midx] = cands[i];

 in_valid[midx] = 1;

 tv.tidx = i;

 tv.cycle_start = cycle;

 pi[mut].tests_active.push_back(tv);

 @(negedge clock);

 in_valid[midx] = 0;

 end

 pi[mut].all_tests_started = 1;

 end join_none;

 fork begin

 automatic string mut = muti;

 automatic int midx = pi[mut].idx;

 while (1) begin

 @(negedge clock);

 while (pi[mut].tests_active.size() == 0

 && !pi[mut].all_tests_started)

 @(negedge clock);

 if (pi[mut].tests_active.size() == 0) break;

 begin

 automatic Test_Vector tv = pi[mut].tests_active.pop_front();

 automatic int i = tv.tidx;

 automatic logic [2*w-1:0] shadow_prod = pliers[i] * cands[i];

 automatic int eta = tv.cycle_start + pi[mut].latency;

 automatic bit timing_err = 0;

 automatic int delta_t;

 if (pi[mut].bpipe) begin

 if (!pi[mut].pipe && cycle == tv.cycle_start)

 @(negedge clock);

 while (!avail[midx] && cycle < eta) @(negedge clock);

 if (!avail[midx] || cycle > eta) begin

 timing_err = 1;

 if (pi[mut].err_timing++ < err_limit)

 $write("At cyc %4d (eta %0d) avail not set for %s (idx %0d) after %0d cycles for 0x%0h*0x%0h.\n",

 cycle, eta, mut, midx, cycle - tv.cycle_start,

 pliers[i], cands[i]);

 end

 end else begin

 wait (cycle >= eta);

 end

 delta_t = cycle - tv.cycle_start;

 if (!timing_err) begin

 pi[mut].ncompleted++;

 pi[mut].cyc_tot += delta_t;

 end

 if (!timing_err && shadow_prod !== prod[midx]) begin

 pi[mut].err_count++;

 if (pi[mut].err_count < err_limit) begin

 $write

 ("%-15s test %5d cyc %0d+%0d (%0d) wrong: 0x%0h * 0x%0h: 0x%0h != 0x%0h (correct)\n",

 mut, i, tv.cycle_start, delta_t, pi[mut].latency,

 pliers[i], cands[i],

 prod[midx], shadow_prod);

 end

 end

 end

 end

 awaiting--;

 end join_none;

 end

 wait(awaiting == 0 || cycle > cycle_limit);

← → Fall 2018 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw07-sol.v.html

 $write("At cycle %0d. Error types: couldn't test / wrong result / timing\n",cycle);

 foreach (pi[mut])

 $write("For %-18s ran %4d tests, %4d/%4d/%4d errors found. Avg cyc %.1f\n",

 mut, num_tests,

 num_tests - pi[mut].ncompleted,

 pi[mut].err_count, pi[mut].err_timing,

 pi[mut].seq ? real'(pi[mut].cyc_tot) / pi[mut].ncompleted : 1);

 done = 1;

 $write("Modules instantiated with w = %0d.\n",w);

 $finish(2);

 end

endmodule

// cadence translate_on

← → Fall 2018 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2018/hw07-sol.v.html

LSU EE 4755 Homework 8 Solution Due: 27 November 2018

Problem 1: Appearing below is the output of the simulator and synthesis script, showing data
for the Homework 7 solution modules. Modules are simulated and synthesized for w = 32.

Module Name Area Period Period

Target Actual

mult_seq_ds_prob_1_w32_m1 157813 1000 14926

mult_seq_ds_prob_1_w32_m2 185493 1000 15431

mult_seq_ds_prob_1_w32_m4 242568 1000 16296

mult_seq_d_prob_2_w32_m1 288580 1000 31944

mult_seq_d_prob_2_w32_m2 301203 1000 32204

mult_seq_d_prob_2_w32_m4 329226 1000 32192

For Prob 1 Deg 1 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 33.0

For Prob 1 Deg 2 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 17.0

For Prob 1 Deg 4 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 9.0

For Prob 2 Deg 1 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 9.5

For Prob 2 Deg 2 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 7.3

For Prob 2 Deg 4 ran 400 tests, 0/ 0/ 0 errors found. Avg cyc 5.0

Modules instantiated with w = 32.

The Problem 1 modules are based on the streamlined multiplier and so are faster. But the
Problem 2 modules skip zeros. Based on the data above, indicate the ways, if any, that the Problem
2 modules are better than the Problem 1 modules. Explain using the numbers above.

By skipping zeros the Problem 2 modules should compute a result with lower latency (in less time) than the Problem
1 modules, which require ⌈w/m⌉+1 cycles regardless of the numbers being multiplied. The latency for a multiplication
is the product of the clock period and the average number of cycles required. For the Problem 1 modules that works out
to

33 × 14.926 ns = 492.6 ns, 17 × 15.431 ns = 262.3 ns, and 9 × 16.296 ns = 146.7 ns

for the degree (m) 1, 2, and 4 modules respectively. Though the clock periods for the Problem 2 modules are larger,
fewer cycles are needed to produce an answer according to the data collected by the testbench. (See the number to the
right of Avg cyc.) The Problem 2 module latencies are

9.5 × 31.944 ns = 303.5 ns, 7.3 × 32.204 ns = 235.1 ns, and 5.0 × 32.192 ns = 161.0 ns.

In all but the m = 4 case the Problem 2 module has a lower latency than the respective Problem 1 module.

There are more problems on the next pages.

1

← → Fall 2018 ← → Homework 8 Homework Solution hw08 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/hw08_sol.pdf

Problem 2: Appearing below is a solution to Homework 7, Problem 1, the streamlined degree-m
multiplier with handshaking. The complete solution is at
https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html. For this problem assume that w
and m are both powers of 2.

module mult_seq_ds_prob_1 #(int w = 16, int m = 2)

(output logic [2*w-1:0] prod, output logic out_avail,

input uwire clk, in_valid, input uwire [w-1:0] plier, cand);

localparam int iterations = (w + m - 1) / m;

localparam int iter_lg = $clog2(iterations);

uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg:0] iter;

logic [2*w-1:0] accum;

always_ff @(posedge clk) begin

if (in_valid) begin

accum = cand;

iter = 0;

out_avail = 0;

end else if (!out_avail && iter == iterations) begin

out_avail = 1;

prod = accum;

end

accum = { 0 + plier * accum[m-1:0] + accum[2*w-1:w], accum[w-1:m] };

iter++;

end

endmodule

2

← → Fall 2018 ← → Homework 8 Homework Solution hw08 sol.pdf

https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html
https://www.ece.lsu.edu/ee4755/2018/hw08_sol.pdf

(a) Show the hardware that will be inferred for this module. The Inkscape SVG format diagram
of the hardware for the streamlined sequential module from the class demo notes can be used as a
starting point. It is at https://www.ece.lsu.edu/koppel/v/2018/ill-mul-seq-str.svg.

clk

mult_seq_ds_prob_1 (w,m)
p
ro
d

accum

iter

cand

plier

m
0

w-1:m

2w-1:w

accum

lsb

msb

2w

2w

lg w/m

w

w

+
m-1:0

w
0

1
0 +

w/m

in_valid

=

0
1

o
u
t_
a
v
a
il

lsb

w+m

Unoptimized

2w+3m-5+4

Combined delay of

multiplier and adder.

Solution appears above with the critical path shown in red. The hardware is un-optimized. Optimization opportu-
nities include the logic for computing out avail.

(b) Compute the cost and delays for this module using the simple model. Show these in terms of
w and m. Clearly show the critical path on your diagram.

See the solution to Problem 3 for a complete delay and timing analysis. In this (Problem 2) module the cost of the
adder is less because it is w + m bits, rather than 2w bits for the Problem 3 adder. Also, this module does not use a
shifter or a mux to extract the multiplicand bits.

There is a problem on the next page.

3

← → Fall 2018 ← → Homework 8 Homework Solution hw08 sol.pdf

https://www.ece.lsu.edu/koppel/v/2018/ill-mul-seq-str.svg
https://www.ece.lsu.edu/ee4755/2018/hw08_sol.pdf

Problem 3: Appearing below is a solution to Homework 7, Problem 2, the streamlined degree-m
multiplier with handshaking. The complete solution is at
https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html. For this problem assume that w
and m are both powers of 2.

module mult_seq_d_prob_2 #(int w = 16, int m = 2)

(output logic [2*w-1:0] prod, output logic out_avail,

input uwire clk, in_valid, input uwire [w-1:0] plier, cand);

localparam int iterations = (w + m - 1) / m;

localparam int iter_lg = $clog2(iterations);

uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg-1:0] iter;

logic [2*w-1:0] accum;

always_ff @(posedge clk) begin

logic [iter_lg-1:0] next_iter;

if (in_valid) begin

iter = 0;

accum = 0;

out_avail = 0;

end else if (!out_avail && iter == 0) begin

prod = accum;

out_avail = 1;

end

accum += plier * cand_2d[iter] << (iter * m);

next_iter = 0;

for (int i=iterations-1; i>0; i--)

if (i>iter && cand_2d[i]) next_iter = i;

iter = next_iter;

end

endmodule

4

← → Fall 2018 ← → Homework 8 Homework Solution hw08 sol.pdf

https://www.ece.lsu.edu/koppel/v/2018/hw07-sol.v.html
https://www.ece.lsu.edu/ee4755/2018/hw08_sol.pdf

(a) Show the hardware that will be inferred for this module.

clk

mult_seq_d_prob_2 (w,m)

p
ro
d

a
c
c
u

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_
v
a
lid

0
1

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m

lg m
0

amt

0

n = w/m, same as iterations in code.

w
-1

:w
-m

0

n-1

>n-1

0

w
-1

-m
:w

-2
m

n-2

>n-2

0

1

>1

2
m

-1
:m

0

+

iter

iter

cand

iter

i=n-1 i=n-2 i=1

=

1

Hardware shown above with the critical path shown in red.

5

← → Fall 2018 ← → Homework 8 Homework Solution hw08 sol.pdf

https://www.ece.lsu.edu/ee4755/2018/hw08_sol.pdf

(b) Compute the cost and delays for this module using the simple model. Show these in terms of
w and m. Clearly show the critical path on your diagram.

clk

mult_seq_d_prob_2 (w,m)
p
ro
d

a
c
c
u

m
ite

r

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_
v
a
lid

0
1

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m ≠

0

n-1

>n-1

0

w
-1

-m
:w

-2
m

≠

n-2

>n-2

0 ≠

1

>1

2
m

-1
:m

0

+

iter

iter

cand

iter

i=n-1 i=n-2 i=1

=

1

9(m+w-1)m

9(m+w)

Cost in turquoise.

3(m+w)lg n

2w

3
m

(n
-1

)

6w

1
4
w

1
4
w

7n = 7w/m

1 1

2 7

n
lg n

m-1
1

n

lg n-1

lg m

lg n

2

lg lg n

4(m-2)+4 : 2w+6m-6

4w+4

all bits

0

1

1
+

2
lg

 n

1+2lg n +

 4(m-2)+4first bit

2lg n + 4m

- 3 + 2lg n

first bit

4lg n + 4m

- 3 + 4w+4

all bits

1
+

lg
 n

Component
delay in purple.

Path delay
in orange.

1
+

lg
 n

2+lg n

3
+

lg
 n

1+n

+lg n

0

0

0

0

0

0 2lg n

1

2lg n

1

1

1

11

2

The costs and delay of each component are shown in the diagram above. The path delay for selected paths is shown
in the circled orange numbers . Note that one input to all of the comparison units (for example, the zero in 6= 0), is a
constant, reducing their costs and delays. Many of the multiplexors also have one constant data input.

The interesting thing to compare is the time needed to compute the updated accum value versus the time needed
to find the next non-zero digit. The i > iter comparison, because i is a constant, takes time lgw/mut = lgn ut and

6

← → Fall 2018 ← → Homework 8 Homework Solution hw08 sol.pdf

https://www.ece.lsu.edu/ee4755/2018/hw08_sol.pdf

the 6= 0 takes less, especially if w/m > m. The mux delay is 1 ut because one data input is a constant. The time to
generate the new iter signal is (1 + n + lgn) ut.

The updated accum value consumes most of the time. Inputs arrive at the multiplier at time 1 + 2 lg n. For
an unoptimized m-bit by w + m-bit multiplier, the least significant bit takes (4(m − 2) + 4) ut to compute. Since
the shifter can shift by n possible amounts its delay is 2 lg n. The least significant bit arrives at the adder at time
1 + 2 lg n + 4(m− 2) + 4 + 2 lg n = (4 lg n + 4m− 3) ut (see the diagram). The adder requires (4w + 4) ut

to finish and so the adder output is ready at time (4 lg n + 4m− 3 + 4w + 4) ut.
The clock period would include six more cycles for the latch setup time.

7

← → Fall 2018 ← → Homework 8 Homework Solution hw08 sol.pdf

https://www.ece.lsu.edu/ee4755/2018/hw08_sol.pdf

19 Fall 2017 Solutions

449

← → Fall 2017 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2017/hw01_sol.pdf

LSU EE 4755 Homework 1 Solution Due: 8 September 2017

Start working on the solutions to the problems below on paper, but complete them using the
computers in the lab. For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For
the complete Verilog for this assignment without visiting the lab visit
https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html.

Problem 1: Appearing below, and in hw01.v, is a Verilog description of a 2-input multiplexer,
mux2, and a partially completed description of a 4-input mux, mux4, along with a diagram showing
how a four-input mux can be made using three two-input multiplexers. Complete mux4 as described
in the diagram.

It is important that mux4 instantiate three mux2 modules. Other correct 4-input multiplexer
implementations will not receive credit. Also, don’t forget to set the parameters correctly when
instantiating modules.

1:10:0

select

a0

a1

a2

a3

x

module mux2
#(int w = 16)

(output uwire [w-1:0] x,

input uwire s,

input uwire [w-1:0] a, b);

assign x = s == 0 ? a : b;

endmodule

module mux4
#(int w = 6)

(output uwire [w-1:0] x,

input uwire [1:0] s,

input uwire [w-1:0] a[3:0]);

/// SOLUTION
//

// Notice that wires and modules are named based upon the select

// bits for which they connect to the output.

//

uwire [w-1:0] x0x, x1x;

mux2 #(w) m0x(x0x, s[0], a[0], a[1]);

mux2 #(w) m1x(x1x, s[0], a[2], a[3]);

mux2 #(w) mxx(x, s[1], x0x, x1x);

endmodule

1

← → Fall 2017 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html
https://www.ece.lsu.edu/ee4755/2017/hw01_sol.pdf

Problem 2: Appearing below is a mux8 module. Complete mux8 so that it implements an 8-input
multiplexer using two mux4 modules and one mux2 module. Notice that the data input to mux8

is an 8-element array of w-bit quantities. To see how to extract a subrange of an array (called a
part select in Verilog) see the testbench module. Solve this problem by generalizing the technique
appearing in the previous problem.

Credit will only be given for mux8 modules that instantiate two mux4 modules and a mux2

module. Yes, assign x = a[s]; is correct and the best way to do it in other situations, but the
goal here is to learn about instantiation.

module mux8
#(int w = 5)

(output uwire [w-1:0] x,

input uwire [2:0] s,

input uwire [w-1:0] a[7:0]);

/// SOLUTION
uwire [w-1:0] x0xx, x1xx;

mux4 #(w) m0xx(x0xx, s[1:0], a[3:0]);

mux4 #(w) m1xx(x1xx, s[1:0], a[7:4]);

mux2 #(w) m(x, s[2], x0xx, x1xx);

endmodule

Appearing below is the start of the testbench code. To see the complete testbench and other
modules follow https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html.

module testbench();

localparam int w = 10;

localparam int n_in_max = 8;

localparam int n_mut = 3;

uwire [w-1:0] x[n_mut];

logic [2:0] s;

logic [w-1:0] a[n_in_max-1:0];

mux2 #(w) mm2(x[0], s[0], a[0], a[1]);

mux4 #(w) mm4(x[1], s[1:0], a[3:0]);

mux8 #(w) mm8(x[2], s[2:0], a[7:0]);

initial begin

automatic int n_test = 0;

automatic int n_err = 0;

2

← → Fall 2017 ← → Homework 1 Homework Solution Sol Code hw01 sol.pdf

https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html
https://www.ece.lsu.edu/ee4755/2017/hw01_sol.pdf

//

//

/// LSU EE 4755 Fall 2017 Homework 1
//

 /// SOLUTION

`default_nettype none

//

/// Problem 1
//

 /// Modify mux4 so that it implements a 4-input mux as described in handout.
//

// [✔] Make sure that the testbench does not report errors.

// [✔] Code must instantiate three mux2 modules as shown in hw01.pdf.

// [✔] Make sure that parameters set correctly in instantiation.

module mux4
 #(int w = 6)

 (output uwire [w-1:0] x,

 input uwire [1:0] s,

 input uwire [w-1:0] a[3:0]);

 /// SOLUTION
 //

 // Notice that wires and modules are named based upon the select

 // bits for which they connect to the output.

 //

 uwire [w-1:0] x0x, x1x;

 mux2 #(w) m0x(x0x, s[0], a[0], a[1]);

 mux2 #(w) m1x(x1x, s[0], a[2], a[3]);

 mux2 #(w) mxx(x, s[1], x0x, x1x);

endmodule

module mux2
 #(int w = 16)

 (output uwire [w-1:0] x,

 input uwire s,

 input uwire [w-1:0] a, b);

 assign x = s == 0 ? a : b;

endmodule

//

/// Problem 2
//

 /// Modify mux8 so that it implements an 8-input mux as described in handout.
//

// [✔] Make sure that the testbench does not report errors.

// [✔] Code must instantiate two mux4 and one mux2 modules.

// [✔] Make sure that parameters set correctly in instantiation.

module mux8
 #(int w = 5)

← → Fall 2017 ← → Homework 1 Homework Solution Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw01-sol.v.html

 (output uwire [w-1:0] x,

 input uwire [2:0] s,

 input uwire [w-1:0] a[7:0]);

 /// SOLUTION

 uwire [w-1:0] x0xx, x1xx;

 mux4 #(w) m0xx(x0xx, s[1:0], a[3:0]);

 mux4 #(w) m1xx(x1xx, s[1:0], a[7:4]);

 mux2 #(w) m(x, s[2], x0xx, x1xx);

endmodule

//

/// Testbench Code
//

// The code below instantiates some of the modules above,

// provides test inputs, and verifies the outputs.

//

// The testbench may be modified to facilitate your solution. Of

// course, the removal of tests which your module fails is not a

// method of fixing a broken module. (One might modify the testbench

// so that the first tests it performs are those which make it easier

// to determine what the problem is, for example, test inputs that

// are all 0's or all 1's.)

// cadence translate_off

module testbench();

 localparam int w = 10;

 localparam int n_in_max = 8;

 localparam int n_mut = 3;

 uwire [w-1:0] x[n_mut];

 logic [2:0] s;

 logic [w-1:0] a[n_in_max-1:0];

 mux2 #(w) mm2(x[0], s[0], a[0], a[1]);

 mux4 #(w) mm4(x[1], s[1:0], a[3:0]);

 mux8 #(w) mm8(x[2], s[2:0], a[7:0]);

 initial begin

 automatic int n_test = 0;

 automatic int n_err = 0;

 for (int i=0; i < n_in_max; i++) begin

 n_test++;

 s = i;

 for (int j=0; j<n_in_max; j++) a[j] = $random;

 #1;

 for (int m=0; m<n_mut; m++) begin

 automatic int n_in = 2 << m;

 automatic int sm = i & (n_in - 1);

← → Fall 2017 ← → Homework 1 Homework Solution Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw01-sol.v.html

 if (x[m] !== a[sm]) begin

 n_err++;

 $write("Error in %0d-input mux for s=%0d, 0x%0x != 0x%0x (correct)\n",

 n_in, sm, x[m], a[sm]);

 end

 end

 end

 $write("Done with %0d tests, %0d errors found.\n",n_test,n_err);

 end

endmodule

// cadence translate_on

← → Fall 2017 ← → Homework 1 Homework Solution Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw01-sol.v.html

//

//

/// LSU EE 4755 Fall 2017 Homework 2 -- SOLUTION
//

 /// Assignment http://www.ece.lsu.edu/koppel/v/2017/hw02.pdf

//

/// Problem 1 -- SOLUTION
//

 /// Modify interp so that it performs linear interpolation. See the handout
 /// and module interp_behav.
//

// [✔] Make sure that the testbench does not report errors.

// [✔] Module must be synthesizable.

// [✔] Module must do some FP arithmetic.

// [✔] Modify include statements (at end) for any new ChipWare modules.

`default_nettype none

module interp
 #(int jw = 12, int amax = 255)

 (output uwire valid,

 output uwire [7:0] aj,

 input uwire [31:0] x1, a1, x2, a2,

 input uwire [jw-1:0] j);

 localparam logic [2:0] rnd_even = 3'b000; // Round to closest. Default.

 uwire [jw:0] x1i, x2i;

 /// SOLUTION

 /// First, generate the valid signal.

 // Convert x1 and x2 to integers.

 //

 fp_ftoi #(jw+1) ftoi1(x1i, x1);

 fp_ftoi #(jw+1) ftoi2(x2i, x2);

 //

 // Note: Since the ChipWare float-to-int module can only convert to

 // a signed integer and x is unsigned need to make the integer one

 // bit wider to accommodate the sign bit that we won't need.

 // Otherwise, values >= 2^{jw-1}, for the default, 2^11 = 2048,

 // will be clamped to the maximum 12-bit signed representation,

 // 2047.

 // Check whether j is between x1 and x2.

 //

 assign valid = x1i + j <= x2i;

 //

 /// Perform the interpolation: aj = a1 + j * (a2 - a1) / (x2 - x1)
 //

 uwire [31:0] delta_x, delta_a, dadx, jr, jdadx, ajr;

 uwire [7:0] status[2]; // Unused status connections for CW modules.

 fp_sub sdx(delta_x, x2, x1);

 fp_sub sda(delta_a, a2, a1);

 CW_fp_div div

 (.status(status[0]), .z(dadx), .a(delta_a), .b(delta_x), .rnd(rnd_even));

 fp_itof #(jw) itof(jr,j);

 //

 // Note: Module performs an unsigned conversion, so we don't need to

 // widen j by one bit. See ftoi3 below and ftoi1 and ftoi2 above.

← → Fall 2017 ← → Homework 2 Homework Sol Code hw02-sol.v.html

http://www.ece.lsu.edu/koppel/v/2017/hw02.pdf
https://www.ece.lsu.edu/ee4755/2017/hw02-sol.v.html

 CW_fp_mult mul

 (.status(status[1]), .z(jdadx), .a(jr), .b(dadx), .rnd(rnd_even));

 fp_add add(ajr,a1,jdadx);

 /// Convert the interpolated value to an integer and clamp it between
 // 0 and amax.

 // Declare aji signed so that the comparison operator works correctly

 // for aji < 0.

 //

 uwire signed [8:0] aji;

 fp_ftoi #(9) ftoi3(aji, ajr);

 assign aj = aji < 0 ? 0 : aji > amax ? amax : aji[7:0];

 //

 // Note that when amax is 255 the clamp isn't necessary

 // because the float-to-int module clamps to the maximum representable

 // value, which is 255 for a 9-bit signed integer.

endmodule

module fp_itof
 #(int wid = 10, logic i_is_signed = 0)

 (output uwire [31:0] f, input uwire [wid-1:0] i);

 uwire [7:0] status;

 localparam logic [2:0] rnd_even = 3'b000;

 CW_fp_i2flt #(.isize(wid), .isign(i_is_signed))

 itof (.status(status), .a(i), .z(f), .rnd(rnd_even));

endmodule

//

/// Convenience wrappers around ChipWare modules.
///

 // Feel free to define additional modules.

 // See http://www.ece.lsu.edu/v/ref.html for ChipWare documentation.

module fp_add(output uwire [31:0] x, input uwire [31:0] a, b);
 uwire [7:0] status;

 localparam logic [2:0] rnd_even = 3'b000; // Round to closest. Default.

 CW_fp_add add(.status(status), .z(x), .a(a), .b(b), .rnd(rnd_even));

endmodule

module fp_sub(output uwire [31:0] x, input uwire [31:0] a, b);
 uwire [7:0] status;

 localparam logic [2:0] rnd_even = 3'b000; // Round to closest. Default.

 CW_fp_sub sub(.status(status), .z(x), .a(a), .b(b), .rnd(rnd_even));

endmodule

module fp_ftoi
 #(int wid = 10)

 (output uwire [wid-1:0] i, input uwire [31:0] f);

 uwire [7:0] status;

 localparam logic [2:0] rnd_even = 3'b000; // Round to closer integer.

 localparam logic [2:0] rnd_trun = 3'b001; // Round towards zero. (truncate)

 localparam logic [2:0] rnd_minf = 3'b011; // Round towards -infinity.

 CW_fp_flt2i #(.isize(wid)) ftoi

 (.status(status), .z(i), .a(f), .rnd(rnd_trun));

endmodule

← → Fall 2017 ← → Homework 2 Homework Sol Code hw02-sol.v.html

http://www.ece.lsu.edu/v/ref.html
https://www.ece.lsu.edu/ee4755/2017/hw02-sol.v.html

//

/// Behavioral Interpolation Module
//

// Module below is correct but not synthesizable.

// cadence translate_off

module interp_behav
 #(int jw = 12,

 int amax = 255)

 (output logic valid,

 output logic [7:0] aj,

 input uwire [31:0] x1, a1, x2, a2,

 input uwire [jw-1:0] j);

 always_comb begin

 automatic shortreal x1r = $bitstoshortreal(x1);

 automatic shortreal x2r = $bitstoshortreal(x2);

 automatic shortreal a1r = $bitstoshortreal(a1);

 automatic shortreal a2r = $bitstoshortreal(a2);

 automatic int x1i = $floor(x1r);

 automatic int x2i = $floor(x2r);

 automatic int xj = x1i + j;

 shortreal dadx, ajr;

 valid = xj <= x2i;

 dadx = (a2r - a1r) / (x2r - x1r);

 ajr = a1r + j * dadx;

 aj = ajr < 0 ? 0 : ajr > amax ? amax : $floor(ajr);

 end

endmodule

//

/// Testbench Code
//

// The code below instantiates some of the modules above,

// provides test inputs, and verifies the outputs.

//

// The testbench may be modified to facilitate your solution. Of

// course, the removal of tests which your module fails is not a

// method of fixing a broken module. (One might modify the testbench

// so that the first tests it performs are those which make it easier

// to determine what the problem is, for example, test inputs that

// are all 0's or all 1's.)

module testbench();

 localparam bit trunc_x1 = 1;

 localparam int err_max_display = 20;

 localparam shortreal tolerance = 0.0001;

 localparam int num_tests = 2000;

 localparam int xmin = 0;

 localparam int xmax = 3839;

 localparam longint rand_max = longint'(1) << 32;

 localparam shortreal xscale = shortreal'(xmax) / rand_max;

 localparam shortreal short_len = 5;

← → Fall 2017 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw02-sol.v.html

 localparam shortreal short_scale = short_len / rand_max;

 localparam int amax = 255;

 localparam shortreal ascale = shortreal'(amax) / rand_max;

 localparam int jw = 12;

 typedef struct

 {

 string name;

 int err_valid = 0;

 int err_aj = 0;

 } Info;

 Info muts[int];

 task new_interp(input int idx, input string name);

 muts[idx].name = name;

 endtask

 localparam int mut_n_max = 5;

 logic [jw-1:0] mj;

 uwire mvalid[mut_n_max];

 uwire [7:0] maj[mut_n_max];

 logic [31:0] mx1, mx2, ma1, ma2;

 interp_behav #(jw) i0(mvalid[0], maj[0], mx1, ma1, mx2, ma2, mj);

 initial new_interp(0,"interp_behav");

 interp #(jw) i1(mvalid[1], maj[1], mx1, ma1, mx2, ma2, mj);

 initial new_interp(1,"interp");

 initial begin

 for (int i=0; i<num_tests; i++) begin

 automatic bit short_line = $random & 1;

 automatic shortreal x[] = { {$random} * xscale, {$random} * xscale };

 shortreal len1;

 shortreal x1, x2, a1, a2, dadx;

 int x1i, x2i;

 int npts;

 x.sort();

 len1 = x[1] - x[0];

 if (short_line && len1 > short_len)

 x[1] = x[0] + {$random} * short_scale;

 if (trunc_x1) x[0] = $floor(x[0]);

 x1 = x[0]; x2 = x[1];

 mx1 = $shortrealtobits(x1);

 mx2 = $shortrealtobits(x2);

 a1 = {$random} * ascale;

 a2 = {$random} * ascale;

 ma1 = $shortrealtobits(a1);

 ma2 = $shortrealtobits(a2);

 dadx = (a2 - a1) / (x2 - x1);

 x1i = $floor(x1);

 x2i = $floor(x2);

 npts = x2i - x1i + 1;

 for (int j=0; j<npts+10; j++) begin

 automatic shortreal aj = a1 + (x1i + j - x1) * dadx;

 automatic int aji = aj < 0 ? 0 : aj > amax ? amax : $floor(aj);

 automatic shortreal ajfrac = aj - aji;

 automatic int tol =

 ajfrac < tolerance ? -1 : ajfrac > 1 - tolerance ? 1 : 0;

 automatic int ajalt = aji + tol;

 automatic logic valid = j < npts;

← → Fall 2017 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw02-sol.v.html

 mj = j;

 #1;

 foreach (muts[m]) begin

 if (mvalid[m] !== valid) begin

 if (muts[m].err_valid < err_max_display)

 $write("Err in %s for %4.1f, %4.1f, j=%0d, valid %0d != %0d (correct)\n",

 muts[m].name, x1, x2, j, mvalid[m], valid);

 muts[m].err_valid++;

 end

 if (valid && mvalid[m] && maj[m] !== aji && maj[m] !== ajalt)

 begin

 if (muts[m].err_aj < err_max_display)

 $write("Err in %s for %4.1f, %4.1f, j=%0d, aj=%.4f %0d != %0d (correct)\n",

 muts[m].name, a1, a2, j, aj, maj[m], aji);

 muts[m].err_aj++;

 end

 end

 end

 end

 foreach (muts[m])

 $write("Done with tests for %s, %0d + %0d errors.\n",

 muts[m].name,muts[m].err_valid, muts[m].err_aj);

 end

endmodule

// cadence translate_on

`default_nettype wire

`include "/apps/linux/cadence/RC142/share/synth/lib/chipware/sim/verilog/CW/CW_fp_add.v"

`include "/apps/linux/cadence/RC142/share/synth/lib/chipware/sim/verilog/CW/CW_fp_flt2i.v"

`include "/apps/linux/cadence/RC142/share/synth/lib/chipware/sim/verilog/CW/CW_fp_sub.v"

`include "/apps/linux/cadence/RC142/share/synth/lib/chipware/sim/verilog/CW/CW_fp_mult.v"

`include "/apps/linux/cadence/RC142/share/synth/lib/chipware/sim/verilog/CW/CW_fp_div.v"

`include "/apps/linux/cadence/RC142/share/synth/lib/chipware/sim/verilog/CW/CW_fp_i2flt.v"

← → Fall 2017 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw02-sol.v.html

//

//

/// LSU EE 4755 Fall 2017 Homework 4
//

 /// SOLUTION

 /// Assignment http://www.ece.lsu.edu/koppel/v/2017/hw04.pdf

 /// Additional Resources
 //

 // Verilog Documentation

 // The Verilog Standard

 // http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

 // Introductory Treatment (Warning: Does not include SystemVerilog)

 // Brown & Vranesic, Fundamentals of Digital Logic with Verilog, 3rd Ed.

 //

 // Account Setup and Emacs (Text Editor) Instructions

 // http://www.ece.lsu.edu/koppel/v/proc.html

 // To learn Emacs look for Emacs tutorial.

`default_nettype none

//

/// Problem 1
//

 /// Modify maxrun so that it keeps track of the current and maximum runs.
//

// [✔] Make sure that the testbench does not report errors.

// [✔] Module must be synthesizable.

// [✔] Code must be reasonably efficient.

 /// Solution 1: Written for maximum code clarity.
//

module maxrun
 #(int w = 2,

 int c = 4)

 (output uwire [w-1:0] len,

 output logic [c-1:0] mr_char,

 input uwire clk, reset, mr,

 input uwire [c-1:0] in_char);

 logic [w-1:0] cr_len, mr_len;

 logic [c-1:0] prev_char;

 assign len = mr ? mr_len : cr_len;

 always_ff @(posedge clk) begin

 if (reset) mr_len = 0;

 if (!reset && in_char == prev_char)

 cr_len++;

 else

 cr_len = 1;

 if (cr_len > mr_len)

 begin

 mr_len = cr_len;

 mr_char = in_char;

 end

← → Fall 2017 ← → Homework 4 Homework Sol Code hw04-sol.v.html

http://www.ece.lsu.edu/koppel/v/2017/hw04.pdf
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
http://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2017/hw04-sol.v.html

 prev_char = in_char;

 end

endmodule

 /// Solution 2: Written for high performance.
//

module maxrun_opt
 #(int w = 2,

 int c = 4)

 (output uwire [w-1:0] len,

 output logic [c-1:0] mr_char,

 input uwire clk, reset, mr,

 input uwire [c-1:0] in_char);

 logic [w-1:0] cr_len, mr_len;

 logic [c-1:0] prev_char;

 assign len = mr ? mr_len : cr_len;

 always_ff @(posedge clk) begin

 logic match;

 match = in_char == prev_char;

 /// Approach to Reducing Critical Path
 //

 // To keep addition off the critical path ..

 // .. check cr_len >= mr_len && match ..

 // .. rather than using incremented cr_len for: cr_len > mr_len.

 //

 // Based on experimentation, use ..

 // .. cr_len >= mr_len ..

 // .. instead of ..

 // .. cr_len == mr_len ..

 // .. even though cr_len == mr_len is easier to compute.

 if (reset) begin

 mr_len = 1;

 mr_char = in_char;

 end else if (cr_len >= mr_len && match) begin

 mr_len = cr_len + 1;

 mr_char = in_char;

 end

 if (!reset && match)

 cr_len = cr_len + 1;

 else

 cr_len = 1;

 prev_char = in_char;

 end

endmodule

//

/// Testbench Code
//

// The code below instantiates some of the modules above,

// provides test inputs, and verifies the outputs.

//

← → Fall 2017 ← → Homework 4 Homework Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw04-sol.v.html

// The testbench may be modified to facilitate your solution. Of

// course, the removal of tests which your module fails is not a

// method of fixing a broken module. (One might modify the testbench

// so that the first tests it performs are those which make it easier

// to determine what the problem is, for example, test inputs that

// are all 0's or all 1's.)

// cadence translate_off

program reactivate
 (output uwire clk_reactive, output int cycle_reactive,

 input uwire clk, input var int cycle);

 assign clk_reactive = clk;

 assign cycle_reactive = cycle;

endprogram

module testbench;

 localparam int char_wid = 8;

 localparam int count_wid = 10;

 localparam int test_num_chars = 100;

 localparam int cycle_limit = test_num_chars + 20;

 localparam int nmuts = 1;

 localparam int char_mask = (1 << char_wid) - 1;

 uwire [count_wid-1:0] len[nmuts];

 uwire [char_wid-1:0] mr_char[nmuts];

 logic [char_wid-1:0] char, shadow_last_char;

 logic mr;

 logic clock, reset;

 bit done;

 int cycle;

 logic clk_reactive;

 int cycle_reactive;

 reactivate ra(clk_reactive,cycle_reactive,clock,cycle);

 initial begin

 clock = 0;

 cycle = 0;

 fork

 forever #10 cycle += clock++;

 wait(done);

 wait(cycle >= cycle_limit)

 $write("*** Cycle limit exceeded, ending.\n");

 join_any;

 $finish();

 end

 maxrun_opt #(count_wid,char_wid) mr1 (len[0],mr_char[0],clock,reset,mr,char);

 initial begin

 automatic int n_err_cr_len = 0, n_err_mr_len = 0, n_err_mr_char = 0;

 int shadow_mr_len, shadow_mr_char, shadow_cr_len;

 bit is_err_cr_len, is_err_mr_len, is_err_mr_char;

 done = 0;

← → Fall 2017 ← → Homework 4 Homework Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw04-sol.v.html

 reset = 0;

 char = 0;

 mr = 0;

 @(posedge clk_reactive);

 for (int i=0; i<test_num_chars; i++) begin

 automatic bit do_reset = i == 0 || {$random} % 10 == 0;

 automatic bit do_new_char = {$random} % 3 == 0;

 logic [count_wid-1:0] mr_len, cr_len;

 @(negedge clock);

 shadow_last_char = char;

 if (do_new_char) char = {$random} & char_mask;

 reset = do_reset;

 if (!do_reset && char === shadow_last_char)

 shadow_cr_len++;

 else

 shadow_cr_len = 1;

 if (do_reset)

 shadow_mr_len = 0;

 if (shadow_cr_len > shadow_mr_len) begin

 shadow_mr_len = shadow_cr_len;

 shadow_mr_char = char;

 end

 @(posedge clk_reactive);

 repeat (2) begin

 if (mr) mr_len = len[0]; else cr_len = len[0];

 mr = !mr;

 #0; #0;

 end

 is_err_cr_len = shadow_cr_len !== cr_len;

 is_err_mr_len = shadow_mr_len !== mr_len;

 is_err_mr_char = shadow_mr_char !== mr_char[0];

 $write

 ("%5d %1s c=%2x cr_len %3d %s mr_len %3d %s mr_c %2x %s\n",

 i, do_reset ? "r" : " ", char,

 cr_len,

 is_err_cr_len ? $sformatf("!= %3d", shadow_cr_len) : "ok ",

 mr_len,

 is_err_mr_len ? $sformatf("!= %3d", shadow_mr_len) : "ok ",

 mr_char[0],

 is_err_mr_char ? $sformatf("!= %2x", shadow_mr_char) : "ok ");

 if (shadow_cr_len !== cr_len) n_err_cr_len++;

 if (shadow_mr_len !== mr_len) n_err_mr_len++;

 if (shadow_mr_char !== mr_char[0]) n_err_mr_char++;

 end

 $write("Done with %0d tests, %0d %0d %0d errors found.\n",

 test_num_chars,

 n_err_cr_len,

 n_err_mr_len,

 n_err_mr_char);

← → Fall 2017 ← → Homework 4 Homework Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw04-sol.v.html

 done = 1;

 end

endmodule

// cadence translate_on

← → Fall 2017 ← → Homework 4 Homework Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw04-sol.v.html

//

//

/// LSU EE 4755 Fall 2017 Homework 5 -- SOLUTION
//

 /// Assignment http://www.ece.lsu.edu/koppel/v/2017/hw05.pdf

`default_nettype none

//

/// Problem 1
//

 /// Complete so that lookup_char finds index of character.
//

// [✔] Module must be synthesizable.

// [✔] Code must be reasonably efficient.

// [✔] Do not change module parameters.

// [✔] Do not change ports, EXCEPT changing between var and net kinds.

// [✔] The module must synthesize into combinational logic (no latches).

// [✔] Don't assume that parameter values will match those used here.

// [✔] See a 2016 homework assignment.

module lookup_char
 #(int w = 4,

 int n = 3,

 logic [w-1:0] chars[n] = '{ "a", "2", "g" },

 int c = $clog2(n))

 (output logic found,

 output logic [c-1:0] idx,

 input uwire [w-1:0] char);

 always_comb begin

 found = 0;

 idx = 0;

 for (int i=0; i<n; i++)

 if (chars[i] == char) begin found = 1; idx = i; end

 end

endmodule

//

/// Problem 2
//

 /// Complete so that nest checks for properly nested characters.
//

// [✔] Use lookup_char in nest.

// [✔] Module must be synthesizable.

// [✔] Code must be reasonably efficient.

// [✔] Do not change module parameters.

// [✔] Do not change ports, EXCEPT changing between var and net kinds.

// [✔] Outputs bad, level, and awaiting should change on positive clk edge.

// [✔] Don't assume that parameter values will match those used here.

module nest
 #(int d = 8,

 int w = 8,

 int n = 2,

 logic [w-1:0] char_open[n] = { 1, 2 },

 logic [w-1:0] char_close[n] = { 3, 4 },

 int dw = $clog2(d+1))

 (output logic [dw-1:0] level,

 output uwire [w-1:0] awaiting,

 output uwire is_open, is_close,

 output logic bad,

 input uwire clk, reset,

 input uwire [w-1:0] in_char);

 localparam int nw = $clog2(n);

 uwire [nw-1:0] loidx, lcidx;

 lookup_char #(w,n,char_open) l1(is_open,loidx,in_char);

 lookup_char #(w,n,char_close) l2(is_close,lcidx,in_char);

 logic [nw-1:0] stack [1:d];

 assign awaiting = char_close[stack[level]];

 always_ff @(posedge clk) begin

 if (reset) begin

 level = 0;

 bad = 0;

← → Fall 2017 ← → Homework 5 Homework Sol Code hw05-sol.v.html

http://www.ece.lsu.edu/koppel/v/2017/hw05.pdf
https://www.ece.lsu.edu/ee4755/2017/hw05-sol.v.html

 end else begin

 if (is_open) begin

 if (level == d) bad = 1;

 level++;

 stack[level] = loidx;

 end else if (is_close) begin

 if (awaiting != in_char || !level) bad = 1;

 level--;

 end

 end

 end

endmodule

//

/// Testbench Code
//

// The code below instantiates some of the modules above,

// provides test inputs, and verifies the outputs.

//

// The testbench may be modified to facilitate your solution. Of

// course, the removal of tests which your module fails is not a

// method of fixing a broken module. (One might modify the testbench

// so that the first tests it performs are those which make it easier

// to determine what the problem is, for example, test inputs that

// are all 0's or all 1's.)

// cadence translate_off

program reactivate
 (output uwire clk_reactive, output int cycle_reactive,

 input uwire clk, input var int cycle);

 assign clk_reactive = clk;

 assign cycle_reactive = cycle;

endprogram

module testbench;

 localparam int w = 8;

 localparam int max_depth = 6;

 localparam int dw = $clog2(max_depth);

 // Maximum number of groups for which to show traces.

