
This document contains assignments given in LSU EE 4755 over many
semesters. It was automatically generated and so some solutions (and pos-
sibly some assignments) are likely missing. At the top of each page of each
assignment is a link to the original assignment. Those who want to print an
assignment might follow that link. All assignments and public solutions are
available at https://www.ece.lsu.edu/ee4755/prev.html.

Contents

1 Fall 2023 4
1.1 mt.pdf . 5
1.2 fe.pdf . 13

2 Fall 2022 22
2.1 mt.pdf . 23
2.2 fe.pdf . 34

3 Fall 2021 45
3.1 mt.pdf . 46
3.2 fe.pdf . 57

4 Fall 2020 74
4.1 mt.pdf . 75
4.2 fe.pdf . 83

5 Fall 2019 92
5.1 mt.pdf . 93
5.2 fe.pdf . 100

6 Fall 2018 109
6.1 mt.pdf . 110
6.2 fe.pdf . 116

7 Fall 2017 127
7.1 mt.pdf . 128
7.2 fe.pdf . 135

8 Fall 2016 144
8.1 mt.pdf . 145
8.2 fe.pdf . 154

9 Fall 2015 163
9.1 mt.pdf . 164
9.2 fe.pdf . 171

1

https://www.ece.lsu.edu/ee4755/prev.html

10 Fall 2014 183
10.1 mt.pdf . 184
10.2 fe.pdf . 194

11 Spring 2001 204
11.1 mt.pdf . 205
11.2 fe.pdf . 213

12 Spring 2000 222
12.1 mt.pdf . 223
12.2 fe.pdf . 231

13 Fall 2023 Solutions 240
13.1 mt sol.pdf . 241

14 Fall 2022 Solutions 250
14.1 mt sol.pdf . 251
14.2 fe sol.pdf . 261

15 Fall 2021 Solutions 272
15.1 mt sol.pdf . 273
15.2 fe sol.pdf . 289

16 Fall 2020 Solutions 306
16.1 mt sol.pdf . 307
16.2 fe sol.pdf . 320

17 Fall 2019 Solutions 330
17.1 mt sol.pdf . 331
17.2 fe sol.pdf . 339

18 Fall 2018 Solutions 349
18.1 mt sol.pdf . 350
18.2 fe sol.pdf . 358

19 Fall 2017 Solutions 371
19.1 mt sol.pdf . 372
19.2 fe sol.pdf . 381

20 Fall 2016 Solutions 392
20.1 mt sol.pdf . 393
20.2 fe sol.pdf . 403

21 Fall 2015 Solutions 418
21.1 mt sol.pdf . 419
21.2 fe sol.pdf . 427

2

22 Fall 2014 Solutions 440
22.1 mt sol.pdf . 441
22.2 fe sol.pdf . 453

23 Spring 2001 Solutions 465
23.1 mt sol.pdf . 466
23.2 fe sol.pdf . 475

24 Spring 2000 Solutions 487
24.1 mt sol.pdf . 488
24.2 fe sol.pdf . 496
24.3 fe sol.html . 507

3

1 Fall 2023

4

← → Fall 2023 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Name Formatted For 2-Sided Printing

Digital Design Using HDLs

LSU EE 4755

Midterm Examination

Friday, 27 October 2023, 11:30-12:20 CDT

Alias

Problem 1 (30 pts)

Problem 2 (25 pts)

Problem 3 (30 pts)

Problem 4 (15 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2023 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Problem 1: [30 pts] Appearing below is the permutation module from the solution to Homework 3.
Using the illustration of the ports show the inferred hardware for an instantiation with n=4. Show the n=4

instantiation but not what is inside the n=3 recursive instantiation.

module perm
#(int w = 8, n = 20, wd = $clog2(n))