 //

 localparam int show_groups_bad = 3;

 localparam int show_groups_good = 2;

 localparam int num_seq = 1000;

 localparam int cycle_limit = num_seq * 1000;

 localparam logic [w-1:0] char_open[] = { "(", "[", "{", "<" };

 localparam logic [w-1:0] char_close[] = { ")", "]", "}", ">" };

 localparam int num_pairs = 4;

 initial begin

 if (num_pairs != char_open.size())

 $error("Size of char_open, %0d, different than num_pairs., %0d",

 char_open.size(), num_pairs);

 end

 uwire is_op, is_cl, bad;

 logic [w-1:0] in_char;

 uwire [w-1:0] await;

 logic [dw-1:0] lev;

 logic clock, reset;

 bit done;

 int cycle;

 logic clk_reactive;

 int cycle_reactive;

 reactivate ra(clk_reactive,cycle_reactive,clock,cycle);

 int num_tests, errs_bad, errs_op, errs_cl, errs_lv, errs_await;

← → Fall 2017 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw05-sol.v.html

 initial begin

 clock = 0;

 cycle = 0;

 fork

 forever #10 cycle += clock++;

 wait(done);

 wait(cycle >= cycle_limit)

 $write("*** Cycle limit exceeded, ending.\n");

 join_any;

 $write

 ("End of %0d tests, errors: %0d + %0d + %0d + %0d + %0d = %0d\n",

 num_tests,

 errs_op, errs_cl, errs_bad, errs_lv, errs_await,

 errs_op + errs_cl + errs_bad + errs_lv + errs_await);

 $finish();

 end

 nest #(max_depth,w,num_pairs,char_open,char_close)

 n1(lev, await, is_op, is_cl, bad, clock, reset, in_char);

 localparam string oe[] = '{" ","er"};

 logic [w-1:0] chars_plain[$];

 bit chars_br[int];

 int nchars_plain;

 initial begin

 automatic int groups_good_count = 0;

 automatic int groups_bad_count = 0;

 num_tests = 0;

 errs_bad = 0;

 errs_op = 0;

 errs_cl = 0;

 errs_lv = 0;

 errs_await = 0;

 foreach (char_open[c]) chars_br[c] = 1;

 foreach (char_close[c]) chars_br[c] = 1;

 for (int i=0; i<26; i++) begin

 chars_plain.push_back("A" + i);

 chars_plain.push_back("a" + i);

 end

 nchars_plain = chars_plain.size();

 done = 0;

 reset = 0;

 in_char = 0;

 @(negedge clk_reactive);

 for (int s=0; s<num_seq; s++) begin

 automatic int targ_depth = {$random} % max_depth;

 automatic int curr_depth = 0;

 automatic int stack[$];

 automatic bit hit_target = 0;

 automatic bit back_to_0 = 0;

 automatic int c = 0;

 automatic bit shadow_bad = 0;

 automatic bit botch_close = {$random} % 2;

 automatic int bad_cyc = 0;

 automatic byte shadow_await;

 automatic string trace_text[$];

 automatic int some_err = 0;

 automatic bit err_op;

 automatic bit err_cl;

 trace_text.push_back("\n");

 reset = 1;

 @(negedge clock);

 @(negedge clock);

 reset = 0;

 while (!back_to_0 && c < 100 && bad_cyc < 3) begin

 automatic bit plain = {$random} & 1;

 automatic bit b_open

 = {$random} & 'hff > (hit_target ? 'hc0 : 'h40);

← → Fall 2017 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw05-sol.v.html

 if (plain) begin

 in_char = chars_plain[{$random} % nchars_plain];

 end else begin

 automatic int idx = {$random} % num_pairs;

 if (b_open) begin

 in_char = char_open[idx];

 curr_depth++;

 stack.push_back(idx);

 if (curr_depth == targ_depth) hit_target = 1;

 if (curr_depth > max_depth) shadow_bad = 1;

 end else begin

 automatic bit botch_this_close

 = botch_close && {$random} & 'hff > 'h40;

 automatic int tos = curr_depth > 0 ? stack.pop_back() : idx;

 in_char

 = char_close[botch_this_close ? (tos+1)%num_pairs : tos];

 if (curr_depth == 0 || botch_this_close) shadow_bad = 1;

 curr_depth--;

 if (curr_depth == 0 && hit_target) back_to_0 = 1;

 end

 end

 shadow_await = char_close[stack.size() ? stack[stack.size()-1] : 0];

 #1;

 err_op = is_op !== (!plain && b_open);

 err_cl = is_cl !== (!plain && !b_open);

 @(posedge clk_reactive);

 begin

 automatic bit checkable = !bad && !shadow_bad;

 automatic bit err_bad = bad !== shadow_bad;

 automatic bit err_lv = checkable && lev !== curr_depth;

 automatic bit err_await

 = checkable && lev && await !== shadow_await;

 string tr_txt;

 if (err_op || err_cl || err_bad || err_lv || err_await)

 some_err++;

 num_tests++;

 errs_op += err_op;

 errs_cl += err_cl;

 errs_bad += err_bad;

 errs_lv += err_lv;

 errs_await += err_await;

 if (!checkable) bad_cyc++;

 tr_txt

 = $sformatf

 ("cyc %4d s.c %2d.%2d %1s op %1h %2s cl %1h %2s bad %1h %2s lev %2d %2d %2s await '%1s%1s' %2s\n",

 cycle, s, c, in_char,

 is_op, oe[err_op],

 is_cl, oe[err_cl],

 bad, oe[err_bad],

 lev, curr_depth, oe[err_lv],

 await, shadow_await, oe[err_await]);

 trace_text.push_back(tr_txt);

 if (some_err && groups_bad_count < show_groups_bad)

 while (trace_text.size()) $write(trace_text.pop_front());

 end

 c++;

 @(negedge clock);

 end

 if (!some_err && groups_good_count < show_groups_good)

 while (trace_text.size()) $write(trace_text.pop_front());

 if (some_err) groups_bad_count++; else groups_good_count++;

 end

← → Fall 2017 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw05-sol.v.html

 done = 1;

 end

endmodule

// cadence translate_on

← → Fall 2017 ← → Homework 5 Homework Sol Code hw05-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw05-sol.v.html

LSU EE 4755 Homework 6 Solution Due: 13 November 2017

Problem 1: The solution to Homework 4, http://www.ece.lsu.edu/koppel/v/2017/hw04-sol.v.html,
includes two modules, maxrun and maxrun_opt.

(a) Show the hardware inferred for maxrun. The Verilog code appears below.

module maxrun #(int w = 2, int c = 4)

(output uwire [w-1:0] len, output logic [c-1:0] mr_char,

input uwire clk, reset, mr, input uwire [c-1:0] in_char);

logic [w-1:0] cr_len, mr_len;

logic [c-1:0] prev_char;

assign len = mr ? mr_len : cr_len;

always_ff @(posedge clk) begin

if (reset) mr_len = 0;

if (!reset && in_char == prev_char)

cr_len++;

else

cr_len = 1;

if (cr_len > mr_len)

begin

mr_len = cr_len;

mr_char = in_char;

end

prev_char = in_char;

end

endmodule

1

← → Fall 2017 ← → Homework 6 Homework Solution hw06 sol.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/2017/hw04-sol.v.html
https://www.ece.lsu.edu/ee4755/2017/hw06_sol.pdf

The solution appears below.
A common difficulty was properly accounting for order of assignments to mr len and cr len. The last assignment

in the always block creates the value that is written to a register. The first illustration below shows the inferred hardware,
the one below it shows the inferred hardware labeled with the Verilog code from which it was inferred.

1

0

>

1

+

=

en

c
r_
le
n

m
r_
le
n

mr_char

p
re
v
_
c
h
a
r

len

clk

reset

mr

in_char

maxrun(w, c)

1

0

1

0

>

1

+

=

en

c
r_
le
n

m
r_
le
n

mr_char

p
re
v
_
c
h
a
r

len

clk

reset

mr

in_char

maxrun(w, c)

1

0

if (reset) mr_len = 0;

if (cr_len > mr_len)

 begin

 mr_len = cr_len;

 mr_char = in_char;

 end

mr_len
mr_len

c
r_
le
n

if (!reset && in_char == prev_char)

 cr_len++;

 else

 cr_len = 1;

a
s
s
i
g
n

l
e
n

=

m
r

?

m
r
_
l
e
n

:

c
r
_
l
e
n
;

2

← → Fall 2017 ← → Homework 6 Homework Solution hw06 sol.pdf

https://www.ece.lsu.edu/ee4755/2017/hw06_sol.pdf

(b) Show the hardware inferred for maxrun_opt.
The solution appears below.
Note that there is no register for match. That is because it is not a live-out variable. That’s obvious in this case

because it is declared within the block.

1

1

1 +

en

c
r_
le
n

m
r_
le
n

mr_char

prev_char

len

clk

re
s
e
t

mr

in
_
c
h
a
r

maxrun_opt (w, c)

1

0

1 +

≥

= match

cr_len

mr_len

3

← → Fall 2017 ← → Homework 6 Homework Solution hw06 sol.pdf

https://www.ece.lsu.edu/ee4755/2017/hw06_sol.pdf

Problem 2: Compute the critical path for the maxrun and maxrun_opt modules using the simple
model. The launch points (path starts) are at module inputs and register outputs, and the capture
points (path ends) are at module outputs and register inputs. Note that with these definitions the
critical path does not include the register itself. Show the critical path in terms of w, the number
of bits in the len output and c, the number of bits in a character.

Short Answer: The critical path length is (lg c) + 2w + 3 and its route is marked with a red dashed line in the
illustration below. Grading Note: In too many submissions the critical path was not marked on the
diagram, instead relying on a prose description or just hints such as the modules the path passes
through. Please show the path in the diagram.

Explanation: The critical path starts at the in char input and prev char register output and follows the course
shown. An interesting part of the critical path is the first mux on the path. The LSB of the lower data input arrives at
t = 2 and the MSB arrives at t = w, which is later than the select signal, which arrives at (lg c) + 1. Normally that
would mean the lower data input is on the critical path. However, because the comparison unit can start when the LSB
is ready the LSB arrival time determines criticality, and since 2 < (lg c) + 1 the select signal, not the data input, is on
the critical path.

The maxrun module is slowed because the > comparison must wait for the equality test.
Also note that multiplexors with constant inputs have a delay of 1 and that a w-bit ripple adder with a constant

input has a delay of about w.

1

0

>

1

en

c
r_
le
n

m
r_
le
n

mr_char

p
�
e
�
�
�
�
�

r
len

clk

reset

mr

in_char

maxrun(w, c)

1

0

Launch

Capture

w

2�

�
l�
	

�
�

(�
�
�
�

1

���
�
�
�
�
�
�
�
�

���

!
"
#
$
%
&

')*
+
,
-
.
/
1
3
4
5

Delay is w due to constant input.

67 8

Arrival time of LSB,
> operation starts.

9

Delay is 1 due to
constant input.

4

← → Fall 2017 ← → Homework 6 Homework Solution hw06 sol.pdf

https://www.ece.lsu.edu/ee4755/2017/hw06_sol.pdf

Short Answer: Assuming that 2w > lg c the critical path length is 2w + 4. The route of the path is shown with
a red dashed line in the diagram.

Explanation: The critical path starts at the outputs of mr len and cr len and ends at the mr len input. Unlike
maxrun, the magnitude comparison and the equality test both start at t = 0, reducing the critical path.

1

1

1

en

c
r_
le
n

m
r_
le
n

mr_char

prev_char

len

clk

re
s
e
t

mr

in
_
c
h

a
r

maxrun_opt (w, c)

1

0

1

match

cr_len

mr_len

2w

w+1

lg c

w

2w+1

2w+3
2w+4

(lg c) + 1

w

lg c

Launch
Capture

lg c

0

0

0

0

2w+2

lg clg c

A:;<=>?@ that
BC D EF G.

0

Delay is
1 due to
constant
input.

5

← → Fall 2017 ← → Homework 6 Homework Solution hw06 sol.pdf

https://www.ece.lsu.edu/ee4755/2017/hw06_sol.pdf

//

//

/// LSU EE 4755 Fall 2017 Homework 7 -- SOLUTION
//

 /// Assignment http://www.ece.lsu.edu/koppel/v/2017/hw07.pdf

//

/// Problem 1
//

 /// Complete so that mult_fast sets out_avail as described in the handout.
//

// [✔] The module must be synthesizable.

// [✔] Code must be reasonably efficient.

// [✔] Do not change module parameters.

// [✔] Do not change ports, EXCEPT changing between var and net kinds.

// [✔] Don't assume that parameter values will match those used here.

// [✔] USE DEBUGGING TOOLS LIKE SimVision.

// [✔] Make sure that Avg cyc shown in testbench for Fast is lower

// than Pipelined module of same degree (when all tests pass).

 /// SOLUTION - Problem 1a
//

// A new pipeline latch will be created, pl_occ, which will carry the

// value of in_valid through the pipeline. The pl_occ register for the

// last stage will connect to the output port out_avail.

// The timing diagram below is for a w=12, m=4 multiplier in which the

// multiplier is always set to 2 (not shown). Three different

// multiplicands arrive, 'h123, 'h4, and 'h56, their products, 2 *

// 'h123 = 'h246, 2 * 'h4 = 'h8, and 2 * 'h56 = 'hac, appear at the

// outputs three cycles later. The progress of 'h123 through the

// pipeline is highlighted in blue.

//

// The timing diagram does not show the plier and cand inputs. As

// stated above, the plier is always 2 (for the sample execution shown

// in the diagram). The value of input cand appearing at a positive

// edge can be seen in pl_cand[0] just after the positive edge. For

// example, at the positive edge between cycle 0 and 1 input cand must

// be 'h123.

//

pl_occ[0]

pl_cand[0]

pl_accum[0]

in_valid

out_avail

prod

clk
cycle 0 1 2 3 4 5 6 7

'h123

'h0

pl_occ[1]

pl_cand[1]

pl_accum[1]

'h4 'h56

'h12 'h0 'h5

'h6 'h8 'hc

pl_occ[2]

pl_cand[2]

pl_accum[2]

pl_occ[3]

pl_cand[3]

pl_accum[3]

'h1 'h0 'h0

'h46 'h8 'hac

'h0 'h0 'h0

'h246 'h8 'hac

8

'h246 'h8 'hac

 /// SOLUTION -- Problem 1a
//

module mult_fast_1a
 #(int w = 16,

 int m = 4)

 (output uwire [2*w-1:0] prod,

 output uwire out_avail,

 input uwire clk, in_valid,

← → Fall 2017 ← → Homework 7 Homework Sol Code hw07-sol.v.html

http://www.ece.lsu.edu/koppel/v/2017/hw07.pdf
https://www.ece.lsu.edu/ee4755/2017/hw07-sol.v.html

 input uwire [w-1:0] plier, cand);

 localparam int nstages = (w + m - 1) / m;

 logic [2*w-1:0] pl_accum[0:nstages];

 logic [w-1:0] pl_plier[0:nstages];

 logic [w-1:0] pl_cand[0:nstages];

 assign prod = pl_accum[nstages];

 /// SOLUTION -- Problem 1a
 //

 logic pl_occ[0:nstages];

 assign out_avail = pl_occ[nstages];

 //

 // Provide a pipeline latch for the in_valid signal to pass through

 // the pipeline and connect the last stage's latch to the out_avail

 // port.

 always_ff @(posedge clk) begin

 /// SOLUTION -- Problem 1a
 //

 pl_occ[0] = in_valid;

 //

 // Connect in_valid port to the first stage.

 pl_accum[0] = 0;

 pl_plier[0] = plier;

 pl_cand[0] = cand;

 for (int stage=0; stage<nstages; stage++) begin

 pl_accum[stage+1] <=

 pl_accum[stage] +

 (pl_plier[stage] * pl_cand[stage][m-1:0] << stage*m);

 pl_cand[stage+1] <= pl_cand[stage] >> m;

 pl_plier[stage+1] <= pl_plier[stage];

 /// SOLUTION -- Problem 1a
 //

 pl_occ[stage+1] <= pl_occ[stage];

 //

 // Pass the in_valid signal through the pipeline.

 end

 end

endmodule

 /// SOLUTION -- Problem 1b (and also 1a)
//

// The fast multiplier is supposed to provide a shortcut connection

// from each stage to the multiplier output, prod. Stage x can use the

// shortcut connection if the multiplication that the stage is

// carrying is complete and if no higher-numbered stages are occupied.

// A multiplication (meaning the result of multiplying a plier and

// cand) must appear at the output exactly once, and the arriving

// multiplications must appear at the outputs in the same order in

// which they arrived.

 /// The Plan
//

// - Find the highest-numbered occupied stage. Call it oldest_idx.

// - Connect the result at that stage, pl_accum[oldest_idx], to prod.

// - Set out_avail to true if stage oldest_idx is finished.

// - Set pl_occ[oldest_idx] to zero if out_avail is true, to avoid duplicates.

//

// For the discussion below refer to module mult_fast_1b and to the

// timing diagram below. The timing diagram is for a module

// instantiated with w=12, m=4, and for which the multiplier is always

// 2. The arriving values in the timing diagram below are the same as

// the diagram appearing in the solution to Problem 1a.

 /// Computing oldest_idx
//

// Combinational logic will be added that computes oldest_idx, the

// highest-numbered occupied stage. (Stage x is occupied if pl_occ[x]

// is true.) If none of the stages are occupied oldest_idx is set to

// zero.

//

// See the always_comb block in mult_fast_1b below.

 /// Connect Stage's Result to Prod

← → Fall 2017 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw07-sol.v.html

//

// Output prod is set to pl_accum[oldest_idx], see the assign in

// mult_fast_1b. The connection is made whether or not stage

// oldest_idx is finished or contains a valid value.

// In the timing diagram notice that at cycles 2 and 3 prod holds

// incomplete multiplications. That's fine because out_avail is zero.

// Setting prod to something like zero at cycles like 2 and 3 would

// require extra hardware and provide no benefit (based on the problem

// statement in the homework handout).

 /// Set out_avail
//

// Output out_avail is set to 1 if stage oldest_idx is occupied and if

// the multiplicand at that stage is zero, meaning that the

// multiplication is complete. Whether it is occupied can be

// determined by examining pl_occ[oldest_idx], whether it is finished

// can be determined by examining pl_cand[oldest_idx]. See the "assign

// out_avail" in mult_fast_1b.

 /// Set pl_occ[oldest_idx] When Done
//

// Since the result of a multiplication cannot appear at the output

// more than once pl_occ[x] must be set to zero at the end of cycle c

// if x was chosen in cycle c. (If this were not done the same

// multiplication would appear at the outputs again in the next clock

// cycle [c+1], when it is in stage x+1.) For example, stage 2 is

// chosen in cycle 5, its product 'h8 appears at the output. In cycle

// 6 the calculation is in stage 3, but now its value of pl_occ is

// zero and so it won't be chosen a second time.

 //

pl_occ[0]

pl_cand[0]

pl_accum[0]

in_valid

out_avail

prod

clk
cycle 0 1 2 3 4 5 6 7

'h123

'h0

pl_occ[1]

pl_cand[1]

pl_accum[1]

'h4 'h56

'h12 'h0 'h5

'h6 'h8 'hc

pl_occ[2]

pl_cand[2]

pl_accum[2]

pl_occ[3]

pl_cand[3]

pl_accum[3]

'h1 'h0 'h0

'h46 'h8 'hac

'h0 'h0 'h0

'h246 'h8 'hac

oldest_idx 0 1 2 3 2 2

8

0

'h246 'h8 'hac'h6 'h46

module mult_fast_1b
 #(int w = 16,

 int m = 4)

 (output uwire [2*w-1:0] prod,

 output uwire out_avail,

 input uwire clk, in_valid,

 input uwire [w-1:0] plier, cand);

 localparam int nstages = (w + m - 1) / m;

 logic [2*w-1:0] pl_accum[0:nstages];

 logic [w-1:0] pl_plier[0:nstages], pl_cand[0:nstages];

 logic pl_occ[0:nstages];

 /// SOLUTION -- Problem 1b
 //

 // Determine the idx of the last (highest-numbered) occupied

 // stage, in which resides the oldest multiplication in the

← → Fall 2017 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw07-sol.v.html

 // pipeline.

 //

 logic [$clog2(nstages):0] oldest_idx;

 //

 always_comb begin

 oldest_idx = 0;

 for (int i=1; i<=nstages; i++) if (pl_occ[i]) oldest_idx = i;

 end

 /// SOLUTION -- Problem 1b
 //

 // Connect the last occupied stage to the output ..

 //

 assign prod = pl_accum[oldest_idx];

 //

 // .. and set out_avail to true if that stage is occupied and finished.

 //

 assign out_avail = pl_occ[oldest_idx] && pl_cand[oldest_idx] == 0;

 always_ff @(posedge clk) begin

 pl_occ[0] = in_valid;

 pl_accum[0] = 0;

 pl_plier[0] = plier;

 pl_cand[0] = cand;

 for (int stage=0; stage<nstages; stage++) begin

 pl_accum[stage+1] <=

 pl_accum[stage] +

 (pl_plier[stage] * pl_cand[stage][m-1:0] << stage*m);

 pl_cand[stage+1] <= pl_cand[stage][w-1:m];

 pl_plier[stage+1] <= pl_plier[stage];

 /// SOLUTION -- Problem 1b
 //

 // Pass 0 to next stage if this stage is providing the

 // result, otherwise pass this stage's value of occupied to

 // the next stage.

 //

 pl_occ[stage+1] <=

 oldest_idx == stage && out_avail ? 0 : pl_occ[stage];

 end

 end

endmodule

module mult_behav_1
 #(int w = 16)

 (output logic [2*w-1:0] prod, input logic [w-1:0] plier, cand);

 assign prod = plier * cand;

endmodule

 /// :Example: Basic Pipelined Multiplier -- mult_pipe
//

// Computes m partial products per stage.

//

module mult_pipe #(int w = 16, int m = 4)
 (output logic [2*w-1:0] prod,

 input logic [w-1:0] plier,

 input logic [w-1:0] cand,

 input clk);

 localparam int nstages = (w + m - 1) / m;

 // Note: pl is for pipeline latch.

 logic [2*w-1:0] pl_accum[0:nstages];

 logic [w-1:0] pl_plier[0:nstages];

 logic [w-1:0] pl_cand[0:nstages];

 always_ff @(posedge clk) begin

 pl_accum[0] = 0;

 pl_plier[0] = plier;

 pl_cand[0] = cand;

 for (int stage=0; stage<nstages; stage++) begin

← → Fall 2017 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw07-sol.v.html

 logic [w-1:0] cand_next;

 cand_next = pl_cand[stage][w-1:m];

 pl_accum[stage+1] <=

 pl_accum[stage] +

 (pl_plier[stage] * pl_cand[stage][m-1:0] << stage*m);

 pl_cand[stage+1] <= cand_next;

 pl_plier[stage+1] <= pl_plier[stage];

 end

 end

 assign prod = pl_accum[nstages];

endmodule

//

/// Testbench Code
// cadence translate_off

program reactivate
 (output uwire clk_reactive, output int cycle_reactive,

 input uwire clk, input int cycle);

 assign clk_reactive = clk;

 assign cycle_reactive = cycle;

endprogram

module testbench;

 localparam int w = 16;

 localparam int num_tests = 400;

 localparam int NUM_MULT = 20;

 localparam int err_limit = 7;

 bit use_others;

 logic [w-1:0] plier, cand;

 logic [w-1:0] plierp[NUM_MULT], candp[NUM_MULT];

 logic [2*w-1:0] prod[NUM_MULT];

 uwire availn[NUM_MULT];

 logic avail[NUM_MULT];

 logic in_valid[NUM_MULT];

 typedef struct { int tidx; int cycle_start; } Test_Vector;

 typedef struct { int idx;

 int err_count = 0;

 int err_timing = 0;

 Test_Vector tests_active[$];

 bit all_tests_started = 0;

 bit seq = 0; bit pipe = 0;

 bit bpipe = 0;

 int deg = 1;

 int ncompleted = 0;

 int cyc_tot = 0;

 int latency = 0;

 } Info;

 Info pi[string];

 localparam int cycle_limit = num_tests * w * 4;

 int cycle;

 bit done;

 logic clock;

 logic clk_reactive;

 int cycle_reactive;

 reactivate ra(clk_reactive,cycle_reactive,clock,cycle);

 initial begin

 clock = 0;

 cycle = 0;

 fork

 forever #10 cycle += clock++;

 wait(done);

 wait(cycle >= cycle_limit)

 $write("*** Cycle limit exceeded, ending.\n");

 join_any;

 $finish();

← → Fall 2017 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw07-sol.v.html

 end

 task pi_seq(input int idx, input string name, input int deg);

 automatic string m = $sformatf("%s Deg %0d", name, deg);

 pi[m].deg = deg;

 pi[m].idx = idx; pi[m].seq = 1; pi[m].bpipe = 0;

 endtask

 task pi_pipe(input int idx, input string name, input int deg);

 automatic string m = $sformatf("%s Deg %0d", name, deg);

 pi[m].deg = deg;

 pi[m].idx = idx; pi[m].seq = 1; pi[m].pipe = 1; pi[m].bpipe = 0;

 endtask

 task pi_bpipe(input int idx, input string name, input int deg);

 automatic string m = $sformatf("%s Deg %0d", name, deg);

 pi[m].deg = deg;

 pi[m].idx = idx; pi[m].seq = 1; pi[m].pipe = 1; pi[m].bpipe = 1;

 endtask

 mult_behav_1 #(w) mb1(prod[0], plierp[0], candp[0]);

 initial pi["Behavioral"].idx = 0;

 mult_pipe #(w,4) ms2(prod[2], plierp[2], candp[2], clock);

 initial pi_pipe(2,"Pipelined",ms2.m);

 mult_pipe #(w,2) ms3(prod[3], plierp[3], candp[3], clock);

 initial pi_pipe(3,"Pipelined",ms3.m);

 mult_fast_1a #(w,4) ms7(prod[7], availn[7], clock,

 in_valid[7], plierp[7], candp[7]);

 initial pi_bpipe(7,"Fast 1a",ms7.m);

 mult_fast_1a #(w,2) ms8(prod[8], availn[8], clock,

 in_valid[8], plierp[8], candp[8]);

 initial pi_bpipe(8,"Fast 1a",ms8.m);

 mult_fast_1a #(w,1) ms9(prod[9], availn[9], clock,

 in_valid[9], plierp[9], candp[9]);

 initial pi_bpipe(9,"Fast 1a",ms9.m);

 mult_fast_1b #(w,4) ms17(prod[17], availn[17], clock,

 in_valid[17], plierp[17], candp[17]);

 initial pi_bpipe(17,"Fast 1b",ms17.m);

 mult_fast_1b #(w,2) ms16(prod[16], availn[16], clock,

 in_valid[16], plierp[16], candp[16]);

 initial pi_bpipe(16,"Fast 1b",ms16.m);

 mult_fast_1b #(w,1) ms15(prod[15], availn[15], clock,

 in_valid[15], plierp[15], candp[15]);

 initial pi_bpipe(15,"Fast 1b",ms15.m);

 always @*

 foreach (availn[i]) if (availn[i] !== 1'bz) avail[i] = availn[i];

 // Array of multiplier/multiplicand values to try out.

 // After these values are used a random number generator will be used.

 //

 int tests[$] = {1,1, 1,2, 1,3, 1,4, 1,5, 1,32, 32, 1};

 initial begin

 automatic int awaiting = pi.size();

 logic [w-1:0] pliers[num_tests], cands[num_tests];

 done = 0;

 foreach (pi[mut]) begin

 automatic int midx = pi[mut].idx;

 automatic int steps = (w + pi[mut].deg - 1) / pi[mut].deg;

 automatic int latency =

 !pi[mut].seq ? 1 : !pi[mut].pipe ? 2 * steps : steps;

 pi[mut].latency = latency;

 if (pi[mut].bpipe == 0) begin

 avail[midx] = 1;

 end

 in_valid[midx] = 0;

 end

 for (int i=0; i<num_tests; i++) begin

 automatic int num_bits_c = {$random()}%w + 1;

 automatic logic [w-1:0] mask_c = ((w+1)'(1) << num_bits_c) - 1;

 automatic int num_bits_p = {$random()}%w + 1;

 automatic logic [w-1:0] mask_p = ((w+1)'(1) << num_bits_p) - 1;

← → Fall 2017 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw07-sol.v.html

 pliers[i] = tests.size() ? tests.pop_front() : {$random()}&mask_p;

 cands[i] = tests.size() ? tests.pop_front() : {$random()}&mask_c;

 end

 fork forever @(negedge clk_reactive) foreach (pi[mut]) begin

 automatic int midx = pi[mut].idx;

 if (!in_valid[midx] && pi[mut].pipe) begin

 plierp[midx] = cycle;

 candp[midx] = 1;

 end

 end join_none;

 repeat (2 * w) @(negedge clock);

 foreach (pi[mutii]) begin

 automatic string muti = mutii;

 fork begin

 automatic string mut = muti;

 automatic int midx = pi[mut].idx;

 for (int i=0; i<num_tests; i++) begin

 automatic int gap_cyc =

 ({$random} % 2) ? {$random} % (w + 2) : 0;

 automatic Test_Vector tv;

 repeat (gap_cyc) @(negedge clock);

 plierp[midx] = pliers[i];

 candp[midx] = cands[i];

 in_valid[midx] = 1;

 tv.tidx = i;

 tv.cycle_start = cycle;

 pi[mut].tests_active.push_back(tv);

 @(negedge clock);

 in_valid[midx] = 0;

 end

 pi[mut].all_tests_started = 1;

 end join_none;

 fork begin

 automatic string mut = muti;

 automatic int midx = pi[mut].idx;

 while (1) begin

 @(negedge clock);

 while (pi[mut].tests_active.size() == 0

 && !pi[mut].all_tests_started)

 @(negedge clock);

 if (pi[mut].tests_active.size() == 0) break;

 begin

 automatic Test_Vector tv = pi[mut].tests_active.pop_front();

 automatic int i = tv.tidx;

 automatic logic [2*w-1:0] shadow_prod = pliers[i] * cands[i];

 automatic int eta = tv.cycle_start + pi[mut].latency;

 automatic bit timing_err = 0;

 automatic int delta_t;

 if (pi[mut].bpipe) begin

 while (!avail[midx] && cycle < eta) @(negedge clock);

 if (!avail[midx] || cycle > eta) begin

 timing_err = 1;

 if (pi[mut].err_timing++ < err_limit)

 $write("At cyc %4d (eta %0d) avail not set for %s (idx %0d) after %0d cycles for 0x%0h*0x%0h.\n",

 cycle, eta, mut, midx, cycle - tv.cycle_start,

 pliers[i], cands[i]);

 end

 end else begin

 wait (cycle >= eta);

 end

 delta_t = cycle - tv.cycle_start;

 if (!timing_err) begin

 pi[mut].ncompleted++;

 pi[mut].cyc_tot += delta_t;

 end

 if (!timing_err && shadow_prod !== prod[midx]) begin

 pi[mut].err_count++;

 if (pi[mut].err_count < err_limit) begin

 $write

 ("%-15s test %5d cyc %0d+%0d (%0d) wrong: 0x%0h * 0x%0h: 0x%0h != 0x%0h (correct)\n",

 mut, i, tv.cycle_start, delta_t, pi[mut].latency,

 pliers[i], cands[i],

 prod[midx], shadow_prod);

 end

 end

 end

 end

 awaiting--;

 end join_none;

 end

← → Fall 2017 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw07-sol.v.html

 wait(awaiting == 0 || cycle > cycle_limit);

 $write("At cycle %0d. Error types: couldn't test / wrong result / timing\n",cycle);

 foreach (pi[mut])

 $write("For %-18s ran %4d tests, %4d/%4d/%4d errors found. Avg cyc %.1f\n",

 mut, num_tests,

 num_tests - pi[mut].ncompleted,

 pi[mut].err_count, pi[mut].err_timing,

 pi[mut].seq ? real'(pi[mut].cyc_tot) / pi[mut].ncompleted : 1);

 done = 1;

 $finish(2);

 end

endmodule

// cadence translate_on

← → Fall 2017 ← → Homework 7 Homework Sol Code hw07-sol.v.html

https://www.ece.lsu.edu/ee4755/2017/hw07-sol.v.html

20 Fall 2016 Solutions

483

← → Fall 2016 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw01_sol.pdf

LSU EE 4755 Homework 1 Solution Due: 9 September 2016

The questions below can be answered without using EDA software, paper and pencil will suf-
fice. Please turn in the solution on paper. Homework 2 will require the use of Verilog im-
plementations. Nevertheless, runnable SystemVerilog code for this assignment can be found at
https://www.ece.lsu.edu/koppel/v/2016/hw01.v (plain Verilog) and
https://www.ece.lsu.edu/koppel/v/2016/hw01.v.html (syntax-highlighted HTML).

Those who are rusty about the correspondence between Verilog code and hardware might want
to look at the solution to EE 3755 Fall 2013 Homework 1, at
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf.

Problem 1: Show a Verilog explicit structural description of the module illustrated below. In this
assignment it is okay to use primitives (and, not,. . .), but don’t get in the habit of using them.

a
[0
]

a
[1
]

a
[2
]

a
[3
]

x

y

a

ezmod

one

two

three

four

�ve

a
lp
h
a

b
e
ta

g
a
m
m
a

• Base the names of ports, wires, and instances on labels in the illustration.

• Of course, use only primitives and wires. See Table 28-1 of IEEE Std 1800-2012 for a list of
gates.

Solution appears below. In order to be explicitly structural NOT gates were instantiated to provide the inverted
inputs for the AND gates. In real life, there would be no disadvantage using !a[2] in place of na2. (That may not be
100% true, because working for a company with super-strict HDL style rules is a real-life situation.)

module ezmod(output uwire x, y, input uwire [3:0] a); // SOLUTION

uwire na0, na1, na2, na3;

not n0(na0,a[0]);
not n1(na1,a[1]);
not n2(na2,a[2]);
not n3(na3,a[3]);

uwire alpha, beta, gamma;

and one(alpha, na3, a[2], na1, a[0]);

and two(beta, a[3], a[2], na1, na0);

and three(gamma, na3, na2, na1, na0);

or four(x, alpha, beta);

xor five(y, beta, gamma);

endmodule

1

← → Fall 2016 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/2016/hw01.v
https://www.ece.lsu.edu/koppel/v/2016/hw01.v.html
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf
https://www.ece.lsu.edu/ee4755/2016/hw01_sol.pdf

Problem 2: Answer the following questions about Verilog primitives as defined in IEEE Std 1800-
2012. (See Chapter 28.) Indicate the exact section number where the answer is found.

(a) The standard provides a not primitive and a nor primitive, among others. One can easily argue
that a 1-input nor gate is the same as a not gate. Does the standard actually allow Verilog code
to instantiate a 1-input nor gate?

Yes, see Section 28.4.
Grading Note: It is not correct to answer “table 28-1 because it is shown as an n-input gate”, because the table

does not explicitly state that n == 1 is acceptable for a nor gate.

(b) Based on the standard, is there anything that can be done with a not primitive that can’t be
done with a 1-input nor primitive? (Don’t try to answer this too deeply, just show an instantiation.)

Yes, a not primitive can have more than one output. The outputs all have the same value under unstressed
circumstances. Multiple-output not gates will not be used for designs in this class.

2

← → Fall 2016 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw01_sol.pdf

Problem 3: Output match of module is_1133, shown below, is 1 iff its input d (digits) is 1133 in
BCD (which has the same representation as 1133 16). The module instantiates BCD digit detection
modules is_1 and is_3.

module is_1(output uwire match, input uwire [3:0] d);

uwire z321;

nor o0(z321,d[3],d[2],d[1]);
and a1(match,z321,d[0]);

endmodule

module is_3(output uwire match, input uwire [3:0] d);

uwire z32;

nor o0(z32,d[3],d[2]);
and a1(match,z32,d[1],d[0]);

endmodule

module is_1133(output uwire match, input uwire [15:0] d);

uwire m1, m2, m3, m4;

and a1(match, m1, m2, m3, m4);

is_1 i0(m1, d[15:12]);

is_1 i1(m2, d[11:8]);

is_3 i2(m3, d[7:4]);

is_3 i3(m4, d[3:0]);

endmodule

(a) Draw a diagram of is_1133
based on the explicit structural
description above. Show the in-
sides of the is_1 and is_3 mod-
ules. Label the diagram using
the same wire and instance names
used in the Verilog descriptions.

Solution appears to the right.

d

o0
a1

m
a
tc
hz321

is_1

d[0]

d[1]

d[2]

d[3]

i0

i1

i2

i3

o0
a1

m
a
tc
hz321

is_1

d[0]

d[1]

d[2]

d[3]

m1

m2

m3

m4

m
a
tc
h

15:12

7:4

3:0

11:8

o0

a1

m
a
tc
h

z32

d[0]

d[1]

d[2]

d[3]
is_3

o0

a1

m
a
tc
h

z32

d[0]

d[1]

d[2]

d[3]
is_3

is_1133

a1

3

← → Fall 2016 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw01_sol.pdf

(a) Design a module is_1133_is that does the same thing as is_1133, but that uses implicit
structural code. The correct solution requires adding only one short line to the shell shown below.
Don’t forget that the value in d is in BCD. Note: The word short was added after the original
assignment.

Solution appears below. The comparison operator checks for the correct value. We need to compare d to the BCD
representation of 1133. Verilog does not have literal format just for BCD, as it does for binary, octal, decimal, and
hexadecimal. But it doesn’t need one because the BCD representation of 1133 is the same as the binary representation of
1133 16, which in Verilog is 16′h1133. That means that the is 1333 module (either version) has an output that’s
one iff the input is the BCD representation of 1333 or the unsigned binary representation of 4403 (because 4403 10 =
1133 16).

// SOLUTION

module is_1133_is(output uwire match, input uwire [15:0] d);

assign match = d == 16’h1133;

endmodule

4

← → Fall 2016 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw01_sol.pdf

Problem 4: When completed the output of module is_1235 is 1 iff the input is 1235 in BCD.

module is_1235(output uwire match, input uwire [15:0] d);

endmodule

(a) Complete the module. The module must be explicitly structural except for the use of the
concatenation operator (see Section 11.4.12). The module must use is_1 and is_3 to detect the
digits. Do not assume or design an is_2 or is_5 and don’t put in logic to detect those digits.

Solution appears below. The is 1 module is used to detect a 2 by swapping the two least-significant bits. (The
same method can be used to detect a 4 or an 8.) Similarly, the is 3 is used to detect a 5 by swapping the two middle
digits. (The same method can be used to detect a 6 or a 9.)

// SOLUTION

module is_1235(output uwire match, input uwire [15:0] d);

uwire m1, m2, m3, m4;

is_1 i0(m1, d[15:12]);

is_1 i1(m2, {d[11:10],d[8],d[9]}); // Actually detect 2.

is_3 i2(m3, d[7:4]);

is_3 i3(m4, {d[3],d[1],d[2],d[0]}); // Actually detect 5.

and a1(match, m1, m2, m3, m4);

endmodule

(b) Draw a diagram of the com-
pleted module, which should
be very similar to the diagram
from the previous problem.

Solution appears to the right.

d

o0
a1

m
a
tc
hz321

is_1

d[0]

d[1]

d[2]

d[3]

i0

i1

i2

i3

o0
a1

m
a
tc
hz321

is_1

d[0]

d[1]

d[2]

d[3]

m1

m2

m3

m4

m
a
tc
h

15:12

11:10

o0

a1

m
a
tc
h

z32

d[0]

d[1]

d[2]

d[3]
is_3

o0

a1

m
a
tc
h

z32

d[0]

d[1]

d[2]

d[3]
is_3

is_1235

8:8

9:9

7:4

3:3

1:1

2:2

0:0

a1

5

← → Fall 2016 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw01_sol.pdf

//

//

/// LSU EE 4755 Fall 2016 Homework 2 -- SOLUTION
//

 /// Assignment http://www.ece.lsu.edu/koppel/v/2016/hw02.pdf

`default_nettype none

//

/// Problem 1
//

 /// Modify aa_digit_val so that it works for any radix, not just 10.
//

// [✔] The code must be synthesizable.

// [✔] Make sure that the testbench does not report errors.

// [✔] Can use behavioral or implicit structural code.

module aa_decimal_digit_val
 (output uwire [3:0] val,

 output uwire is_dig,

 input uwire [7:0] char);

 // Do not edit this module.

 assign is_dig = char >= "0" && char <= "9";

 assign val = is_dig ? char - "0" : 0;

endmodule

module aa_digit_val
 #(int radix = 10)

 (output uwire [3:0] val,

 output uwire is_dig,

 input uwire [7:0] char);

 /// SOLUTION

 // Check whether char is in range 0-9 or a-f, regardless of radix.

 //

 uwire is_dig_09 = char >= "0" && char <= "9";

 uwire is_dig_af = char >= "a" && char <= "f";

 // Convert char to binary, assuming that it is hexadecimal.

 //

 uwire [3:0] val_raw = is_dig_09 ? char - "0" : char - "a" + 10;

 // Determine whether char is a valid digit in radix radix.

 //

 assign is_dig = (is_dig_09 || is_dig_af) && val_raw < radix;

 assign val = is_dig ? val_raw : 0;

endmodule

//

/// Problem 2
//

 /// Modify aa_full_adder so that it adds two radix-RADIX ASCII-encoded digits.
//

// [✔] The code must be synthesizable.

// [✔] Make sure that the testbench does not report errors.

// [✔] Can use behavioral or implicit structural code.

← → Fall 2016 ← → Homework 2 Homework Sol Code hw02-sol.v.html

http://www.ece.lsu.edu/koppel/v/2016/hw02.pdf
https://www.ece.lsu.edu/ee4755/2016/hw02-sol.v.html

module aa_full_adder
 #(int radix = 10)

 (output uwire [7:0] sum,

 output uwire carry_out,

 output uwire is_dig_out,

 input uwire [7:0] a, b,

 input uwire carry_in,

 input uwire is_dig_in);

 /// SOLUTION

 // Instantiate two aa_digit_val modules, connecting one to each

 // input digit. These will determine whether each character input

 // is a valid digit and if so provide the binary value of the

 // digit.

 //

 uwire [3:0] val_a, val_b;

 uwire is_dig_a, is_dig_b;

 aa_digit_val #(radix) dva(val_a, is_dig_a, a);

 aa_digit_val #(radix) dvb(val_b, is_dig_b, b);

 // Compute the sum of carry_in and the binary versions of a and

 // b. Note that the sum may contain a carry, and so it can not be

 // assigned to the module output.

 //

 uwire [4:0] sum_val = carry_in + val_a + val_b;

 // Determine whether there is a carry out.

 //

 assign carry_out = sum_val >= radix;

 // Determine the sum, in binary, with the carry removed.

 //

 uwire [3:0] sum_dig_val = carry_out ? sum_val - radix : sum_val;

 // Convert the sum to ASCII or to a blank if we don't have a valid digit.

 //

 assign sum = !is_dig_out ? " " :

 sum_dig_val < 10 ? "0" + sum_dig_val : "a" + sum_dig_val - 10;

 // If the value of is_dig_out, below, is true then output sum will

 // be set to a digit of the sum. Otherwise sum should be set to a

 // blank. The value of is_dig_out will be false when we are past

 // the last digit of both a and b, and we don't have a carry out

 // from the previous digit.

 //

 assign is_dig_out = is_dig_in && (carry_in || is_dig_a || is_dig_b);

endmodule

module aa_width2
 #(int radix = 10)

 (output uwire [1:0][7:0] sum,

 output uwire c_out,

 output uwire is_dig_out,

 input uwire [1:0][7:0] a, b,

 input uwire c_in,

 input uwire is_dig_in);

 uwire co0, id_0;

 aa_full_adder #(radix) fa1(sum[0],co0,id_0,a[0],b[0],c_in,is_dig_in);

 aa_full_adder #(radix) fa2(sum[1],c_out,is_dig_out,a[1],b[1],co0,id_0);

endmodule

← → Fall 2016 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw02-sol.v.html

module reference_adder
 #(int radix = 10,

 int digits = 2,

 int width = $clog2(radix ** digits))

 (output logic [width-1:0] sum,

 output logic carry_out,

 input uwire [width-1:0] a, b,

 input uwire carry_in);

 always_comb { carry_out, sum } = 0 + carry_in + a + b;

endmodule

//

/// Testbench Code
//

// The code below instantiates some of the modules above,

// provides test inputs, and verifies the outputs.

//

// The testbench may be modified to facilitate your solution. Of

// course, the removal of tests which your module fails is not a

// method of fixing a broken module. (One might modify the testbench

// so that the first tests it performs are thoe which make it easier

// to determine what the problem is, for example, test inputs that

// are all 0's or all 1's.)

// cadence translate_off

// Convert integer A into a radix RADIX ASCII representation.

function automatic string radtos(int unsigned a, int radix);
 begin

 radtos = "";

 while (1)

 begin

 automatic int dig = a % radix;

 if (radtos.len() > 0 && a == 0) break;

 a = a / radix;

 radtos = { dig < 10 ? "0" + dig : "a" + dig - 10, radtos };

 end

 end

endfunction

module aa_test;

 logic start_done[32];

 for (genvar radix = 2; radix <= 16; radix++)

 aa_test_digit_val #(radix) aa(start_done[radix],start_done[radix-1]);

 for (genvar radix = 2; radix <= 16; radix++)

 aa_test_width2 #(radix) aa(start_done[15+radix],start_done[15+radix-1]);

 initial begin

 start_done[1] = 1;

 end

endmodule

module aa_test_digit_val #(int radix = 10)
 (output logic done, input uwire start);

 localparam int err_limit = 10;

← → Fall 2016 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw02-sol.v.html

 logic [7:0] a;

 uwire [3:0] dval;

 uwire is_d;

 aa_digit_val #(radix) dv1(dval,is_d,a);

 int digit_vals[256];

 int num_errs;

 initial begin

 num_errs = 0;

 wait (start == 1);

 digit_vals = { 256 { -1 } };

 for (int i=0; i<radix; i++)

 digit_vals[i < 10 ? "0" + i : "a" + i - 10] = i;

 for (int i=0; i<256; i++)

 begin

 automatic bit is_d_shadow = digit_vals[i] >= 0 ;

 #1;

 a = i;

 #1;

 if (is_d != is_d_shadow) begin

 $write

 ("Error in aa_digit_val for char %c (%0d) radix %0d, is_d %0d != %0d (correct)\n",

 i, i, radix, is_d, is_d_shadow);

 num_errs++;

 if (num_errs > err_limit) $finish(2);

 continue;

 end

 if (is_d_shadow && dval != digit_vals[i]) begin

 $write

 ("Error in aa_digit_val for char %c (%0d) radix %0d: val %0d != %0d (correct)\n",

 i, i, radix, dval, digit_vals[i]);

 num_errs++;

 if (num_errs > err_limit) $finish(2);

 continue;

 end

 end

 done = 1;

 end

endmodule

module aa_test_width2 #(int radix = 10)
 (output logic done, input uwire start);

 localparam int err_limit = 10;

 localparam int max_digits = 2;

 localparam int max_dno = max_digits - 1;

 localparam int num_tests = 100;

 uwire [max_dno:0][7:0] sum;

 logic [max_dno:0][7:0] a, b, shadow_sum;

 uwire co;

 logic fo, ci, fi;

 aa_width2 #(radix) fa1(sum[1:0],co,fo,a[1:0],b[1:0],ci,fi);

 int unsigned aval, bval, ssum_val;

 int num_errs;

← → Fall 2016 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw02-sol.v.html

 initial begin

 num_errs = 0;

 wait (start == 1);

 for (int i=0; i<num_tests; i++)

 begin

 automatic int width = max_digits;

 aval = {$random()} >> 1;

 bval = {$random()} >> 1;

 ssum_val = aval + bval;

 a = radtos(aval,radix);

 b = radtos(bval,radix);

 shadow_sum = radtos(ssum_val,radix);

 ci = 0;

 fi = 1;

 #1;

 if (sum !== shadow_sum) begin

 $write("Error %s + %s != %s (%s correct).\n",

 a,b,sum,shadow_sum);

 num_errs++;

 if (num_errs > err_limit) $finish(2);

 end

 #1;

 end

 done = 1;

 end

endmodule

// cadence translate_on

← → Fall 2016 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw02-sol.v.html

LSU EE 4755 Homework 3 Solution Due: 28 September 2016

Problem 1: Module aa_digit_val, below, is the solution to Homework 2 Problem 1. It has an
8-bit input char and two outputs. Output is_dig is 1 iff char (an ASCII character) is considered
a radix-R digit, where 2 ≤ R ≤ 16, is the value of parameter radix. Output val is the value of
that digit (in binary), or zero if it’s not a digit.

module aa_digit_val
#(int radix = 10)

(output uwire [3:0] val, output uwire is_dig, input uwire [7:0] char);

uwire is_dig_09 = char >= "0" && char <= "9";

uwire is_dig_af = char >= "a" && char <= "f";

uwire [3:0] val_raw = is_dig_09 ? char - "0" : char - "a" + 10;

assign is_dig = (is_dig_09 || is_dig_af) && val_raw < radix;

assign val = is_dig ? val_raw : 0;

endmodule

Provide sketches of what you expect the inferred hardware to look like for aa_digit_val as
described below. Hint: Some problems in the EE 4755 2014 Final Exam dealt with numbers in
ASCII representation. The optimizations requested below must go beyond those found in the exam
solution.

(a) Show a sketch of the inferred hardware before any optimization is done.

Solution appears below. Items in italic are constants.

>=

<=

<
+

-

"0"

"9"

>=

<=

"a"

"f"

-"0"

"a"

8'd10

radix

4'd0 val

is_dig

char

is
_
d
ig
_
0
9

is_dig_af

val_raw

aa_digit_val radix

1

← → Fall 2016 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2016/hw03_sol.pdf

(b) Show a sketch of the inferred hardware after some optimization has been performed.

• The sketches must show the product of human thought (in particular, the human who’s name
is on the submission), not a synthesis program.

• When considering the optimizations for the logic generating is dig (including the logic for
is dig 09 and is dig af) recall that in general the cost of logic computing a==b is less than
the cost of logic computing a>b.

• When considering the optimizations for the logic generating val think about the subtraction
operations and what they actually do when is dig is true. If necessary, work out examples
of the subtraction by hand in hexadecimal.

Solution appears below. The optimization to avoid some magnitude comparison when computing is dig 09 is
based on the fact that the ASCII values of characters “0” to “9” are 0x30 to 0x39 and so one can check whether the
most-significant four bits are equal to 0x3 and only do a single magnitude comparison on the lower four bits. Similarly,
the optimization of is dig af is based on the fact that the ASCII values of “a” to “f” are 0x61 to 0x67, and so one
can check whether the five most significant bits are 011002 and whether the low three bits are neither 0002 nor 1112.

The logic computing the value of “0” to “9” just takes the low four bits of char, no arithmetic is performed. The
logic computing the value of “a” to “f” adds 1 to the low three bits of char and puts a 1 in the MSB position to make a
four-bit quantity.

<+

radix

4'd0 val

is_dig

char

is_dig_09

is
_
d
ig
_
a
f

val_raw

aa_digit_val radix

=
7:3

5'hc

=

=3'h7

3'h0

2:0

2:0

=4'h3

7:4

3:0

4'd10 <

2:0

3'd1

1'd1

msb

lsb

3:0

3

4

There is another problem on the next page!

2

← → Fall 2016 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw03_sol.pdf

Problem 2: Module aa_full_adder from Homework 2, Problem 2 adds together two digits of a
radix-R number represented in ASCII plus a carry in. The module description from the solution
appears below.

module aa_full_adder
#(int radix = 10)

(output uwire [7:0] sum, output uwire carry_out, output uwire is_dig_out,

input uwire [7:0] a, b, input uwire carry_in, input uwire is_dig_in);

uwire [3:0] val_a, val_b;

uwire is_dig_a, is_dig_b;

aa_digit_val #(radix) dva(val_a, is_dig_a, a);

aa_digit_val #(radix) dvb(val_b, is_dig_b, b);

assign is_dig_out = is_dig_in && (carry_in || is_dig_a || is_dig_b);

uwire [4:0] sum_val = carry_in + val_a + val_b;

assign carry_out = sum_val >= radix;

uwire [3:0] sum_dig_val = carry_out ? sum_val - radix : sum_val;

assign sum = !is_dig_out ? " " :

sum_dig_val < 10 ? "0" + sum_dig_val : "a" + sum_dig_val - 10;

endmodule

An obvious objection to an ASCII-coded radix-R adder is that it uses 8 bits to represent a
digit that can be represented using only ⌈lgR⌉ bits.

3

← → Fall 2016 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw03_sol.pdf

(a) Show the hardware that might be synthesized for the module aa_full_adder based on the
description above. This should be the inferred hardware with some optimizations applied. Take
care to show the number of bits at the inputs and output of units like adders and comparison logic.

Solution appears below. Several optimizations were applied. The logic computing sum val >= radix was
eliminated, instead the logic computing sum val - radix was widened to five bits, if the difference is positive then
sum val >= radix is true. If the radix is a power of two this logic would not be needed at all, an overflow can be
detected by examining one bit position and sum val - radix would simply be the least significant lgR bits, where
R is the radix.

To save multiplexor cost, the 4 LSB of sum were computed separately from the 4 MSB. Note that the four possible
values for the 4 MSB, 0x2 (for a space), 0x3 (for digits 0-9), and 0x6 (for digits a-f), can be easily be constructed from
is dig out and sum dig val<10.

Note that only one adder is needed to compute the sum of the two digit values and the carry in, that’s because the
module’s carry in value can go in to the adder’s carry in input. It would be very wasteful to show a second adder just to
add the carry in.

<

-radix

aa��������a� radix

c�a�
�a�

�i����a

b

+
	
�

aa��������a� radix

c�a�
�a�

�i����

d�

d��

carry_in

is_dig_in

+4

5

5

3:0

4:4

is_dig_out

+
3'd7

4'd10

4'd0

lsb

msb

1'b0

1'b1
sum

aa_full_adder radix

4

carry_out

3:0

Combine x-radix

with x>=radix.

Reduce mux cost

by keeping 4 msb

separate.

8

(b) Compare the cost of a d-digit ASCII-coded radix-16 adder to a 4d-bit ripple adder. (Note that
both adders can add numbers in the range of 0 to 24d − 1.) Do so by estimating the cost in terms
of the number of gates, and state any assumptions, such as the number of gates needed for an x-bit
comparison unit.

The following cost model will be used. All x-input AND and OR gates have a cost of x − 1. Inverted inputs and
outputs (those little circles) are free! Inverters are also free. A 2-input XOR cost 3 units and a 3-input XOR cost 5 units.

Based on those costs, a binary full adder cost 10 units and a n-bit ripple adder cost 10n units. A comparison unit
can be made from a ripple adder by eliminating the sum bits, and would cost 5n units. An equality unit made from an
XOR and an AND costs 4n for n bits. (The difference in cost between equality and magnitude is larger for lower-delay
designs.) A w-bit, 2-input multiplexor cost 3w units.

In many of the adder, equality, and comparison units one of the inputs is constant. That has a big impact on cost.
The cost of an n-bit ripple adder drops to 4n units (the BFA has a 2-input XOR and a 2-input AND gate to propagate
the carry). With one input constant n-bit magnitude comparison and equality drop in cost to just n units.

When radix is 16, the aa digit val module will be simplified further. The val raw<radix comparison
is no longer necessary. Based on that the cost is (+ 4 4 1 3 5 1 1 0 16 12 0 4); = 51 units. The
aa full adder module instantiates two of these and has plenty of logic of its own. The cost including the instantiated
modules is (+ 51 51 2 1 40 4 12 12 4 1 4); = 182 units. (Figuring out the LISP syntax and attaching the
costs to parts is left as an exercise to the reader.)

4

← → Fall 2016 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw03_sol.pdf

Based on this, the cost of a d-digit ASCII adder is 182d units. The equivalent ripple adder costs just 40d units.
Sure, we expected the ASCII adder to cost more, but over 4× more? Notice that a big part of the ASCII adder’s cost are
the two aa digit val modules, 112d units.

5

← → Fall 2016 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw03_sol.pdf

LSU EE 4755 Homework 4 Solution Due: 12 October 2016

Problem 0: First, follow the instructions for account setup and homework workflow on the course
procedures page, https://www.ece.lsu.edu/koppel/v/proc.html.

Look through the code in hw04.v. Module lookup_behav in file hw04.v has a w-bit input char
and an n-element array of w-bit quantities named chars. (Parameter nelts is n and parameter
charsz is w.) The module also has a 1-bit output found which is logic 1 iff any element of chars
is equal to char. Finally, the module has a ⌈lgn⌉-bit output index which is set to the element
number of chars that matches char, or 0 if found is 0. Assume that no two elements of chars are
identical.

For example, suppose input char is set to 102 and that chars is {63,124,102,92}. Then
output found will be 1 and index will be 2. If char were 7 index would be 0 and found would
be 0, if char were 63 index would be 0 and found would be 1, etc. The alert student will have
recognized that n = 4 and that w ≥ 7 in these examples.

Module lookup is coded in synthesizable behavioral form that describes combinational logic.
The hw04.v file contains two other modules which are to do the same thing, lookup_linear and
lookup_tree, but those modules are not yet finished.

The testbench tests all of these modules. It tests them for sizes (n) of 4, 5, 10, 15, 16, 30, 40,
and 64. To change which sizes are tested (or the order in which they are tested) edit the testbench
module.

To have the testbench test only some of these modules (say, skip the lookup_tree tests until
after lookup_linear is working) look for the for loop with mut=0 and modify it appropriately. (It
should be easy to figure out the numbers.)

A synthesis script is provided that will synthesize all three modules at different sizes and both
with and very lax timing constraint and a very strict timing constraint. The script can be run using
the command rc -files syn.tcl. Initially it will stop with an error. To see it run to completion
before starting the assignment have it only synthesize lookup_behav (see below). Pre-set synthesis
options (in file .synth_init) were chosen to reject any design that is not combinational.

If there is an error when using the synthesis script then follow the manual synthesis steps on
the procedures page and look for error messages.

To change which modules are synthesized edit the set modules line (near the bottom) in file
syn.tcl. The values for nelts and other items can also be changed by editing the file.

Note: There are no points for this problem.

Problem 1: Complete lookup_linear so that it does the same thing as lookup_behavioral but
by using as many copies of lookup_elt as it needs. That is, lookup_linear should use generate
statements to instantiate lookup_elt and it should include whatever other code is needed to use
these instances to compute the correct outputs.

• Behavioral or structural code can be used.

• The module must be synthesizable.

• Assume that all elements of chars are different.

(The complete solution Verilog code is in the assignment directory and at
https://www.ece.lsu.edu/koppel/v/2016/hw04-sol.v.html.) There are two approaches to solving this
problem. In the easy approach, which is sufficient to get full credit, generate statements are used to instantiate the
lookup elt modules but behavioral code is used to compute index.

1

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2016/hw04-sol.v.html
https://www.ece.lsu.edu/ee4755/2016/hw04_sol.pdf

In the alternative solution (lookup linear alt), generate statements are used both to instantiate the modules
and compute index. To compute index an array of wires, [idx sz-1:0]idx i[nelts-1:-1] is declared. Element
idx i[i] is the value of index taking into account elements 0 to i.

module lookup_linear
#(int charsz = 8,

int nelts = 15, // Pronounced en-elts.

int idx_sz = $clog2(nelts))

(output logic found,

output logic [idx_sz-1:0] index,

input uwire [charsz-1:0] char,

input uwire [charsz-1:0] chars[nelts-1:0]);

/// SOLUTION – Easy
//

// Instantiate nelts modules, but use use behavioral code to examine

// their found (match) outputs.

// Declare wires to connect to the found outputs of the instantiated modules.

//

uwire [nelts-1:0] match;

for (genvar i=0; i<nelts; i++)

lookup_elt #(charsz) le(match[i],char,chars[i]);

always_comb begin

found = 0;

index = 0;

for (int i=0; i<nelts; i++)

if (match[i]) begin index = i; found = 1; end

end

endmodule

2

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw04_sol.pdf

module lookup_linear_alt
#(int charsz = 8,

int nelts = 15, // Pronounced en-elts.

int idx_sz = $clog2(nelts))

(output logic found,

output logic [idx_sz-1:0] index,

input uwire [charsz-1:0] char,

input uwire [charsz-1:0] chars[nelts-1:0]);

/// SOLUTION – Alternative
//

// Use generate statements to instantiate the modules and to

// generate logic to find the index.

// Instantiate nelts lookup_elt modules and compute found.

//

uwire [nelts-1:0] match;

for (genvar i=0; i<nelts; i++)

lookup_elt #(charsz) le(match[i],char,chars[i]);

assign found = | match;

// Instantiate logic to find the index of the last matching character.

//

uwire [idx_sz-1:0] idx_i[nelts-1:-1];

assign idx_i[-1] = 0;

for (genvar i=0; i<nelts; i++)

// If no match pass along previous idx_i, otherwise replace it with i.

assign idx_i[i] = match[i] ? i : idx_i[i-1];

assign index = idx_i[nelts-1];

endmodule

Problem 2: Complete module lookup_tree so that it performs the lookup using recursive instan-
tiations of itself. Take care so that index is computed efficiently. Hint: think about how to compute
index efficiently when n (nelts) is a power of 2, then get the same efficiency for any n.

If completed correctly, the cost and especially the performance at larger sizes should be
better than lookup_behavioral and (unless you did an unexpectedly good job) better than
lookup_linear.

• Behavioral or structural code can be used.

• The module must be synthesizable.

• Assume that all elements of chars are different.

3

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw04_sol.pdf

(The complete solution Verilog code is in the assignment directory and at
https://www.ece.lsu.edu/koppel/v/2016/hw04-sol.v.html.) First, we need to use generate state-
ments to split elaboration into two cases: n = 1, and n > 1. For n = 1 index will always be zero (there’s only one
element in the array and its index is zero), and found can directly be assigned the expression char == chars[0] .

Two solutions will be described. In lookup tree simple work is split evenly between the two instantiated
modules but this results in a more costly computation of index than is necessary. In lookup tree, the size (value of
nelts) of one instantiated module is forced to be a power of 2, reducing cost.

For n > 1 we need to split the input array, chars, between two instantiated lookup tree modules and combine
their found and index outputs. In lookup tree simple the array is split in half, the approach used in the pop n

module presented in class. Objects lo sz and hi sz are the sizes of the instantiated modules, note that these are used
to compute the number of bits in the index outputs.

Logic is also needed to take the found and index outputs of the two instantiated modules, named lo f, hi f,
lo idx, and hi idx, and compute the found and index outputs of the module. A mistake that many students make
when trying to solve this problem is to try to take into account what is happening in all instantiated modules at every
level when designing this logic. Instead, just assume that lo f, hi f, lo idx, and hi idx are correct, and use them
to compute found and index. If such logic can be found, then the module will work at any size.

The output found is simply the OR of lo f and hi f. If lo f is 1, then index is lo idx, but if hi f is
1 then index is lo sz + hi idx. We don’t need to worry about both lo f and hi f being one (the problem
statement said it couldn’t happen). If hi f and lo f are both 0 then lo idx and hi idx will both be 0 and index
should be set to zero. Therefore, index can be set to hi f ? lo sz + hi idx : lo idx. That’s it for the
simple solution.

The problem though was to find a solution that computed index efficiently. Consider the sum lo sz + hi idx.
If lo sz were chosen to be a power of 2, and lo sz >= hi sz then instead of adding we would just be putting a 1 in
bit position lo bits: {1’b1,hi idx}. We can re-write this as {hi f,hi idx} since this is the case where hi f

is 1. And since hi f is 1 we know lo idx is all zeros, so we can use the expression { hi f, lo idx | hi idx

}. As the alert student may have realized, that expression also is correct for the case where lo f is 1 and the case where
both are 0. The OR gates are much less expensive than an adder and a multiplexor, even an adder with a constant input.

The code for the two modules appears below, along with the inferred hardware for the second module (that computes
index efficiently.)

module lookup_tree_simple
#(int charsz = 8,

int nelts = 15,

int idx_sz = $clog2(nelts))

(output uwire found,

output uwire [idx_sz-1:0] index,

input uwire [charsz-1:0] char,

input uwire [charsz-1:0] chars[nelts]);

/// SOLUTION – Unoptimized

if (nelts == 1) begin

assign found = char == chars[0];

assign index = 0;

end else begin

// Split the character array between recursive instantiations.

//

4

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/koppel/v/2016/hw04-sol.v.html
https://www.ece.lsu.edu/ee4755/2016/hw04_sol.pdf

localparam int lo_sz = nelts / 2;

localparam int lo_bits = $clog2(lo_sz);

localparam int hi_sz = nelts - lo_sz;

localparam int hi_bits = $clog2(hi_sz);

//

// Note that we need to compute lo_bits and hi_bits correctly so

// that we can declare index connections, lo_idx and hi_idx, of

// the correct size.

uwire lo_f, hi_f;

uwire [lo_bits-1:0] lo_idx;

uwire [hi_bits-1:0] hi_idx;

lookup_tree #(charsz,lo_sz) lo(lo_f, lo_idx, char, chars[0:lo_sz-1]);

lookup_tree #(charsz,hi_sz) hi(hi_f, hi_idx, char, chars[lo_sz:nelts-1]);

assign found = lo_f || hi_f;

assign index = hi_f ? lo_sz + hi_idx : lo_idx;

end

endmodule

5

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw04_sol.pdf

found

index

char

chars

lookup_tree
nelts = lo_sz

lo

hi

found

index

char

chars

lookup_tree
nelts = hi_sz

0:0

1:1

0:0

1:1

msb

lsb

found

index

0:lo_sz-1

lo_sz:nelts-1

char

chars

lookup_tree nelts=

lo_f

h
i_
f

lo_idx

hi_idx

module lookup_tree
#(int charsz = 8, int nelts = 15, int idx_sz = $clog2(nelts))

(output uwire found, output uwire [idx_sz-1:0] index,

input uwire [charsz-1:0] char, input uwire [charsz-1:0] chars[nelts]);

/// SOLUTION – Preferred

if (nelts == 1) begin

assign found = char == chars[0];

assign index = 0; // Actually, we are assigning a zero-bit vector.

end else begin

// Make the size of the first lookup_tree (lo) a power of two.

localparam int lo_bits = idx_sz - 1;

localparam int lo_sz = 1 << lo_bits;

// Compute the size of the second lookup_tree (hi).

localparam int hi_sz = nelts - lo_sz;

localparam int hi_bits = $clog2(hi_sz);

uwire lo_f, hi_f;

uwire [lo_bits-1:0] lo_idx;

uwire [hi_bits-1:0] hi_idx;

lookup_tree #(charsz,lo_sz) lo(lo_f, lo_idx, char, chars[0:lo_sz-1]);

lookup_tree #(charsz,hi_sz) hi(hi_f, hi_idx, char, chars[lo_sz:nelts-1]);

assign found = lo_f || hi_f;

if (lo_bits == 0) assign index = hi_f;

else assign index = { hi_f, hi_idx | lo_idx };

end

endmodule

6

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw04_sol.pdf

Problem 3: Run the synthesis script and characterize the strengths and weaknesses of each mod-
ule. (For example, module X has lowest cost for low-speed designs.)

In a follow-on homework assignment additional questions will be asked about these modules.
The cost of the tree solution is almost always lower than the other designs, the performance is usually but not always

better. For the low-cost (large delay) configurations behavioral design is usually most expensive, but is less expensive
than the linear designs for the high-performance designs.

Note: linear_tree below is linear_tree_simple above,

and linear_tree_opt below is linear_tree above.

Module Name Area Delay Delay

Actual Target

lookup_behav_charsz8_nelts4 9152 927 10000

lookup_linear_charsz8_nelts4 9012 990 10000

lookup_tree_charsz8_nelts4 8916 1026 10000

lookup_tree_opt_charsz8_nelts4 8988 952 10000

lookup_behav_charsz8_nelts15 35444 2348 10000

lookup_linear_charsz8_nelts15 34996 2338 10000

lookup_tree_charsz8_nelts15 34280 2606 10000

lookup_tree_opt_charsz8_nelts15 33532 2238 10000

lookup_behav_charsz8_nelts32 74648 3691 10000

lookup_linear_charsz8_nelts32 74212 3257 10000

lookup_tree_charsz8_nelts32 70932 2480 10000

lookup_tree_opt_charsz8_nelts32 71084 2443 10000

lookup_behav_charsz8_nelts40 94028 3862 10000

lookup_linear_charsz8_nelts40 94288 2585 10000

lookup_tree_charsz8_nelts40 95996 3501 10000

lookup_tree_opt_charsz8_nelts40 89292 2778 10000

lookup_behav_charsz8_nelts60 143268 5913 10000

lookup_linear_charsz8_nelts60 141792 5638 10000

lookup_tree_charsz8_nelts60 142828 3963 10000

lookup_tree_opt_charsz8_nelts60 138288 3501 10000

lookup_behav_charsz8_nelts4 12304 621 100

lookup_linear_charsz8_nelts4 13344 594 100

lookup_tree_charsz8_nelts4 13280 598 100

lookup_tree_opt_charsz8_nelts4 10888 640 100

lookup_behav_charsz8_nelts15 46896 1136 100

lookup_linear_charsz8_nelts15 47528 1120 100

lookup_tree_charsz8_nelts15 45268 1151 100

lookup_tree_opt_charsz8_nelts15 41696 1003 100

lookup_behav_charsz8_nelts32 105032 1247 100

lookup_linear_charsz8_nelts32 108688 1288 100

lookup_tree_charsz8_nelts32 96980 1093 100

lookup_tree_opt_charsz8_nelts32 96408 1056 100

lookup_behav_charsz8_nelts40 120132 1523 100

lookup_linear_charsz8_nelts40 131344 1114 100

lookup_tree_charsz8_nelts40 134444 1260 100

lookup_tree_opt_charsz8_nelts40 116320 1144 100

lookup_behav_charsz8_nelts60 184892 1726 100

lookup_linear_charsz8_nelts60 210512 1461 100

7

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw04_sol.pdf

lookup_tree_charsz8_nelts60 185628 1890 100

lookup_tree_opt_charsz8_nelts60 176544 1500 100

8

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw04_sol.pdf

//

//

/// LSU EE 4755 Fall 2016 Homework 4 --- SOLUTION
//

 /// Assignment http://www.ece.lsu.edu/koppel/v/2016/hw04.pdf
 /// Solution: http://www.ece.lsu.edu/koppel/v/2016/hw04_sol.pdf

`default_nettype none

//

/// Problem 0
//

 // Look over but don't modify this module.

module lookup_behav
 #(int charsz = 8,

 int nelts = 15,

 int idx_sz = $clog2(nelts))

 (output logic found,

 output logic [idx_sz-1:0] index,

 input uwire [charsz-1:0] char,

 input uwire [charsz-1:0] chars[nelts]);

 always_comb begin

 found = 0;

 index = 0;

 for (int i=0; i<nelts; i++)

 if (chars[i] == char) begin

 index = i;

 found = 1;

 end

 end

endmodule

//

/// Problem 1
//

 /// Complete lookup_linear so that it does the lookup using instantiated lookup_elt.
//

// [✔] The code must be synthesizable.

// [✔] The code must synthesize to combinational logic. (No latches.)

// [✔] Make sure that the testbench does not report errors.

// [✔] Can use behavioral or implicit structural code.

// [✔] Do not rename modules or change ports.

module lookup_elt
 #(int charsz = 4)

 (output logic match,

 input uwire [charsz-1:0] char_lookup,

 input uwire [charsz-1:0] char_elt);

 /// Don't modify this module.
 always_comb match = char_lookup == char_elt;

endmodule

module lookup_linear
 #(int charsz = 8,

 int nelts = 15, // Pronounced en-elts.

 int idx_sz = $clog2(nelts))

 (output logic found,

 output logic [idx_sz-1:0] index,

 input uwire [charsz-1:0] char,

 input uwire [charsz-1:0] chars[nelts-1:0]);

 /// SOLUTION -- Easy
 //

 // Instantiate nelts modules, but use use behavioral code to examine

 // their found (match) outputs.

 // Declare wires to connect to the found outputs of the instantiated modules.

 //

 uwire [nelts-1:0] match;

 for (genvar i=0; i<nelts; i++)

 lookup_elt #(charsz) le(match[i],char,chars[i]);

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

http://www.ece.lsu.edu/koppel/v/2016/hw04.pdf
http://www.ece.lsu.edu/koppel/v/2016/hw04_sol.pdf
https://www.ece.lsu.edu/ee4755/2016/hw04-sol.v.html

 always_comb begin

 found = 0;

 index = 0;

 for (int i=0; i<nelts; i++)

 if (match[i]) begin index = i; found = 1; end

 end

endmodule

module lookup_linear_alt
 #(int charsz = 8,

 int nelts = 15,

 int idx_sz = $clog2(nelts))

 (output logic found,

 output logic [idx_sz-1:0] index,

 input uwire [charsz-1:0] char,

 input uwire [charsz-1:0] chars[nelts-1:0]);

 /// SOLUTION -- Alternative
 //

 // Use generate statements to instantiate the modules and to

 // generate logic to find the index.

 // Instantiate nelts lookup_elt modules and compute found.

 //

 uwire [nelts-1:0] match;

 for (genvar i=0; i<nelts; i++)

 lookup_elt #(charsz) le(match[i],char,chars[i]);

 assign found = | match;

 // Instantiate logic to find the index of the last matching character.

 //

 uwire [idx_sz-1:0] idx_i[nelts-1:-1];

 assign idx_i[-1] = 0;

 for (genvar i=0; i<nelts; i++)

 // If no match pass along previous idx_i, otherwise replace it with i.

 assign idx_i[i] = match[i] ? i : idx_i[i-1];

 assign index = idx_i[nelts-1];

endmodule

//

/// Problem 2
//

 /// Complete lookup_tree so that it does the lookup using recursive
 /// instantiations of itself.
//

// [✔] The code must be synthesizable.

// [✔] The code must synthesize to combinational logic. (No latches.)

// [✔] Make sure that the testbench does not report errors.

// [✔] Can use behavioral or implicit structural code.

// [✔] Do not rename modules or change ports.

module lookup_tree_simple
 #(int charsz = 8,

 int nelts = 15,

 int idx_sz = $clog2(nelts))

 (output uwire found,

 output uwire [idx_sz-1:0] index,

 input uwire [charsz-1:0] char,

 input uwire [charsz-1:0] chars[nelts]);

 /// SOLUTION -- Unoptimized

 if (nelts == 1) begin

 assign found = char == chars[0];

 assign index = 0;

 end else begin

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw04-sol.v.html

 // Split the character array between recursive instantiations.

 //

 localparam int lo_sz = nelts / 2;

 localparam int lo_bits = $clog2(lo_sz);

 localparam int hi_sz = nelts - lo_sz;

 localparam int hi_bits = $clog2(hi_sz);

 //

 // Note that we need to compute lo_bits and hi_bits correctly so

 // that we can declare index connections, lo_idx and hi_idx, of

 // the correct size.

 uwire lo_f, hi_f;

 uwire [lo_bits-1:0] lo_idx;

 uwire [hi_bits-1:0] hi_idx;

 lookup_tree #(charsz,lo_sz) lo(lo_f, lo_idx, char, chars[0:lo_sz-1]);

 lookup_tree #(charsz,hi_sz) hi(hi_f, hi_idx, char, chars[lo_sz:nelts-1]);

 assign found = lo_f || hi_f;

 assign index = hi_f ? lo_sz + hi_idx : lo_idx;

 //

 /// Notes:
 //

 // It's okay to use lo_idx if hi_f is false, because if

 // lo_f is false too then lo_idx must be zero.

 //

 // This solution is less efficient because an adder is required

 // to compute lo_sz + hi_idx. In the preferred solution lo_sz

 // is chosen so that it is always a power of 2, avoiding the

 // need for an addition.

 end

endmodule

module lookup_tree
 #(int charsz = 8,

 int nelts = 15,

 int idx_sz = $clog2(nelts))

 (output uwire found,

 output uwire [idx_sz-1:0] index,

 input uwire [charsz-1:0] char,

 input uwire [charsz-1:0] chars[nelts]);

 /// SOLUTION -- Preferred

 if (nelts == 1) begin

 assign found = char == chars[0];

 assign index = 0;

 end else begin

 // Make the size of the first lookup_tree, lo, a power of two.

 //

 localparam int lo_bits = idx_sz - 1;

 localparam int lo_sz = 1 << lo_bits;

 // Compute the size of the second lookup_tree, hi.

 //

 localparam int hi_sz = nelts - lo_sz;

 localparam int hi_bits = $clog2(hi_sz);

 uwire lo_f, hi_f;

 uwire [lo_bits-1:0] lo_idx;

 uwire [hi_bits-1:0] hi_idx;

 lookup_tree #(charsz,lo_sz) lo(lo_f, lo_idx, char, chars[0:lo_sz-1]);

 lookup_tree #(charsz,hi_sz) hi(hi_f, hi_idx, char, chars[lo_sz:nelts-1]);

 assign found = lo_f || hi_f;

 if (lo_bits == 0) assign index = hi_f;

 else assign index = { hi_f, hi_idx | lo_idx };

 //

 /// Notes:
 //

 // Because char can be found in at most one location and because

 // index is zero if the char is not found, we can compute

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw04-sol.v.html

 // index as:

 //

 // index = (hi_f ? lo_sz : 0) + lo_idx + hi_idx;

 //

 // or even better:

 //

 // index = (hi_f ? lo_sz : 0) + (lo_idx | hi_idx);

 //

 // Because lo_sz is a power of two, and because lo_sz > hi_idx,

 // lo_sz > lo_idx, and lo_sz >= hi_sz we can use concatenation

 // to avoid the add:

 //

 // index = (hi_f << lo_bits) + (lo_idx | hi_idx);

 // index = { hi_f, lo_idx | hi_idx };

 //

 /// Example:
 //

 // nelts = 14, lo_sz = 8, lo_bits = 3, hi_sz = 6, hi_bits = 3;

 // chars = { 100, 101, ... , 113 }

 //

 // Suppose: char = 106. We want index = 6.

 // lo_f = 1, lo_idx = 6 = 3'b110

 // hi_f = 0, hi_idx = 0.

 // idx = { 1'b0, 3'b110 + 3'b0 } = { 1'b0, 3'b110 } = 4'b0110 = 6

 //

 // Suppose: char = 112. We want index = 12.

 // lo_f = 0, lo_idx = 0.

 // hi_f = 1, hi_idx = 4 = 3'b100

 // idx = { 1'b1, 3'b000 + 3'b100 } = { 1'b1, 3'b100 } = 4'b1100 = 12

 //

 /// Synthesized Hardware:
 //

 //

found

index

char

chars

lookup_tree
nelts = lo_sz

lo

hi

found

index

char

chars

lookup_tree
nelts = hi_sz

0:0

1:1

0:0

1:1

msb

lsb

found

index

0:lo_sz-1

lo_sz:nelts-1

char

chars

lookup_tree nelts=

lo_f

hi
_f

lo_idx

hi_idx

 end

endmodule

`ifdef xxx

Module Name Area Delay Delay

 Actual Target

lookup_behav_charsz8_nelts4 9152 927 10000

lookup_linear_charsz8_nelts4 9012 990 10000

lookup_tree_charsz8_nelts4 8916 1026 10000

lookup_tree_opt_charsz8_nelts4 8988 952 10000

lookup_behav_charsz8_nelts15 35444 2348 10000

lookup_linear_charsz8_nelts15 34996 2338 10000

lookup_tree_charsz8_nelts15 34280 2606 10000

lookup_tree_opt_charsz8_nelts15 33532 2238 10000

lookup_behav_charsz8_nelts32 74648 3691 10000

lookup_linear_charsz8_nelts32 74212 3257 10000

lookup_tree_charsz8_nelts32 70932 2480 10000

lookup_tree_opt_charsz8_nelts32 71084 2443 10000

lookup_behav_charsz8_nelts40 94028 3862 10000

lookup_linear_charsz8_nelts40 94288 2585 10000

lookup_tree_charsz8_nelts40 95996 3501 10000

lookup_tree_opt_charsz8_nelts40 89292 2778 10000

lookup_behav_charsz8_nelts60 143268 5913 10000

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw04-sol.v.html

lookup_linear_charsz8_nelts60 141792 5638 10000

lookup_tree_charsz8_nelts60 142828 3963 10000

lookup_tree_opt_charsz8_nelts60 138288 3501 10000

lookup_behav_charsz8_nelts4 12304 621 100

lookup_linear_charsz8_nelts4 13344 594 100

lookup_tree_charsz8_nelts4 13280 598 100

lookup_tree_opt_charsz8_nelts4 10888 640 100

lookup_behav_charsz8_nelts15 46896 1136 100

lookup_linear_charsz8_nelts15 47528 1120 100

lookup_tree_charsz8_nelts15 45268 1151 100

lookup_tree_opt_charsz8_nelts15 41696 1003 100

lookup_behav_charsz8_nelts32 105032 1247 100

lookup_linear_charsz8_nelts32 108688 1288 100

lookup_tree_charsz8_nelts32 96980 1093 100

lookup_tree_opt_charsz8_nelts32 96408 1056 100

lookup_behav_charsz8_nelts40 120132 1523 100

lookup_linear_charsz8_nelts40 131344 1114 100

lookup_tree_charsz8_nelts40 134444 1260 100

lookup_tree_opt_charsz8_nelts40 116320 1144 100

lookup_behav_charsz8_nelts60 184892 1726 100

lookup_linear_charsz8_nelts60 210512 1461 100

lookup_tree_charsz8_nelts60 185628 1890 100

lookup_tree_opt_charsz8_nelts60 176544 1500 100

`endif

//

/// Testbench Code
//

// The code below instantiates some of the modules above,

// provides test inputs, and verifies the outputs.

//

// The testbench may be modified to facilitate your solution. Of

// course, the removal of tests which your module fails is not a

// method of fixing a broken module. (One might modify the testbench

// so that the first tests it performs are thoe which make it easier

// to determine what the problem is, for example, test inputs that

// are all 0's or all 1's.)

// cadence translate_off

function automatic int min(int a, int b);
 min = a <= b ? a : b;

endfunction

module testbench();

 localparam int nelts[] = { 4, 5, 10, 15, 16, 30, 40, 64 };

 localparam int nnelts = 8;

 logic start_done[-1:nnelts];

 for (genvar i = 0; i < nnelts; i++)

 testbench_sz #(nelts[i]) aa(start_done[i],start_done[i-1]);

 initial begin

 if (nnelts != nelts.size()) begin

 $write("Value of nnelts, %0d, different than number of elts in nelts, %0d. (See module testbench.\n",

 nnelts, nelts.size());

 $fatal(1);

 end

 start_done[-1] = 1;

 end

endmodule

module testbench_sz
 #(int nelts = 100)

 (output logic done, input uwire start);

 localparam int telts = nelts * 2;

 localparam int idx_sz = $clog2(nelts);

 localparam int charsz = 8;

 localparam int charmk = (1 << charsz) - 1;

 localparam int num_tests = min(nelts,500);

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw04-sol.v.html

 localparam int stride = nelts/num_tests;

 localparam int nmuts = 3;

 logic [charsz-1:0] char, chars[telts-1:0];

 uwire found[nmuts];

 uwire [idx_sz-1:0] idx[nmuts];

 logic shadow_found;

 logic [idx_sz-1:0] shadow_idx;

 lookup_behav #(charsz,nelts) l00(found[0],idx[0],char,chars[nelts-1:0]);

 lookup_linear #(charsz,nelts) l01(found[1],idx[1],char,chars[nelts-1:0]);

 lookup_tree #(charsz,nelts) l02(found[2],idx[2],char,chars[nelts-1:0]);

 string mutnames[] = { "lookup_behav", "lookup_linear", "lookup_tree" };

 int err[nmuts];

 initial begin

 automatic int tot_errors = 0;

 localparam int gap = charmk / telts;

 chars[0] = {$random} % gap;

 for (int i=1; i<telts; i++)

 chars[i] = chars[i-1] + 1 + {$random} % gap;

 for (int i=0; i<telts; i++) begin

 automatic int idx = {$random} % telts;

 {chars[i],chars[idx]} = {chars[idx],chars[i]};

 end

 wait (start == 1);

 for (int i=0; i<num_tests; i++) begin

 automatic int idx_try = {$random} % telts;

 char = chars[idx_try];

 shadow_found = idx_try < nelts;

 shadow_idx = idx_try;

 #1;

 for (int mut=0; mut<3; mut++) begin

 automatic int cr_fnd = shadow_found === found[mut];

 automatic int cr_idx = shadow_idx === idx[mut];

 if (cr_fnd && (shadow_found == 0 || cr_idx)) continue;

 if (err[mut] > 100) break;

 $write("Mod %s nelts %0d test %3d char %h: wrong %s. Found %h%s%h (correct) idx %4d %s %4d (correct)\n",

 mutnames[mut], nelts, i, char,

 cr_idx ? "found" : "index",

 found[mut],

 cr_fnd ? "==" : "!=",

 shadow_found,

 idx[mut], cr_fnd ? "!=" : "??", shadow_idx);

 err[mut]++;

 end

 end

 for (int i=0; i<num_tests; i++) tot_errors += err[i];

 $write("For nelts %0d performed %0d tests, %0d errors found.\n",

 nelts, num_tests, tot_errors);

 done = 1;

 end

endmodule

// cadence translate_on

← → Fall 2016 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw04-sol.v.html

LSU EE 4755 Homework 5 Solution Due: 7 November 2016

Problem 0: This first problem provides background on the module used in this assignment. Please
read the background and then solve the problems further below. The Verilog source can be found
in directory hw05, however for this assignment there is no need to do anything with it.

Module ortho has one input, v, a three-element vector of signed integers, and one output,
u, also a three-element vector of signed integers. The output is computed so that u is orthogonal
to v in the geometric sense. For those who are rusty on linear algebra, non-zero vectors u and
v are orthogonal if u · v = 0 or uxvx + uyvy + uzvz = 0. Using Verilog notation, u is computed
so that u[0]*v[0]+u[1]*v[1]+u[2]*v[2]=0 and at least one element of u is not zero. It does so
by finding the smallest element of v, setting the corresponding element in u to zero, swapping the
to remaining two elements, and negating one of the two. For example, if v = (4, 7, 55) then the
module would set u = (0, 55,−7).

module ortho #(int alternative = 1, int w = 32)

(output logic signed [w-1:0] u [3], input wire signed [w-1:0] v [3]);

logic [1:0] idx_min, idx_a, idx_b;

always_comb begin

idx_min = 0;

for (int i=1; i<3; i++) if ($abs(v[i]) < $abs(v[idx_min])) idx_min = i;

idx_a = (idx_min + 1) % 3;

idx_b = (idx_min + 2) % 3;

if (alternative == 1) begin

// The loop below is a hint to synthesis program Cadence Encounter 14.28.

for (int i=0; i<3; i++) u[i] = 0;

u[idx_min] = 0;

u[idx_a] = v[idx_b];

u[idx_b] = -v[idx_a];

end else if (alternative == 2) begin

for (int i=0; i<3; i++)

u[i] = idx_min == i ? 0 : idx_a == i ? v[idx_b] : -v[idx_a];

end else $fatal(1);

end

endmodule

1

← → Fall 2016 ← → Homework 5 Homework Solution hw05 sol.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2016/hw05_sol.pdf

Important: For all problems below in which hardware is shown:

• Clearly show inputs and outputs of ortho.

• Try to draw diagrams showing all hardware for ortho and refer to parts of the diagram in
your answers below.

Complete solution appears below. See the problems for detail.

v[0]

v[1]

v[2]

v

32

32

32

ortho

neg

neg

neg

3
1
:3
1

3
1
:3
1

3
1
:3
1

3
1
:3
1

3
1
:3
1

0

1

0

1

0

1
=

0

1

2

=

=

=
0

1

2

=

=

idx_a

idx_b

idx_min

0

0

0

u[0]

u[1]

u[2]

U

2
<

<

id
x
_
a

id
x
_
b

msb

lsb

msb

lsb

1:1 0:0

Problem 1: Consider the following part of the module:

idx_min = 0;

for (int i=1; i<3; i++)

if ($abs(v[i]) < $abs(v[idx_min])) idx_min = i;

(a) Show the hardware that will be synthesized for this fragment. (Please refer to the entire
module when determining what will be synthesized.) Make reasonable optimizations. (See the
next subproblem.) In this subpart show abs as a box.

Un-optimized and optimized solution appears below. In the un-optimized solution absolute value units appear at
the output of the index operation multiplexors (the multiplexors implementing v[idx min]), whereas in the optimized

2

← → Fall 2016 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw05_sol.pdf

solution the absolute value is computed earlier. In the optimized version one index operation mux is removed entirely, in
the other an input is eliminated. (See the midterm exam solution.) As shown in Problem 3, the absolute value hardware
is shared with the hardware used for negation.

v[0]

v[1]

v[2]

0
1

idx_min

2

idx_mini=1 i=2

id
x
_
m
in

v

32

32

32

ortho

abs

abs
<

abs

abs
<

Easily optimized
out.

v[0]

v[1]

v[2]

2

idx_mini=1 i=2

id
x
_
m
in

v

32

32

32

ortho

abs

abs

<<

abs

See Problem 3 for

hardware

computing abs.

(b) The synthesis program synthesizes hardware that contains four absolute value units for this
code, even with effort set to high. Explain why four is too many, perhaps by referring your own
version that uses fewer absolute value units.

See the solution to the part above.

Problem 2: Consider the part of the module below: Show the hardware that will be synthesized
for this code, taking into consideration that idx_min is two bits. Hint: This is easy. Just consider
all possible values of idx_min.

idx_a = (idx_min + 1) % 3;

idx_b = (idx_min + 2) % 3;

Solution appears below. The most important point is that there is no hardware to compute the remainder (modulo),
which would be costly, nor are there adders. Drawing a truth table will show that only a single gate is needed.

3

← → Fall 2016 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw05_sol.pdf

idx_a

idx_b

idx_min
msb

lsb

msb

lsb

1:1 0:0

Problem 3: Show the hardware that will be synthesized for the alternative 2 code, below, after
optimization. As with the other problems, take into account the rest of the module. Look for
opportunities to optimize -v[idx_a] taking advantage of hardware for abs.

for (int i=0; i<3; i++)

u[i] = idx_min == i ? 0 : idx_a == i ? v[idx_b] : -v[idx_a];

Solution appears below. Since this part needs negation (computing −x) and the hardware computing idx min

needs absolute value, which uses negation, this part computes the absolute value. Negation itself of a 2’s complement
value is computed by negating the bits and adding one. If the negated value were only needed for an adder, or adder-like
hardware, then the adder could be eliminated.

v[0]

v[1]

v[2]

v

32

32

32

ortho

neg

neg

neg

3
1
:3
1

3
1
:3
1

3
1
:3
1

3
1
:3
1

3
1
:3
1

0

1

0

1

0

1
=0

1

2

=

=

=0

1

2

=

=

idx_a

idx_b

idx_min

0

0

0

u[0]

u[1]

u[2]

abs(v[0])

To logic computing idx_a, etc.

From logic computing idx_a, etc.