(output uwire [w-1:0] pdata_out[n], output uwire [wd-1:0] pnum_out[n],

output uwire carry_out,

input uwire [w-1:0] pdata_in[n], input uwire [wd-1:0] pnum_in[n]);

if (n == 1) begin

assign pdata_out[0] = pdata_in[0];

assign carry_out = 1;

assign pnum_out[0] = 0;

end else begin

uwire [wd-1:0] pos = n - 1 - pnum_in[n-1];

assign pdata_out[n-1] = pdata_in[pos];

uwire [w-1:0] prdata_in[n-1];

for (genvar i=0; i<n-1; i++)

assign prdata_in[i] = i < pos ? pdata_in[i] : pdata_in[i+1];

uwire co;

perm #(w,n-1,wd) rp(pdata_out[0:n-2], pnum_out[0:n-2], co,

prdata_in, pnum_in[0:n-2]);

uwire [wd-1:0] dnext = pnum_in[n-1] + co;

assign carry_out = dnext >= n;

assign pnum_out[n-1] = carry_out ? 0 : dnext;

end

endmodule

pdata_in[0]

[1]

[2]

[3]

p
d
a
ta
_in

pnum_in[0]

[1]

[2]

[3]

p
n
u
m
_in

2

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2023 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Show inferred hardware for n=4. Be sure to use the illustrated module ports and to show the
recursively instantiated module (but not its contents).

Show hardware, do not confuse elaboration-time computation with computation hardware.

p
d
a
ta
_o
u
t

pdata_out[0]

[1]

[2]

[3]

p
n
u
m
_o
u
t

pnum_out[0]

[1]

[2]

[3]

carry_out

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

← → Fall 2023 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Problem 2: [25 pts] A ripple adder to compute a + b is to be used in situations where a is a constant.

(a) Find the cost and delay of a BFA with input a constant (for use in the ripple adder). A BFA is shown
for your convenience.

Show the BFA(s) optimized for input a constant.

Use a truth table to find optimizations not revealed by constant pushing: in a correct solution the delay
does not depend upon a.

Show simple-model cost of this(these) module(s) and show simple-model delay(s) of this(these) mod-
ule(s).

a

b

ci c
o

s
u
m

BFA

(b) On the facing page show the optimized hardware, cost, LSB delay, and MSB delay of a w-bit ripple adder

for computing a+ b+ cin, where cin is a carry-in bit (cin in the diagram) and a is a constant. (See the
check box items for details.) Use the illustration on the facing page as a starting point.

Show the hardware optimized for a constant a and a non-constant cin.

Compute the simple-model cost of this hardware in terms of w.

Compute the simple-model delay of the LSB of the sum.

Compute the simple-model delay of the MSB of the sum in terms of w and show the critical path.

Don’t forget that a is a constant.

4

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2023 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

a

b

ci c
o

s
u

m

BFA

cin

a

b

w

w

a[w-1]

Bit 0 -- LSB Bit 1 Bit 2 Bit w-1 -- MSB
b[w-1]

sum

ripple_adder w

a[2]

b[2]

a[1]

b[1]

a
[0
]

b[0]

w

a

b

ci c
o

s
u

m

BFA
a

b

ci c
o

s
u

m

BFA
a

b

ci c
o

s
u

m

BFA

(c) If cin were removed (or set to zero) the cost and delay of the optimized adder would depend on a.
Explain why, and illustrate with the example of a=2.

How are cost and delay dependent on a when cin removed? Explain using the example a=2.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

← → Fall 2023 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Problem 3: [30 pts] Answer the following Verilog questions.

(a) The module below makes extensive use of multidimensional arrays.

module mda(input uwire [2:1] c [5:1], input uwire [7:1][2:1] a [5:1][3:1]);

// Add dimension(s) to the declaration of e so that the assignment is correct.

//

uwire e = c[1];

// Add dimension(s) to the declaration of b so that the assignment is correct.

//

uwire b = a[1];

logic g [7:0];

logic [7:0] h;

initial begin

// Which is correct, © the assignment to g or © the assignment to h. Explain.

g = 1;

h = 1;

end

endmodule

What is the size of c, in bits? What is the size of a, in bits?