U

4

← → Fall 2016 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw05_sol.pdf

Problem 4: As directed below, estimate the critical path in ortho for a w-bit instantiation. Do
so using ripple-adder like implementations for absolute value, comparison, and negation. Use the
performance model in which n-input AND and OR gates have delay ⌈lgn⌉ units.

(a) Find the critical path using the assumption that in hardware for an expression like a + b < c
the delay through the adder must be added to the delay through the comparison unit. The answer
should be a function of w.

Solution appears in the diagram below in the upper timing number. See the last part for details.

(b) Find the critical path accounting for the fact that in ripple-like hardware for an expression like
a + b < c the low bits of the comparison can start as soon as the low bits of the sum are available.
The answer should be a function of w.

Solution appears in the diagram below in the lower timing number. See the last part for details.

(c) Show a sketch of the hardware with an arrow tracing the critical path through the hardware,
from input to output. Annotating that arrow with intermediate delays will help in assigning partial
credit.

The critical path appears in red in the figure below, the critical path (but not its length) is the same with both
timing assumptions. The paired purple boxed numbers give the absolute time that the signal arrives at the labeled wire.
The upper of the pair is under the assumption that one piece of ripple-like hardware must completely finish before a
subsequent piece of ripple-like hardware can start. The lower number is computed under the correct assumption, that
computation starts when data arrives. In the diagram this only affects the first comparison unit.

The delay of each component is shown as an unboxed purple number. The delay of the neg unit is based on a
ripple adder constructed with binary half adders. The carry chain consists only of AND gates.

Purple arrows point to wires carrying the critical path, green arrows point to non-critical wires.

v[0]

v[1]

v[2]

v

32

32

32

ortho

neg

neg

neg

3
1
:3
1

3
1
:3
1

3
1
:3
1

3
1
:3
1

3
1
:3
1

0

1

0

1

0

1
=0

1

2

=

=

=0

1

2

=

=

idx_a

idx_b

idx_min

0

0

0

u[0]

u[1]

u[2]

U

2
<

<

id
x
_
a

id
x
_
b

msb

lsb

msb

lsb

1:1 0:0

0

0

2 2

2

1

1

1

1
1

7w+15

6w+16

Correct timing

Simplifi

overlap) timing

First bit avail
Last bit avail

Launch

Capture

Critical Path

Not Critical Path

5

← → Fall 2016 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2016/hw05_sol.pdf

//

//

/// LSU EE 4755 Fall 2016 Homework 6
/// PRELIMINARY SOLUTION
//

 /// Assignment http://www.ece.lsu.edu/koppel/v/2016/hw06.pdf

 /// Additional Resources
 //

 // Instructions for Account Setup, Verilog, Synthesis, Chipware, Emacs.

 // http://www.ece.lsu.edu/koppel/v/proc.html

 //

 //

 // Verilog Documentation

 // The Verilog Standard

 // http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

 // Introductory Treatment (Warning: Does not include SystemVerilog)

 // Brown & Vranesic, Fundamentals of Digital Logic with Verilog, 3rd Ed.

 //

 // ChipWare Component Library Documentation

 // Documentation for the FP modules (and other) such as CW_fp_add.

 // Look for the link to ChipWare on: http://www.ece.lsu.edu/v/ref.html

 //

// Load Verilog for ChipWare floating-point multiply and add modules.

//

`include "/apps/linux/cadence/RC142/share/synth/lib/chipware/sim/verilog/CW/CW_fp_mult.v"

`include "/apps/linux/cadence/RC142/share/synth/lib/chipware/sim/verilog/CW/CW_fp_add.v"

`default_nettype none

//

/// Problem 0
//

 // Look over but don't modify these modules.

// cadence translate_off

 /// Non-Synthesizable Mag Module --- Complete, Don't Edit
//

module mag_functional
 (output shortreal mag,

 input shortreal v [3]);

 always_comb begin

 shortreal sos;

 sos = 0;

 for (int i=0; i<3; i++) sos += v[i] * v[i];

 mag = sos;

 end

endmodule

// cadence translate_on

 /// Combinational Module --- Complete, Don't Edit
//

module mag_comb
 (output uwire [31:0] mag,

 input uwire [31:0] v [3]);

 uwire [31:0] vsq[3];

 uwire [7:0] status[5];

 uwire [31:0] sum01;

 localparam logic [2:0] rnd = 0; // 0 is round toward even.

 for (genvar i=0; i<3; i++)

 CW_fp_mult m1(v[i], v[i], rnd, status[i], vsq[i]); // Product is last!

 CW_fp_add a1(vsq[0], vsq[1], rnd, sum01, status[3]);

 CW_fp_add a2(sum01, vsq[2], rnd, mag, status[4]);

← → Fall 2016 ← → Homework 6 Homework Sol Code hw06-sol.v.html

http://www.ece.lsu.edu/koppel/v/2016/hw06.pdf
http://www.ece.lsu.edu/koppel/v/proc.html
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
http://www.ece.lsu.edu/v/ref.html
https://www.ece.lsu.edu/ee4755/2016/hw06-sol.v.html

endmodule

//

/// Problem 1
//

 /// Complete mag_seq so that it computes mag sequentially, using one
 /// fp add and one fp multiply module.
//

// [x] Learn to use SimVision *before* wasting hours on simple problems.

// [x] The code must be synthesizable.

// [x] Make sure that the testbench does not report errors.

// [x] Can use behavioral or implicit structural code.

// [x] Do not rename modules or change ports.

// [x] Must use exactly one CW_fp_add and one CW_fp_mult.

// [x] Assume that data arrives at module inputs late in the clock cycle.

// cadence translate_off

class Debug;

 int cycle;

 int test_cyc; // Number of cycles since test began.

 int test_num;

 shortreal vr[3];

 logic [31:0] v[3];

 shortreal magr; // Correct result.

 logic [31:0] mag; // Correct result.

endclass

// cadence translate_on

module mag_seq
 (output uwire [31:0] mag,

 output uwire ready,

 input uwire [31:0] v [3],

 input uwire start,

 input uwire clk);

 // cadence translate_off

 Debug db;

 // cadence translate_on

 localparam logic [2:0] rnd = 0; // 1 is round towards zero.

 uwire [7:0] sm, sa;

 logic [31:0] accum[2];

 uwire [31:0] prod, sum;

 logic [2:0] step;

 /// SOLUTION -- Assign multiplier input.
 //

 uwire [31:0] ma = v[step];

 CW_fp_mult m1(.a(ma), .b(ma), .rnd(rnd), .z(prod), .status(sm));

 CW_fp_add a1(.a(accum[0]), .b(accum[1]), .rnd(rnd), .z(sum), .status(sa));

 localparam int last_step = 4;

 assign ready = step == last_step;

 always_ff @(posedge clk)

 if (start) step <= 0;

 else if (step < last_step) step <= step + 1;

 always_ff @(posedge clk)

 begin

 case (step)

 0: accum[0] <= prod; // Save v[0] * v[0].

 /// SOLUTION below.
 1: accum[1] <= prod; // Save v[1] * v[1].

 2: begin

← → Fall 2016 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw06-sol.v.html

 accum[0] <= prod; // Save v[2] * v[2].

 accum[1] <= sum; // Save (v[0]*v[0]) + (v[1]*v[1])

 end

 3: accum[1] <= sum; // Save (v[0]*v[0]+v[1]*v[1]) + (v[2]*v[2]).

 endcase

 end

 assign mag = accum[1];

endmodule

//

/// Problem 2
//

 /// Complete mag_pipe so that it computes mag in pipelined fashion and
 /// has at most one fp operation delay per cycle.
//

// [x] Learn to use SimVision *before* wasting hours on simple problems.

// [x] The code must be synthesizable.

// [x] Make sure that the testbench does not report errors.

// [x] Can use behavioral or implicit structural code.

// [x] Do not rename modules or change ports.

// [x] Choose number of stages to maximize throughput (minimize delay).

// [x] Use as many CW_fp_add and CW_fp_mult modules as needed, but no more.

// [x] Assume that data arrives at module inputs late in the clock cycle.

module mag_pipe
 (output uwire [31:0] mag,

 input uwire [31:0] v [3],

 input uwire clk);

 // cadence translate_off

 Debug db;

 // cadence translate_on

 /// Do not rename nstages. The testbench examines its value and it must be set
 /// correctly.
 // For a vector arriving at cycle t, magnitude will be available at

 // cycle t + nstages.

 localparam int nstages = 4;

 localparam logic [2:0] rnd = 0; // 1 is round towards zero.

 logic [31:0] pl_vsq[1:2][3];

 logic [31:0] pl_sos[2:3];

 uwire [31:0] vsq[3], sum01, sum012;

 uwire [7:0] s[5];

 // Pipeline latches between inputs and stage 0.

 //

 logic [31:0] pl_v[3];

 ///

 /// Logic Within Stages
 ///

 // Stage 0: Three Multipliers.

 //

 // Instantiate 3 multipliers. All of these are in stage 0.

 //

 for (genvar i=0; i<3; i++)

 CW_fp_mult m1(.a(pl_v[i]), .b(pl_v[i]),

 .rnd(rnd), .z(vsq[i]), .status(s[i]));

 // Stage 1: An adder.

 //

 CW_fp_add a1(pl_vsq[1][0], pl_vsq[1][1], rnd, sum01, s[3]);

 // Stage 2: Another adder.

← → Fall 2016 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw06-sol.v.html

 //

 CW_fp_add a2(pl_sos[2], pl_vsq[2][2], rnd, sum012, s[4]);

 ///

 /// Pipeline Latches (Registers Separating Stages)
 ///

 always_ff @(posedge clk) begin

 // Module input -> Stage 0

 //

 pl_v <= v;

 // Stage 0 -> 1

 //

 // Result of multiplications done in stage 0.

 //

 pl_vsq[1] <= vsq; // Note: vsq is a 3-element array of 32-bit vals.

 // Stage 1 -> 2

 //

 // Pass along multiplications done in stage 1.

 //

 pl_vsq[2][2] <= pl_vsq[1][2];

 //

 // Sum performed in stage 1.

 //

 pl_sos[2] <= sum01;

 // Stage 2 -> 3

 //

 // Sum performed in stage 2.

 //

 pl_sos[3] <= sum012;

 end

 assign mag = pl_sos[3];

endmodule

 // Synthesized hardware after optimization:

 // :

v[0]

32

m
agv

v[1]

32

v[2]

32

pl
_v

[0
]

pl
_v

[1
]

pl
_v

[2
]

pl
_v

sq
[1
][0

]

pl
_v

sq
[2
][2

]

vsq[0]

vsq[1]

vsq[2]

sum
01

sum
012

pl
_s

os
[2
]

pl
_v

sq
[1
][1

]
pl
_v

sq
[1
][2

]

pl
_s

os
[3
]

clk

mag_pipe

Stage 0 Stage 1 Stage 2

These are pipeline latches,
which are just collections
of registers.

CW_fp_mult
2:m1

rnd

3'
b0

CW_fp_add
a2

rnd

3'b0

CW_fp_add
a1

rnd

3'b0

CW_fp_mult
1:m1

rnd

3'
b0

CW_fp_mult
0:m1

rnd

3'
b0

//

/// Testbench Code

← → Fall 2016 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw06-sol.v.html

//

// The code below instantiates some of the modules above,

// provides test inputs, and verifies the outputs.

//

// The testbench may be modified to facilitate your solution. Of

// course, the removal of tests which your module fails is not a

// method of fixing a broken module. (One might modify the testbench

// so that the first tests it performs are thoe which make it easier

// to determine what the problem is, for example, test inputs that

// are all 0's or all 1's.)

// cadence translate_off

function automatic real rand_real(real minv, real maxv);
 rand_real = minv + (maxv - minv) * (real'({$random})) / 2.0**32;

endfunction

function automatic shortreal fabs(shortreal val);
 fabs = val < 0 ? -val : val;

endfunction

program reactivate
 (output uwire clk_reactive, output int cycle_reactive,

 input uwire clk, input var int cycle);

 assign clk_reactive = clk;

 assign cycle_reactive = cycle;

endprogram

module testbench();

 typedef enum { MT_comb, MT_seq, MT_pipe } Module_Type;

 localparam int wid = 32;

 localparam int max_latency = 10;

 localparam int num_tests = 16;

 localparam int nmuts = 10;

 int err[nmuts];

 uwire [31:0] mag[nmuts];

 uwire ready[nmuts];

 shortreal magr;

 shortreal vr[3];

 logic [31:0] v[3];

 logic [31:0] vp[3];

 logic start;

 typedef struct

 {

 int idx;

 int err_count = 0;

 int ncyc = 0;

 Module_Type mt = MT_comb;

 logic [wid-1:0] sout = 'h111;

 int cyc_tot = 0;

 int latency = 0;

 } Info;

 Info pi[string];

 localparam int cycle_limit = num_tests * max_latency * 4;

 int cycle, cyc_start;

 bit done;

 logic clock;

 bit use_others;

 logic clk_reactive;

 int cycle_reactive;

 reactivate ra(clk_reactive,cycle_reactive,clock,cycle);

 task pi_seq(input int idx, input string name);

 automatic string m = $sformatf("%s", name);

← → Fall 2016 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw06-sol.v.html

 pi[m].idx = idx; pi[m].mt = MT_seq;

 endtask

 task pi_pipe(input int idx, input string name, input int ncyc);

 automatic string m = $sformatf("%s", name);

 pi[m].idx = idx; pi[m].mt = MT_pipe;

 pi[m].ncyc = ncyc;

 endtask

 Debug db;

 initial db = new;

 initial begin

 clock = 0;

 cycle = 0;

 fork

 forever #10 begin

 cycle += clock++;

 db.cycle = cycle;

 db.test_cyc = cycle - cyc_start;

 end

 wait(done);

 wait(cycle >= cycle_limit)

 $write("*** Cycle limit exceeded, ending.\n");

 join_any;

 $finish();

 end

 mag_functional mf(magr, vr);

 mag_comb m1(mag[0], v);

 initial pi["Comb."].idx = 0;

 mag_seq m2(mag[1], ready[1], v, start, clock);

 initial begin pi_seq(1,"Seq."); m2.db = db; end

 mag_pipe m4(mag[3], vp, clock);

 initial begin pi_pipe(3,"Pipe",m4.nstages); m4.db = db; end

 initial begin

 while (!done) @(posedge clk_reactive) #2

 if (use_others) begin

 vp = v;

 use_others = 0;

 start = 1;

 end else begin

 vp[0] = $shortrealtobits(shortreal'(cycle-cyc_start));

 vp[1] = cycle - cyc_start;

 vp[2] = 0;

 start = 0;

 end

 end

 initial begin

 automatic int tot_errors = 0;

 done = 0;

 use_others = 0;

 start = 0;

 @(posedge clk_reactive);

 for (int i=0; i<num_tests; i++) begin

 automatic int awaiting = pi.num();

 db.test_num = i;

← → Fall 2016 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw06-sol.v.html

 cyc_start = cycle;

 db.test_cyc = 0;

 if (i < 8) begin

 // In first eight test vector components are zero or one.

 //

 for (int j=0; j<3; j++) vr[j] = i & 1 << j ? 1.0 : 0.0;

 end else begin

 // In other tests vector components are randomly chosen.

 //

 for (int j=0; j<3; j++) vr[j] = rand_real(-10,+10);

 end

 for (int j=0; j<3; j++) v[j] = $shortrealtobits(vr[j]);

 db.vr = vr;

 db.v = v;

 fork

 #0 begin

 db.magr = magr;

 db.mag = $shortrealtobits(magr);

 end

 join_none

 vp = v;

 use_others = 1;

 /// Collect Result (mag) From Each Module Under Test (mut)
 //

 foreach (pi[muti]) begin

 automatic string mut = muti; // Informal name of module.

 automatic Info p = pi[mut];

 // Create a child thread to get response from current mut.

 // The parent thread, without delay, proceeds to join_none.

 //

 fork begin

 automatic int steps = pi[mut].ncyc;

 automatic int latency =

 pi[mut].mt == MT_comb ? 1 :

 pi[mut].mt == MT_seq ? 2 : steps;

 // Compute time at which result should be ready or

 // when to start examining a READY output.

 //

 automatic int eta = 1 + cyc_start + latency;

 pi[mut].latency = latency;

 // Wait (just this thread waits) until result should be ready.

 //

 wait (cycle_reactive == eta);

 // If this module has a READY output, wait for it.

 //

 if (pi[mut].mt == MT_seq) wait(ready[pi[mut].idx]);

 // Decrement count of the number of modules we are waiting for.

 //

 awaiting--;

 // Store the module MAG output, it will be checked later

 // for correctness.

 //

 pi[mut].sout = mag[pi[mut].idx];

 pi[mut].cyc_tot += cycle - cyc_start;

 // This thread ends execution here.

← → Fall 2016 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw06-sol.v.html

 end join_none;

 end

 // Wait until data collected from all modules under test.

 //

 wait (awaiting == 0);

 // Check the output of each Module Under Test.

 //

 foreach (pi[mut]) begin

 // Assign module output to a shortreal.

 //

 automatic shortreal mmagr = $bitstoshortreal(pi[mut].sout);

 //

 // Note: pi[mut].sout is type logic which is assumed to be

 // an unsigned integer. However, the contents is really an

 // IEEE 754 single-precision float (shortreal in

 // SystemVerilog) and so $bitstoshortreal is used so that

 // pi[mut].sout is copied bit-for-bit unchanged to mmagr.

 // Compute difference between module output and expected

 // output. With FP small differences can be okay, they might

 // occur, for example, due to differences in the order of

 // operations.

 //

 automatic shortreal err_mag = fabs(mmagr - magr);

 automatic bit okay = err_mag < 1e-4;

 if (!okay) begin

 pi[mut].err_count++;

 if (pi[mut].err_count < 5)

 $write("%s test #%0d vec (%.1f,%.1f,%.1f) error: h'%8h %7.4f != %7.4f (correct)\n",

 mut, i, vr[2], vr[1], vr[0],

 pi[mut].sout, mmagr, magr);

 end

 end

 while ({$random} & 1 == 1) @(posedge clk_reactive);

 //

 // Note: By waiting for reactive clock we can be sure that

 // modules under test have completed all work due to the

 // positive edge of the regular clk. Wait a random amount of

 // time in case any modules are only correct at some stride.

 end

 foreach (pi[mut])

 $write("Ran %4d tests for %-25s, %4d errors found. Avg cyc %.1f\n",

 num_tests, mut, pi[mut].err_count,

 pi[mut].mt == MT_comb ? 1 : real'(pi[mut].cyc_tot) / num_tests);

 done = 1;

 $finish(2);

 end

endmodule

// cadence translate_on

← → Fall 2016 ← → Homework 6 Homework Sol Code hw06-sol.v.html

https://www.ece.lsu.edu/ee4755/2016/hw06-sol.v.html

21 Fall 2015 Solutions

526

← → Fall 2015 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw01_sol.pdf

LSU EE 4755 Homework 1 Solution Due: 9 September 2015

The questions below can be answered without using EDA software, paper and pencil will suffice.
Please turn in the solution on paper. Homework 2 will require the use of Verilog implementations.

Those who are rusty about the correspondence between Verilog code and hardware might want
to look at the solution to EE 3755 Fall 2013 Homework 1, at
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf.

Problem 1: The routine shift_right_fixed_amt uses the >> operator to perform the right shift.
Perhaps you are wondering if the operation is an arithmetic right shift or a logical right shift. (In a
logical right shift the vacated bit positions are always set to zero, in an arithmetic shift they are set
to the MSB of the input.) Look up the operation performed by this operator in the SystemVerilog
2012 documentation.

module shift_right_fixed_amt

#(int fsamt = 4) // Fixed shift amount.

(output wire [15:0] shifted,

input wire [15:0] unshifted,

input wire shift);

// If shift is true shift by fsamt, otherwise don’t shift.

//

assign shifted = shift ? unshifted >> fsamt : unshifted;

endmodule

(a) Indicate the section and page in which this information can be found.
Section 11.4.10, on page 233.

(b) Show how the module can be modified to perform the other kind of shift (if it’s currently
arithmetic, make it logical, if it’s currently logical make it arithmetic).

Two changes need to be made: The type of the value to be shifted must be changed to signed, and the operator
must be changed from >> to >>>. The changed code appears below.

module shift_right_fixed_amt_sol

#(int fsamt = 4) // Fixed shift amount.

(output wire [15:0] shifted,

input wire signed [15:0] unshifted, // SOLUTION, change to signed.

input wire shift);

// SOLUTION, change ">>" operator to ">>>".

//

assign shifted = shift ? unshifted >>> fsamt : unshifted;

endmodule

1

← → Fall 2015 ← → Homework 1 Homework Solution hw01 sol.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/ee3755/2013f/hw01_sol.pdf
https://www.ece.lsu.edu/ee4755/2015/hw01_sol.pdf

Problem 2: Appearing below are two variations on a min_4 module that finds the minimum of
four unsigned integers. Both of these modules instantiate the following min_2 module.

module min_2

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elt_0,

input [elt_bits-1:0] elt_1);

assign elt_min = elt_0 < elt_1 ? elt_0 : elt_1;

endmodule

(a) Draw a diagram of the hardware that will be synthesized for the min_4_t module below. Your
diagram should include two-input multiplexors and a comparison module. To get an idea of what
to draw, see the EE 3755 Homework solution mentioned at the top of this assignment.

module min_4_t

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

wire [elt_bits-1:0] im1, im2;

min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

min_2 #(elt_bits) m2(im2, elts[2], elts[3]);

min_2 #(elt_bits) m3(elt_min, im1, im2);

endmodule

Solution appears below.

elt_0

elt_1 e
lt
_
m
in

min_2

<

elt_0

elt_1 e
lt
_
m
in

min_2

<

elt_0

elt_1 e
lt
_
m
in

min_2

<

elts[0]

elts[1]

elts[2]

elts[3]

e
lt
_
m
in

im1

im2

m1

m2

m3

min_4_t

2

← → Fall 2015 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw01_sol.pdf

(b) Draw a diagram of the hardware that will be synthesized for the min_4_l module below. Your
diagram should include two-input multiplexors and a comparison module.

module min_4_l

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

wire [elt_bits-1:0] im1, im2;

min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

min_2 #(elt_bits) m2(im2, im1, elts[2]);

min_2 #(elt_bits) m3(elt_min, im2, elts[3]);

endmodule

Solution appears below.

elt_0

elt_1 e
lt
_
m
in

min_2

<

elt_0

elt_1 e
lt
_
m
in

min_2

<

elt_0

elt_1 e
lt
_
m
in

min_2

<

elts[0]

elts[1]

elts[2]

elts[3]

e
lt
_
m
in

im1
im2

m1
m2

m3

min_4_l

(c) Which of the two modules above would you expect to have lower cost? Which would you expect
to be faster? Briefly explain.

The cost of the two modules should be the same. Module min 4 t should be faster because the longest path through
the module is through two min 2 modules, whereas in min 4 l the longest paths is through three min 2 modules.

3

← → Fall 2015 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw01_sol.pdf

Problem 3: The module min_4_err below is correct Verilog, but it won’t do what we want.

module min_4_err

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

wire [elt_bits-1:0] im;

min_2 #(elt_bits) m1(im, elts[0], elts[1]);

min_2 #(elt_bits) m2(im, im, elts[2]);

min_2 #(elt_bits) m3(elt_min, im, elts[3]);

endmodule

(a) Explain why it’s correct Verilog yet provides the incorrect result.
The problem is that the output of m1 and m2 are both connected to the same net, im. This may lead to conflicts,

for example, when m1 wants to set bit im[0] to 1 but m2 wants to set it to 0. The simulator will assign an x for such
cases. Worse, in m2 an output and an input are connected to the same loop.

(b) Look up uwire in the SystemVerilog standard and explain how that might help catching such
errors.

Unlike a net of type wire, a net of type uwire can only be driven by one source. See IEEE Std 1800-2012 Section
6.6.2. A net connected in the same way as im, above, would result in a Verilog compiler error.

4

← → Fall 2015 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw01_sol.pdf

Problem 4: Appearing below is yet another variation on min_4, this one attempting to take
advantage of a special case by using generate statements. The module is correctly using generate
statements to handle a special case. Do you think the synthesized hardware will be less expensive
for the special case beyond the reduction in cost for using fewer bits. Hint: Think about what the
comparison unit and mux would look like with 1-bit inputs and how such logic can be optimized.

Note: In the original assignment this problem had a typo, which made the Verilog illegal.
Further, the phrase above starting “beyond the reduction” was not in the original question, making
it difficult to see what was really being asked. The answer below is for the corrected question.

module min_4_special1

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

if (elt_bits == 1) begin

assign elt_min = elts[0] && elts[1] && elts[2] && elts[3];

end else begin

wire [elt_bits-1:0] im1, im2;

min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

min_2 #(elt_bits) m2(im2, im1, elts[2]);

min_2 #(elt_bits) m3(elt_min, im2, elts[3]);

end

endmodule

The special case is, of course, and AND gate and we expect that the synthesis program can easily handle those.
When elt bits is greater than one the synthesis program sees a linear connection of min 2 modules

5

← → Fall 2015 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw01_sol.pdf

Problem 5: The module below handles another special case, in this case the case where the first
element is zero.

module min_4_special2

#(int elt_bits = 4)

(output [elt_bits-1:0] elt_min,

input [elt_bits-1:0] elts [4]);

wire [elt_bits-1:0] im1, im2;

if (elts[0] == 0)

assign elt_min = 0;

else begin

min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

min_2 #(elt_bits) m2(im2, im1, elts[2]);

min_2 #(elt_bits) m3(elt_min, im2, elts[3]);

end

endmodule

(a) Explain why the module is illegal Verilog.
The if statement, testing elts[0], is not in procedural code (for example, in an initial or always), and

so it will be interpreted as a generate statement. Generate statements can only access elaborate-time constants, such as
parameters and variables declared genvar. A module input port, such as elts, is definitely not such a constant and so
there is an error.

(b) Explain why what it’s trying to do would be unlikely to help within a larger design. Hint: Think
about critical path.

Suppose that the delay through min 4 special2 when elts[0]==0 is 1 ns and is 3 ns in other cases. Suppose
that the output of min 4 special2 is connected to logic that has another 5 ns of delay. Setting a clock period to
1 + 5 = 6ns would result in errors when the special case was not present and setting it to 3 + 5 = 8ns would make
the special-case hardware unnecessary.

It’s not impossible to take advantage of the special case. To do so external logic would need to detect it (an output
indicating the special case could be added to min 4 special2) and there would have to be some advantage for the
special case. One possibility is that for the special case results from the external logic would be captured in one cycle,
otherwise it would take two cycles.

6

← → Fall 2015 ← → Homework 1 Homework Solution hw01 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw01_sol.pdf

LSU EE 4755 Homework 2 Solution Due: 16 September 2015

The Verilog part of the solution to this assignment can be found in
/home/faculty/koppel/pub/ee4755/hw/2015f/hw02/hw02/hw02-sol.v and a syntax-highlighted ver-
sion can be found at http://www.ece.lsu.edu/koppel/v/2015/hw02-sol.v.html.

Problem 0: Follow the instructions for account setup and homework workflow on the course
procedures page, http://www.ece.lsu.edu/koppel/v/proc.html. Run the testbench on the un-
modified file. There should be errors on all but the min_4 (Four-element) module. Try modifying
min_4 so that it simulates but produces the wrong answer. Re-run the simulator and verify that
it’s broken. Then fix it.

Note: There are no points for this problem.

Problem 1: Module min_n has an elt_bits-bit output elt_min and an elt_count-element array
of elt_bits-bit elements, elts. Complete min_n so that elt_min is set to the minimum of the
elements in elts, interpreting the elements as unsigned integers. Do so using a linear connection
of min_2 modules instantiated with a genvar loop. (A linear connection means that the output of
instance i is connected to the input of instance i + 1.)

Verify correct functioning using the testbench.

Solution appears below.

module min_n
#(int elt_bits = 4,

int elt_count = 8)

(output uwire [elt_bits-1:0] elt_min,

input uwire [elt_bits-1:0] elts [elt_count]);

/// SOLUTION

// Declare wires to interconnect the instances of min_2 instantiated

// in the genvar loop.

//

uwire [elt_bits-1:0] im[elt_count:0]; // im: Inter-Module

assign im[0] = elts[0];

// Instantiate elt_count-1 min_2 modules. The inputs of the first

// module (i=1) connect to elt[0] and elt[1]. Subsequent modules

// connect to an elt and the module instantiated in the previous

// iteration.

//

for (genvar i = 1; i < elt_count; i++)

min_2 #(elt_bits) m(im[i], elts[i], im[i-1]);

// Connect the output of the last instance to the module output.

//

assign elt_min = im[elt_count-1];

endmodule

1

← → Fall 2015 ← → Homework 2 Homework Solution Sol Code hw02 sol.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/2015/hw02-sol.v.html
http://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2015/hw02_sol.pdf

Problem 2: Module min_t is to have the same functionality as min_n. Complete min_t so that it
recursively instantiates itself down to some minimum size. The actual comparison should be done
by a min_2 module.

Verify correct functioning using the testbench.
Solution appears below. In this solution recursion ends when elt count is 1, in which case the module output,

elts min is connected directly to the module input, elts[0]. Otherwise two smaller min t modules are instantiated.

module min_t
#(int elt_bits = 4,

int elt_count = 8)

(output uwire [elt_bits-1:0] elt_min,

input uwire [elt_bits-1:0] elts [elt_count-1:0]);

/// SOLUTION

if (elt_count == 1) begin

// Recursion ends here with one elt. Of course, it is the

// minimum. (And the maximum, and the average, and the median.)

//

assign elt_min = elts[0];

end else begin

// If there are at least two elements instantiate two smaller

// modules.

// Compute the number of elements to be handled by each

// module. (Note that elt_count can be odd, which is why we need

// a separate elt_hi and elt_lo.)

//

localparam int elt_hi = elt_count / 2;

localparam int elt_lo = elt_count - elt_hi;

// Wires for interconnection of modules.

uwire [elt_bits-1:0] minl, minh;

// Recursively declare two modules.

//

min_t #(elt_bits,elt_hi) mhi(minl,elts[elt_count-1:elt_lo]);
min_t #(elt_bits,elt_lo) mlo(minh,elts[elt_lo-1:0]);

// Combine the output of the two modules above.

//

min_2 #(elt_bits) m2(elt_min,minl,minh);

end

endmodule

Problem 3: By default the synthesis script will synthesize each module for two array sizes, four

2

← → Fall 2015 ← → Homework 2 Homework Solution Sol Code hw02 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw02_sol.pdf

elements and eight elements.

(a) Run the synthesis script unmodified. Use the command rc -files syn.tcl. Explain the
differences in performance between the different modules.

The output of the synthesis script appears below.
We should expect the cost and performance of min n and min b to be about the since they should synthesize to

the same hardware. That can be seen by comparing the if statement in min b to the assign in min 2: both will
synthesize to a multiplexor. The behavioral for loop in min b and the generate loop in min n should interconnect
those multiplexors in the same way. From the table below we see that the synthesis program output is consistent with
our expectations.

We should expect the cost of min n and min t to be about the same since they have the same number of comparison
units, they are just connected in a different order. But we should expect min t to be faster since the critical path is
through log2 n min 2 modules. The delay numbers match our expectations for the eight-element version, but at four
elements the linear versions are faster. One reason for this might be that for some reason, the synthesis program is
using a higher-cost comparison unit in the linear versions, adding to their cost and improving their performance. In the
four-element versions that added performance puts them ahead of the tree version. But for the eight-input versions the
tree version is clearly faster.

Possible Test Question: Estimate the critical path in the tree and linear versions of the min units.
The second table below shows the synthesis of the modules at a much higher delay target so that the synthesis

program will be optimizing primarily for area. In this case the both the cost and performance differences between the tree
and linear versions meet our expectations.

Module Name Area Delay Delay

Actual Target

min_t_elt_bits4_elt_count4 8592 1416 100

min_b_elt_bits4_elt_count4 14360 1367 100

min_n_elt_bits4_elt_count4 14360 1367 100

min_t_elt_bits4_elt_count8 25536 1935 100

min_b_elt_bits4_elt_count8 29460 3712 100

min_n_elt_bits4_elt_count8 29460 3712 100

Module Name Area Delay Delay

Actual Target

min_t_elt_bits4_elt_count4 5180 2413 50000

min_b_elt_bits4_elt_count4 5152 3280 50000

min_n_elt_bits4_elt_count4 5152 3280 50000

min_t_elt_bits4_elt_count8 11784 3609 50000

min_b_elt_bits4_elt_count8 12176 7796 50000

min_n_elt_bits4_elt_count8 12176 7796 50000

(b) Modify and re-run the synthesis script so that it synthesizes the modules with elt_bits set
to 1.

The synthesis program should do a better job on the behavioral and linear models in comparison
to the tree model. Why do you think that is? Hint: The 1-bit minimum module is equivalent to
another common logic component that the synthesis program can handle well. Note: the phrase
about the tree model was not in the original assignment.

In the table below we see that with a 1-bit element size all three modules have identical cost and performance.
With a one-bit element size the circuit acts as an AND gate, and this is something the synthesis program can figure

out. Since the synthesis program sees that min n and min b are performing AND operations it can apply the same kind
of tree reduction technique that we incorporated by hand in min t, and so all modules are the same.

3

← → Fall 2015 ← → Homework 2 Homework Solution Sol Code hw02 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw02_sol.pdf

Note that the key insight here is that in the general case the synthesis program could not figure out that the
minimum operation is associative, and so it could not apply a tree reduction. But with the element size set to 1, it
converted minimum to AND, which it did recognize as associative.

Module Name Area Delay Delay

Actual Target

min_t_elt_bits1_elt_count4 288 155 100

min_b_elt_bits1_elt_count4 288 155 100

min_n_elt_bits1_elt_count4 288 155 100

min_t_elt_bits1_elt_count8 912 292 100

min_b_elt_bits1_elt_count8 912 292 100

min_n_elt_bits1_elt_count8 912 292 100

4

← → Fall 2015 ← → Homework 2 Homework Solution Sol Code hw02 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw02_sol.pdf

//

//

/// LSU EE 4755 Fall 2015 Homework 2 -- SOLUTION
//

 /// Assignment http://www.ece.lsu.edu/koppel/v/2015/hw02.pdf
 /// Solution http://www.ece.lsu.edu/koppel/v/2015/hw02_sol.pdf

 /// Instructions:
 //

 // (1) Find the undergraduate workstation laboratory, room 126 EE

 // Building.

 //

 // (2) Locate your account. If you did not get an account please

 // E-mail: koppel@ece.lsu.edu

 //

 // (3) Log in to a Linux workstation.

 // The account should start up with a WIMP interface (windows, icons,

 // mouse, pull-down menus) (:-)) but one or two things need

 // to be done from a command-line shell. If you need to brush up

 // on Unix commands follow http://www.ece.lsu.edu/koppel/v/4ltrwrd/.

 //

 // (4) If you haven't already, follow the account setup instructions here:

 // http://www.ece.lsu.edu/koppel/v/proc.html

 //

 // (5) Copy this assignment, local path name

 // /home/faculty/koppel/pub/ee4755/hw/2015f/hw02

 // to a directory ~/hw02 in your class account. (~ is your home

 // directory.) Use this file for your solution.

 //

 // (6) Find the problems in this file and solve them.

 //

 // Your entire solution should be in this file.

 //

 // Do not change module names.

 //

 // (7) Your solution will automatically be copied from your account by

 // the TA-bot.

 /// Additional Resources
 //

 // Verilog Documentation

 // The Verilog Standard

 // http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

 // Introductory Treatment (Warning: Does not include SystemVerilog)

 // Brown & Vranesic, Fundamentals of Digital Logic with Verilog, 3rd Ed.

 //

 // Account Setup and Emacs (Text Editor) Instructions

 // http://www.ece.lsu.edu/koppel/v/proc.html

 // To learn Emacs look for Emacs tutorial.

 //

 // Unix Help

 // http://www.ece.lsu.edu/koppel/v/4ltrwrd/

// `default_nettype none

//

/// Problem 0
//

 /// Minimum Modules
//

← → Fall 2015 ← → Homework 2 Homework Solution Sol Code hw02-sol.v.html

http://www.ece.lsu.edu/koppel/v/2015/hw02.pdf
http://www.ece.lsu.edu/koppel/v/2015/hw02_sol.pdf
http://www.ece.lsu.edu/koppel/v/4ltrwrd/
http://www.ece.lsu.edu/koppel/v/proc.html
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
http://www.ece.lsu.edu/koppel/v/proc.html
http://www.ece.lsu.edu/koppel/v/4ltrwrd/
https://www.ece.lsu.edu/ee4755/2015/hw02-sol.v.html

// Look over the code below.

// There is nothing to turn in for this problem.

//

 /// Behavioral elt_count-input Minimum Module
//

module min_b
 #(int elt_bits = 4,

 int elt_count = 8)

 (output logic [elt_bits-1:0] elt_min,

 input uwire [elt_bits-1:0] elts[elt_count]);

 always @* begin

 elt_min = elts[0];

 for (int i=1; i<elt_count; i++)

 if (elts[i] < elt_min) elt_min = elts[i];

 end

endmodule

 /// Implicit Structural 2-Input Minimum Module
//

module min_2
 #(int elt_bits = 4)

 (output uwire [elt_bits-1:0] elt_min,

 input uwire [elt_bits-1:0] elt_0,

 input uwire [elt_bits-1:0] elt_1);

 assign elt_min = elt_0 < elt_1 ? elt_0 : elt_1;

endmodule

 /// Explicit Structural 4-Input Minimum Module
//

module min_4
 #(int elt_bits = 4)

 (output uwire [elt_bits-1:0] elt_min,

 input uwire [elt_bits-1:0] elts [4]);

 uwire [elt_bits-1:0] im1, im2;

 min_2 #(elt_bits) m1(im1, elts[0], elts[1]);

 min_2 #(elt_bits) m2(im2, elts[2], elts[3]);

 min_2 #(elt_bits) m3(elt_min, im1, im2);

endmodule

//

/// Problem 1 -- SOLUTION
//

 /// Linear Generate minimum module.
//

// Complete the module.

//

// [✔] Use a generate loop.

// [✔] The code must be synthesizable.

// [✔] Make sure that the testbench does not report errors.

module min_n
 #(int elt_bits = 4,

← → Fall 2015 ← → Homework 2 Homework Solution Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw02-sol.v.html

 int elt_count = 8)

 (output uwire [elt_bits-1:0] elt_min,

 input uwire [elt_bits-1:0] elts [elt_count]);

 /// SOLUTION

 // Declare wires to interconnect the instances of min_2 instantiated

 // in the genvar loop.

 //

 uwire [elt_bits-1:0] im[elt_count:0]; // im: Inter-Module

 assign im[0] = elts[0];

 // Instantiate elt_count-1 min_2 modules. The inputs of the first

 // module (i=1) connect to elt[0] and elt[1]. Subsequent modules

 // connect to an elt and the module instantiated in the previous

 // iteration.

 //

 for (genvar i = 1; i < elt_count; i++)

 min_2 #(elt_bits) m(im[i], elts[i], im[i-1]);

 // Connect the output of the last instance to the module output.

 //

 assign elt_min = im[elt_count-1];

endmodule

//

/// Problem 2
//

 /// Tree Generate minimum module.
//

// Complete the module.

//

// [✔] Use recursion: the module should instantiate itself or a min_2.

// [✔] The code must be synthesizable.

// [✔] Make sure that the testbench does not report errors.

module min_t
 #(int elt_bits = 4,

 int elt_count = 8)

 (output uwire [elt_bits-1:0] elt_min,

 input [elt_bits-1:0] elts [elt_count-1:0]);

 /// SOLUTION

 if (elt_count == 1) begin

 // Recursion ends here with one elt. Of course, it is the

 // minimum. (And the maximum, and the average, and the median.)

 //

 assign elt_min = elts[0];

 end else begin

 // If there are at least two elements instantiate two smaller

 // modules.

 // Compute the number of elements to be handled by each

 // module. (Note that elt_count can be odd, which is why we need

 // a separate elt_hi and elt_lo.)

 //

 localparam int elt_hi = elt_count / 2;

← → Fall 2015 ← → Homework 2 Homework Solution Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw02-sol.v.html

 localparam int elt_lo = elt_count - elt_hi;

 // Wires for interconnection of modules.

 uwire [elt_bits-1:0] minl, minh;

 // Recursively declare two modules.

 //

 min_t #(elt_bits,elt_hi) mhi(minl,elts[elt_count-1:elt_lo]);

 min_t #(elt_bits,elt_lo) mlo(minh,elts[elt_lo-1:0]);

 // Combine the output of the two modules above.

 //

 min_2 #(elt_bits) m2(elt_min,minl,minh);

 end

endmodule

//

/// Testbench Code
//

// The code below instantiates some of the modules above,

// provides test inputs, and verifies the outputs.

//

// The testbench may be modified to facilitate your solution. Of

// course, the removal of tests which your module fails is not a

// method of fixing a broken module. (The idea is to put in tests

// which make it easier to determine what the problem is, for

// example, test inputs that are all 0's or all 1's.)

// cadence translate_off

module testbench;

 testbench_sz #(1,4) t0();

 testbench_sz #(4,4) t1();

 testbench_sz #(8,32) t2();

 testbench_sz #(7,17) t3();

endmodule

module testbench_sz
 #(int elt_bits = 8,

 int elt_count = 80);

 localparam int mut_cnt_max = 5;

 logic [elt_bits-1:0] elts[elt_count];

 uwire [elt_bits-1:0] elt_m[mut_cnt_max];

 struct { int err_cnt = 0; int idx; } md[string];

 min_b #(elt_bits,elt_count) m0(elt_m[0],elts);

 min_n #(elt_bits,elt_count) m1(elt_m[1],elts);

 if (elt_count == 4)

 min_4 #(elt_bits) m2(elt_m[2],elts);

 min_t #(elt_bits,elt_count) m3(elt_m[3],elts);

 localparam int num_tests = 10000;

 initial begin

← → Fall 2015 ← → Homework 2 Homework Solution Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw02-sol.v.html

 md["Linear Generate"].idx = 1;

 md["Tree Generate"].idx = 3;

 if (elt_count == 4)

 md["Four-Element"].idx = 2;

 for (int i=0; i<num_tests; i++) begin

 for (int j=0; j<elt_count; j++) elts[j] = $random();

 #1;

 foreach (md[mut]) begin

 if (elt_m[0] !== elt_m[md[mut].idx]) begin

 md[mut].err_cnt++;

 if (md[mut].err_cnt < 5)

 $write("Error test %0d for %s, 0x%x != 0x%x (correct)\n",

 i, mut, elt_m[md[mut].idx], elt_m[0]);

 end

 end

 end

 foreach (md[mut])

 $write("Tests completed for %s at %0d x %0d, error count %0d\n",

 mut, elt_bits, elt_count, md[mut].err_cnt);

 end

endmodule

// cadence translate_on

← → Fall 2015 ← → Homework 2 Homework Solution Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw02-sol.v.html

LSU EE 4755 Homework 3 Solution Due: 7 October 2015

Problem 1: Solve EE 4755 Fall 2014 Midterm Exam Problem 4 and Problem 5. The solutions
are available, but please make an honest effort to solve them on your own.

See the posted solutions at http://www.ece.lsu.edu/koppel/v/2014/mt_sol.pdf.

Problem 2: The homework Verilog file, hw04.v contains two versions of the sequential shifter
used in class, those modules are also reproduced below. Module shift_lt_seq_d_live, is based
on the version written during class and module shift_lt_seq_d is the one prepared in advance.
Though both work correctly their timing is not identical.

(a) Show the hardware that might be synthesized for each module using the default parameters.
Include reasonable optimizations, the initially inferred hardware can be omitted. This should be a
human-to-human diagram, don’t show the output of a synthesis program.

Note: In the original assignment the parameters for the shift lt seq d live module were not
set as intended, that has been corrected in this version of the homework assignment. Both solutions
appear below, they are referred to as the original and intended module. In the intended assignment
(this one) both modules have the same parameters, in the original assignment the live module had
just one shifter and could shift more bits.

1

← → Fall 2015 ← → Homework 3 Homework Solution hw03 sol.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/2014/mt_sol.pdf
https://www.ece.lsu.edu/ee4755/2015/hw03_sol.pdf

The hardware appears below. In shift lt seq d live the initially inferred multiplexors at the inputs to the
ready and shift registers have been replaced by logic gates. The logic computing the next state of ready includes
the old value of ready. The old value of ready isn’t really needed, but it’s shown because it is probably what the
synthesis program would have included.

clk

start

r
e
a
d
y

amt

u
n
s
h
ifte

d
s
h
if
te
d

cnt[1]

shift_�xed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
if
te
d

cnt[0]

s
h
ift

shift_�xed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
ift

decr
x>0

x-1

3:2

1:0

shift_lt_seq_d wid_lg=4, num_shifters=2

i=1i=0

wid_lg=4,

amt=1

wid_lg=4,

amt=4

x

decr
x>0

x-1

x

2

← → Fall 2015 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw03_sol.pdf

The intended live module appears below:

clk

start r
e
a
d
y

amt

u
n
s
h
ifte

d
s
h
if
te
d

cnt[0]

shift_fixed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
if
te
d

s
h
ift

decr x=0

x-1

shift_lt_seq_d_live wid_lg=4, num_shifters=2

i=0

wid_lg=4,

amt=1

x

shift[0]

cnt[1]

decr x=0

x-1x

shift[1]

shift_fixed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
ift

i=1

wid_lg=4,

amt=4

3:2

1:0

3

← → Fall 2015 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw03_sol.pdf

The original live module appears below:

clk

start r
e
a
d
y

amt

u
n
s
h
ifte

d
s
h
if
te
d

cnt[0]

shift_fixed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
if
te
d

s
h
ift

decr x=0

x-1

shift_lt_seq_d_live wid_lg=6, num_shifters=1

i=0

wid_lg=6,

amt=1

x

shift[0]

(b) The two modules differ in their timing. Using your hardware diagrams explain any differences
in:

• The register-to-register delay within the module.

• How far in advance of the positive edge module inputs must become stable.

• How long after the positive edge module outputs will be available.

As with the previous part, this should be done by hand though synthesis tools can be used to
help solve the problem.

An answer might look like this: “For register-to-register delay Module A is slower because its
critical path has two multipliers, whereas in module B the two multiplications are split between
cycles and so at most one multiplier is on the critical path. In module A inputs connect directly to
a divider, and so they must arrive long before the positive edge, whereas in module B inputs can
arrive just before the positive edge because” Of course, this question does not have a module A
or B, nor does it really have multipliers and dividers.

The following timing will be assumed when comparing the modules. Multiplexor delay is two gate delays from either
the select or data inputs. For a two-bit decrementor the x=0, x>0, and x-1 outputs are all 1 gate delay (draw a truth
table). A six-bit decrementor is assumed to take two gate delays to compute x=0 and 6 gate delays to compute x-1.
Since it’s essentially a multiplexor the shift fixed modules take two gate delays regardless of the shift amount.

4

← → Fall 2015 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw03_sol.pdf

An important difference between the live and prepared module, is that the in the live module the shift input to
shift fixed comes from a register output, and so it will be available at the beginning of a the clock cycle. In the
prepared module the shift input is generated by checking if a portion of cnt is zero, the check adds a small delay.
Though this may sound like a small advantage for the live module, but it may not be because it doesn’t use the shift
signal until the next clock cycle and so it takes one clock cycle longer to perform the shift. If wid lg/num shifters

is large than the extra clock cycle will be a small fraction of the total time and so the live module would be better. If the
ratio is small the extra clock cycle will make things slower.

For the assigned problem, in which shift lt seq d live has 1 shifter, the register-to-register critical path in
the live module is 10 gate delays, assuming 6 gate delays for the 6-bit subtract. The prepared module, shift lt seq d,
module has a critical path of 7 delays. Thus, the live module can have a higher clock frequency—that’s the good news—but

it will take 26

24/2−1
= 21.33 times as many cycles to perform the largest shift.

A concise answer to the assigned problem might be: the register-to-register delay in the live module is much longer
because it must decrement a much larger number, six versus two bits. This overcomes any benefit of having one shifter,
versus two in the prepared module.

In the intended problem the live module has the same parameters as the prepared module, including two shifters. In
that case the critical path is 6 gate delays, 1 gate delay faster than the prepared module. But because it takes one cycle
longer the benefit in clock frequency would not be large enough to overcome the disadvantage of requiring one more clock
cycle, at least not for the default parameters.

The two modules have equivalent input setup times, two gate delays. So for both, the inputs can arrive near the
end of the clock cycle.

In the live module the outputs are available at the beginning of the clock cycle. In the prepared module the ready
signal is generated using an AND gate connected to the decrementors. Based on the analysis above, the prepared module’s
ready output is not available until two gate delays after the clock edge.

Modules on next page.

5

← → Fall 2015 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw03_sol.pdf

module shift_lt_seq_d_live

#(int wid_lg = 4, // In original assignment, 6

int num_shifters = 2, // In original assignment, 1.

int wid = 1 << wid_lg)

(output logic [wid-1:0] shifted,

output logic ready,

input [wid-1:0] unshifted,

input [wid_lg-1:0] amt,

input start,

input clk);

localparam int bits_per_seg = wid_lg / num_shifters;

logic [num_shifters-1:0] shift;

wire [wid-1:0] shin[num_shifters-1:-1];

assign shin[-1] = shifted;

for (genvar i=0; i<num_shifters; i++) begin

localparam int fs_amt = 2 ** (i * bits_per_seg);

shift_fixed #(wid_lg, fs_amt) sf(shin[i], shin[i-1], shift[i]);

end

logic [num_shifters-1:0][bits_per_seg-1:0] cnt;

always_ff @(posedge clk) begin

if (start == 1) begin

ready = 0;

cnt = amt;

shift = 0;

shifted = unshifted;

end else begin

if (cnt == 0) ready = 1;

for (int i=0; i<num_shifters; i++) begin

shift[i] = cnt[i] > 0;

if (cnt[i] != 0) cnt[i]--;

end

shifted = shin[num_shifters-1];

end

end

endmodule

Another module on next page.

6

← → Fall 2015 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw03_sol.pdf

module shift_lt_seq_d

#(int wid_lg = 4,

int num_shifters = 2,

int wid = 1 << wid_lg)

(output logic [wid-1:0] shifted,

output wire ready,

input [wid-1:0] unshifted,

input [wid_lg-1:0] amt,

input start,

input clk);

localparam int cnt_bits = (wid_lg + num_shifters - 1) / num_shifters;

logic [num_shifters-1:0][cnt_bits-1:0] cnt;

wire [wid-1:0] inter_sh[num_shifters-1:-1];

assign inter_sh[-1] = shifted;

for (genvar i = 0; i < num_shifters; i++) begin

localparam int shift_amt = 1 << i * cnt_bits;

wire shift = cnt[i] != 0;

shift_fixed #(wid_lg,shift_amt) sf(inter_sh[i], inter_sh[i-1], shift);

end

always_ff @(posedge clk)

if (start == 1) begin

shifted = unshifted;

cnt = amt;

end else if (cnt > 0) begin

shifted = inter_sh[num_shifters-1];

for (int i=0; i<num_shifters; i++) if (cnt[i]) cnt[i]--;

end

assign ready = cnt == 0;

endmodule

7

← → Fall 2015 ← → Homework 3 Homework Solution hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw03_sol.pdf

LSU EE 4755 Homework 4 Solution Due: 12 October 2015

Problem 0: Follow the instructions for account setup and homework workflow on the course
procedures page, http://www.ece.lsu.edu/koppel/v/proc.html. Run the testbench on the un-
modified file. There should be errors on the shift_lt_seq_d_sol module, but the others should
run correctly. Run the Note: There are no points for this problem.

Problem 1: The homework Verilog file, hw04.v, contains a module shift_lt_seq_d_sol which
is based on shift_lt_seq_d. It contains an always_ff block that assigns the same variables that
are assigned in shift_lt_seq_d, however it assigns them from variables of the same name with
next_ prefixed:

always_ff @(posedge clk) begin

ready = next_ready;

shifted = next_shifted;

shift = next_shift;

cnt = next_cnt;

end

Add code so that these next_ objects will be assigned values from combinational logic, and
so that the resulting module describes the same hardware as shift_lt_seq_d. A hand-drawn
diagram of synthesized hardware should be identical, though it’s possible that there will be small
differences in the actual output of a synthesis program.

The added code can be implicit structural or behavioral, but it must synthesize to combina-
tional logic.

The simplest approach is to start with the always ff block from module shift lt seq d. Change the always
type to always comb and rename some of the objects that are to synthesize to registers, namely ready, shifted,
shift, and cnt.

If an assignment is made to any of these in the always comb block, the assignment must be changed to write
the next version. For example change cnt=amt; to next cnt=amt;. The right-hand side of an assignment should
only use the next version of a variable if it was assigned earlier in the block. For example, next shift in the excerpt
from the solution below:

next_shift[i] = cnt[i] > 0;

next_cnt[i] = next_shift[i] ? cnt[i] - 1 : cnt[i];

The code also has to be modified so that each of the next variables is assigned at least once no matter what
path is taken through the always comb block. That is, they must be assigned for every possible outcome of the if
statements. That’s why there is no if statement in the assignment to next cnt above. (That is, the following would
be wrong: if(next shift[i])next cnt[i]=cnt[i]-1). (If a variable is not always assigned then its value will
come from the output of a latch, rather than from combinational logic.)

The solution uses both continuous assign statements and an always comb block. The complete solution appears
below:

module shift_lt_seq_d_sol

#(int wid_lg = 4, int num_shifters = 2, int wid = 1 << wid_lg)

(output logic [wid-1:0] shifted, output logic ready,

input [wid-1:0] unshifted, input [wid_lg-1:0] amt,

input start, input clk);

logic [num_shifters-1:0] shift;

1

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2015/hw04_sol.pdf

wire [wid-1:0] shin[num_shifters-1:-1];

localparam int bits_per_seg = wid_lg / num_shifters;

for (genvar i=0; i<num_shifters; i++) begin

localparam int fs_amt = 2 ** (i * bits_per_seg);

shift_fixed #(wid_lg, fs_amt) sf(shin[i], shin[i-1], shift[i]);

end

assign shin[-1] = shifted;

logic [num_shifters-1:0][bits_per_seg-1:0] cnt;

logic [wid-1:0] next_shifted;

logic next_ready;

logic [num_shifters-1:0] next_shift;

logic [num_shifters-1:0][bits_per_seg-1:0] next_cnt;

always_comb begin

if (start == 1) begin

next_cnt = amt;

next_shift = 0;

end else begin

for (int i=0; i<num_shifters; i++) begin

next_shift[i] = cnt[i] > 0;

// Note that next_cnt is always assigned, this avoids latches.

next_cnt[i] = next_shift[i] ? cnt[i] - 1 : cnt[i];

end

end

end

// Use a continuous assignment for next_ready and next_shifted.

assign next_ready = start ? 0 : cnt == 0 ? 1 : ready;

assign next_shifted = start ? unshifted : shin[num_shifters-1];

always_ff @(posedge clk) begin

shifted = next_shifted;

ready = next_ready;

shift = next_shift;

cnt = next_cnt;

end

endmodule

Problem 2: Module shift_lt_seq_d_live takes one more cycle to produce a result than module
shift_lt_seq_d. Module shift_lt_seq_d_p2 initially is identical to shift_lt_seq_d_live.

(a) Modify shift_lt_seq_d_p2 so that it uses one less cycle to produce a result without changing
the number of shifters per stage. There are two possible ways of doing this, performing some work
in the same cycle that the start signal arrives, or doing work in the cycle when ready is set to 1.
Either method is fine.

2

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw04_sol.pdf

The original module, shift lt seq d live, does not start to shift until the cycle after start is set to 1. In
the solution the logic generating the shift signal is moved so that it operates at every cycle. That was done by moving
the i loop out of the if/else block, the logic generating the ready signal was also moved.

By doing this we are requiring start and amt to arrive early in the cycle. Before the change they could arrive late
in the cycle.

module shift_lt_seq_d_p2

#(int wid_lg = 6, int num_shifters = 1, int wid = 1 << wid_lg)

(output logic [wid-1:0] shifted, output logic ready,

input [wid-1:0] unshifted, input [wid_lg-1:0] amt,

input start, input clk);

localparam int bits_per_seg = wid_lg / num_shifters;

logic [num_shifters-1:0] shift;

wire [wid-1:0] shin[num_shifters-1:-1];

assign shin[-1] = shifted;

for (genvar i=0; i<num_shifters; i++) begin

localparam int fs_amt = 2 ** (i * bits_per_seg);

shift_fixed #(wid_lg, fs_amt) sf(shin[i], shin[i-1], shift[i]);

end

logic [num_shifters-1:0][bits_per_seg-1:0] cnt;

always_ff @(posedge clk) begin

if (start == 1) begin

ready = 0;

cnt = amt;

shifted = unshifted;

end else begin

shifted = shin[num_shifters-1];

end

if (cnt == 0) ready = 1;

for (int i=0; i<num_shifters; i++) begin

shift[i] = cnt[i] > 0;

if (cnt[i] != 0) cnt[i]--;

end

end

endmodule

(b) Run syn.tcl and compare the cost and performance of your design and shift_lt_seq_d_live.
Comment on the differences. An answer might start “The cost was about the same because the same
hardware was used...”.

A table showing area (cost) and timing as reported by the synthesis program appears below. That’s followed by a
sketch of our guess of the synthesized hardware for each module, along with a timing analysis. These expectations are
compared with the output of the synthesis program.

3

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw04_sol.pdf

Module Name Area Delay Delay

Actual Target

shift_lt_seq_d_live_wid_lg6_num_shifters1 68368 1253 100

shift_lt_seq_d_p2_wid_lg6_num_shifters1 68428 1229 100

shift_lt_seq_d_live_wid_lg6_num_shifters2 77528 1355 100

shift_lt_seq_d_p2_wid_lg6_num_shifters2 78700 1348 100

shift_lt_seq_d_live_wid_lg6_num_shifters3 96648 1527 100

shift_lt_seq_d_p2_wid_lg6_num_shifters3 95820 1539 100

shift_lt_seq_d_live_wid_lg6_num_shifters6 143412 2002 100

shift_lt_seq_d_p2_wid_lg6_num_shifters6 142380 2007 100

clk

start r
e
a
d
y

amt

u
n
s
h
ifte

d

s
h
if
te
d

cnt[0]

shift_�xed

sf

s
h
if
te
d

u
n
s
h
ifte

d

s
h
if
te
d

s
h
ift

decr x=0

x-1

shift_lt_seq_d_live wid_lg=6, num_shifters=2

i=0

wid_lg=6,

amt=1

x

shift[0]

cnt[1]

decr x=0

x-1x

shift[1]

shift_�xed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
ift

i=1

wid_lg=6,

amt=8

3:2

1:0

t=0

3

2

4
6

t=0

3 4 5

5
7

t=0

2

3

clk

start r
e
a
d
y

amt

u
n
s
h
ifte

d

s
h
if
te
d

cnt[0]

shift_fixed

sf

s
h
if
te
d

u
n
s
h
ifte

d

s
h
if
te
d

s
h
ift

decr x=0

x-1

shift_lt_seq_d_p2 wid_lg=6, num_shifters=2

i=0

wid_lg=6,

amt=1

x

shift[0]

cnt[1]

decr x=0

x-1x

shift[1]

shift_fixed

sf

s
h
if
te
d

u
n
s
h
ifte

d
s
h
ift

i=1

wid_lg=6,

amt=8

3:2

1:0

t=0t=0

2

4
5

6

7
75

t=0

2 4
6

5

To determine the expected area and timing differences between the two modules examine the sketches of the expected
synthesized hardware for the two modules, which appears above. The change that enables us to save a cycle is moving
the mux that selects a new value of amt from the input of cnt to the input of the decrement unit. That lets the shifter
get started one cycle earlier.

Notice that by moving the hardware to compute cnt and shift out of the loop we are simplifying the logic at the
input to those registers because they no longer have to check start. For this reason we would expect the cost to be
slightly lower. The costs reported by the synthesis program are close and show no consistent pattern.

The sketches of the expected hardware include a simple timing analysis. The timing analysis is based on an assumed
delay of two units for a mux, ⌈lg n⌉ units for an n-input gate and a delay of 3 for a 3-bit decrementor.

Based on this analysis the changes in the p2 module don’t affect the path that ends in the shifted register, that’s
the same 6 units in both cases.

Moving the amt mux from cnt to the decrementer inputs does not change the critical path. The move does delay the
shift and ready signals by one or two units, but since they are not critical it doesn’t matter. When num shifters

is 1 the path ending at cnt remains critical so moving the mux doesn’t change anything. When num shifters is
larger the path ending at shifted is critical so moving the mux has no impact.

4

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw04_sol.pdf

Based on this analysis we would not expect a change in the clock period. The output of the synthesis program shows
only small changes.

The fact that the clock period is about the same is good news for us since one less clock cycle is needed. If the
changes increased the clock period we may not actually get higher performance.

5

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw04_sol.pdf

//
//
/// LSU EE 4755 Fall 2015 Homework 4
//
 /// SOLUTION

 /// Assignment http://www.ece.lsu.edu/koppel/v/2015/hw04.pdf

 /// Solution discussion http://www.ece.lsu.edu/koppel/v/2015/hw04_sol.pdf

 /// Instructions:

 //
 // (1) Find the undergraduate workstation laboratory, room 126 EE
 // Building.
 //
 // (2) Locate your account. If you did not get an account please
 // E-mail: koppel@ece.lsu.edu
 //
 // (3) Log in to a Linux workstation.
 // The account should start up with a WIMP interface (windows, icons,
 // mouse, pull-down menus) (:-)) but one or two things need
 // to be done from a command-line shell. If you need to brush up
 // on Unix commands follow http://www.ece.lsu.edu/koppel/v/4ltrwrd/.
 //
 // (4) If you haven't already, follow the account setup instructions here:
 // http://www.ece.lsu.edu/koppel/v/proc.html
 //
 // (5) Copy this assignment, local path name
 // /home/faculty/koppel/pub/ee4755/hw/2015f/hw04
 // to a directory ~/hw04 in your class account. (~ is your home
 // directory.) Use this file for your solution.
 //
 // (6) Find the problems in this file and solve them.
 //
 // Your entire solution should be in this file.
 //
 // Do not change module names.
 //
 // (7) Your solution will automatically be copied from your account by
 // the TA-bot.

 /// Additional Resources

 //
 // Verilog Documentation
 // The Verilog Standard
 // http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
 // Introductory Treatment (Warning: Does not include SystemVerilog)
 // Brown & Vranesic, Fundamentals of Digital Logic with Verilog, 3rd Ed.
 //
 // Account Setup and Emacs (Text Editor) Instructions
 // http://www.ece.lsu.edu/koppel/v/proc.html
 // To learn Emacs look for Emacs tutorial.
 //

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

http://www.ece.lsu.edu/koppel/v/2015/hw04.pdf
http://www.ece.lsu.edu/koppel/v/2015/hw04_sol.pdf
http://www.ece.lsu.edu/koppel/v/4ltrwrd/
http://www.ece.lsu.edu/koppel/v/proc.html
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
http://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/ee4755/2015/hw04-sol.v.html

 // Unix Help
 // http://www.ece.lsu.edu/koppel/v/4ltrwrd/

//
/// Problem 0
//
 /// Shift Left Modules

//
// Look over the code below.
// There is nothing to turn in for this problem.
//

`default_nettype none

module shift_�xed
 #(int wid_lg = 4,
 int amt = 1,
 int wid = 1 << wid_lg)
 (output uwire [wid-1:0] shifted,
 input uwire [wid-1:0] unshifted,
 input uwire shift);

 assign shifted = shift ? unshifted << amt : unshifted;

endmodule

module shift_lt_behav
 #(int wid_lg = 4,
 int wid = 1 << wid_lg)
 (output uwire [wid-1:0] shifted,
 input uwire [wid-1:0] unshifted,
 input uwire [wid_lg-1:0] amt);

 assign shifted = unshifted << amt;

endmodule

module shift_lt_comb
 #(int wid_lg = 4,
 int wid = 1 << wid_lg)
 (output uwire [wid-1:0] shifted,
 input uwire [wid-1:0] unshifted,
 input uwire [wid_lg-1:0] amt);

 uwire [wid-1:0] step[wid_lg-1:-1];

 assign step[-1] = unshifted;
 assign shifted = step[wid_lg-1];

 for (genvar i=0; i<wid_lg; i++)
 shift_fixed #(wid_lg,1<<i) sf(step[i], step[i-1], amt[i]);

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

http://www.ece.lsu.edu/koppel/v/4ltrwrd/
https://www.ece.lsu.edu/ee4755/2015/hw04-sol.v.html

endmodule

module shift_lt_seq
 #(int wid_lg = 4,
 int wid = 1 << wid_lg)
 (output logic [wid-1:0] shifted,
 output uwire ready,
 input uwire [wid-1:0] unshifted,
 input uwire [wid_lg-1:0] amt,
 input uwire start,
 input uwire clk);

 logic [wid_lg-1:0] cnt;

 uwire [wid-1:0] sf_out;

 shift_fixed #(wid_lg,1) sf(sf_out, shifted, 1'b1);

 always_ff @(posedge clk) begin

 if (start == 1) begin

 shifted = unshifted;
 cnt = amt;

 end else if (cnt > 0) begin

 shifted = sf_out;
 cnt--;

 end

 end

 assign ready = cnt == 0;

endmodule

module shift_lt_seq_d
 #(int wid_lg = 4,
 int num_shifters = 2,
 int wid = 1 << wid_lg)
 (output logic [wid-1:0] shifted,
 output uwire ready,
 input uwire [wid-1:0] unshifted,
 input uwire [wid_lg-1:0] amt,
 input uwire start,
 input uwire clk);

 localparam int cnt_bits = (wid_lg + num_shifters - 1) / num_shifters;
 logic [num_shifters-1:0][cnt_bits-1:0] cnt;
 uwire [wid-1:0] inter_sh[num_shifters-1:-1];

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw04-sol.v.html

 assign inter_sh[-1] = shifted;

 for (genvar i = 0; i < num_shifters; i++) begin

 localparam int shift_amt = 1 << i * cnt_bits;
 uwire shift = cnt[i] != 0;

 shift_fixed #(wid_lg,shift_amt) sf(inter_sh[i], inter_sh[i-1], shift);

 end

 always_ff @(posedge clk)

 if (start == 1) begin

 shifted = unshifted;
 cnt = amt;

 end else if (cnt > 0) begin

 shifted = inter_sh[num_shifters-1];
 for (int i=0; i<num_shifters; i++) if (cnt[i]) cnt[i]--;

 end

 assign ready = cnt == 0;

endmodule

//
/// Problem 1
//
// Modify shift_lt_seq_d_sol so that it synthesizes to the same
// hardware as shift_lt_seq_d_live (further below).
//
// [✔] Be sure that all code that you add synthesizes to
// combinational logic.
//
// [✔] Make sure that the module runs correctly.
//

module shift_lt_seq_d_sol
 #(int wid_lg = 4,
 int num_shifters = 2,
 int wid = 1 << wid_lg)
 (output logic [wid-1:0] shifted,
 output logic ready,
 input uwire [wid-1:0] unshifted,
 input uwire [wid_lg-1:0] amt,
 input uwire start,
 input uwire clk);

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw04-sol.v.html

 logic [num_shifters-1:0] shift;

 uwire [wid-1:0] shin[num_shifters-1:-1];

 localparam int bits_per_seg = wid_lg / num_shifters;

 for (genvar i=0; i<num_shifters; i++) begin

 localparam int fs_amt = 2 ** (i * bits_per_seg);

 shift_fixed #(wid_lg, fs_amt) sf(shin[i], shin[i-1], shift[i]);

 end

 assign shin[-1] = shifted;

 logic [num_shifters-1:0][bits_per_seg-1:0] cnt;

 logic [wid-1:0] next_shifted;
 logic next_ready;
 logic [num_shifters-1:0] next_shift;
 logic [num_shifters-1:0][bits_per_seg-1:0] next_cnt;

 /// Problem 1: Modify this module, especially around here.

 /// SOLUTION

 //
 // Some logic from shift_lt_seq_d has been placed into the
 // always_comb block and some has been placed in assigns.
 // It would be equally correct to put all of the logic in
 // an always_comb block (or blocks) or to put all of the logic
 // in assign statements. The deciding factor should be on how
 // easy it is to read the code.

 always_comb begin

 if (start == 1) begin

 next_cnt = amt;
 next_shift = 0;

 end else begin

 for (int i=0; i<num_shifters; i++) begin
 next_shift[i] = cnt[i] > 0;

 // Note that next_cnt is always assigned, this avoids latches.
 next_cnt[i] = next_shift[i] ? cnt[i] - 1 : cnt[i];
 end

 end

 end

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw04-sol.v.html

 // Use a continuous assignment for next_ready and next_shifted.
 assign next_ready = start ? 0 : cnt == 0 ? 1 : ready;
 assign next_shifted = start ? unshifted : shin[num_shifters-1];

 always_ff @(posedge clk) begin

 shifted = next_shifted;
 ready = next_ready;
 shift = next_shift;
 cnt = next_cnt;

 end

endmodule

module shift_lt_seq_d_live
 #(int wid_lg = 6,
 int num_shifters = 1,
 int wid = 1 << wid_lg)
 (output logic [wid-1:0] shifted,
 output logic ready,
 input uwire [wid-1:0] unshifted,
 input uwire [wid_lg-1:0] amt,
 input uwire start,
 input uwire clk);

 /// DO NOT modify this module.

 localparam int bits_per_seg = wid_lg / num_shifters;

 logic [num_shifters-1:0] shift;
 uwire [wid-1:0] shin[num_shifters-1:-1];
 assign shin[-1] = shifted;

 for (genvar i=0; i<num_shifters; i++) begin

 localparam int fs_amt = 2 ** (i * bits_per_seg);

 shift_fixed #(wid_lg, fs_amt) sf(shin[i], shin[i-1], shift[i]);

 end

 logic [num_shifters-1:0][bits_per_seg-1:0] cnt;

 always_ff @(posedge clk) begin

 if (start == 1) begin

 ready = 0;
 cnt = amt;
 shift = 0;
 shifted = unshifted;

 end else begin

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw04-sol.v.html

 if (cnt == 0) ready = 1;

 for (int i=0; i<num_shifters; i++) begin
 shift[i] = cnt[i] > 0;
 if (cnt[i] != 0) cnt[i]--;
 end

 shifted = shin[num_shifters-1];

 end

 end

endmodule

//
/// Problem 2
//
// Modify shift_lt_seq_d_p2 so that it uses one less cycle.
//
// [✔] Make sure that the module runs correctly.
// [✔] Don't change the number of shifters per stage.

module shift_lt_seq_d_p2
 #(int wid_lg = 6,
 int num_shifters = 1,
 int wid = 1 << wid_lg)
 (output logic [wid-1:0] shifted,
 output logic ready,
 input uwire [wid-1:0] unshifted,
 input uwire [wid_lg-1:0] amt,
 input uwire start,
 input uwire clk);

 localparam int bits_per_seg = wid_lg / num_shifters;

 logic [num_shifters-1:0] shift;
 uwire [wid-1:0] shin[num_shifters-1:-1];
 assign shin[-1] = shifted;

 for (genvar i=0; i<num_shifters; i++) begin

 localparam int fs_amt = 2 ** (i * bits_per_seg);

 shift_fixed #(wid_lg, fs_amt) sf(shin[i], shin[i-1], shift[i]);

 end

 logic [num_shifters-1:0][bits_per_seg-1:0] cnt;

 always_ff @(posedge clk) begin

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw04-sol.v.html

 if (start == 1) begin

 ready = 0;
 cnt = amt;

 shifted = unshifted;

 end else begin

 shifted = shin[num_shifters-1];

 end

 /// SOLUTION

 //
 // Set shift and update cnt whether or not start==1.
 //

 if (cnt == 0) ready = 1;

 for (int i=0; i<num_shifters; i++) begin
 shift[i] = cnt[i] > 0;
 if (cnt[i] != 0) cnt[i]--;
 end

 end

endmodule

//
/// Testbench Code
//
// The code below instantiates some of the modules above,
// provides test inputs, and verifies the outputs.
//
// The testbench may be modified to facilitate your solution. Of
// course, the removal of tests which your module fails is not a
// method of fixing a broken module. (The idea is to put in tests
// which make it easier to determine what the problem is, for
// example, test inputs that are all 0's or all 1's.)

// cadence translate_off

program reactivate(output uwire clk_reactive, input uwire clk);
 assign clk_reactive = clk;
endprogram

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw04-sol.v.html

module testbench;

 localparam int wid_lg = 6;
 localparam int wid = 1 << wid_lg;

 localparam int max_units = 20;

 logic clk;
 bit done;
 int cycle;

 uwire [wid-1:0] sout[max_units];
 uwire ready[max_units];
 logic [wid-1:0] sin;
 logic [wid_lg-1:0] amt;
 logic start;

 typedef struct { int idx; int err_count = 0; bit seq = 0;
 logic [wid-1:0] sout = 'h111; int cyc_tot = 0; } Info;
 Info pi[string];

 shift_lt_seq_d #(wid_lg,1) my_sld4(sout[4], ready[4], sin, amt, start, clk);
 initial begin
 automatic string m = "Degree 1";
 pi[m].idx = 4; pi[m].seq = 1;
 end

 shift_lt_seq_d #(wid_lg,3) my_sld5(sout[5], ready[5], sin, amt, start, clk);
 initial begin
 automatic string m = "Degree 3";
 pi[m].idx = 5; pi[m].seq = 1;
 end

 shift_lt_seq_d_live #(wid_lg,1) my_sld9(sout[9], ready[9], sin, amt, start, clk);
 initial begin
 automatic string m = "Degree 1 live";
 pi[m].idx = 9; pi[m].seq = 1;
 end

 shift_lt_seq_d_live #(wid_lg,3) my_sld2(sout[2], ready[2], sin, amt, start, clk);
 initial begin
 automatic string m = "Degree 3 live";
 pi[m].idx = 2; pi[m].seq = 1;
 end

 shift_lt_seq_d_sol #(wid_lg,1) my_sld1(sout[1], ready[1], sin, amt, start, clk);
 initial begin
 automatic string m = "Degree 1 sol";
 pi[m].idx = 1; pi[m].seq = 1;
 end

 shift_lt_seq_d_sol #(wid_lg,3) my_sld10(sout[10], ready[10], sin, amt, start, clk);
 initial begin
 automatic string m = "Degree 3 sol";

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw04-sol.v.html

 pi[m].idx = 10; pi[m].seq = 1;
 end

 shift_lt_seq_d_p2 #(wid_lg,1) my_sld3(sout[3], ready[3], sin, amt, start, clk);
 initial begin
 automatic string m = "Degree 1 P2";
 pi[m].idx = 3; pi[m].seq = 1;
 end

 shift_lt_seq_d_p2 #(wid_lg,3) my_sld6(sout[6], ready[6], sin, amt, start, clk);
 initial begin
 automatic string m = "Degree 3 P2";
 pi[m].idx = 6; pi[m].seq = 1;
 end

 localparam int tests_per_sa = 50;
 localparam int num_tests = wid * tests_per_sa;
 localparam int cycle_limit = num_tests * wid * 2;

 uwire clk_reactive;
 reactivate ra(clk_reactive,clk);

 initial begin
 clk = 0;
 cycle = 0;

 fork
 forever #10 cycle += clk++;
 wait(done);
 wait(cycle >= cycle_limit)
 $write("*** Cycle limit exceeded, ending.\n");
 join_any;

 $finish();
 end

 initial begin

 // Number of test inputs (stimuli).
 //
 automatic int test_count = 0;

 done = 0;
 start = 1;

 @(posedge clk_reactive); @(posedge clk_reactive);

 // Provide one test pattern per shift amount.
 //
 for (int i=0; i<num_tests; i++) begin

 automatic int cyc_start = cycle;
 automatic int cyc_timeout = cycle + wid * 2;

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw04-sol.v.html

 logic [wid-1:0] shadow_sout;
 int awaiting;
 automatic logic [wid_lg-1:0] amt_1 = i / tests_per_sa;

 amt = { amt_1[1:0], amt_1[wid_lg-1:2] };

 test_count++;

 for (int p=0; p<wid; p+=32) sin[p+:32] = $random;

 shadow_sout = sin << amt;

 start = 1;
 @(posedge clk_reactive);
 start = 0;

 // Collect output as ready signals go to 1, or immediately
 // for non-sequential modules.
 //
 awaiting = pi.num();
 foreach (pi[muti]) begin
 automatic string mut = muti; // Bug workaround?
 fork begin
 while (pi[mut].seq
 && ready[pi[mut].idx] !== 1
 && cycle < cyc_timeout)
 @(posedge clk_reactive);
 awaiting--;
 pi[mut].sout = sout[pi[mut].idx];
 pi[mut].cyc_tot += cycle - cyc_start;
 end join_none;
 end
 wait (awaiting == 0);

 // Check the output of each Module Under Test.
 //
 foreach (pi[mut])
 if (shadow_sout !== pi[mut].sout) begin
 pi[mut].err_count++;
 if (pi[mut].err_count < 5)
 $write
 ("%-20s wrong result for 0x%0h << %0d: 0x%0h != 0x%0h (correct)\n",
 mut, sin, amt, pi[mut].sout, shadow_sout);
 end

 end

 done = 1;

 foreach (pi[mut])
 $write("Ran %4d tests for %-15s, %4d errors found. Avg cyc %.1f\n",
 test_count, mut, pi[mut].err_count,
 pi[mut].seq ? real'(pi[mut].cyc_tot) / test_count : 1

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw04-sol.v.html

);
 end

endmodule

// cadence translate_on

← → Fall 2015 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2015/hw04-sol.v.html

LSU EE 4755 Homework 5 Solution Due: 23 Oct 2015 17:00

Problem 1: The homework Verilog file, hw05.v, contains something similar to the streamlined
multiplier presented in class, mult_seq_stream, and even more streamlined versions of the multi-
plier, mult_seq_stream_2, and mult_seq_stream_3. These modules are reproduced at the end of
this assignment. For an HTML version visit
http://www.ece.lsu.edu/koppel/v/2015/hw05.v.html. See the 2014 midterm exam for similar
problems.

(a) Show the hardware that will be synthesized for each module for the default parameters. Show
the module after optimization.

The synthesized hardware for each module appears below, and they also appear next to the respective Verilog
descriptions at the end of this assignment. The red numbers show signal arrival times based on the assumptions given in
the sub-problem below. The red wires show the critical path based on this analysis.

A decr unit has been used compute both pos-1 and pos==0, under the assumption that it might be possible to
share some hardware. An enable signal is used on the prod register.

clk

mult_seq_stream wid=16

decr x=0

x-1x

4

6

t=0

2

prod

accum

pos

cand

plier

pp
wid+1

+

1

0

0

wid-1:1

2wid-1:wid

1
0

0:0

wid-1

en

accum

accum

0
wid

msb

lsb

lsb

msb

pos

pos==0

10

2
t=0

t=0

31
41

4

5lg17=25

6

5lg4=10

12
22

1

← → Fall 2015 ← → Homework 5 Homework Solution hw05 sol.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/2015/hw05.v.html
https://www.ece.lsu.edu/ee4755/2015/hw05_sol.pdf

clk

mult_seq_stream_2 wid=16

decr x=0

x-1x

t=0

2

prod

accum

pos

cand

plier

pp

wid

+

1

0

0

wid-1:1

2wid-1:wid

1
0

0:0

wid-1

en

accum

msb

lsb

msb

pos

pos==0

10

2

t=0

27

39

5lg17=25

5lg4=10

12
22

wid

lsb

0
wid+1

1
0

0:0 wid-1:1

29

2 2

2

clk

mult_seq_stream_3 wid=16

decr x=0

x-1x

t=0

2

prod

accum

pos

cand

plier

pp

wid

+

1

0

0

wid-1:1

2wid-1:wid

1
0

0:0

wid-1

en

accum

msb

lsb

msb

pos

pos==0

10

2

t=0

27

39

5lg17=25

5lg4=10

12
22

wid

lsb

0
wid+1

1
0

0:0 wid-1:1

29

2 2

2

29
39

1 lg wid

=
2

2

← → Fall 2015 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw05_sol.pdf

(b) Estimate the clock frequency of each module based on the following latencies:
Latch delay: 10 units. Multiplexor latency: 2 units. Latency of an n-bit adder: 5⌈lgn⌉ units.

Latency of an n-input gate: ⌈lgn⌉ units. Let a unit be equal to 10 ps. Note: The duration of a
unit was not given in the original assignment.

The timing analysis is shown in red on the three modules and the wires carrying the critical path are shown in
red. This timing analysis strictly follows the guidelines above, using a 5⌈lg 17⌉ = 25 unit delay for the big adder.
Realistically, that would be a 16-bit adder with a carry out. Solutions that used 20 rather than 25 units for the adder are
correct.

For mult seq stream the critical path ends at accum with a period of 41 units or 410 ps. That would give a
clock frequency of 1

41 cycles per unit or 2.44GHz.
For mult seq stream 2 and mult seq stream 3 the critical path is 2 units shorter, at 39 units. This is

because the big adder uses the accum signal right out of the register outputs, in contrast to mult seq stream in
which the particular accum to use must be routed through a mux based on a pos==0 select, adding delay. The clock
frequency for these two modules would be 2.56GHz.

(c) Why would module mult_seq_stream_3 provide a result in less time than the other two, even
assuming that the clock frequency for all the modules was the same?

The product is available one cycle earlier because it is written to prod from the output of the big adder rather than
from accum.

3

← → Fall 2015 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw05_sol.pdf

clk

mult_seq_stream wid=16

decr x=0

x-1x

4

6

t=0

2

prod

accum

pos

cand

plier

pp
wid+1

+

1

0

0

wid-1:1

2wid-1:wid

1
0

0:0

wid-1

en

accum

accum

0
wid

msb

lsb

lsb

msb

pos

pos==0

10

2
t=0

t=0

31
41

4

5lg17=25

6

5lg4=10

12
22module mult_seq_stream

#(int wid = 16)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier,

input logic [wid-1:0] cand,

input clk);

localparam int wlog =

$clog2(wid);

logic [wlog-1:0] pos;

logic [2*wid-1:0] accum;

always @(posedge clk) begin

logic [wid:0] pp;

if (pos == 0) begin

prod = accum;

accum = cand;

pos = wid - 1;

end else begin

pos--;

end

// Note: the multiplicand is in the lower bits of the accumulator.

//

pp = accum[0] ? { 1’b0, plier } : 0;

// Add on the partial product and shift the accumulator.

//

accum = { { 1’b0, accum[2*wid-1:wid] } + pp, accum[wid-1:1] };

end

endmodule

4

← → Fall 2015 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw05_sol.pdf

clk

mult_seq_stream_2 wid=16

decr x=0

x-1x

t=0

2

prod

accum

pos

cand

plier

pp

wid

+

1

0

0

wid-1:1

2wid-1:wid

1
0

0:0

wid-1

en

accum

msb

lsb

msb

pos

pos==0

10

2

t=0

27

39

5lg17=25

5lg4=10

12
22

wid

lsb

0
wid+1

1
0

0:0 wid-1:1

29

2 2

2

module mult_seq_stream_2

#(int wid = 16)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier,

input logic [wid-1:0] cand,

input clk);

localparam int wlog =

$clog2(wid);

logic [wlog-1:0] pos;

logic [2*wid-1:0] accum;

always @(posedge clk) begin

if (pos == 0) begin

prod = accum;

accum = { 1’b0, cand[0] ? plier : wid’(0), cand[wid-1:1] };

pos = wid - 1;

end else begin

logic [wid:0] pp;

// Note: the multiplicand is in the lower bits of the accumulator.

//

pp = accum[0] ? plier : 0;

// Add on the partial product and shift the accumulator.

//

accum = { { 1’b0, accum[2*wid-1:wid] } + pp, accum[wid-1:1] };

pos--;

end

end

endmodule

5

← → Fall 2015 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw05_sol.pdf

clk

mult_seq_stream_3 wid=16

decr x=0

x-1x

t=0

2

prod

accum

pos

cand

plier

pp

wid

+

1

0

0

wid-1:1

2wid-1:wid

1
0

0:0

wid-1

en

accum

msb

lsb

msb

pos

pos==0

10

2

t=0

27

39

5lg17=25

5lg4=10

12
22

wid

lsb

0
wid+1

1
0

0:0 wid-1:1

29

2 2

2

29
39

1 lg wid

=
2

module mult_seq_stream_3

#(int wid = 16)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier,

input logic [wid-1:0] cand,

input clk);

localparam int wlog =

$clog2(wid);

logic [wlog-1:0] pos;

logic [2*wid-1:0] accum;

always @(posedge clk) begin

if (pos == 0) begin

accum = { 1’b0, cand[0] ? plier : wid’(0), cand[wid-1:1] };

pos = wid - 1;

end else begin

logic [wid:0] pp;

// Note: the multiplicand is in the lower bits of the accumulator.

//

pp = accum[0] ? plier : 0;

// Add on the partial product and shift the accumulator.

//

accum = { { 1’b0, accum[2*wid-1:wid] } + pp, accum[wid-1:1] };

if (pos == 1) prod = accum;

pos--;

end

end

endmodule

6

← → Fall 2015 ← → Homework 5 Homework Solution hw05 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw05_sol.pdf

LSU EE 4755 Homework 6 Solution Due: 2 December 2015

The solution code has been placed in /home/faculty/koppel/pub/ee4755/hw/2015f/hw06/hw06.v and an htmlized
version is at http://www.ece.lsu.edu/koppel/v/2015/hw06sol.v.html, the original code in htmlized
form can be found at http://www.ece.lsu.edu/koppel/v/2015/hw06.v.html.

Problem 0: The homework Verilog file, hw06.v, contains something similar to the integer com-
pression modules presented in class. (Follow the homework workflow instructions on the course
procedures page to get a copy of the assignment package.) These modules compress an ASCII
character stream by substituting a binary-encoded integer for a string of ASCII digits. These
modules were based on 2014 Homework 4. Feel free to look at that assignment an solution for help.

Module icomp_none is a version of the module that does no compression at all. It does though
implement the handshaking protocol so that characters can be passed from input to output. This
module can be studied to help understand how the others work.

Module icomp_2cyc is one of the compression modules covered in class. It computes the
encoded value in stage 0, and checks for overflow in stage 1. Don’t modify this module, save if for
reference. Module icomp_sol is initially identical to icomp_2cyc, but it should be modified as part
of this assignment.

The testbench is set to simulate icomp_sol on a sample test string. At the end it will report
the amount of compression and whether there was any errors. The testbench also prints out a
trace showing some module inputs and outputs and the status of internal signals. Examine the
testbench code to see how this is done and feel free to modify it to add signals of your own. A more
detailed trace of execution can be obtained using the SimVision gui. To start that use the com-
mand irun hw06.v -gui. See http://www.ece.lsu.edu/koppel/v/v/s/SimVisionIntro.pdf

for documentation. (On campus access only without password.)

The synthesis script will synthesize the modules icomp_2cyc and icomp_sol. Use the synthesis
script to make sure that your designs are synthesizable and to determine their cost and performance.

(There is nothing to turn in for this assignment.)

Problem 1: In module icomp_sol there is a declaration of a variable named val_encode_size_1,
but no uses of that variable. Add code to that module so that val_encode_size_1 is set to the num-
ber of bytes that are needed for the number currently in the register val_encode_1. For example,
if val_encode_1 has a 0, then val_encode_size_1 should be 0. If val_encode_1 has a 123 then
val_encode_size_1 should be 1 (one byte), if val_encode_1 has a 300 then val_encode_size_1

should be 2 (for 2 bytes), etc.
To help with your solution add code to the testbench to show the value of this variable.

The solution appears below. The idea is to check each byte of val encode 1, from least significant to most
significant. If the byte is non-zero tentatively set val encode size 1 to the byte position (starting at one for the
least-significant byte). Note that val encode 1 is declared as a two-dimensional packed array, and so the expression
val encode 1[i] evaluates to the value of byte number i (with 0 being least significant, see the declaration).

logic [max_chars:0][7:0] val_encode_1;

logic [mc_bits:0] val_encode_size_1;

always_comb begin

val_encode_size_1 = 0;

for (int i=0; i<max_chars; i++)

if (val_encode_1[i]) val_encode_size_1 = i + 1;

end

1

← → Fall 2015 ← → Homework 6 Homework Solution hw06 sol.pdf

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/2015/hw06sol.v.html
http://www.ece.lsu.edu/koppel/v/2015/hw06.v.html
http://www.ece.lsu.edu/koppel/v/v/s/SimVisionIntro.pdf
https://www.ece.lsu.edu/ee4755/2015/hw06_sol.pdf

Problem 2: Modify module icomp_sol so that a group of ASCII digits is compressed into the
smallest number of bytes needed, up to max_chars. For example, if max_chars is 4 then just use
one byte to compress 200, two bytes for 4000, and for 1234567890123 use a four-byte integer (for
1234567890) followed by a one byte integer (for 123).