(b) The module below does not compile.

module more_stuff #(int n = 20) (output uwire [31:0] sum, input uwire [31:0] a [n]);

logic [31:0] acc;

always_comb begin

acc = a[0];

for (int i=1; i<n; i++)

my_fixed_adder a1(acc, acc, a[i]);

end

assign sum = acc;

endmodule

Describe the major problem. DO NOT try to fix the problem.

6

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2023 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

(c) The module below is supposed to set x = a2 + b2.

module wrong_way(output logic [31:0] x, input uwire [15:0] a, b);

logic [31:0] asq;

uwire [31:0] bsq = b * b;

initial asq = a * a;

always_comb x = asq + bsq;

endmodule

Explain the problem. Using sample inputs show the expected output and the actual output.

Fix the problem.

(d) The module below does not compile.

module my_adder(output uwire [31:0] s, input uwire [31:0] a, b);

always_comb s = a + b;

endmodule

Why won’t module above compile? Fix problem by changing declarations.

(e) The module below compiles but does not provide the expected outputs, pa = a2, pb = b2, and p = a2 +b2.

module incorrect_way(output logic [31:0] pa,pb,p, input uwire [15:0] a, b);

wire [31:0] sq;

assign sq = a * a;

always_comb pa = sq;

assign sq = b * b;

always_comb pb = sq;

always_comb p = pa + pb;

endmodule

What will be the values of outputs pa, pb, and p?

Describe the problem. Fix it.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

← → Fall 2023 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Problem 4: [15 pts] Answer each question below.

(a) A company has two teams, A (very good) and C (slackers) working on modules and a testbench for an
important product. Describe the following consequences:

The A team works on the modules and the C team works on the testbench. A possible bad outcome is:

The A team works on the testbench and the C team works on the modules. A possible bad outcome is:

(b) In typical use when running simulation a testbench generates inputs for a module-under-test and the
outputs are checked by the testbench to see whether they are correct. After running synthesis we learn how
fast the module is. If simulation is computing the module outputs why can’t it tell us how fast the module
is?

Synthesis can provide timing information and simulation can’t because:

(c) A gadget can be build using an ASIC or an FPGA. Describe which is more appropriate for each situation
below.

The gadget must be working within a month. © ASIC or © FPGA. Explain.

Per-gadget cost must be under $1000. Only ten will be made. © ASIC or © FPGA. Explain.

Per-gadget cost must be under $100. Ten thousand will be made. © ASIC or © FPGA. Explain.

8

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2023 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Name Formatted For Two-Sided Printing

Digital Design using HDLs

LSU EE 4755

Final Examination

Thursday, 7 December 2023 15:00-17:00 CST

Alias

Problem 1 (28 pts)

Problem 2 (25 pts)

Problem 3 (27 pts)

Problem 4 (20 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2023 ← → Final Exam Exam fe.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Problem 1: [28 pts] Appearing below is the solution to Homework 5.

(a) On the facing page show the inferred hardware for an instantiation with n=4.

(b) Explain why the cost of the hardware corresponding to the line n_match += match is much lower than
one would expect for hardware performing wc-bit addition.

The n match += match is much less expensive because:

module uniq_vector_seq
#(int we = 10, n = 4, wc = $clog2(n+1))

(output logic [n-1:0] uniq_bvec, output logic [wc-1:0] n_match,

input uwire [we-1:0] element, input uwire start, clk);

logic [we-1:0] elements [n-1:0];

logic [n-1:0] occ_bvec;

logic [wc-1:0] uniq_at [n-1:0];

always_ff @(posedge clk) begin

automatic logic [wc-1:0] match_pos = n;

n_match = 1;

for (int i=n-1; i>=1; i--) begin

automatic logic next_occ_bvec = !start && occ_bvec[i-1];

automatic logic match = next_occ_bvec && element == elements[i-1];

n_match += match;

if (match) match_pos = i;

elements[i] <= elements[i-1];

occ_bvec[i] <= next_occ_bvec;

uniq_at[i] <= match ? n : uniq_at[i-1];

uniq_bvec[i] <= !next_occ_bvec || !match && i >= uniq_at[i-1];

end

elements[0] <= element;

occ_bvec[0] <= 1;

uniq_at[0] <= n - match_pos;

uniq_bvec[0] <= match_pos == n;

end

endmodule

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2023 ← → Final Exam Exam fe.pdf

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Show inferred hardware for n=4.

Do not confuse ports with parameters. Do not confuse elaboration-time computation with computation
hardware.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

← → Fall 2023 ← → Final Exam Exam fe.pdf

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Problem 2: [25 pts] Illustrated on the facing page is a diagram showing inferred hardware similar to the
word_count module from last year’s final exam. An important difference is that it is shown for n_avg_of=n,
not the specific value of 4. Assume that n is a power of 2.

In terms of n, wl, wn, and v show simple-model arrival times at each wire and show a critical path.

Account for cascaded ripple units constant inputs, and remember that n can be any power of 2, not
neccesarily 4.

In terms of n, wl, wn, and v compute the simple-model cost of the Plan B hardware, assuming n is a power
of 2. Account for constant inputs.

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2023 ← → Final Exam Exam fe.pdf

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

clk

8

1 +

1 +

nwords

lsum

lword

+

1

wl+3:2

0 lavg

⩾

n (n_avg_of)

w
ord_classify

nw
d

nw
p

nw
s

char

reset

–

word_start

word_part

word_ended

lw
ord

word_count (n_avg_of=n, v=lg(n_avg_of))wc

lre¢[0]

lre¢[1]

lre¢[n-1]

en

en

en

en

1
tail

v-1:v-1

0:0

+
en

nwd

lre
¢[
ta
il]

ta
il

Plan B
Hardware

wl

wl

wn

v

0

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

← → Fall 2023 ← → Final Exam Exam fe.pdf

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Problem 3: [27 pts] The two modules below look for a match of input target in an n-element array elts

but only check elements 0 to i_limit-1. Output n_match is the number of matching elements and match_i

is lowest i for which elts[i]==target and i<i_limit, or n if there is no match. (These modules could be
used in the uniq_vector module.) Module fmatch_comb is complete and works correctly.

(a) Module fmatch_rec has some code for a recursive implementation. Complete it so that it performs the
same calculation as fmatch_comb.

Complete fmatch rec so that it computes the same values as fmatch comb.

Don’t forget to show the bit ranges of elts in the connections to the recursive instantiations.

module fmatch_comb
#(int n = 22, w = 12, wn = $clog2(n+1))

(output logic [wn-1:0] n_match, match_i,

input uwire [w-1:0] elts[n-1:0], target, input uwire [wn-1:0] i_limit);

// Do not modify this module. It is correct.

always_comb begin

n_match = 0;

match_i = n;

for (int i=n-1; i>=0; i--) if (i < i_limit && elts[i] == target) begin

n_match++;

match_i = i;

end

end

endmodule

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2023 ← → Final Exam Exam fe.pdf

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

module fmatch_rec
#(int n = 22, w = 12, wn = $clog2(n+1))

(output uwire [wn-1:0] n_match, match_i,

input uwire [w-1:0] elts[n-1:0], target, input uwire [wn-1:0] i_limit);

if (n == 1) begin

// Do not modify the n==1 code, it works.

uwire match = i_limit != 0 && elts[0] == target;

assign n_match = match;

assign match_i = match ? 0 : 1;

end else begin

localparam int nlo =

localparam int nhi =

localparam int wnr = $clog2(nhi);

uwire [wnr-1:0] nm_lo, nm_hi, mi_lo, mi_hi;

uwire [wnr-1:0] il_lo =

uwire [wnr-1:0] il_hi =

fmatch_rec #(nlo,w,wnr) ilo(nm_lo, mi_lo, elts[], target, il_lo);

// Show elts’ bit ranges ↑↑↓↓

fmatch_rec #(nhi,w,wnr) ihi(nm_hi, mi_hi, elts[], target, il_hi)

assign n_match =

assign match_i =

end

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

← → Fall 2023 ← → Final Exam Exam fe.pdf

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Problem 4: [20 pts] Answer each question below.