Precede the compressed integer by the character 128 plus the number of bytes in the compressed
number. For example, if the compressed value takes two bytes then where the first character of the
uncompressed value would go emit a 130, then the next two characters should be the compressed
number. (See how char_out is assigned in the unmodified code.)

To solve this problem you’ll need to understand how the existing code works, how to inter-
pret the trace output provided by the simulator, and how to use the SimVision waveform viewer.
Random guesses based on a vague understanding will get you nowhere.

• The module should be written for arbitrary values of max chars.

• Make sure that the testbench is not reporting errors.

• Make sure that your module is compressing the string.

In the original module integers were encoded into max chars bytes. So that the module can now encode integers
into sizes from 1 up to max chars bytes the following must be changed:

Encoding Acceptance: The hardware that decides whether to accept an encoded integer must now compare
the ASCII length (ascii int len) to the actual encoded size (val encode size 1), not to max chars. See
Changed Line below.

wire use_encoding = end_encoding

&& (ascii_int_len > 2) /// Changed Line

&& (!val_wait_full || end_draining);

Tail Changes: The position for writing incoming characters into storage is tail. Ordinarily tail is incremented
each time a character is read. But because an encoded integer takes less space than the ASCII version tail must be
adjusted after the last character of an encoded integer is encountered. In the original code the adjusted tail value is found
by adding the starting point of the ASCII string (tail at enc start 1) to max chars plus a possible overflow
adjustment. In the solution max chars is replaced by val encode size 1. (The overflow adjustment adds an extra
one to the tail because the tail is being updated one cycle late.)

wire [size_lg:1] tail_adj =

tail_at_enc_start_1 + val_encode_size_1 + overflow_1;

Head/Char Out Changes: Module output char out can connect to either storage (where the ASCII
characters are stored), the escape character (a constant value in the original module), or val wait (the encoded integer).
In the original code control logic would connect char out to val wait until max chars characters were read. In
the modified module it connects char out to val wait until val encode size 1 characters were read.

In the original code each element of array esc here was one bit, indicating that the corresponding ASCII character
in storage was the start of an ASCII string that should be replaced by an encoded integer. In the solution each element
of esc here indicates how many bytes are in the encoded integer (a 0 means that an encoded integer does not start
here). The solution excerpt below shows the new declaration for esc here and how esc here gets written:

/// SOLUTION HIGHLIGHTS -- SURROUNDING CODE REMOVED

/// SOLUTION -- Problem 2

// Increase the size of the "escape here" marker from 1 bit to

// mc_bits. Its value now indicates the size of the encoded

2

← → Fall 2015 ← → Homework 6 Homework Solution hw06 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw06_sol.pdf

// integer in bytes.

logic [mc_bits-1:0] esc_here [size];

/// SOLUTION -- Problem 2

//

// Write the size of the encoded integer into the esc_here array.

// (Previously we just wrote a 1, to indicate that an encoded

// integer starts at this position.)

//

always_ff @(posedge clk)

if (use_encoding) esc_here[tail_at_enc_start_1] <= val_encode_size_1;

Head/Char Out Changes continued: The variable drain idx indicates the byte position in val wait

that should be sent to char out. In the original code it was initialized to max chars-1, an elaboration-time constant.
In the solution it is set to esc here[head]-1, see the first excerpt below. The final change is to change the escape
character. In earlier classroom examples the escape character was a constant, Char escape. In this assignment the
escape character should be set to the sum of Char escape and the size of the encoded integer. In the original code,
that’s still a constant because both Char escape and max chars are elaboration-time constants. But in the solution
the encoded size can vary, so we must add the actual encoded size, esc here[head] to Char escape, that appears
in the second excerpt below.

/// SOLUTION -- Problem 2

//

// Initialize drain_idx with one minus the size of

// the encoded integer, rather than max_chars - 1.

//

drain_idx <= start_draining ? esc_here[head] - 1 :

drain_idx > 0 ? drain_idx - 1 :

0;

/// SOLUTION -- Problem 2

//

// When we reach an encoded integer output the escape character

// plus the size of the encoded integer.

//

assign char_out =

start_draining ? Char_escape + esc_here[head] :

draining ? val_wait[drain_idx] :

storage[head];

3

← → Fall 2015 ← → Homework 6 Homework Solution hw06 sol.pdf

https://www.ece.lsu.edu/ee4755/2015/hw06_sol.pdf

22 Fall 2014 Solutions

575

← → Fall 2014 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw01-sol.v.html

//

//

 /// LSU EE 4755 Fall 2014 Homework 1 -- SOLUTION
//

 /// Assignment http://www.ece.lsu.edu/koppel/v/2014/hw01.pdf

`default_nettype none

//

/// Problem 1
//

 /// Logical Right Shift Module 1
//

// The module below performs a logical right shift of a 16-bit

// quantity.

//

// [x] Fix the module, the testbench should not report errors.

// [x] Don't substantially change the way the code works.

// [x] Don't try to make the code synthesizable.

// [x] Don't use shift (<<) or concatenation operators ({}) ..

// .. assign shifted bit-by-bit as the code already does.

// cadence translate_off

module shift_right1
 (output logic [15:0] shifted,

 input wire [15:0] unshifted,

 input wire [3:0] amt);

 /// Problem 1 solution goes in this module.

 localparam int width = 16;

 always @* begin

 automatic int limit = width - amt;

 for (int i=0; i<limit; i++) shifted[i] = unshifted[i+amt];

 /// SOLUTION
 // Just zero the "vacated" bits.

 //

 for (int i=limit; i<width; i++) shifted[i] = 0;

 end

endmodule

// cadence translate_on

//

/// Problem 2
//

 /// Logical Right Shift Module 2
//

// The module below performs a logical right shift of a 16-bit

// quantity.

//

← → Fall 2014 ← → Homework 1 Homework Sol Code hw01-sol.v.html

http://www.ece.lsu.edu/koppel/v/2014/hw01.pdf
https://www.ece.lsu.edu/ee4755/2014/hw01-sol.v.html

// [x] Complete module shift_right2, the testbench should not report errors.

// Perform Two Possible Shifts: by 0 bits or by fsamt bits.

//

module shift_right_fixed
 (output wire [15:0] shifted,

 input wire [15:0] unshifted,

 input wire shift);

 // Problem 2: DON'T modify this module.

 // (Fixed) Shift Amount

 //

 parameter int fsamt = 3;

 // If shift is true shift by fsamt, otherwise don't shift.

 //

 assign shifted = shift ? unshifted >> fsamt : unshifted;

endmodule

module shift_right2
 (output wire [15:0] shifted,

 input wire [15:0] unshifted,

 input wire [3:0] amt);

 /// Problem 2 solution goes in this module.

 /// SOLUTION
 //

 // Declare wires to interconnect the modules.

 //

 uwire [15:0] s8, s4, s2;

 shift_right_fixed #(8) sm8

 (.shifted(s8), .unshifted(unshifted), .shift(amt[3]));

 /// SOLUTION
 //

 // Instantiate three more modules and connect them.

 // Note: You don't have to use named ports.

 shift_right_fixed #(4) sm4 (s4, s8, amt[2]);

 shift_right_fixed #(2) sm2 (s2, s4, amt[1]);

 shift_right_fixed #(1) sm1 (shifted, s2, amt[0]);

endmodule

//

/// Testbench Code
//

// The code below instantiates shift_right1 and shift_right2,

// provides test inputs and verifies the outputs.

//

// The testbench may be modified to facilitate your solution. Of

// course, the removal of tests which your module fails is not

// considered a correct solution. (The idea is to put in tests which

// make it easier to determine what the problem is, for example, test

// inputs that are all 0's or all 1's.)

// cadence translate_off

← → Fall 2014 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw01-sol.v.html

module testbench();

 uwire logic [15:0] sout1, sout2;

 logic [15:0] sin;

 logic [3:0] amt;

 shift_right1 my_sr1(sout1, sin, amt);

 shift_right2 my_sr2(sout2, sin, amt);

 // Width of shifters' input and output.

 // The parameter is used only by this testbench.

 //

 localparam int width = 16;

 //

 // To keep things simple the shifter modules themselves are written

 // with a hardcoded width of 16 bits. That's bad style since

 // changing the width would be tedious and error prone. The

 // hardcoded widths are used in this first homework assignment only

 // to keep things simple. (The shifter modules could have used a

 // parameter to specify the width or a user-defined type.)

 // Provide names for the modules for use in error messages.

 //

 localparam string name[2] = '{"Prob 1", "Prob 2"};

 initial begin

 // Count of errors for each module.

 //

 automatic int err_count[2] = '{0,0};

 //

 // Note: The automatic qualifier is needed so that the initialization

 // could appear on the same line as the declaration.

 // Number of test inputs (stimuli).

 //

 automatic int test_count = 0;

 // Provide one test pattern per shift amount.

 //

 for (int i=0; i<width; i++) begin

 int shadow_sout;

 test_count++;

 sin = $random;

 amt = i;

 shadow_sout = sin >> amt;

 #1;

 // Check the output of each Module Under Test.

 //

 foreach (name[mut]) begin

 automatic logic [15:0] sout = mut == 0 ? sout1 : sout2;

 if (shadow_sout !== sout) begin

 err_count[mut]++;

 if (err_count[mut] < 5)

 $display

 ("MUT %s wrong result for %h >> %d: %h != %h (correct)\n",

 name[mut], sin, amt, sout, shadow_sout);

← → Fall 2014 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw01-sol.v.html

 end

 end

 end

 $display("Ran %d tests, %d, %d errors found.\n",

 test_count, err_count[0], err_count[1]);

 end

endmodule

// cadence translate_on

← → Fall 2014 ← → Homework 1 Homework Sol Code hw01-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw01-sol.v.html

//

//

/// LSU EE 4755 Fall 2014 Homework 2
//

 /// Assignment http://www.ece.lsu.edu/koppel/v/2014f/hw02.pdf

 /// Instructions:
 //

 // (1) Find the undergraduate workstation laboratory, room 126 EE

 // Building.

 //

 // (2) Locate your account. If you did not get an account please

 // E-mail: koppel@ece.lsu.edu

 //

 // (3) Log in to a Linux workstation.

 // The account should start up with a WIMP interface (windows, icons,

 // mouse, pull-down menus) (:-)) but one or two things need

 // to be done from a command-line shell. If you need to brush up

 // on Unix commands follow http://www.ece.lsu.edu/koppel/v/4ltrwrd/.

 //

 // (4) If you haven't already, follow the account setup instructions here:

 // http://www.ece.lsu.edu/koppel/v/proc.html

 //

 // (5) Copy this assignment, local path name

 // /home/faculty/koppel/pub/ee4755/hw/2014f/hw02

 // to a directory ~/hw02 in your class account. (~ is your home

 // directory.) Use this file for your solution.

 //

 // (6) Find the problems in this file and solve them.

 //

 // Your entire solution should be in this file.

 //

 // Do not change module names.

 //

 // (7) Your solution will automatically be copied from your account by

 // the TA-bot.

 /// Additional Resources
 //

 // Verilog Documentation

 // The Verilog Standard

 // http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

 // Introductory Treatment (Warning: Does not include SystemVerilog)

 // Brown & Vranesic, Fundamentals of Digital Logic with Verilog, 3rd Ed.

 //

 // Account Setup and Emacs (Text Editor) Instructions

 // http://www.ece.lsu.edu/koppel/v/proc.html

 // To learn Emacs look for Emacs tutorial.

 //

 // Unix Help

 // http://www.ece.lsu.edu/koppel/v/4ltrwrd/

//

/// Behavioral Multipliers

module mult_behav_1
 #(int wid = 16)

 (output logic[2*wid-1:0] prod, input logic[wid-1:0] plier, cand);

 assign prod = plier * cand;

← → Fall 2014 ← → Homework 2 Homework Sol Code hw02-sol.v.html

http://www.ece.lsu.edu/koppel/v/2014f/hw02.pdf
http://www.ece.lsu.edu/koppel/v/4ltrwrd/
http://www.ece.lsu.edu/koppel/v/proc.html
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
http://www.ece.lsu.edu/koppel/v/proc.html
http://www.ece.lsu.edu/koppel/v/4ltrwrd/
https://www.ece.lsu.edu/ee4755/2014/hw02-sol.v.html

endmodule

module mult_behav_2
 #(int wid = 16)

 (output logic[2*wid-1:0] prod, input logic[wid-1:0] plier, cand);

 always @* begin

 prod = 0;

 for (int i=0; i<wid; i++) if (plier[i]) prod = prod + (cand << i);

 end

endmodule

//

/// Problem 2: Linear Multiplier
 /// Simple Adder, Don't Modify
module good_adder#(int w=16)(output [w:1] s, input [w:1] a,b);
 assign s = a + b;

endmodule

module mult_linear
 #(int wid = 16)

 (output logic[2*wid-1:0] prod, input logic[wid-1:0] plier, cand);

 /// Problem 2 Solution Goes Here.
 // This module should be a structural version of mult_behav_2,

 // using generate statements to instantiate good_adder.

 /// SOLUTION BELOW

 logic [2*wid-1:0] rsum [wid-1:-1];

 logic [2*wid-1:0] pp [wid-1:0];

 assign rsum[-1] = 0;

 for (genvar i=0; i<wid; i++) begin

 assign pp[i] = plier[i] ? cand << i : 0;

 good_adder #(2*wid) adder(rsum[i], rsum[i-1], pp[i]);

 end

 assign prod = rsum[wid-1];

endmodule

//

/// Problem 3: Tree Multiplier

 /// Problem 3 Solutions
 //

 // Several solutions appear below to Problem 3. The easy to

 // understand solution is mult_tree_simple. Module mult_tree is

 // compact (does not require alot of Verilog code). Module

 // mult_tree_rec shows a recursive implementation. Module

 // mult_tree_better uses a cost saving technique.

← → Fall 2014 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw02-sol.v.html

 //

 /// mult_tree
 // This one is the shortest. The tree is constructed using

 // a single loop.

 //

 /// mult_tree_rec
 // A recursive version. The cost and performance will

 // not be very good unless synthesized with option "-effort high"

 // because without that option the synthesis program synthesizes

 // modules without taking into account how they are instantiated.

 // Among other things, that means the synthesis program can't eliminate

 // unused wires.

 //

 /// mult_tree_simple
 // Maybe the easiest to understand. The tree is constructed using

 // two nested loops, the outer loop iterates over tree levels

 // and the inner loop iterates over adders within a level.

 //

 /// mult_tree_better
 // This is like mult_tree_simple, but instead of shifting the

 // multiplicand, the intermediate sums are shifted.

module mult_tree
 #(int wid = 16)

 (output logic[2*wid-1:0] prod, input logic[wid-1:0] plier, cand);

 localparam int widp2 = 1 << $clog2(wid);

 /// SOLUTION BELOW to Problem 3
 //

 // This is one of several solutions to Problem 3.

 logic [2*wid-1:0] rsum [2*wid-1:0];

 localparam int mask = 2*wid-1;

 // Compute partial products.

 //

 for (genvar i=0; i<wid; i++)

 assign rsum[i] = plier[i] ? cand << i : 0;

 // Add partial products together.

 //

 for (genvar i=wid; i<2*wid-1; i++)

 good_adder #(2*wid) adder

 (rsum[i],

 rsum[mask & (i<<1)], // Left child.

 rsum[mask & ((i<<1) + 1)] // Right child.

);

 assign prod = rsum[2*wid-2];

endmodule

module mult_tree_rec
 #(int wid_plier = 16,

 int wid_cand = wid_plier)

 (output logic [2*wid_plier-1:0] prod,

 input logic [wid_plier-1:0] plier,

 input logic [wid_cand-1:0] cand);

 localparam int wid_cr_h = wid_cand / 2;

 localparam int wid_cr_l = wid_cand - wid_cr_h;

 generate

← → Fall 2014 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw02-sol.v.html

 if (wid_cand == 1) begin

 assign prod = cand[0] ? plier : 0;

 end else begin

 wire logic [2*wid_plier-1:0] prod_h, prod_l;

 mult_tree_rec #(wid_plier, wid_cr_h) m_h

 (prod_h, plier, cand[wid_cand-1:wid_cr_l]);

 mult_tree_rec #(wid_plier, wid_cr_l) m_l

 (prod_l, plier, cand[wid_cr_l-1:0]);

 good_adder #(2*wid_plier) adder

 (prod, prod_h << wid_cr_l, prod_l);

 end

 endgenerate

endmodule

module mult_tree_simple
 #(int wid = 16)

 (output logic[2*wid-1:0] prod, input logic[wid-1:0] plier, cand);

 localparam int levels = $clog2(wid);

 logic [2*wid-1:0] rsum [2*wid-1:0][levels:0];

 for (genvar lev=0; lev<levels; lev++) begin

 localparam int siblings = 1 << lev;

 for (genvar i=0; i<siblings; i++)

 good_adder #(2*wid) adder

 (rsum[i][lev],

 rsum[i*2][lev+1],

 rsum[i*2+1][lev+1]);

 end

 for (genvar i=0; i<wid; i++)

 assign rsum[i][levels] = plier[i] ? cand << i : 0;

 assign prod = rsum[0][0];

endmodule

module mult_tree_better
 #(int wid = 16)

 (output logic[2*wid-1:0] prod, input logic[wid-1:0] plier, cand);

 localparam int levels = $clog2(wid);

 logic [2*wid-1:0] rsum [2*wid-1:0][levels:0];

 for (genvar lev=0; lev<levels; lev++) begin

← → Fall 2014 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw02-sol.v.html

 localparam int siblings = 1 << lev;

 localparam int shift = 1 << levels - lev - 1;

 for (genvar i=0; i<siblings; i++)

 good_adder #(2*wid) adder

 (rsum[i][lev],

 rsum[i*2+1][lev+1] << shift,

 rsum[i*2][lev+1]);

 end

 // Notice that the multiplicand is not shifted here.

 //

 for (genvar i=0; i<wid; i++)

 assign rsum[i][levels] = plier[i] ? cand : 0;

 assign prod = rsum[0][0];

endmodule

//

/// Testbench Code
// cadence translate_off

module testbench;

 localparam int wid = 64;

 localparam int num_tests = 1000;

 localparam int NUM_MULT = 7;

 localparam int err_limit = 4;

 logic [wid-1:0] plier, cand;

 logic [2*wid-1:0] prod[NUM_MULT];

 mult_behav_1 #(wid) mb1(prod[0], plier, cand);

 mult_behav_2 #(wid) mb2(prod[1], plier, cand);

 mult_linear #(wid) ms1(prod[2], plier, cand);

 mult_tree #(wid) ms2(prod[3], plier, cand);

 mult_tree_rec #(wid) ms3(prod[4], plier, cand);

 mult_tree_simple #(wid) ms4(prod[5], plier, cand);

 mult_tree_better #(wid) ms5(prod[6], plier, cand);

 string names[] = '{"Behav_1","Behav_2","Linear", "Tree",

 "Tree Rec", "Tree Simple", "Tree Average"};

 int err_cnt[NUM_MULT];

 int tests[$] = {1,1, 1,2, 1,32, 32, 1};

 initial begin

 for (int i=0; i<num_tests; i++) begin

 plier = tests.size() ? tests.pop_front() : $random();

 cand = tests.size() ? tests.pop_front() : $random();

 #1;

 for (int mut=1; mut<NUM_MULT; mut++) begin

 if (prod[0] !== prod[mut]) begin

 err_cnt[mut]++;

← → Fall 2014 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw02-sol.v.html

 if (err_cnt[mut] < err_limit)

 $display("Error in %s test %4d: %d != %d (correct)\n",

 names[mut], i, prod[mut], prod[0]);

 end

 end

 end

 for (int mut=1; mut<NUM_MULT; mut++) begin

 $display("Mut %s, %d errors (%.1f%% of tests)\n",

 names[mut], err_cnt[mut],

 100.0 * err_cnt[mut]/real'(num_tests));

 end

 end

endmodule

// cadence translate_on

← → Fall 2014 ← → Homework 2 Homework Sol Code hw02-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw02-sol.v.html

LSU EE 4755 Homework 3 Solution Due: 24 October 2014

Updated 7 November 2014, 13:49:47 CST

The Homework 3 code package contains a simple behavioral multiplier and several sequential multipliers.
It also contains a synthesis script in file syn.cmd.

Problem 0: Copy the code package from /home/faculty/koppel/pub/ee4755/hw/2014f/hw03. Verify
that everything is working by running the simulation on the unmodified file. It should report a 0% error
rate for all modules.

Problem 1: The module mult_seq_csa is a sequential multiplier that instantiates an adder, however
unlike mult_seq_ga shown in class, mult_seq_csa instantiates a carry-save adder from the Chipware library,
CW_csa. The carry save adder computes the sum of three integers, a, b, and c (those are the port names).
It produces two sums, which we’ll call sum_a and sum_b (the port names for these are carry and sum). All
of these ports are w bits wide, where w is a parameter. The actual sum of a, b, and c is obtained by adding
together outputs sum_a and sum_b using a conventional adder. Carry save adders are used when there many
integers to be added. Some arrangement (linear, tree) of many carry-save adders will produce a sum_a and
sum_b, which will be added by a single conventional (called carry-propagate) adder.

The advantage of a carry save adder is that it can compute a sum of w-bit numbers in O(1) time (the
amount of time is not affected by w), which of course is much better than the O(w) time for a ripple adder
or the O(logw) time for much more expensive carry look-ahead adders. The performance advantage of a
CSA is lost for mult_seq_csa because the module only computes one partial product at a time.

(a) Sketch the hardware that will be synthesized for mult_seq_csa. Show the carry-save adder and other
major units as boxes, but be sure to show registers, multiplexors, and other such components. Do not show
the actual output produced by an actual synthesis program. (It’s okay if you look at a synthesis program’s
output.)

The hardware appears below. In the diagram the critical path is shown in red. Notice that the critical path goes through both
the CSA and conventional adders.

CW_csa

a
c
c
u
m

_
s
u
m

-

_
a
_
re

g

+

+

=

p
o
s

<<

p
ro

d

en

wid-1

1

0

0

0

prod

plier

cand

a
c
c
u
m

_
s
u
m

-

_
b
_
re

g

pp a
c
c
u
m

_
s
u
m

_
a

a
c
c
u
m

_
s
u
m

_
b

csa

cand[pos]

O(1)

O(log w)

(b) Based on this sketch of synthesized hardware, explain why the benefit of using a CSA is lost. Also explain
how the module can be made a little faster (with a small change), but is still not a good way to use a CSA.

1

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03 sol.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2014/hw03_sol.pdf

The clock frequency is based on the (longest) critical path. For the module the critical path is the sum of the delay through
the CSA and carry-propagate (regular) adder. If a carry-propagate adder were used

Problem 2: Module mult_seq_csa_m initially contains the m-partial-products-per-cycle module that we
did in class. In this problem modify it to use CSA’s, and avoid the issue identified in the previous problem.

(a) Modify mult_seq_csa_m so that it uses the carry-save adder to compute m partial products per cycle.
Use generate statements to instantiate the CSA’s, and of course, connect them appropriately. (In class we
used generate statements for the pipelined adder to instantiate stages, that code is in mult_pipe_ia in the
same file as the assignment.)

Solution appears below.

module mult_seq_csa_m #(int wid = 16, int pp_per_cycle = 2)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier, input logic [wid-1:0] cand, input clk);

localparam int iterations = (wid + pp_per_cycle - 1) / pp_per_cycle;

localparam int iter_lg = $clog2(iterations);

localparam int wid_lg = $clog2(wid);

logic [iter_lg:0] iter;

wire [2*wid-1:0] accum_sum_a[0:pp_per_cycle], accum_sum_b[0:pp_per_cycle];

logic [2*wid-1:0] accum_sum_a_reg, accum_sum_b_reg;

initial iter = 0;

assign accum_sum_a[0] = accum_sum_a_reg;

assign accum_sum_b[0] = accum_sum_b_reg;

for (genvar i=0; i<pp_per_cycle; i++) begin

wire [wid_lg:1] pos = iter * pp_per_cycle + i;

wire co; // Unconnected.

// The "pos < wid" below is needed in case wid is not an integer multiple of pp_per_cycle.

wire [2*wid-1:0] pp = pos < wid && cand[pos] ? plier << pos : 0;

CW_csa #(2*wid) csa

(.sum(accum_sum_a[i+1]), .carry(accum_sum_b[i+1]), .co(co),

.a(accum_sum_a[i]), .b(accum_sum_b[i]), .c(pp), .ci(1’b0));

end

always @(posedge clk) if (iter == iterations) begin

prod <= accum_sum_a_reg + accum_sum_b_reg;

accum_sum_a_reg <= 0;

accum_sum_b_reg <= 0;

iter <= 0;

end else begin

accum_sum_a_reg <= accum_sum_a[pp_per_cycle];

accum_sum_b_reg <= accum_sum_b[pp_per_cycle];

iter <= iter + 1;

end

endmodule

(b) Sketch the hardware that you expect to be synthesized for an m = 2 version. Make sure that your design
does not do something foolish with the conventional adder.

2

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2014/hw03_sol.pdf

The hardware appears below. Coloring has been used to emphasize the hardware corresponding to each iteration of the
generate loop (blue and green) and hardware corresponding to Verilog outside of the generate loop (black). Pay close attention to
accum sum a[i] and accum sum b[i]. They are declared outside the generate loop but are used to interconnect items in
different generate loop iterations.

The diagram shows the inferred hardware, before any optimization. Note that the conventional adder (the big box with the
plus) receives its inputs from the outputs of register accum sum a reg and accum sum b reg, rather than the CSA outputs.
This gives the adder the entire clock period to produce its sum.

CW_csa

a
c
c
u
m

_
s
u
m

-

_
a
_
re

g

+

+

=

ite
r

<<

p
ro

d

en

it
e
ra

ti
o
n
s

1

0

0

prod

plier

cand

a
c
c
u
m

_
s
u
m

-

_
b
_
re

g

pp

accum_sum_a[1]

accum_sum_b[1]

csa

O(1)

O(log w)

CW_csa

csa

* +

<

2
 (

p
p
_
p
e
r_

it
e
ra

ti
o
n
)

0
 (

i)

w
id

<<

0 pp

* +

<

1
 (

i)

w
id

2 (pp_per_iteration)

0

genvar i = 0

genvar i = 1

Black, because declared outside of generate block.Colored, because declared inside generate block.

3

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2014/hw03_sol.pdf

Problem 3: Run the synthesis program to compare the cost and performance of mult_seq_csa_m to
mult_seq_m. The synthesis script syn.cmd can be used to synthesize these modules at different sizes. To
run it use the command rc -files syn.cmd. Feel free to modify the script. (It is written in TCL, it should
be easy to find information on this language.)

(a) Show the cost and performance versus m for these modules.
The cost and performance appear below. The first table shows the results using the unmodified synthesis script, in which area

was minimized. The second table shows the results using a synthesis script in which the synthesis program was set to minimize delay.

--------------- Area Optimization ------------------------------------

Module Name Area Clock Total Init.

Period Delay Interv

mult_seq_csa_m_wid16_pp_per_cycle1 110308 14170 226720 226720

mult_seq_csa_m_wid16_pp_per_cycle2 135192 13692 109536 109536

mult_seq_csa_m_wid16_pp_per_cycle4 157668 12828 51312 51312

mult_seq_csa_m_wid16_pp_per_cycle8 195212 11110 22220 22220

mult_seq_m_wid16_pp_per_cycle1 74092 16444 263104 263104

mult_seq_m_wid16_pp_per_cycle2 99884 17470 139760 139760

mult_seq_m_wid16_pp_per_cycle4 112664 16508 66032 66032

mult_seq_m_wid16_pp_per_cycle8 154744 16463 32926 32926

--------------- Delay Optimization -----------------------------------

Module Name Area Clock Total Init.

Period Delay Interv

mult_seq_csa_m_wid16_pp_per_cycle1 164940 2054 32864 32864

mult_seq_csa_m_wid16_pp_per_cycle2 195408 2255 18040 18040

mult_seq_csa_m_wid16_pp_per_cycle4 239340 2756 11024 11024

mult_seq_csa_m_wid16_pp_per_cycle8 316748 4043 8086 8086

mult_seq_m_wid16_pp_per_cycle1 125408 3062 48992 48992

mult_seq_m_wid16_pp_per_cycle2 166488 3368 26944 26944

mult_seq_m_wid16_pp_per_cycle4 202096 3777 15108 15108

mult_seq_m_wid16_pp_per_cycle8 263772 4285 8570 8570

(b) If you solved the previous problem correctly the total delay shown for mult_seq_csa_m should be wrong.
Explain why, and (optional) if you like try modifying syn.cmd to fix it.

The TCL script computes the total delay by multiplying the clock period by w/m. (In the TCL script w/m is computed by
the routine get stages. In that routine variable bits is used for w and deg for m.) The values of m and w used by the script
are chosen so that m always divides w, so the problem has nothing to do with integer truncation errors.

The module designed for the solution to Problem 2 uses an extra cycle to compute the sum, so it takes m/w + 1 cycles, and
the TCL script does not take this into account. (Of course, that would be easy enough to fix.)

(c) Explain how you might expect the total delay (time needed to compute a product) of mult_seq_csa_m
to change with increasing m? Explain your expectation and whether the synthesis results bear that out.

The clock period is determined by either the delay of one carry-propagate (conventional) adder or the delay of m carry-save
adders, whichever is larger. For small values of m the carry-propagate adder would have the larger delay. So, one might expect
that the clock period for the modules with m = 1 and m = 2 would be the same. However, the time needed to compute a
product, T (m), would go from T (1) = (w/1 + 1) tclk ≈ wtclk to T (2) = (w/2 + 1) tclk ≈ w

2 tclk which is nearly half the
time. For these small values of m the clock period tclk = tlatch + tadder, where tlatch is the setup time needed for the registers
and tadder is the time needed for the carry-propagate adder. When m is increased further the clock period time will be more like
tclk = tlatch +mtcsa where tcsa is the delay for one carry-save adder. At that point, further increases in m will not improve total
performance by as much:

T (m) = (w/m + 1) (tlatch + mtcsa)

= (w + 1)tcsa +
(w

m
+ 1

)
tlatch

When the synthesis program is optimizing delay, results are consistent with this analysis: Performance improvement with
increasing m is much better when m is small than when m is large.

4

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03 sol.pdf

https://www.ece.lsu.edu/ee4755/2014/hw03_sol.pdf

//

//

/// LSU EE 4755 Fall 2014 Homework 3
//

 /// SOLUTION

 /// Assignment http://www.ece.lsu.edu/koppel/v/2014/hw03.pdf
 /// Solution http://www.ece.lsu.edu/koppel/v/2014/hw03_sol.pdf

 /// Instructions:
 //

 // (1) Find the undergraduate workstation laboratory, room 126 EE

 // Building.

 //

 // (2) Locate your account. If you did not get an account please

 // E-mail: koppel@ece.lsu.edu

 //

 // (3) Log in to a Linux workstation.

 // The account should start up with a WIMP interface (windows, icons,

 // mouse, pull-down menus) (:-)) but one or two things need

 // to be done from a command-line shell. If you need to brush up

 // on Unix commands follow http://www.ece.lsu.edu/koppel/v/4ltrwrd/.

 //

 // (4) If you haven't already, follow the account setup instructions here:

 // http://www.ece.lsu.edu/koppel/v/proc.html

 //

 // (5) Copy this assignment, local path name

 // /home/faculty/koppel/pub/ee4755/hw/2014f/hw03

 // to a directory ~/hw02 in your class account. (~ is your home

 // directory.) Use this file for your solution.

 //

 // (6) Find the problems in this file and solve them.

 //

 // Your entire solution should be in this file.

 //

 // Do not change module names.

 //

 // (7) Your solution will automatically be copied from your account by

 // the TA-bot.

 /// Additional Resources
 //

 // Verilog Documentation

 // The Verilog Standard

 // http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

 // Introductory Treatment (Warning: Does not include SystemVerilog)

 // Brown & Vranesic, Fundamentals of Digital Logic with Verilog, 3rd Ed.

 //

 // Account Setup and Emacs (Text Editor) Instructions

 // http://www.ece.lsu.edu/koppel/v/proc.html

 // To learn Emacs look for Emacs tutorial.

 //

 // Unix Help

 // http://www.ece.lsu.edu/koppel/v/4ltrwrd/

//

/// Behavioral Multiplier

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03-sol.v.html

http://www.ece.lsu.edu/koppel/v/2014/hw03.pdf
http://www.ece.lsu.edu/koppel/v/2014/hw03_sol.pdf
http://www.ece.lsu.edu/koppel/v/4ltrwrd/
http://www.ece.lsu.edu/koppel/v/proc.html
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
http://www.ece.lsu.edu/koppel/v/proc.html
http://www.ece.lsu.edu/koppel/v/4ltrwrd/
https://www.ece.lsu.edu/ee4755/2014/hw03-sol.v.html

module mult_behav_1
 #(int wid = 16)

 (output logic[2*wid-1:0] prod, input logic[wid-1:0] plier, cand);

 assign prod = plier * cand;

endmodule

//

/// Simple m-Step Sequential Multiplier

module mult_seq_m #(int wid = 16, int pp_per_cycle = 2)

 (output logic [2*wid-1:0] prod,

 input logic [wid-1:0] plier,

 input logic [wid-1:0] cand,

 input clk);

 localparam int iterations = (wid + pp_per_cycle - 1) / pp_per_cycle;

 localparam int iter_lg = $clog2(iterations);

 logic [iter_lg:1] iter;

 logic [2*wid-1:0] accum;

 // cadence translate_off

 initial iter = 0;

 // cadence translate_on

 always @(posedge clk) begin

 if (iter == iter_lg'(iterations)) begin

 prod = accum;

 accum = 0;

 iter = 0;

 end

 for (int i=0; i<pp_per_cycle; i++)

 begin

 int pos; pos = iter * pp_per_cycle + i;

 if (cand[pos]) accum += plier << pos;

 end

 iter++;

 end

endmodule

//

/// An Sequential Multiplier using a Carry-Save Adder

// Examine this module for Problem 1.

// Don't modify the module.

`include "/apps/linux/cadence/RC141/share/synth/lib/chipware/sim/verilog/CW/CW_csa.v"

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw03-sol.v.html

module mult_seq_csa #(int wid = 16)
 (output logic [2*wid-1:0] prod,

 input logic [wid-1:0] plier,

 input logic [wid-1:0] cand,

 input clk);

 localparam int wlog = $clog2(wid);

 logic [wlog-1:0] pos;

 logic [2*wid-1:0] accum_sum_a_reg, accum_sum_b_reg;

 wire co;

 // cadence translate_off

 initial begin pos = 0; accum_sum_a_reg = 0; accum_sum_b_reg = 0; end

 // cadence translate_on

 wire [2*wid-1:0] accum_sum_a, accum_sum_b;

 wire [2*wid-1:0] pp = cand[pos] ? plier << pos : 0;

 CW_csa #(2*wid) csa

 (.carry(accum_sum_a), .sum(accum_sum_b), .co(co),

 .a(accum_sum_a_reg), .b(accum_sum_b_reg), .c(pp), .ci(1'b0));

 always @(posedge clk) pos <= pos + 1;

 always @(posedge clk) begin

 if (pos == wid-1) begin

 prod = accum_sum_a + accum_sum_b;

 accum_sum_a_reg = 0;

 accum_sum_b_reg = 0;

 end else begin

 accum_sum_a_reg = accum_sum_a;

 accum_sum_b_reg = accum_sum_b;

 end

 end

endmodule

//

/// An m-bit Sequential Multiplier using a CSA

 /// Problem 2: Modify this module.

module mult_seq_csa_m #(int wid = 16, int pp_per_cycle = 2)

 (output logic [2*wid-1:0] prod,

 input logic [wid-1:0] plier,

 input logic [wid-1:0] cand,

 input clk);

 /// SOLUTION

 localparam int iterations = (wid + pp_per_cycle - 1) / pp_per_cycle;

 localparam int iter_lg = $clog2(iterations);

 localparam int wid_lg = $clog2(wid);

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw03-sol.v.html

 logic [iter_lg:0] iter;

 // cadence translate_off

 initial iter = 0;

 // cadence translate_on

 wire [2*wid-1:0] accum_sum_a[0:pp_per_cycle], accum_sum_b[0:pp_per_cycle];

 logic [2*wid-1:0] accum_sum_a_reg, accum_sum_b_reg;

 assign accum_sum_a[0] = accum_sum_a_reg;

 assign accum_sum_b[0] = accum_sum_b_reg;

 for (genvar i=0; i<pp_per_cycle; i++) begin

 wire [wid_lg:1] pos = iter * pp_per_cycle + i;

 wire co; // Unconnected.

 wire [2*wid-1:0] pp = pos < wid && cand[pos] ? plier << pos : 0;

 CW_csa #(2*wid) csa

 (.sum(accum_sum_a[i+1]), .carry(accum_sum_b[i+1]), .co(co),

 .a(accum_sum_a[i]), .b(accum_sum_b[i]), .c(pp), .ci(1'b0));

 end

 always @(posedge clk) begin

 if (iter == iterations) begin

 // The commented-out line below shows the wrong way of

 // designing this module.

 //

 // prod = accum_sum_a[pp_per_cycle] + accum_sum_b[pp_per_cycle];

 // Note that the product is computed by using the register

 // outputs, rather than the output of the last CSA.

 //

 prod <= accum_sum_a_reg + accum_sum_b_reg;

 accum_sum_a_reg <= 0;

 accum_sum_b_reg <= 0;

 iter <= 0;

 end else begin

 accum_sum_a_reg <= accum_sum_a[pp_per_cycle];

 accum_sum_b_reg <= accum_sum_b[pp_per_cycle];

 iter <= iter + 1;

 end

 end

endmodule

//

/// Pipelined Multiplier

module mult_pipe #(int wid = 16, int pp_per_stage = 2)
 (output logic [2*wid-1:0] prod,

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw03-sol.v.html

 input logic [wid-1:0] plier,

 input logic [wid-1:0] cand,

 input clk);

 localparam int stages = (wid + pp_per_stage - 1) / pp_per_stage;

 logic [2*wid-1:0] pl_accum[0:stages];

 logic [wid-1:0] pl_plier[0:stages];

 logic [wid-1:0] pl_cand[0:stages];

 always @(posedge clk) begin

 pl_accum[0] = 0;

 pl_plier[0] = plier;

 pl_cand[0] = cand;

 for (int stage=0; stage<stages; stage++) begin

 logic [2*wid-1:0] accum; accum = pl_accum[stage];

 for (int j=0; j<pp_per_stage; j++) begin

 int pos; pos = stage * pp_per_stage + j;

 if (pos < wid && pl_cand[stage][pos])

 accum += pl_plier[stage] << pos;

 end

 pl_accum[stage+1] <= accum;

 pl_cand[stage+1] <= pl_cand[stage];

 pl_plier[stage+1] <= pl_plier[stage];

 end

 end

 assign prod = pl_accum[stages];

endmodule

//

/// Pipelined Multiplier, Instantiated Stages

module mult_pipe_stage #(int wid = 16, int pp_per_stage = 2, int stage = 0)
 (output logic [2*wid-1:0] accum_out,

 input [2*wid-1:0] accum_in,

 input [wid-1:0] plier,

 input [wid-1:0] cand);

 always @* begin

 logic [2*wid-1:0] accum; accum = accum_in;

 for (int j=0; j<pp_per_stage; j++) begin

 int pos; pos = stage * pp_per_stage + j;

 if (pos < wid && cand[pos]) accum += plier << pos;

 end

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw03-sol.v.html

 accum_out = accum;

 end

endmodule

module mult_pipe_ia #(int wid = 16, int pp_per_stage = 2)
 (output logic [2*wid-1:0] prod,

 input logic [wid-1:0] plier,

 input logic [wid-1:0] cand,

 input clk);

 localparam int stages = (wid + pp_per_stage - 1) / pp_per_stage;

 logic [2*wid-1:0] pl_accum[0:stages];

 logic [wid-1:0] pl_plier[0:stages];

 logic [wid-1:0] pl_cand[0:stages];

 always @* begin

 pl_accum[0] = 0;

 pl_plier[0] = plier;

 pl_cand[0] = cand;

 end

 for (genvar stage = 0; stage < stages; stage++) begin

 wire logic [2*wid-1:0] accum;

 mult_pipe_stage_x #(wid, pp_per_stage, stage) this_stage

 (accum, pl_accum[stage], pl_plier[stage], pl_cand[stage]);

 always @(posedge clk) begin

 pl_accum[stage+1] <= accum;

 pl_plier[stage+1] <= pl_plier[stage];

 pl_cand[stage+1] <= pl_cand[stage];

 end

 end

 assign prod = pl_accum[stages];

endmodule

//

/// Testbench Code
// cadence translate_off

module testbench;

 localparam int wid = 16;

 localparam int num_tests = 1000;

 localparam int NUM_MULT = 10;

 localparam int err_limit = 7;

 localparam bit pipeline_test_exact = 1;

 logic clock;

 always #1 clock <= !clock;

 logic [wid-1:0] plier, cand;

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw03-sol.v.html

 logic [wid-1:0] plierp, candp;

 logic [2*wid-1:0] prod[NUM_MULT];

 logic [2*wid-1:0] prodp[NUM_MULT];

 mult_behav_1 #(wid) mb1(prod[0], plier, cand);

 mult_seq_m #(wid,8) ms44(prod[1], plier, cand, clock);

 mult_seq_m #(wid,3) ms43(prod[2], plier, cand, clock);

 mult_seq_csa #(wid) mc(prod[3], plier, cand, clock);

 mult_seq_csa_m #(wid,4) mc4(prod[4], plier, cand, clock);

 mult_seq_csa_m #(wid,1) mc1(prod[5], plier, cand, clock);

 localparam int ppps_2 = 1;

 mult_pipe #(wid,4) mp4(prodp[6], plierp, candp, clock);

 mult_pipe #(wid,ppps_2) mp3(prodp[7], plierp, candp, clock);

 mult_pipe_ia #(wid,4) mpi4(prodp[8], plierp, candp, clock);

 mult_pipe_ia #(wid,ppps_2) mpi3(prodp[9], plierp, candp, clock);

 string names[] = '{"Behav_1",

 "Seq m4",

 "Seq m3",

 "Seq CSA",

 "Seq CSA m4",

 "Seq CSA m1",

 "Pipelined m4",

 "Pipelined m1",

 "Pipelined IA m4",

 "Pipelined IA m1"

 };

 int err_cnt[NUM_MULT];

 // Array of multiplier/multiplicand values to try out.

 // After these values are used a random number generator will be used.

 //

 int tests[$] = {1,1, 1,2, 2,1, 'h10,'h20, 1,32, 32, 1};

 initial begin

 clock = 0;

 for (int i=0; i<num_tests; i++) begin

 // Change input to pipelined units.

 //

 for (int t=0; t<=wid; t++) begin

 plierp = t;

 candp = 256;

 #2;

 end

 // Set multiplier and multiplicand values for non-piped units.

 //

 plier = tests.size() ? tests.pop_front() : $random();

 cand = tests.size() ? tests.pop_front() : $random();

 // Set multiplier and multiplicand values for piped units.

 //

 plierp = plier;

 candp = cand;

 // For pipelined units, copy output at the time it should be ready.

 //

 fork

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw03-sol.v.html

 #(2 * wid/4) prod[6] = prodp[8];

 #(2 * wid/4) prod[8] = prodp[8];

 #(2 * ((wid+ppps_2-1)/ppps_2)) prod[7] = prodp[7];

 #(2 * ((wid+ppps_2-1)/ppps_2)) prod[9] = prodp[9];

 join_none

 if (pipeline_test_exact) begin

 // Modify the inputs to the pipelined units in subsequent cycles.

 //

 for (int t=0; t<=wid; t++) begin

 #2;

 plierp = t;

 candp = 1;

 end

 plierp = 0;

 candp = 0;

 end

 #1000;

 // Make sure each module's output is correct.

 //

 for (int mut=1; mut<NUM_MULT; mut++) begin

 if (prod[0] !== prod[mut]) begin

 err_cnt[mut]++;

 if (err_cnt[mut] < err_limit)

 $display("Error in %s test %4d: %x != %x (correct)\n",

 names[mut], i, prod[mut], prod[0]);

 end

 end

 end

 // Tests completed, report error count for each device.

 //

 for (int mut=1; mut<NUM_MULT; mut++) begin

 $display("Mut %s, %d errors (%.1f%% of tests)\n",

 names[mut], err_cnt[mut],

 100.0 * err_cnt[mut]/real'(num_tests));

 end

 $finish(2);

 end

endmodule

// cadence translate_on

← → Fall 2014 ← → Homework 3 Homework Solution Sol Code hw03-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw03-sol.v.html

LSU EE 4755 Homework 4 Solution Due: 24 November 2014

Problem 0: Copy the code package from /home/faculty/koppel/pub/ee4755/hw/2014f/hw04. Verify
that everything is working by running the simulation on the unmodified file. It should report that there is
correct output but no compression:

Correct output, strings match. But no compression!

In size 117 bytes, out size 117 bytes.

Problem 1: Module asc_to_bin is to filter a stream of ASCII characters so that ASCII decimal numbers are
replaced by binary numbers preceded by an escape character. The idea is to reduce the size of data streams
that contain lots of large numbers. For example, consider the sentence, “There are 31536000 seconds in a
year.” The module asc_to_bin should replace that sequence of eight ASCII characters 31536000 with an
escape character and an integer encoding of the number.

The module has an 8-bit input and output for the character, char_in and char_out. There is a 1-bit
input can_insert which is true when the module can read a character from char_in. If input insert_req
is asserted when can_insert is true then the character on char_in will be read.

There is a 1-bit output can_remove which is true when the character on char_out is valid. (It would
not be valid if the module does not contain any characters and for other reasons.) If input remove_req is set
to 1 and can_remove is true then the character at char_out will change to the next character or, if that’s
the last available character, can_remove will go to zero.

There is also a 1-bit input reset. If reset is high at the positive edge of the clock then the module
should reset itself.

Initially in the homework package, module asc_to_bin passes through characters unchanged. Modify
it so that it converts ASCII decimal numbers to binary as described above.

At the end of the simulation the testbench will indicate whether the output string is correct, and the
original and compressed sizes. For example, the output using the unmodified code package will be:

Correct output, strings match. But no compression!

In size 117 bytes, out size 117 bytes.

The testbench also provides a trace showing some information each time a character is removed. For
the unmodified code,

ncsim> run

c 79 = O tail 1 head 0

c 110 = n tail 3 head 1

c 101 = e tail 4 head 2

c 32 = tail 7 head 3

c 49 = 1 tail 8 head 4

The character removed is shown as a decimal number and as a character, for example 110 and “n” for
the second line. Also shown are the values of two objects in the asc_to_int module, tail and head. Feel
free to add your own variables to the list. Search for “Trace execution” to find the code that prints this
trace.

The parameter max_chars indicates the maximum size of the integer that should be created. Currently
the testbench expects all integers to be of this size.

Keep the following in mind:

• Do not convert a number to binary if it would take more space than the original.

• The module must be synthesizable.

• The synthesized hardware must be reasonably efficient.

For extra credit, modify both the asc_to_bin module and the testbench so that asc_to_bin can
compress a string of ASCII digits to the smallest integer (in multiple of bytes) that can hold the integer.
(The current behavior is to use one size integer, determined by parameter max_chars.)

1

← → Fall 2014 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2014/hw04_sol.pdf

The complete solution can be found at /home/faculty/koppel/pub/ee4755/hw/2014f/hw04/hw04-sol.v and
on the Web at http://www.ece.lsu.edu/koppel/v/2014/hw04-sol.v.html.

Encoding the incoming ASCII characters as an integer is straightforward. The tricky part is sending the encoded integer and
escape character to the module outputs at the correct time. Remember that characters are removed from the module only when the
external device requests them (asserts remove_req) so one can’t assume that something that has just been read can immediately
be sent to the output.

The following approach is used in the solution. Two registers hold the encoded binary values. The design encodes incoming
digits as they arrive into register val_encode, a second register val_wait, holds completed integers that are worth using (the
ASCII version is not too short).

Let’s suppose the value of tail was 7 when the first ASCII digit of a suitable string of digits arrived. Normally, the first
ASCII character of this string would be sent to the module output when head reaches 7. What we want instead is that the escape
character be sent to the output, followed by the bytes of the binary number in subsequent cycles. The solution uses a new array,
esc_here, to indicate that an encoded integer starts here. If esc_here[head] is 1 the module will output an escape character
and will switch to using val_wait as the source of module outputs for the next max_chars characters. It then returns to using
storage as the source of characters.

Array esc_here[tail] is set to zero each time a character is read. When the start of a string of digits is detected (see
start_encoding) the tail location is saved in tail_at_enc_start. When encoding is to end (either due to a non-digit
character or overflow, see end_encoding) if the encoded number can be used (ASCII number not too short, and val_wait is
not being used, see use_encoding) then we set esc_here[tail_at_enc_start]=1.

The updating of the head pointer has not been modified: it’s incremented at each remove_req. However tail is adjusted
whenever an encoded value is to be used. If the encoding reduces the number of characters by x then x is subtracted from tail.

An alternative to using val_wait would be to write the escape character and encoded integer into storage. This would simplify
the design by removing the multiplexor at the character output and the associated “drain” logic (see the solution code), but it would
require a second write port for storage.

Problem 2: Synthesize your module.

(a) Indicate the cost and performance with and without timing optimization. (With timing optimization
means using define_clock.)

See the table below. The column headed “Timing Constr” indicates the kind of timing optimization. None means that no
timing constraints were specified and so there was no timing optimization. Reg -¿ Reg means that the Encounter define_clock
command was used, and so timing was optimized from register outputs to register inputs. However the timing of paths starting at
module inputs or leading to module outputs was ignored. For the column headed In, Reg -¿ Reg, Out the define_clock
command was used and external_delay was also used to indicate the assumption that module inputs are available at the
beginning of the clock cycle and that module outputs are expected to be available at the end of the clock cycle.

Without timing optimization the module is 20% cheaper but five times slower. The optimizations were performed with effort
set to medium.

Module Name Area Clock Timing

Period Constr

asc_to_bin_sol 4 4 206728 20084 None

asc_to_bin_sol 4 4 255460 3844 Reg -> Reg

asc_to_bin_sol 4 4 251736 3687 In, Reg -> Reg, Out

(b) Even if define_clock is used, the synthesis program won’t optimize all paths, only those with both ends
affected by the clock. Show how to use the Encounter external_delay command to get the proper timing
optimization.

The first command below tells Encounter that all inputs are assumed to be available at the beginning of the clock period for
my_clk (which needs to have been defined with define_clock). The second tells encounter that all outputs are expected to be
stable at the end of the clock period. The stuff in the square brackets returns the list of ports, the port names could also have been
typed by hand.

external_delay -clock my_clk -output 0 [find /designs/*/ports_out/ -port *]

external_delay -clock my_clk -input 0 [find /designs/*/ports_in/ -port *]

2

← → Fall 2014 ← → Homework 4 Homework Solution Sol Code hw04 sol.pdf

http://www.ece.lsu.edu/koppel/v/2014/hw04-sol.v.html
https://www.ece.lsu.edu/ee4755/2014/hw04_sol.pdf

//

//

/// LSU EE 4755 Fall 2014 Homework 4
//

 /// SOLUTION

 // Assignment http://www.ece.lsu.edu/koppel/v/2014f/hw04.pdf

 /// The solution is in module asc_to_bin_sol.

typedef enum { Char_escape = 1, Char_0 = 48, Char_9 = 57 } Chars_Special;

module asc_to_bin
 #(int size_lg = 4,

 int max_chars = 4,

 int size = 1 << size_lg)

 (output [7:0] char_out,

 output can_insert, can_remove,

 input [7:0] char_in,

 input insert_req, remove_req,

 input reset, clk);

 logic [7:0] storage [size];

 logic [size_lg:1] head, tail;

 uwire is_digit = char_in >= Char_0 && char_in <= Char_9;

 uwire empty = head == tail;

 uwire full = tail + 1 == head;

 assign can_insert = !full;

 assign can_remove = !empty;

 assign char_out = storage[head];

 // cadence translate_off

 initial for (int i=0; i<size; i++) storage[i] = 255;

 // cadence translate_on

 always @(posedge clk) if (reset) begin

 tail <= 0;

 end else begin

 if (insert_req) begin

 storage[tail] = char_in;

 tail <= tail + 1;

 end

 end

 always @(posedge clk) if (reset) begin

 head <= 0;

 end else if (remove_req) begin

 head <= head + 1;

 end

endmodule

module asc_to_bin_sol
 #(int size_lg = 4,

 int max_chars = 4,

 int size = 1 << size_lg)

 (output [7:0] char_out,

 output can_insert, can_remove,

 input [7:0] char_in,

 input insert_req, remove_req,

 input reset, clk);

 // Storage for characters.

 logic [7:0] storage [size];

 // Location at which encoded number should start. That is,

 // if esc_here[x] is 1, then storage[x] is the first character of

 // an ASCII string that should be replaced with an escape character

 // and a binary encoded value;

 logic esc_here [size];

 // Register used for preparing encoded integer.

 logic [max_chars-1:0][7:0] val_encode;

 // Register for holding encoded integer until all characters removed.

 logic [max_chars-1:0][7:0] val_wait;

 // True if val_wait holds a value that has not yet been read.

 logic val_wait_full;

← → Fall 2014 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

http://www.ece.lsu.edu/koppel/v/2014f/hw04.pdf
https://www.ece.lsu.edu/ee4755/2014/hw04-sol.v.html

 // Pointers into storage.

 logic [size_lg:1] head; // Location being read (sent to module output).

 uwire [size_lg:1] write_idx; // Next location to write.

 logic [size_lg:1] tail; // Possible next location to write.

 logic [size_lg:1] tail_at_enc_start;

 // Note: encoding refers to the process of converting a string of

 // ASCII characters to an integer.

 uwire now_encoding, end_encoding;

 logic was_encoding;

 logic [7:0] ascii_int_len;

 // Note: draining refers to sending the bytes in val_wait to the

 // module outputs.

 logic draining;

 logic [$clog2(max_chars)-1:0] drain_idx;

 uwire start_draining, end_draining;

 uwire empty, full;

 // cadence translate_off

 initial for (int i=0; i<size; i++) storage[i] = 255;

 // cadence translate_on

 ///

 /// Hardware For Encoding ASCII Digits into Binary
 ///

 // Check whether a digit is present.

 //

 uwire is_digit = char_in >= Char_0 && char_in <= Char_9;

 uwire is_nz_digit = char_in > Char_0 && char_in <= Char_9; // Non-Zero

 // Convert ASCII digit to an integer.

 //

 uwire [3:0] char_bin = char_in - Char_0;

 // Combine digit at char_in with current value of val_encode.

 //

 uwire [max_chars:0] [7:0] next_val_encode = val_encode * 10 + char_bin;

 uwire overflow = next_val_encode[max_chars] != 0;

 ///

 /// Hardware to Detect the Start, End, and Suitability of a String of Digits
 //

 logic was_digit;

 always @(posedge clk)

 if (reset) was_digit <= 0;

 else if (insert_req) was_digit <= is_digit;

 // True if we should start encoding a string of digits.

 uwire start_encoding =

 insert_req && is_nz_digit && (!was_digit || overflow);

 assign now_encoding = start_encoding || was_encoding && !end_encoding;

 always @(posedge clk)

 if (reset) was_encoding <= 0;

 else if (insert_req) was_encoding <= now_encoding;

 // True if encoding should end, whether or not the encoding will be used.

 assign end_encoding =

 insert_req && was_encoding && (!is_digit || overflow);

 // True if encoded integer should be used.

 // We don't want to do this if the ASCII string is too short,

 // or if val_wait is still occupied.

 uwire use_encoding = end_encoding

 && (ascii_int_len > max_chars)

 && (!val_wait_full || end_draining);

 // Update registers holding encoded integer, and those keeping

 // track of locations.

 //

 always @(posedge clk) if (insert_req) begin

 if (start_encoding) begin

 // Initialize val_encode with first character.

 val_encode <= char_bin;

 // Remember where ASCII digits started.

 tail_at_enc_start <= write_idx;

 // Keep track of how many digits there are.

 ascii_int_len <= 1;

 end else begin

 // Update registers assuming that we are continuing to

 // encode. (It doesn't hurt if we are not currently encoding.)

 val_encode <= next_val_encode;

 ascii_int_len <= ascii_int_len + 1;

← → Fall 2014 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw04-sol.v.html

 end

 // Move val_encode to a second register so that the next string of

 // ASCII digits can be encoded without having to wait for this

 // value to be removed.

 if (use_encoding) val_wait <= val_encode;

 end

 ///

 /// Hardware for Writing Characters into Storage
 ///

 // If the encoded integer is used we need to move the tail back by

 // the number of characters saved. That's easier to compute using

 // the location at which the encoded number started.

 uwire [size_lg:1] tail_adj = tail_at_enc_start + max_chars + 1;

 // Location at which to write current character.

 assign write_idx = use_encoding ? tail_adj : tail;

 /// Write the Storage and the Tail Pointer
 //

 always @(posedge clk) if (reset) begin

 tail <= 0;

 end else if (insert_req) begin

 // We've decided to use an encoded number. Remember where.

 // When head reaches tail_at_enc_start we will start sending

 // the encoded number to the output.

 if (use_encoding) esc_here[tail_at_enc_start] <= 1;

 storage[write_idx] <= char_in;

 esc_here[write_idx] <= 0;

 tail <= write_idx + 1;

 end

 ///

 /// Hardware For Removing Characters From Storage
 ///

 /// Character Out Mux
 //

 // The char_out port can be connected to three things:

 //

 // - A memory holding stored characters: storage[].

 // - The escape character (a constant, Char_escape).

 // - A register holding a number encoded in binary, val_wait.

 //

 assign char_out =

 start_draining ? Char_escape :

 draining ? val_wait[drain_idx]

 : storage[head];

 assign start_draining = !empty && esc_here[head];

 assign end_draining = remove_req && draining && drain_idx == 0;

 // Update the register that indicates whether val_wait is holding

 // something.

 always @(posedge clk)

 if (reset) val_wait_full <= 0;

 else if (use_encoding) val_wait_full <= 1;

 else if (end_draining) val_wait_full <= 0;

 always @(posedge clk) if (reset) begin

 draining <= 0;

 drain_idx <= 0;

 head <= 0;

 end else if (remove_req) begin

 draining <= start_draining ? 1 : drain_idx == 0 ? 0 : draining;

 drain_idx <= start_draining ? max_chars-1

 : drain_idx > 0 ? drain_idx - 1 : 0;

 head <= head + 1;

 end

 ///

 /// Hardware Related to Storage Full and Empty Status
 ///

 assign empty = head == tail;

 assign full = tail + 1 == head;

 assign can_remove = !empty && (!now_encoding || head != tail_at_enc_start);

 assign can_insert = !full;

← → Fall 2014 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw04-sol.v.html

endmodule

// cadence translate_off

module testbench();

 localparam int elts_lg = 4;

 localparam int elts = 1 << elts_lg;

 localparam int int_chars = 2;

 uwire [7:0] char_out;

 uwire can_insert, can_remove;

 logic [7:0] char_in;

 logic insert_req, remove_req, reset, clk;

 asc_to_bin_sol #(elts_lg,int_chars) b1

 (char_out,can_insert,can_remove,char_in,insert_req,remove_req,reset,clk);

 int cycle_num;

 initial begin

 clk = 0;

 cycle_num = 0;

 fork

 forever #1 clk = !clk;

 forever @(posedge clk) cycle_num++;

 join

 end

 string in_str = "One 1 two 12 three 317 four 1029 six 123456 ten 1234567890. There are 60 seconds in a minute and 31536000 in a year."

 string out_str = "";

 initial begin

 automatic int insert_finished_cyc = 0;

 automatic int out_size = 0;

 automatic bit tb_insert_done = 0;

 automatic bit tb_remove_done = 0;

 /// Reset the module.
 //

 reset = 0;

 insert_req = 0;

 remove_req = 0;

 @(negedge clk) reset = 1;

 @(negedge clk) reset = 0;

 @(negedge clk);

 /// Check for one possible error.
 //

 if (can_insert !== 1) begin

 $display("Module did not reset, can_insert: %h\n", can_insert);

 $fatal(1);

 end

 /// Start Main Testing Loops
 //

 fork

 /// Watchdog -- Stop simulation if it's taking too long.
 //

 fork begin

 automatic int cyc_limit = in_str.len() * 100;

 fork

 wait (cycle_num == cyc_limit);

 wait (tb_insert_done && tb_remove_done);

 join_any

 if (cycle_num >= cyc_limit) begin

 $display("Exceeded cycle limit, exiting.\n");

 $fatal(1);

 end

 end join_none

 /// Trace Execution -- Print Signal Values After Interesting Changes
 //

 while (!tb_insert_done || !tb_remove_done) begin

 @(insert_req or remove_req or can_insert or can_remove

 or b1.tail or b1.head or tb_insert_done or tb_remove_done);

 @(negedge clk);

 /// Trace execution by showing removed character and
 /// related information.
 //

 $display("c In %c Out %d = %c tail %d head %d b2 %d",

 char_in, char_out, char_out, b1.tail, b1.head, b1.val_wait);

 end

← → Fall 2014 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw04-sol.v.html

 /// Insert Characters
 //

 begin

 automatic int in_pos = 0;

 while (in_pos < in_str.len()) begin

 @(negedge clk);

 // Flip a coin, and if it comes up tails send a character

 // in if module is ready for one.

 //

 if ({$random} & 'h1 && can_insert) begin

 char_in = in_str[in_pos++];

 insert_req = 1;

 end else begin

 insert_req = 0;

 end

 end

 @(negedge clk);

 insert_req = 0;

 insert_finished_cyc = cycle_num;

 $display("Done feeding inputs.");

 tb_insert_done = 1;

 end

 /// Remove Characters
 //

 begin

 int buffer;

 automatic int bytes_remaining = 0;

 while (insert_finished_cyc == 0

 || cycle_num < insert_finished_cyc + elts * 10) begin

 @(negedge clk);

 if ({$random} & 1 && can_remove) begin

 remove_req = 1;

 out_size++;

 if (bytes_remaining > 0) begin

 buffer = (buffer << 8) + char_out;

 bytes_remaining--;

 if (bytes_remaining == 0) begin

 // Convert binary number back to ASCII.

 string iasc;

 iasc.itoa(buffer);

 out_str = {out_str,iasc};

 end

 end else if (char_out == Char_escape) begin

 bytes_remaining = int_chars;

 buffer = 0;

 end else begin

 out_str = {out_str,char_out};

 end

 end else begin

 remove_req = 0;

 end

 end

 $display("Done gathering outputs.\n");

 tb_remove_done = 1;

 end

 join

 if (in_str != out_str)

 $display("** Error - strings don't match.\n");

 else

 $display("Correct output, strings match. %s",

 (in_str.len() == out_size) ? "But no compression!" : "");

← → Fall 2014 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw04-sol.v.html

 $display("In size %d bytes, out size %d bytes.\n",

 in_str.len(), out_size);

 $display("In - %s\nOut- %s\n",

 in_str, out_str);

 $finish(2);

 end

endmodule

// cadence translate_on

← → Fall 2014 ← → Homework 4 Homework Solution Sol Code hw04-sol.v.html

https://www.ece.lsu.edu/ee4755/2014/hw04-sol.v.html

23 Spring 2001 Solutions

606

← → Spring 2001 ← → Homework 1 Homework Sol Code hw01 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw01_sol.html

/// Solution to LSU EE 4702-1 Spring 2001 Homework 1
module priority_encoder_1_b(grant,found_out,request,found_in);
 output grant, found_out;

 input request, found_in;

 wire request, found_in;

 reg grant, found_out;

 always @(request or found_in) begin

 found_out = found_in | request;

 grant = !found_in & request;

 end

endmodule

module priority_encoder_1_es(grant,found_out,request,found_in);
 output grant, found_out;

 input request, found_in;

 wire grant, found_out;

 wire request, found_in;

 or o1(found_out, found_in, request);

 and a1(grant, not_found_in, request);

 not n1(not_found_in, found_in);

endmodule

module priority_encoder_1_is(grant, found_out, request, found_in);
 input request, found_in;

 output grant, found_out;

 wire found_out = found_in | request;

 wire grant = !found_in & request;

endmodule

module test_pe(done, okay_b, okay_is, okay_es);
 output done, okay_b, okay_is, okay_es;

 reg done, okay_b, okay_is, okay_es;

 reg request, found_in;

 wire grant_b, found_out_b;

 wire grant_is, found_out_is;

 wire grant_es, found_out_es;

 priority_encoder_1_b peb(grant_b,found_out_b,request,found_in);

 priority_encoder_1_es pees(grant_es,found_out_es,request,found_in);

 priority_encoder_1_is peis(grant_is,found_out_is,request,found_in);

 reg [1:0] answers [0:3];

 integer i;

 initial begin

 done = 0;

 okay_b = 1; okay_es = 1; okay_is = 1;

 answers[2'b00] = 2'b00;

 answers[2'b01] = 2'b01;

 answers[2'b10] = 2'b11;

← → Spring 2001 ← → Homework 1 Homework Sol Code hw01 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw01_sol.html

 answers[2'b11] = 2'b01;

 for(i=0; i<4; i=i+1) begin

 {request, found_in } = i;

 #1;

 if({grant_b,found_out_b} !== answers[i]) okay_b = 0;

 if({grant_is,found_out_is} !== answers[i]) okay_is = 0;

 if({grant_es,found_out_es} !== answers[i]) okay_es = 0;

 end // for (i=0; i<4; i=i+1)

 done = 1;

 end // initial begin

endmodule // test_pe

← → Spring 2001 ← → Homework 1 Homework Sol Code hw01 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw01_sol.html

//

///

/// Solution to LSU EE 4702-1 Spring 2001 Homework 3
///

///

// Includes a testbench (which was not graded).

`timescale 1us/1us

module microwave_oven_controller(beep,dmt,dmu,dst,dsu,mag_on,key_code,clk);
 input key_code; // Key begin pressed (see parameters).

 input clk; // A 64 Hz clock.

 output mag_on; // When 1, magnetron is on (oven is heating).

 output beep; // When 1, emit tone.

 output dmt; // Tens digit of minute display.

 output dmu; // Units digit of minute display.

 output dst, dsu; // Tens and units digits of seconds display.

 wire clk;

 wire [5:0] key_code;

 reg [3:0] dmt, dmu, dst, dsu;

 reg mag_on;

 parameter key_none = 6'd0; // No key pressed.

 parameter key_never = 6'd1; // This code will never be returned.

 parameter key_start = 6'd10;

 parameter key_reset = 6'd11;

 parameter key_power = 6'd12;

 parameter key_0 = 6'd20;

 parameter key_1 = 6'd21;

 parameter key_2 = 6'd22;

 parameter key_3 = 6'd23;

 parameter key_4 = 6'd24;

 parameter key_5 = 6'd25;

 parameter key_6 = 6'd26;

 parameter key_7 = 6'd27;

 parameter key_8 = 6'd28;

 parameter key_9 = 6'd29;

 /// States
 //

 parameter st_reset = 0;

 parameter st_entry_1 = 1; // One digit entered.

 parameter st_entry_1p = 2; // One digit and power.

 parameter st_entry_n = 3; // At least 2 digits (including power level).

 parameter st_heating = 4;

 parameter st_paused = 5;

 reg [3:0] state, next_state;

 reg [2:0] digit_count; // Number of digits entered.

 reg [3:0] power; // Power level set by user.

 reg [5:0] key_type; // Type of key. (unless digit, key_code)

 parameter kty_digit = 6'd30;

 // Number of tics before beep stops. Zero if not beeping.

 //

 reg [7:0] beep_timer;

 assign beep = | beep_timer;

 always @(posedge clk) if(beep_timer) beep_timer = beep_timer - 1;

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw03_sol.html

 // Add Digit to Display

 //

 task add_digit;
 begin

 dmt = dmu;

 dmu = dst;

 dst = dsu;

 dsu = key_code - key_0;

 digit_count = digit_count + 1;

 end

 endtask // add_digit

 // Actions when switching to st_reset, including setting next_state.

 //

 task do_reset;
 begin

 dmt = 0;

 dmu = 0;

 dst = 0;

 dsu = 0;

 digit_count = 0;

 beep_timer = 0;

 next_state = st_reset;

 mag_on = 0;

 end

 endtask // do_reset

 initial begin do_reset; state = st_reset; end

 /// State Transitions
 //

 always @(key_code) if(key_code != key_none) begin

 key_type = key_code >= key_0 && key_code <= key_9

 ? kty_digit : key_code;

 casez({state, key_type})

 {st_reset,kty_digit}:

 begin

 add_digit;

 power = 10;

 next_state = st_entry_1;

 end

 {st_entry_1p,kty_digit}:

 begin

 dsu = 0;

 add_digit;

 next_state = st_entry_n;

 end

 {st_entry_n,kty_digit}:

 begin

 if(digit_count == 4)

 beep_timer = 16;

 else

 add_digit;

 next_state = state;

 end

 {st_entry_1,kty_digit}:

 begin

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw03_sol.html

 add_digit;

 next_state = st_entry_n;

 end

 {st_entry_1,key_power}:

 begin

 power = dsu;

 next_state = st_entry_1p;

 end

 {st_entry_n,key_start}, {st_entry_1,key_start}:

 begin

 if(dst > 5)

 begin

 beep_timer = 16;

 next_state = state;

 end else

 next_state = st_heating;

 end

 {st_heating,key_reset}:

 begin

 disable HEAT_LOOP;

 next_state = st_paused;

 end

 {st_paused,key_start}:

 begin

 next_state = st_heating;

 end

 {4'b????,key_reset}: do_reset;

 default: beep_timer = 16;

 endcase // casez({state, key_type})

 state = next_state;

 end // if (key_code != key_none)

 // Clock Divider

 //

 // Divides 64 Hz clock by 64 so that sec_timer == 0 once per second.

 //

 reg [5:0] sec_timer;

 initial sec_timer = 0;

 always @(posedge clk) sec_timer = sec_timer + 1;

 always wait(state == st_heating) begin

 fork:HEAT_LOOP

 reg [7:0] on_timer, off_timer;

 // Turn magnetron on and off.

 //

 forever begin

 on_timer = power * 64 * 2.5 / 10;

 off_timer = 64 * 2.5 - on_timer;

 mag_on = 1;

 while (on_timer) @(posedge clk) on_timer = on_timer - 1;

 if(off_timer) begin

 mag_on = 0;

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw03_sol.html

 while (off_timer) @(posedge clk) off_timer = off_timer - 1;

 end

 end

 // Update display during heating.

 //

 forever @(posedge | sec_timer) begin:T

 if({dmt,dmu,dst,dsu} == 0) begin

 beep_timer = 128;

 state = st_reset;

 mag_on <= 0;

 disable HEAT_LOOP;

 end

 if(dsu) begin dsu = dsu - 1; disable T; end

 dsu = 9;

 if(dst) begin dst = dst - 1; disable T; end

 dst = 5;

 if(dmu) begin dmu = dmu - 1; disable T; end

 dmu = 9;

 if(dmt) dmt = dmt - 1;

 end // block: T

 join

 mag_on = 0;

 end // always wait

endmodule // microwave_oven_controller

module test_oven();

 reg clk;

 wire [3:0] dmt, dmu, dst, dsu;

 wire mag_on;

 reg [5:0] key_mod;

 reg reset;

 // Set this to 1 to have each change in the oven display appear

 // on the console.

 reg monitor_display;

 // Set this to one to have each key press appear on the console.

 reg monitor_keys;

 // Set this to one to get long test.

 reg patient;

 microwave_oven_controller oven(beep,dmt,dmu,dst,dsu,mag_on,key_mod,clk);

 time tics;

 initial tics = 0;

 always begin clk = 0; #5625; tics = tics + 1; #0; clk=1; #10000; end

 parameter ss_reset = 3'd0;

 parameter ss_digit1 = 3'd1; // Single digit, power not entered.

 parameter ss_digit2 = 3'd2; // Power entered or > 1 digit.

 parameter ss_cook = 3'd3;

 parameter ss_pause = 3'd4;

 parameter kty_digit = 6'd30;

 reg [15:0] shadow_display, alt_display;

 reg [2:0] shadow_state;

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw03_sol.html

 integer shadow_secs, mod_secs, delta;

 integer shadow_tics, pause_tics, start_tics;

 integer shadow_power, shadow_digits;

 integer expected_beep_done, expecting_done_beep;

 integer watch_display;

 integer error_display, error_mag, error_beep, error_total;

`include "oven_keys.v"

 function integer abs;
 input a;

 integer a;

 abs = a < 0 ? -a : a;

 endfunction // abs

`define check_digit(d,l) \

 if((d) > (l) || (d) < 0) begin \

 error_display = error_display + 1; \

 secs = -1; \

 disable tosecs; \

 end

 // Convert time on display to seconds.

 //

 task tosecs;
 output secs;

 integer secs;

 begin

 `check_digit(dmt,9)

 `check_digit(dmu,9)

 `check_digit(dst,5)

 `check_digit(dsu,9)

 secs = dmt * 600 + dmu * 60 + dst * 10 + dsu;

 end

 endtask // tosecs

 /// Listen Beep
 //

 always @(beep)

 if(beep) begin

 if(expecting_done_beep)

 begin

 expected_beep_done = 128;

 expecting_done_beep = 0;

 end

 if(expected_beep_done == 0) begin

 $display("Should not be beeping.");

 error_beep = error_beep + 1;

 end

 end else begin:B // if (beep)

 integer delta;

 delta = abs(tics - expected_beep_done);

 if(shadow_state != ss_reset

 && expected_beep_done && delta > 5) begin

 $display("Beep wrong time. %d",delta);

 error_beep = error_beep + 1;

 end

 expected_beep_done = 0;

 end

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw03_sol.html

 /// Watch Magnetron
 //

 integer mag_on_start, mag_on_total;

 always @(mag_on)

 if(mag_on) begin

 if(shadow_state != ss_cook)

 begin

 $display("Mag on when cooking off.");

 error_mag = error_mag + 1;

 end

 if(mag_on_start != 0) begin:A

 integer cycle_this;

 cycle_this = tics - mag_on_start;

 if(shadow_power > 0 && shadow_power < 10

 && abs(cycle_this - 160) > 10)

 begin

 $display("Mag cycle error.");

 error_mag = error_mag + 1;

 end

 end

 mag_on_start = tics;

 end else begin // if (mag_on)

 mag_on_total = mag_on_total + tics - mag_on_start;

 end // else: !if(mag_on)

 // Verify correct magnetron-on time.

 //

 task verify_cooking;
 begin:A

 integer correct_mag_tics;

 integer delta;

 correct_mag_tics = shadow_tics * shadow_power / 10;

 delta = abs(correct_mag_tics - mag_on_total);

 if(delta > 128) begin

 $display("Wrong power level. %d %d ",

 correct_mag_tics, mag_on_total);

 error_mag = error_mag + 1;

 end

 end // block: A

 endtask // verify_cooking

 /// Watch display, etc.
 //

 always @(dmt or dmu or dst or dsu or shadow_display) #1 begin

 if(monitor_display) $display("Display: %d%d:%d%d",dmt,dmu,dst,dsu);

 if(shadow_state == ss_cook) begin

 shadow_secs = shadow_secs - 1;

 shadow_tics = shadow_tics + 64;

 tosecs(mod_secs);

 if(mod_secs !== shadow_secs)

 begin

 $display("Wrong count. (cooking)");

 error_display = error_display + 1;

 end

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw03_sol.html

 delta = shadow_tics - (tics - start_tics);

 if(abs(delta) > 96)

 begin

 $display("More than 96 tics off: %d",delta);

 error_display = error_display + 1;

 end

 if(shadow_secs == 0) begin

 expecting_done_beep = 1;

 delay(1.5);

 verify_cooking;

 if(expecting_done_beep) begin

 $display("End of cooking beep missing.");

 error_beep = error_beep + 1;

 end

 shadow_state = ss_reset;

 shadow_digits = 0;

 end // if (shadow_secs == 0)

 end else if (shadow_state == ss_pause) begin

 tosecs(mod_secs);

 if(mod_secs !== shadow_secs) begin

 $display("Wrong count. (paused)");

 error_display = error_display + 1;

 end

 end else if (watch_display) begin

 if({dmt,dmu,dst,dsu} !== shadow_display

 && {dmt,dmu,dst,dsu} !== alt_display) begin

 $display("Wrong display, should be %h",shadow_display);

 error_display = error_display + 1;

 end

 end

 end

 // Reset shadow state and expected outputs maintained by

 // testbench.

 //

 task to_reset;
 begin

 shadow_digits = 0;

 shadow_state = ss_reset;

 alt_display = shadow_display;

 shadow_display = 0;

 shadow_power = 10;

 watch_display = 1;

 end

 endtask // to_reset

 // Send keys to module, update correct state and expected output information.

 //

 task command;

 input [799:0] cmd;

 integer initialized;

 integer c;

 integer consec_reset;

 reg [5:0] to_key [0:255];

 reg [5:0] key;

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw03_sol.html

 begin

 if(initialized === 'bx) begin

 for(c = 0; c < 256; c = c + 1) to_key[c] = key_never;

 for(c = 0; c < 10; c = c + 1) to_key["0" + c] = key_0 + c;

 to_key["s"] = key_start;

 to_key["r"] = key_reset;

 to_key["p"] = key_power;

 to_key[" "] = key_none;

 to_key[0] = key_none;

 initialized = 1;

 consec_reset = 0;

 end // if (initialized === 'bx)

 while(cmd) begin:COMMAND_LOOP

 reg [7:0] c;

 reg [5:0] key_type;

 c = cmd[799:792];

 key_mod = to_key[c];

 key = key_mod;

 key_type = (c >= "0" && c <= "9") ? kty_digit : key_mod;

 if(key == key_never) begin

 $display("Testbench error: illegal key in command, %s (%d)",c,c);

 $stop;

 end

 casez({shadow_state,key_type})

 {3'b???,key_none}:;

 {ss_reset,key_reset}:

 begin

 to_reset;

 end

 {ss_reset,kty_digit}:

 begin

 shadow_digits = 1;

 shadow_state = ss_digit1;

 alt_display = shadow_display;

 shadow_display = key-key_0;

 end

 {ss_pause,key_reset},

 {ss_digit1,key_reset},

 {ss_digit2,key_reset}:

 begin

 to_reset;

 end

 {ss_digit1,kty_digit}:

 begin

 shadow_digits = 2;

 shadow_state = ss_digit2;

 alt_display = shadow_display;

 shadow_display = (shadow_display << 4) | key-key_0;

 end

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw03_sol.html

 {ss_digit1,key_power}:

 begin

 shadow_state = ss_digit2;

 shadow_digits = 0;

 alt_display = shadow_display; // Power level.

 shadow_power = shadow_display;

 shadow_display = 0;

 end

 {ss_digit1,key_start},{ss_digit2,key_start}:

 begin

 if(shadow_display[7:4] > 5)

 begin

 expected_beep_done = tics + 16;

 end else begin

 tosecs(shadow_secs);

 start_tics = tics;

 shadow_tics = 0;

 mag_on_total = 0;

 mag_on_start = 0;

 shadow_state = ss_cook;

 end

 end

 {ss_digit2,kty_digit}:

 if(shadow_digits == 4)

 expected_beep_done = tics + 16;

 else

 begin

 shadow_digits = shadow_digits + 1;

 // If shadow_display zero then power was pressed.

 if(shadow_display) alt_display = shadow_display;

 shadow_display = (shadow_display << 4) | key-key_0;

 end

 {ss_cook,key_reset}:

 begin

 shadow_state = ss_pause;

 pause_tics = tics;

 end

 {ss_pause,key_start}:

 begin

 verify_cooking;

 mag_on_start = 0;

 shadow_tics = 0;

 mag_on_total = 0;

 start_tics = tics;

 shadow_state = ss_cook;

 end

 default:

 begin

 if(expected_beep_done && expected_beep_done < tics)

 begin

 $display("Missed a beep. (overlap)");

 error_beep = error_beep + 1;

 end

 expected_beep_done = tics + 16;

 end

 endcase // casez({shadow_state,key_type})

 @(posedge clk) @(negedge clk);

 repeat ($random() & 15 + 3) @(negedge clk);

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw03_sol.html

 key_mod = key_none;

 @(posedge clk) @(negedge clk);

 @(posedge clk) @(negedge clk);

 if(key != key_none)

 consec_reset = key == key_reset ? consec_reset + 1 : 0;

 if(monitor_keys && key != key_none && consec_reset < 2)

 $display("Key %s State %d, Display: %d%d:%d%d B %d",

 c,shadow_state, dmt,dmu,dst,dsu,beep);

 cmd = cmd << 8;

 end // block: COMMAND_LOOP

 end

 endtask // command

 // Reset oven module either using reset line or

 // reset button.

 //

 task reset_oven;
 input hard;

 begin

 if(0 && hard) begin

 reset = 1;

 fork:F

 begin repeat (256) @(clk); disable F; end

 wait(!beep);

 wait(!mag_on);

 join

 reset = 0;

 end else begin

 command("rrrrrr");

 fork

 wait(!beep);

 wait(!mag_on);

 join

 command("rrrrrr");

 end // else: !if(0 && hard)

 if(beep || mag_on)

 begin

 $display("Could not reset oven.");

 end

 end

 endtask // reset_oven

 // Actions to be done at the end of a test.

 //

 task endtest;
 input [159:0] name;

 begin

 if(expected_beep_done)

 begin

 if(expected_beep_done >= tics)

 $display("Testbench not waiting long enough for beep.");

 $display("Missed a beep.");

 error_beep = error_beep + 1;

 expected_beep_done = 0;

 end

 if({dmt,dmu,dst,dsu}!==0)

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw03_sol.html

 begin

 $display("Expected to be finished.");

 error_display = error_display + 1;

 end

 watch_display = 0;

 $display("Test %s completed. (dsp,beep,mag) (%d,%d,%d)",

 name,

 error_display, error_beep, error_mag);

 error_total = error_total + error_display + error_beep + error_mag;

 reset_oven(0);

 error_display = 0;

 error_beep = 0;

 error_mag = 0;

 end

 endtask // endtest

 task delay;
 input [63:0] secs;

 #(secs * 1000000);

 endtask // delay

 initial begin

 monitor_display = 0;

 monitor_keys = 0;

 patient = 0;

 expected_beep_done = 0;

 expecting_done_beep = 0;

 error_display = 0;

 error_beep = 0;

 error_mag = 0;

 error_total = 0;

 #1;

 to_reset;

 reset_oven(1);

 command("50prr");

 delay(40);

 endtest("Power Too High");

 command("12s"); delay(16);

 endtest("Basic");

 if(patient) begin

 $display("Starting test Long, be patient or modify testbench.");

 command("100s"); delay(90*60+5);

 endtest("Long");

 end

 command("30s"); delay(14);

 command("1"); delay(2); command("p");

 delay(20);

 endtest("Basic Disturbed");

 command("5p30s");

 delay(40);

 endtest("Half Power");

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw03_sol.html

 command("9p3p0s");

 delay(40);

 endtest("Power Twice");

 command("3ppp19s");

 delay(40);

 endtest("Power Thrice");

 command("20s");

 delay(10);

 command("r");

 delay(5);

 command("s");

 delay(10);

 endtest("Reset Start");

 command("20s");

 delay(10);

 command("r");

 delay(5);

 command("r");

 delay(1);

 endtest("Reset Reset");

 command("s");

 delay(5);

 endtest("Null Start");

 command("ps");

 delay(5);

 endtest("Null Power Start");

 command("7p30s"); delay(10);

 command("1"); delay(2); command("s"); delay(3);

 command("12344321");

 delay(40);

 endtest("Power Disturbed");

 command("12r5s"); delay(10);

 endtest("Twelve no 5");

 command("90s"); delay(1); command("rr");

 endtest("Ninety Seconds");

 command("12345rr");

 endtest("Display Overflow");

 $display("All tests completed, %d total errors.",error_total);

 $stop;

 end // initial begin

endmodule // test_oven

← → Spring 2001 ← → Homework 3 Homework Sol Code hw03 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw03_sol.html

//

///

/// Solution to LSU EE 4702-1 Spring 2001 Homework 4
///

///

// Includes a testbench (which was not graded).

`timescale 1us/1us

module microwave_oven_controller(beep,dmt,dmu,dst,dsu,mag_on,
 key_code,reset,clk);

 input key_code; // Key begin pressed (see parameters).

 // Can be tested on the positive edge of clk.

 input reset; // Reset signal. Can be tested on posedge clk.

 input clk; // A 64 Hz clock. (Did Edison consider it?)

 output mag_on; // When 1, magnetron is on (oven is heating).

 output beep; // When 1, emit tone.

 output dmt; // Tens digit of minute display.

 output dmu; // Units digit of minute display.

 output dst, dsu; // Tens and units digits of seconds display.

 wire clk;

 wire [5:0] key_code;

 reg [3:0] dmt, dmu, dst, dsu;

 reg mag_on;

 reg beep;

 parameter key_none = 6'd0; // No key pressed.

 parameter key_never = 6'd1; // This code will never be returned.

 parameter key_start = 6'd10;

 parameter key_reset = 6'd11;

 parameter key_power = 6'd12;

 parameter key_0 = 6'd20;

 parameter key_1 = 6'd21;

 parameter key_2 = 6'd22;

 parameter key_3 = 6'd23;

 parameter key_4 = 6'd24;

 parameter key_5 = 6'd25;

 parameter key_6 = 6'd26;

 parameter key_7 = 6'd27;

 parameter key_8 = 6'd28;

 parameter key_9 = 6'd29;

 parameter kty_digit = 6'd30;

 parameter st_reset = 0;

 parameter st_entry = 1;

 parameter st_entry_p1 = 2;

 parameter st_entry_p2 = 5;

 parameter st_heating = 3;

 parameter st_paused = 4;

 reg [2:0] digit_count;

 reg [3:0] power;

 reg [5:0] key_type, last_key;

 reg [3:0] state, next_state;

 reg [7:0] beep_timer;

 task add_digit;
 begin

 if(digit_count == 4)

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

 beep_timer = 16;

 else begin

 dmt = dmu;

 dmu = dst;

 dst = dsu;

 dsu = key_code - key_0;

 digit_count = digit_count + 1;

 end

 end

 endtask // add_digit

 task do_reset;
 begin

 dmt = 0;

 dmu = 0;

 dst = 0;

 dsu = 0;

 digit_count = 0;

 beep_timer = 0;

 next_state = st_reset;

 mag_on = 0;

 end

 endtask // do_reset

 reg [7:0] on_timer, off_timer;

 reg [5:0] sec_timer;

 always @(posedge clk)

 if(reset) begin

 do_reset;

 state = st_reset;

 sec_timer = 0;

 on_timer = 0;

 off_timer = 0;

 last_key = key_none;

 beep = 0;

 end else begin // if (reset)

 if(key_code != key_none && last_key == key_none) begin

 if(key_code >= key_0 && key_code <= key_9)

 key_type = kty_digit;

 else

 key_type = key_code;

 casez({state, key_type})

 {st_reset,kty_digit}:

 begin

 add_digit;

 power = 10;

 next_state = st_entry;

 end

 {st_entry_p1,kty_digit}:

 begin

 dsu = 0;

 add_digit;

 next_state = st_entry_p2;

 end

 {st_entry_p2,kty_digit}:

 begin

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

 add_digit;

 next_state = state;

 end

 {st_entry,kty_digit}:

 begin

 add_digit;

 next_state = state;

 end

 {st_entry,key_power}:

 begin

 if(digit_count == 1)

 power = dsu;

 else

 beep_timer = 16;

 next_state = st_entry_p1;

 end

 {st_entry_p2,key_start}, {st_entry,key_start}:

 begin

 next_state = st_heating;

 end

 {st_paused,key_start}:

 begin

 next_state = st_heating;

 end

 // Leonardo incorrectly infers parallel case, so need

 // to test state.

 {4'b????,key_reset}:

 if(state == st_heating)

 next_state = st_paused;

 else

 do_reset;

 default:

 begin

 next_state = state; beep_timer = 16;

 end

 endcase // casez({state, key_type})

 end // if (key_code != key_none && last_key == key_none)

 // next_state may be reassigned below.

 sec_timer = sec_timer + 1;

 beep = | beep_timer;

 if(beep_timer) beep_timer = beep_timer - 1;

 if(state == st_heating) begin

 if({dmt,dmu,dst,dsu} == 0) begin

 beep_timer = 128;

 mag_on = 0;

 next_state = st_reset;

 end else begin

 if(!sec_timer) begin:T

 if(dsu) begin dsu = dsu - 1; disable T; end

 dsu = 9;

 if(dst) begin dst = dst - 1; disable T; end

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

 dst = 5;

 if(dmu) begin dmu = dmu - 1; disable T; end

 dmu = 9;

 if(dmt) dmt = dmt - 1;

 end

 if(on_timer) on_timer = on_timer - 1;

 else if(off_timer) off_timer = off_timer - 1;

 mag_on = |on_timer | ~|off_timer;

 if(!on_timer && !off_timer) begin

 on_timer = power * 16;

 off_timer = 160 - on_timer;

 end

 end // else: !if({dmt,dmu,dst,dsu} == 0)

 end else begin // if (state == st_heating)

 on_timer = 0;

 off_timer = 0;

 mag_on = 0;

 end // else: !if(state == st_heating)

 last_key = key_code;

 state = next_state;

 end // else: !if(reset)

endmodule // microwave_oven_controller

// exemplar translate_off

module test_oven();

 reg clk;

 wire [3:0] dmt, dmu, dst, dsu;

 wire mag_on;

 reg [5:0] key_mod;

 reg reset;

 // Set this to 1 to have each change in the oven display appear

 // on the console.

 reg monitor_display;

 // Set this to one to have each key press appear on the console.

 reg monitor_keys;

 reg monitor_beep;

 reg monitor_mag;

 // Set this to one to get long test.

 reg patient;

 microwave_oven_controller oven(beep,dmt,dmu,dst,dsu,mag_on,key_mod,reset,clk);

 time tics;

 wire [15:0] mod_digits = {dmt,dmu,dst,dsu};

 initial tics = 0;

 always begin clk = 0; #5625; tics = tics + 1; #0; clk=1; #10000; end

 parameter ss_reset = 3'd0;

 parameter ss_digit1 = 3'd1; // Single digit, power not entered.

 parameter ss_digit2 = 3'd2; // Power entered or > 1 digit.

 parameter ss_cook = 3'd3;

 parameter ss_pause = 3'd4;

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

_

 parameter kty_digit = 6'd30;

 reg [15:0] shadow_display, alt_display;

 integer alt_disp_stale;

 reg [2:0] shadow_state;

 integer shadow_secs, mod_secs, delta;

 integer shadow_tics, pause_tics, start_tics;

 integer shadow_power, shadow_digits;

 integer expected_beep_done, expecting_done_beep;

 integer watch_display;

 reg [7:0] error_display, error_mag, error_beep;

 integer error_total;

 reg [7:0] error_beep_total, error_mag_total, error_display_total;

 parameter key_none = 6'd0; // No key pressed.

 parameter key_never = 6'd1; // This code will never be returned.

 parameter key_start = 6'd10;

 parameter key_reset = 6'd11;

 parameter key_power = 6'd12;

 parameter key_0 = 6'd20;

 parameter key_1 = 6'd21;

 parameter key_2 = 6'd22;

 parameter key_3 = 6'd23;

 parameter key_4 = 6'd24;

 parameter key_5 = 6'd25;

 parameter key_6 = 6'd26;

 parameter key_7 = 6'd27;

 parameter key_8 = 6'd28;

 parameter key_9 = 6'd29;

 parameter show_key = 0;

 function integer abs;
 input a;

 integer a;

 abs = a < 0 ? -a : a;

 endfunction // abs

`define check_digit(d,l) \

 if((d) > (l) || (d) < 0) begin \

 error_display = error_display | 1; \

 secs = -1; \

 disable tosecs; \

 end

 // Convert time on display to seconds.

 //

 task tosecs;
 output secs;

 integer secs;

 begin

 `check_digit(dmt,9)

 `check_digit(dmu,9)

 `check_digit(dst,5)

 `check_digit(dsu,9)

 secs = dmt * 600 + dmu * 60 + dst * 10 + dsu;

 end

 endtask // tosecs

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

 /// Listen Beep
 //

 always @(beep)

 if(beep) begin

 if(monitor_beep) $display("Beep starting.");

 if(expecting_done_beep)

 begin

 expected_beep_done = 128;

 expecting_done_beep = 0;

 end

 if(expected_beep_done == 0) begin

 $display("Should not be beeping.");

 error_beep = error_beep | 1;

 end

 end else begin:B // if (beep)

 integer delta;

 if(monitor_beep) $display("Beep ending.");

 delta = abs(tics - expected_beep_done);

 if(shadow_state != ss_reset

 && expected_beep_done && delta > 5) begin

 $display("Beep wrong time. %d",delta);

 error_beep = error_beep | 2;

 end

 expected_beep_done = 0;

 end

 /// Watch Magnetron
 //

 integer mag_on_start, mag_on_total;

 always @(mag_on)

 if(mag_on) begin

 if(monitor_mag) $display("Mag on.");

 if(shadow_state != ss_cook)

 begin

 $display("Mag on when cooking off.");

 error_mag = error_mag | 1;

 end

 if(mag_on_start != 0) begin:A

 integer cycle_this;

 cycle_this = tics - mag_on_start;

 if(shadow_power > 0 && shadow_power < 10

 && abs(cycle_this - 160) > 10)

 begin

 $display("Mag cycle error.");

 error_mag = error_mag | 2;

 end

 end

 mag_on_start = tics;

 end else begin // if (mag_on)

 if(monitor_mag) $display("Mag off.");

 mag_on_total = mag_on_total + tics - mag_on_start;

 end // else: !if(mag_on)

 /// Verify correct magnetron-on time.
 //

 task verify_cooking;
 begin:A

 integer correct_mag_tics;

 integer delta;

 correct_mag_tics = shadow_tics * shadow_power / 10;

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

 delta = abs(correct_mag_tics - mag_on_total);

 if(mag_on) begin

 $display("Mag should be off.");

 error_mag = error_mag | 'h10;

 end

 if(delta > 128) begin

 $display("Wrong power level. %d %d ",

 correct_mag_tics, mag_on_total);

 error_mag = error_mag | 4;

 end

 end // block: A

 endtask // verify_cooking

 /// Watch display, etc.
 //

 always @(dmt or dmu or dst or dsu or shadow_display) #1 begin

 if(monitor_display)

 $display("Display: %h sh: %h alt: %h secs %d, state %d",

 mod_digits, shadow_display,alt_display,

 shadow_secs, shadow_state);

 if(shadow_state == ss_cook) begin

 shadow_secs = shadow_secs - 1;

 shadow_tics = shadow_tics + 64;

 tosecs(mod_secs);

 if(mod_secs !== shadow_secs)

 begin

 $display("Wrong count. (cooking)");

 error_display = error_display | 4;

 end

 delta = shadow_tics - (tics - start_tics);

 if(abs(delta) > 96)

 begin

 $display("More than 96 tics off: %d",delta);

 error_display = error_display | 2;

 end

 if(mod_digits == 0) begin

 expecting_done_beep = 1;

 delay(1.5);

 verify_cooking;

 if(expecting_done_beep) begin

 $display("End of cooking beep missing.");

 error_beep = error_beep | 4;

 end

 shadow_state = ss_reset;

 shadow_display = 0;

 end else if (shadow_secs == 0)

 begin

 $display("Count problem.");

 end

 end else if (shadow_state == ss_pause) begin

 tosecs(mod_secs);

 if(mod_secs !== shadow_secs) begin

 $display("Wrong count. (paused)");

 error_display = error_display | 8;

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

 end

 end else if (watch_display) begin

 if(mod_digits !== shadow_display

 && (alt_disp_stale <= tics || mod_digits !== alt_display))

 begin

 $display("Wrong display, should be %h or maybe %h but not %h",

 shadow_display,alt_display,mod_digits);

 error_display = error_display | 'h10;

 end

 end

 end

 // Reset shadow state and expected outputs maintained by

 // testbench.

 //

 task to_reset;
 begin

 shadow_digits = 0;

 alt_display = shadow_display;

 alt_disp_stale = tics + 2;

 shadow_state = ss_reset;

 shadow_display = 0;

 shadow_power = 10;

 watch_display = 1;

 end

 endtask // to_reset

 // Send keys to module, update correct state and expected output information.

 //

 task command;

 input [799:0] cmd;

 integer initialized;

 integer c;

 integer consec_reset;

 reg [5:0] to_key [0:255];

 reg [5:0] key;

 begin

 if(initialized === 'bx) begin

 for(c = 0; c < 256; c = c + 1) to_key[c] = key_never;

 for(c = 0; c < 10; c = c + 1) to_key["0" + c] = key_0 + c;

 to_key["s"] = key_start;

 to_key["r"] = key_reset;

 to_key["p"] = key_power;

 to_key[" "] = key_none;

 to_key[0] = key_none;

 initialized = 1;

 consec_reset = 0;

 end // if (initialized === 'bx)

 while(cmd) begin:COMMAND_LOOP

 reg [7:0] c;

 reg [5:0] key_type;

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

 c = cmd[799:792];

 cmd = cmd << 8;

 if(c == 0 || c == " ") disable COMMAND_LOOP;

 key_mod = to_key[c];

 key = key_mod;

 key_type = (c >= "0" && c <= "9") ? kty_digit : key_mod;

 if(key == key_never) begin

 $display("Testbench error: illegal key in command, %s (%d)",c,c);

 $stop;

 end

 if(key != key_none)

 consec_reset = key == key_reset ? consec_reset + 1 : 0;

 if(monitor_keys && key != key_none && consec_reset < 3)

 $display("Key %s ", c);

 casez({shadow_state,key_type})

 {3'b???,key_none}:;

 {ss_reset,key_reset}:

 begin

 to_reset;

 end

 {ss_reset,kty_digit}:

 begin

 shadow_digits = 1;

 shadow_state = ss_digit1;

 alt_display = shadow_display;

 alt_disp_stale = tics + 2;

 shadow_display = key-key_0;

 end

 {ss_pause,key_reset},

 {ss_digit1,key_reset},

 {ss_digit2,key_reset}:

 begin

 to_reset;

 end

 {ss_digit1,kty_digit}:

 begin

 shadow_digits = 2;

 shadow_state = ss_digit2;

 alt_display = shadow_display;

 alt_disp_stale = tics + 2;

 shadow_display = (shadow_display << 4) | key-key_0;

 end

 {ss_digit1,key_power}:

 begin

 shadow_state = ss_digit2;

 shadow_digits = 0;

 alt_display = shadow_display; // Power level.

 alt_disp_stale = 'h7fffffff;

 shadow_power = shadow_display;

 shadow_display = 0;

 end

 {ss_digit1,key_start},{ss_digit2,key_start}:

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

 begin

 tosecs(shadow_secs);

 start_tics = tics;

 shadow_tics = 0;

 mag_on_total = 0;

 mag_on_start = 0;

 shadow_state = ss_cook;

 end

 {ss_digit2,kty_digit}:

 if(shadow_digits == 4)

 expected_beep_done = tics + 16;

 else

 begin

 shadow_digits = shadow_digits + 1;

 // If shadow_display zero then power was pressed.

 alt_disp_stale = tics + 2;

 alt_display = mod_digits;

 shadow_display = (shadow_display << 4) | key-key_0;

 end

 {ss_cook,key_reset}:

 begin

 shadow_state = ss_pause;

 shadow_display = mod_digits;

 pause_tics = tics;

 end

 {ss_pause,key_start}:

 begin

 verify_cooking;

 mag_on_start = 0;

 shadow_tics = 0;

 mag_on_total = 0;

 start_tics = tics;

 shadow_state = ss_cook;

 end

 default:

 begin

 if(expected_beep_done && expected_beep_done < tics)

 begin

 $display("Missed a beep. (overlap)");

 error_beep = error_beep | 8;

 end

 expected_beep_done = tics + 16;

 end

 endcase // casez({shadow_state,key_type})

 @(posedge clk) @(negedge clk);

 repeat ($random() & 15 + 3) @(negedge clk);

 key_mod = key_none;

 @(posedge clk) @(negedge clk);

 @(posedge clk) @(negedge clk);

 end // block: COMMAND_LOOP

 end

 endtask // command

 // Reset oven module either using reset line or

 // reset button.

 //

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

 task reset_oven;
 input hard;

 begin

 if(hard) begin

 reset = 1;

 fork:F

 begin repeat (5 * 60 * 64) @(posedge clk); disable F; end

 wait(!beep);

 wait(!mag_on);

 join

 reset = 0;

 end else begin

 command("rrrrrr");

 fork:T

 wait(!beep);

 wait(!mag_on);

 begin repeat (5 * 60 * 64) @(posedge clk); disable T; end

 join

 command("rrrrrr");

 end // else: !if(0 && hard)

 if(beep || mag_on)

 begin

 $display("Could not reset oven.");

 if(beep) error_beep = error_beep | 'h20;

 if(mag_on) error_mag = error_mag | 8;

 end

 end

 endtask // reset_oven

 // Actions to be done at the end of a test.

 //

 task endtest;
 input [159:0] name;

 integer error_count;

 begin

 if(expected_beep_done)

 begin

 if(expected_beep_done >= tics)

 $display("Testbench not waiting long enough for beep.");

 $display("Missed a beep.");

 error_beep = error_beep | 'h10;

 expected_beep_done = 0;

 end

 if(mod_digits!==0)

 begin

 $display("Display should be zero.");

 error_display = error_display + 'h20;

 end

 verify_cooking;

 watch_display = 0;

 error_count = (error_display ? 1 : 0)

 + (error_beep ? 1 : 0) + (error_mag ? 1 : 0);

 error_total = error_total + error_count;

 error_beep_total = error_beep_total | error_beep;

 error_mag_total = error_mag_total | error_mag;

 error_display_total = error_display_total | error_display;

 $display("OUTCOME: %s on test %s. (dsp,beep,mag) (%2h,%2h,%2h)",

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

 error_count ? "FAIL" : "PASS",

 name,

 error_display, error_beep, error_mag);

 reset_oven(0);

 error_display = 0;

 error_beep = 0;

 error_mag = 0;

 mag_on_total = 0;

 shadow_tics = 0;

 end

 endtask // endtest

 task delay;
 input [63:0] secs;

 #(secs * 1000000);

 endtask // delay

 initial begin

 monitor_display = 1;

 monitor_keys = 1;

 monitor_beep = 1;

 monitor_mag = 1;

 patient = 1;

 expected_beep_done = 0;

 expecting_done_beep = 0;

 error_display = 0;

 error_display_total = 0;

 error_beep = 0;

 error_beep_total = 0;

 error_mag = 0;

 error_mag_total = 0;

 error_total = 0;

 mag_on_total = 0;

 #1;

 to_reset;

 reset_oven(1);

 error_display = 0;

 error_display_total = 0;

 error_beep = 0;

 error_beep_total = 0;

 error_mag = 0;

 error_mag_total = 0;

 error_total = 0;

 mag_on_total = 0;

 command("50prr");

 delay(54);

 endtest("Power Too High");

 command("32s"); delay(36);

 endtest("Basic");

 if(patient) begin:PATIENT

 integer old_mon, old_mag;

 old_mon = monitor_display;

 old_mag = monitor_mag;

 monitor_display = 0;

 $display("Starting test Long, be patient or modify testbench.");

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

 command("1234s"); delay(14*60);

 endtest("Long");

 monitor_display = old_mon;

 monitor_mag = old_mag;

 end

 command("30s"); delay(14);

 command("1"); delay(2); command("p");

 delay(20);

 endtest("Basic Disturbed");

 command("5p30s");

 delay(40);

 endtest("Half Power");

 command("9p3p0s");

 delay(40);

 endtest("Power Twice");

 command("3ppp19s");

 delay(40);

 endtest("Power Thrice");

 command("20s");

 delay(10);

 command("r");

 delay(5);

 command("s");

 delay(16);

 endtest("Reset Start");

 command("20s");

 delay(10);

 command("r");

 delay(5);

 command("r");

 delay(16);

 endtest("Reset Reset");

 command("s");

 delay(5);

 endtest("Null Start");

 command("ps");

 delay(5);

 endtest("Null Power Start");

 command("7p30s"); delay(10);

 command("1"); delay(2); command("s"); delay(3);

 command("12344321");

 delay(40);

 endtest("Power Disturbed");

 command("12r5s"); delay(135);

 endtest("Twelve no 5");

 command("12345rr"); delay(5);

 endtest("Display Overflow");

 if(show_key) begin

 $display("\n ** Error Codes **

 Display (Codes in hexadecimal. Error codes or'ed together.)

 1 Digit out of range. (Check digit.)

 2 Display digit change more than 96 tics off.

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

 4 Wrong count. (cooking)

 8 Wrong count. (paused)

 10 Wrong count displayed. (Not cooking nor paused.)

 20 Display should be zero.

 Beep:

 1 Should not be beeping.

 2 Beep duration wrong.

 4 End of cooking beep missing.

 8 Missed a beep. (overlap)

 10 Missed a beep. (endtest)

 20 Wouldn't stop beeping!

 Mag

 1 Mag on when cooking off.

 2 Mag cycle error.

 4 Wrong power level.

 8 Would not turn off.

 10 Should be off (when cooking verified).

");

 $display("\n ** Testbench Monitoring ** ");

 $display(" Display %s", monitor_display ? "on" : "off");

 $display(" Keys %s", monitor_keys ? "on" : "off");

 $display(" Beep %s", monitor_beep ? "on" : "off");

 $display(" Mag %s", monitor_mag ? "on" : "off");

 $display(" To turn monitoring on and off edit monitor_FOO variables.");

 $display(" at last \"initial begin\" in testbench.\n\n");

 end

 $display("%s, beep tests (code: %h).",

 error_beep_total ? "FAIL" : "PASS", error_beep_total);

 $display("%s, mag tests (code: %h).",

 error_mag_total ? "FAIL" : "PASS", error_mag_total);

 $display("%s, display tests (code: %h).",

 error_display_total ? "FAIL" : "PASS", error_display_total);

 $display("All tests completed, %d total errors.",error_total);

 $stop;

 end // initial begin

endmodule // test_oven

// exemplar translate_on

← → Spring 2001 ← → Homework 4 Homework Sol Code hw04 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw04_sol.html

//

///

/// Solution to LSU EE 4702-1 Spring 2001 Homework 5
///

 // Assignment: http://www.ee.lsu.edu/v/2001/hw05.pdf

//

// The log_2 of the number of numbers stored by the bsearch module.

// Keep this small to limit synthesis time.

`define SIZELG 4

`define SIZE (1<<`SIZELG) // The number of numbers stored by bsearch.

`define SIZERANGE `SIZELG-1:0

`define ELEMBITS 8 // The number of bits in each number stored.

`define ELEMRANGE `ELEMBITS-1:0

`define MAXELEM (1<<`ELEMBITS)

//

//

// Original bsearch module.

//

// Not part of the solution, here for comparison to the other modules.

// This module is synthesizable (despite misleading macro names). The

// synthesized hardware does the entire lookup in one cycle, which

// requires alot of hardware.

// Number of gates : 5365

// clk : 50.7 MHz

// Critical path: num_2_ -> result[1], 19.18 ns

`define xNOT_SYN

`ifdef NOT_SYN

module bsearch(result,din,op,reset,clk);
 input din, op, reset, clk;

 output result;

 wire [7:0] din;

 wire [2:0] op;

 reg [2:0] result;

 `include "bsearch_names.v"

 reg [7:0] dtable [0:`SIZE-1];

 reg [`SIZELG:0] num;

 reg [`SIZERANGE] current, try, delta;

 reg [`ELEMRANGE] trydata;

 reg match;

 // Bug workaround. Needed to avoid a synthesis bug.

 wire [`ELEMRANGE] bug_workaround = dtable[1];

 always @(posedge clk)

 if(reset) begin

 num = 0;

 result = re_r_idle;

 end else begin

 case(op)

← → Spring 2001 ← → Homework 5 Homework Sol Code hw05 sol.html

http://www.ee.lsu.edu/v/2001/hw05.pdf
file:///free/apache/htdocs/koppel/v/2001/bsearch_names.html
https://www.ece.lsu.edu/ee4755/2001/hw05_sol.html

 op_nop:;

 op_reset:

 begin

 num = 0;

 result = re_r_idle;

 end

 op_insert:

 if(num == `SIZE) begin

 result = re_i_full;

 end else if(num > 0 && dtable[num-1] >= din) begin

 result = re_i_misordered;

 end else begin

 dtable[num] = din;

 num = num + 1;

 result = re_i_inserted;

 end

 op_find:

 begin

 match = 0;

 current = 0;

 delta = 1 << (`SIZELG - 1);

 begin:BLOOP forever begin

 try = current | delta;

 if(try < num) begin

 trydata = dtable[try];

 match = trydata == din;

 if(match) disable BLOOP;

 if(trydata < din) current = try;

 end

 if(!delta) disable BLOOP;

 delta = delta >> 1;

 end end

 result = match ? re_f_present : re_f_absent;

 end

 endcase

 end

endmodule

`endif

//

//

// Problem 1: Form 2 bsearch Module

//

// Synthesizable Form 2.

//

//

// Clock Frequency (MHz): 113.5 MHz

// Area (number of gates): 4275

// Worst-case time to find a number: 6 / 113.5 MHz = 52.9 ns

//

`define xFORM2

`ifdef FORM2

module bsearch(result,din,op,reset,clk);
 input din, op, reset, clk;

← → Spring 2001 ← → Homework 5 Homework Sol Code hw05 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw05_sol.html

 output result;

 wire [7:0] din;

 wire [2:0] op;

 reg [2:0] result;

 `include "bsearch_names.v"

 reg looping;

 reg [7:0] dtable [0:`SIZE-1];

 reg [`SIZELG:0] num;

 reg [`SIZERANGE] current, try, delta;

 reg [`ELEMRANGE] trydata;

 reg match;

 wire [`ELEMRANGE] bug_workaround = dtable[12];

 always @(posedge clk)

 if(reset) begin

 looping = 0;

 num = 0;

 result = re_r_idle;

 end else if(looping) begin

 try = current + delta;

 if(try < num) begin

 trydata = dtable[try];

 match = trydata == din;

 if(match) looping = 0;

 if(trydata < din) current = try;

 end

 if(!delta) looping = 0;

 delta = delta >> 1;

 if(!looping) result = match ? re_f_present : re_f_absent;

 end else begin

 case(op)

 op_nop:;

 op_reset:

 begin

 num = 0;

 result = re_r_idle;

 end

 op_insert:

 if(num == `SIZE) begin

 result = re_i_full;

 end else if(num > 0 && dtable[num-1] >= din) begin

 result = re_i_misordered;

 end else begin

 dtable[num] = din;

 num = num + 1;

 result = re_i_inserted;

 end

 op_find:

 begin

 match = 0;

 current = 0;

← → Spring 2001 ← → Homework 5 Homework Sol Code hw05 sol.html

file:///free/apache/htdocs/koppel/v/2001/bsearch_names.html
https://www.ece.lsu.edu/ee4755/2001/hw05_sol.html

 delta = 1 << (`SIZELG - 1);

 result = re_busy;

 looping = 1;

 end

 endcase

 end

endmodule

`endif

//

//

// Problem 2: Form 3 bsearch Module

//

// Synthesizable Form 3.

// Module does one dtable lookup per cycle.

//

// Clock Frequency (MHz): 109.1 MHz

// Area (number of gates): 4155

// Worst-case time to find a number: 5 / 109.1 MHz = 45.8 ns

//

// Critical path: reg_delta(1)/XQ to result[1], 8.47 ns

`define xFORM3

`ifdef FORM3

module bsearch(result,din,op,reset,clk);
 input din, op, reset, clk;

 output result;

 wire [7:0] din;

 wire [2:0] op;

 reg [2:0] result;

 `include "bsearch_names.v"

 reg [7:0] dtable [0:`SIZE-1];

 reg [`SIZELG:0] num;

 reg [`SIZERANGE] current, try, delta;

 reg [`ELEMRANGE] trydata;

 reg match;

 always @(posedge clk)

 if(reset) begin

 num = 0;

 result = re_r_idle;

 end else begin

 case(op)

 op_nop:;

 op_reset:

 begin

 num = 0;

 result = re_r_idle;

 end

 op_insert:

 if(num == `SIZE) begin

← → Spring 2001 ← → Homework 5 Homework Sol Code hw05 sol.html

file:///free/apache/htdocs/koppel/v/2001/bsearch_names.html
https://www.ece.lsu.edu/ee4755/2001/hw05_sol.html

 result = re_i_full;

 end else if(num > 0 && dtable[num-1] >= din) begin

 result = re_i_misordered;

 end else begin

 dtable[num] = din;

 num = num + 1;

 result = re_i_inserted;

 end

 op_find:

 begin

 match = 0;

 current = 0;

 delta = 1 << (`SIZELG - 1);

 result = re_busy;

 begin:BLOOP forever begin

 @(posedge clk);

 try = current + delta;

 if(try < num) begin

 trydata = dtable[try];

 // This would split the delta -> result path between two

 // cycles, but it would take nearly twice as long to find

 // a result.

 // @(posedge clk);

 match = trydata == din;

 if(match) disable BLOOP;

 if(trydata < din) current = try;

 end

 if(!delta) disable BLOOP;

 delta = delta >> 1;

 end end

 result = match ? re_f_present : re_f_absent;

 end

 endcase

 end

endmodule

`endif

//

//

// Problem 3: Form 3 bsearch Module, Speed Enhanced

//

// Synthesizable, Form 3.

// Module does two dtable lookups per cycle.

//

// Several solutions within module, area, time, and performance in comments

// next to code.

// Clock Frequency (MHz):

// Area (number of gates):

// Worst-case time to find a number:

//

`define FORM3_FAST

`ifdef FORM3_FAST

module bsearch(result,din,op,reset,clk);

← → Spring 2001 ← → Homework 5 Homework Sol Code hw05 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw05_sol.html

 input din, op, reset, clk;

 output result;

 wire [7:0] din;

 wire [2:0] op;

 reg [2:0] result;

 `include "bsearch_names.v"

 reg [7:0] dtable [0:`SIZE-1];

 reg [`SIZELG:0] num;

 reg [`SIZERANGE] current, try, delta;

 reg [`SIZERANGE] try0, try1, delta2;

 reg [`ELEMRANGE] trydata, trydata0, trydata1;

 reg match, match0, match1, m;

 always @(posedge clk)

 if(reset) begin

 num = 0;

 result = re_r_idle;

 end else begin

 case(op)

 op_nop:;

 op_reset:

 begin

 num = 0;

 result = re_r_idle;

 end

 op_insert:

 if(num == `SIZE) begin

 result = re_i_full;

 end else if(num > 0 && dtable[num-1] >= din) begin

 result = re_i_misordered;

 end else begin

 dtable[num] = din;

 num = num + 1;

 result = re_i_inserted;

 end

 op_find:

 begin

 current = 0;

 delta = 1 << (`SIZELG - 1);

 result = re_busy;

`define ALWAYS

 `ifdef ALWAYS

 // Two iterations per clock cycle, dtable lookups done simultaneously.

 // Code below clk : 3 / 97.8 MHz = 30.7 ns

 // Number of gates : 7513

 delta2 = delta >> 1;

 begin:BLOOP forever begin

 @(posedge clk);

 try = current + delta;

 try0 = current + delta2;

 try1 = try + delta2;

 trydata = dtable[try];

 trydata0 = dtable[try0];

← → Spring 2001 ← → Homework 5 Homework Sol Code hw05 sol.html

file:///free/apache/htdocs/koppel/v/2001/bsearch_names.html
https://www.ece.lsu.edu/ee4755/2001/hw05_sol.html

 trydata1 = dtable[try1];

 match = trydata == din;

 match0 = trydata0 == din;

 match1 = trydata1 == din;

 if(try < num) begin

 if(match) begin m = 1; disable BLOOP; end

 if(trydata > din)

 begin

 if(match0) begin m = 1; disable BLOOP; end

 if(trydata0 < din) current = try0;

 end

 else if(try1 < num)

 begin

 if(match1) begin m = 1; disable BLOOP; end

 if(trydata1 < din) current = try1;

 else current = try;

 end

 else

 current = try;

 end else if(try0 < num) begin

 begin

 if(match0) begin m = 1; disable BLOOP; end

 if(trydata0 < din) current = try0;

 end

 end

 if(!delta) begin m = 0; disable BLOOP; end

 delta = delta >> 2;

 delta2 = delta2 >> 2;

 end end

`endif

`ifdef NEVER

 // Completely unrolled, all five iterations in one cycle.

 // Code below clk : 1/ 55.5 MHz = 18.0 ns

 // Number of gates : 5482

 match = 0;

 repeat (`SIZELG + 1) begin

 try = current + delta;

 if(!match && try < num) begin

 trydata = dtable[try];

 match = trydata == din;

 if(trydata < din) current = try;

 end

 delta = delta >> 1;

 end

 m = match;

`endif

`ifdef NEVER

 // Original Code

 // Code below: clk : 5/ 109.1 MHz = 46.2 ns

 // Number of gates : 4155

 match = 0;

 begin:BLOOP forever begin

 @(posedge clk);

 try = current + delta;

 if(try < num) begin

 trydata = dtable[try];

 match = trydata == din;

 if(match) disable BLOOP;

 if(trydata < din) current = try;

 end

 if(!delta) disable BLOOP;

 delta = delta >> 1;

 end end

 m = match;

← → Spring 2001 ← → Homework 5 Homework Sol Code hw05 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw05_sol.html

`endif

`ifdef NEVER

 // Two iterations per cycle.

 // Iterations are sequential. (Second dtable lookup after first.)

 // clk : 3 / 63.7 MHz = 47.1 ns

 // Number of gates : 6465

 match = 0;

 begin:BLOOP forever begin

 @(posedge clk);

 repeat(2) begin

 try = current + delta;

 if(!match && try < num) begin

 trydata = dtable[try];

 match = trydata == din;

 if(trydata < din) current = try;

 end

 delta2 = delta; delta = delta >> 1;

 end

 if(match) disable BLOOP;

 if(!delta2) disable BLOOP;

 end end

 m = match;

`endif

 result = m ? re_f_present : re_f_absent;

 end

 endcase

 end

endmodule

`endif

//

//

// Testbench

//

// Testbench module is named testbsearch.

// The testbench can be copied into this file or another one and

// modified. The testbench might be updated before the homework

// is due though.

`include "/home/classes/ee4702/files/v/hw05tb.v"

← → Spring 2001 ← → Homework 5 Homework Sol Code hw05 sol.html

https://www.ece.lsu.edu/ee4755/2001/hw05_sol.html

24 Spring 2000 Solutions

643

← → Spring 2000 ← → Homework 5 Homework Sol Code hw05 sol.html

https://www.ece.lsu.edu/ee4755/2000/hw05_sol.html

// Solution to LSU EE 4701 Spring 2000 HW 5.

`ifdef ALU

module alu(res,err,a,b,op);

 input a, b, op;

 output res, err;

 parameter op_add = 0, // Addition.

 op_sub = 1, // Subtraction

 op_and = 2; // Bitwise and.

 wire [7:0] a, b;

 wire [2:0] op;

 reg [7:0] res;

 reg err;

 // exemplar full_case

 always @(a or b or op)

 case(op)

 op_add: {err,res} = a + b;

 op_sub: {err,res} = a - b;

 op_and: begin err = 0; res = a & b; end

 endcase // case(op)

endmodule // alu

`endif

module latch_thing(w,x,y,z,a,b,c,d,r,clk);

 input a, b, c, d, r, clk;

 output w, x, y, z;

 reg w, x, y, z;

 wire a, b, c, d, r, clk;

 always @(negedge clk or posedge r) if(r) w = 0; else w = d;

 always @(posedge clk or posedge r) if(r) y = 0; else y = a;

 always @(clk or c or r or d or b)

 if(r) z = 0; else if(clk && d == b) z = c;

 wire deqb = d == a && clk;

 always @(posedge clk or posedge r or posedge deqb)

 if(r)

 x = 0;

 else if(deqb)

 x = 1;

 else if(a) x = b;

endmodule // latch_thing

← → Spring 2000 ← → Homework 5 Homework Sol Code hw05 sol.html

https://www.ece.lsu.edu/ee4755/2000/hw05_sol.html

//

// LSU EE 4702-1 Spring 2000 Homework 6 Solution

//

module width_change(out,full,complete,empty,outclk,in,inclk,reset);

 input outclk, in, inclk, reset;

 output out, full, complete, empty;

 parameter storage = 32;

 wire [7:0] out;

 wire [3:0] in;

 wire inclk, outclk, full, empty, complete;

 reg [storage-1:0] sto;

 reg [1:0] head_word;

 reg [2:0] tail_nibble;

 reg empty_in, empty_out, full_in, full_out;

 assign out = empty ? 0 : sto >> { head_word, 3'b0 };

 assign empty = empty_in ^ empty_out;

 assign full = full_in ^ full_out;

 assign complete = !empty &&

 (full || head_word != tail_nibble[2:1]);

 always @(posedge inclk or posedge reset)

 if(reset) begin

 sto[7:0] = 0; tail_nibble = 0; empty_in = 1; full_in = 0;

 end else if(!full) begin

 if(empty) begin empty_in = !empty_in; tail_nibble = 0; end

 case (tail_nibble)

 0: sto[7:0] = {4'b0,in};

 1: sto[7:4] = in;

 2: sto[15:8] = {4'b0,in};

 3: sto[15:12] = in;

 4: sto[23:16] = {4'b0,in};

 5: sto[23:20] = in;

 6: sto[31:24] = {4'b0,in};

 7: sto[31:28] = in;

 endcase

 tail_nibble = tail_nibble + 1;

 if(tail_nibble[0]==0 && tail_nibble>>1 == head_word)

 full_in = !full_in;

 end

 always @(posedge outclk or posedge reset)

 if(reset) begin

 head_word = 0; empty_out = 0; full_out = 0;

 end else

 if(!empty) begin

 if(full) begin

 full_out = !full_out;

 head_word = head_word + 1;

 end else if(head_word == (3 & (tail_nibble-1)>>1)) begin

 empty_out = !empty_out;

 head_word = 0;

 end else begin

 head_word = head_word + 1;

← → Spring 2000 ← → Homework 6 Homework Sol Code hw06 sol.html

https://www.ece.lsu.edu/ee4755/2000/hw06_sol.html

 end

 end

endmodule // width_change

// exemplar translate_off

module wc_test();

 // If non-zero, stop simulation when an error is encountered.

 // If zero, when an error is encountered simulation will proceed

 // and a count of errors will be displayed.

 parameter stop_on_err = 1;

 wire [7:0] out;

 wire full, empty, comp;

 reg outclk, inclk, reset;

 reg [3:0] indata;

 reg [31:0] shadow;

 reg shadow_full, shadow_comp, shadow_empty;

 reg [7:0] shadow_head;

 integer shadow_occ;

 reg check;

 integer phasecount;

 time remove_delay_limit_short, remove_delay_limit_long;

 time remove_delay_limit;

 time fill_delay_limit;

 time next_empty;

 integer allow_simultaneous_clocks;

 integer allow_overlapping_clocks;

 integer error_out_t, error_out;

 integer error_empty_t, error_empty;

 integer error_comp_t, error_comp;

 integer error_full_t, error_full;

 integer error_test, error_test_t;

 width_change wc(out,full,comp,empty,outclk,indata,inclk,reset);

 function [31:0] randi;

 input [31:0] limit;

 randi = ($random >> 1) % limit;

 endfunction // randi

 initial begin

 indata = 0; outclk = 0; inclk = 0; reset = 0;

 shadow_empty = 1; shadow_comp = 0; shadow_full = 0; shadow_head = 0;

 check = 0; shadow = 0; shadow_occ = 0; phasecount = 0;

 fill_delay_limit = 20;

 remove_delay_limit_short = 0.5 * fill_delay_limit * 2;

 remove_delay_limit_long = 2 * fill_delay_limit * 2;

 // Start filling.

 remove_delay_limit = remove_delay_limit_long;

 allow_overlapping_clocks = 0;

 allow_simultaneous_clocks = 0;

 error_out = 0; error_out_t = 0;

 error_empty = 0; error_empty_t = 0;

 error_comp = 0; error_comp_t = 0;

 error_full = 0; error_full_t = 0;

← → Spring 2000 ← → Homework 6 Homework Sol Code hw06 sol.html

https://www.ece.lsu.edu/ee4755/2000/hw06_sol.html

 error_test = 0; error_test_t = 0;

 reset = 1; #10 reset = 0; #10;

 fork:TESTLOOP

 forever begin:FILL

 integer clk_fall_delay;

 integer clk_rise_delay;

 clk_fall_delay = allow_overlapping_clocks ?

 randi(fill_delay_limit)+1 : 1;

 clk_rise_delay = randi(fill_delay_limit)+1;

 indata <= #(10*randi(clk_rise_delay)) $random;

 #(10*clk_rise_delay);

 // Special case: if FIFO is full or empty and data is

 // simultaneously clocked in and out there's no way to

 // tell if FIFO rejected the data begin clocked in.

 while(next_empty == $time &&

 (!allow_simultaneous_clocks ||

 shadow_occ >= 20 || shadow_occ < 12)) #10;

 inclk = 1;

 check <= #1 !check;

 shadow_empty = 0;

 if(!shadow_full) begin

 shadow_occ = shadow_occ + 4;

 shadow = { indata, shadow[31:4] };

 if(shadow_occ > 28)

 begin

 shadow_full = 1;

 if(remove_delay_limit === remove_delay_limit_long) begin

 remove_delay_limit = remove_delay_limit_short;

 phasecount = phasecount + 1;

 end

 end

 if(shadow_occ > 7) shadow_comp = 1;

 end

 shadow_head = shadow >> (32 - shadow_occ);

 indata <= #(10*randi(clk_fall_delay)) $random;

 inclk = #(10*clk_fall_delay) 0;

 end

 forever begin:EMPTY

 integer clk_fall_delay;

 integer clk_rise_delay;

 clk_fall_delay = allow_overlapping_clocks ?

 randi(remove_delay_limit)+1 : 1;

 clk_rise_delay = randi(remove_delay_limit)+1;

 next_empty = $time + 10 * clk_rise_delay;

 outclk = #(10*clk_rise_delay) 1;

 check <= #1 !check;

 shadow_full = 0;

 if(!shadow_empty) begin

 if(shadow_occ <= 8) begin

 shadow_occ = 0; shadow_empty = 1;

← → Spring 2000 ← → Homework 6 Homework Sol Code hw06 sol.html

https://www.ece.lsu.edu/ee4755/2000/hw06_sol.html

 remove_delay_limit = remove_delay_limit_long;

 end else begin

 shadow_occ = shadow_occ - 8;

 end

 shadow_head = shadow >> (32 - shadow_occ);

 if(shadow_occ < 8) shadow_comp = 0;

 end

 outclk = #(10*clk_fall_delay) 0;

 end // block: EMPTY

 forever @(out or check) #1

 if(out !== shadow_head) begin

 if(stop_on_err) begin

 $display("Wrong output.");

 #2 $stop;

 end

 error_out = error_out + 1;

 end

 forever @(empty or check) #1

 if(empty !== shadow_empty) begin

 if(stop_on_err) begin

 $display("Wrong empty.");

 #2 $stop;

 end

 error_empty = error_empty + 1;

 end

 forever @(comp or check) #1

 if(comp !== shadow_comp) begin

 if(stop_on_err) begin

 $display("Wrong complete.");

 #2 $stop;

 end

 error_comp = error_comp + 1;

 end

 forever @(full or check) #1

 if(full !== shadow_full) begin

 if(stop_on_err) begin

 $display("Wrong full.");

 #2 $stop;

 end

 error_full = error_full + 1;

 end

 forever @(phasecount) begin:P

 reg [84:0] test_name;

 if(phasecount == 200 || phasecount == 400 || phasecount == 600)

 begin

 error_test = error_out + error_empty + error_comp + error_full;

 error_test_t = error_test_t + error_test;

 error_out_t = error_out_t + error_out;

 error_empty_t = error_empty_t + error_empty;

 error_comp_t = error_comp_t + error_comp;

 error_full_t = error_full_t + error_full;

 case(phasecount)

 200:test_name = "No Overlap";

 400:test_name = "Not Simult";

 600:test_name = "Full Test";

 endcase // case(phasecount)

 $display("Test %s. Total Errors %d. Errors by type:",

← → Spring 2000 ← → Homework 6 Homework Sol Code hw06 sol.html

https://www.ece.lsu.edu/ee4755/2000/hw06_sol.html

 test_name, error_test);

 $display(" Output %d, empty %d, compl %d, full %d",

 error_out, error_empty, error_comp, error_full);

 if(phasecount == 200) begin

 allow_overlapping_clocks = 1;

 if(error_test === 0)

 $display("Passed all non-overlapping tests!!");

 end else if (phasecount == 400) begin

 allow_simultaneous_clocks = 1;

 if(error_test === 0)

 $display("Passed all overlapping-but-not-simultaneous tests!!!!!");

 end else if (phasecount == 600) begin

 if(error_test === 0)

 $display("Passed all simultaneous clock tests!!!!!!!");

 if(error_test_t === 0)

 $display("Passed EVERY test! PERFECT!!!!!!!!!!!!!!!");

 else

 $display("Failed %d tests. :-(",error_test_t);

 disable TESTLOOP;

 end

 error_out = 0; error_empty = 0; error_comp = 0; error_full = 0;

 error_test = 0;

 end // if (phasecount == 200 || phasecount == 400 || phasecount == 600)

 end

 join

 end // initial begin

endmodule // wc_test

// exemplar translate_on

← → Spring 2000 ← → Homework 6 Homework Sol Code hw06 sol.html

https://www.ece.lsu.edu/ee4755/2000/hw06_sol.html

	Fall 2023
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Fall 2022
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf

	Fall 2021
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Fall 2020
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf

	Fall 2019
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Fall 2018
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf
	hw08.pdf

	Fall 2017
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf
	hw07.pdf

	Fall 2016
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Fall 2015
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Fall 2014
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf

	Spring 2001
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf

	Spring 2000
	hw01.pdf
	hw02.pdf
	hw03.pdf
	hw04.pdf
	hw05.pdf
	hw06.pdf

	Fall 2023 Solutions
	hw01-sol.v.html
	hw02-sol.v.html
	hw03-sol.v.html
	hw04 sol.pdf
	hw05-sol.v.html

	Fall 2022 Solutions
	hw01-sol.v.html
	hw02-sol.v.html
	hw03 sol.pdf
	hw04-sol.v.html
	hw05 sol.pdf
	hw05-sol.v.html

	Fall 2021 Solutions
	hw01 sol.pdf
	hw01-sol.v.html
	hw02-sol.v.html
	hw03 sol.pdf
	hw04 sol.pdf
	hw04-sol.v.html
	hw05 sol.pdf
	hw06-sol.v.html

	Fall 2020 Solutions
	hw01 sol.pdf
	hw02-sol.v.html
	hw03-sol.v.html
	hw04 sol.pdf

	Fall 2019 Solutions
	hw01 sol.pdf
	hw01-sol.v.html
	hw02 sol.pdf
	hw02-sol-try.v.html
	hw02-sol.v.html
	hw03 sol.pdf
	hw04 sol.pdf
	hw05 sol.pdf
	hw06-sol.v.html

	Fall 2018 Solutions
	hw01-sol.v.html
	hw02 sol.pdf
	hw03-sol.v.html
	hw04 sol.pdf
	hw05-sol.v.html
	hw06 sol.pdf
	hw07-sol.v.html
	hw08 sol.pdf

	Fall 2017 Solutions
	hw01 sol.pdf
	hw01-sol.v.html
	hw02-sol.v.html
	hw04-sol.v.html
	hw05-sol.v.html
	hw06 sol.pdf
	hw07-sol.v.html

	Fall 2016 Solutions
	hw01 sol.pdf
	hw02-sol.v.html
	hw03 sol.pdf
	hw04 sol.pdf
	hw04-sol.v.html
	hw05 sol.pdf
	hw06-sol.v.html

	Fall 2015 Solutions
	hw01 sol.pdf
	hw02 sol.pdf
	hw02-sol.v.html
	hw03 sol.pdf
	hw04 sol.pdf
	hw04-sol.v.html
	hw05 sol.pdf
	hw06 sol.pdf

	Fall 2014 Solutions
	hw01-sol.v.html
	hw02-sol.v.html
	hw03 sol.pdf
	hw03-sol.v.html
	hw04 sol.pdf
	hw04-sol.v.html

	Spring 2001 Solutions
	hw01 sol.html
	hw03 sol.html
	hw04 sol.html
	hw05 sol.html

	Spring 2000 Solutions
	hw05 sol.html
	hw06 sol.html