(a) Consider two technology targets, FabFab A1000, an ASIC, and LÜTeq FXL9000, an FPGA. Floating-
point multipliers are available on the A1000 and the FXL9000 targets.

On one of these targets a design can have as many multipliers as will fit on the chip. Which target is it?
Explain.

On the other target there is a fixed number of FP multipliers, say 5. Does that mean a design that needs 7
FP multipliers can’t use the target? Explain. The number of needed multipliers can’t be reduced.

(b) The output of the module below will be lt=1 for inputs a=100, b=40, amt=20, indicating that 100+40 <
20, which is wrong of course. It works correctly for a=100, b=40, amt=5, meaning the output is lt=0.

module less_than(output uwire lt, input uwire [6:0] a, b, amt);

assign lt = a + b < amt;

endmodule

Why is the output wrong?

What is the largest value of amt for which the module output is correct when the other inputs are a=100,

b=40?

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2023 ← → Final Exam Exam fe.pdf

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

(c) The hw output of the module below is supposed to be set to the number of 1s in input vec at the positive
edge of the clock. Due to a beginner’s Verilog error it does not work.

module pop #(int n = 5, wn = $clog2(n+1))

(output logic [wn-1:0] hw, input uwire [n-1:0] vec, input uwire clk);

always_ff @(posedge clk) begin

hw <= 0;

for (int i=0; i<n; i++) hw <= hw + vec[i];

end

endmodule

Describe the problem. Describe how it’s possible that hw can be greater than n with this error. Fix
the problem.

(d) Consider the population module below.

module pop_comb #(int n = 5, wn = $clog2(n+1))

(output logic [wn-1:0] hw, input uwire [n-1:0] vec);

begin

hw = 0;

for (int i=0; i<n; i++) hw = hw + vec[i];

end

endmodule

The loop above is procedural. Re-write the module below so that it is a generate loop. The array s should
come in handy.

module pop_comb #(int n = 5, wn = $clog2(n+1))

(output uwire [wn-1:0] hw, input uwire [n-1:0] vec);

uwire [wn-1:0] s [n-1:0];

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

← → Fall 2023 ← → Final Exam Exam fe.pdf

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

2 Fall 2022

22

← → Fall 2022 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Name Formatted For 2-Sided Printing

Digital Design Using HDLs

LSU EE 4755

Midterm Examination

Wednesday, 19 October 2022, 11:30-12:20 CDT

Alias

Problem 1 (25 pts)

Problem 2 (31 pts)

Problem 3 (20 pts)

Problem 4 (12 pts)

Problem 5 (12 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Problem 1: [25 pts] Answer the following multiplexor questions.

(a) Complete module mux4 so that it implements a 4-input multiplexor using instantiations of the 2-input
multiplexor shown below. Do not use procedural code.

Complete mux4 so that it implements a 4-input multiplexor using mux2 instantiations.

Do not use procedural code. Do not change the ports or default parameters of mux4 or mux2.

Don’t forget to declare any objects that are used.

module mux4
#(int w = 3)

(output uwire [w-1:0] x,

input uwire [1:0] s, input uwire [w-1:0] a0, a1, a2, a3);

endmodule

module mux2
#(int w = 6)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, a1);

assign x = s ? a1 : a0;

endmodule

2

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

(b) Module mux2_bad only works for w=1. Describe the problem and show the correct mux output and the
output of mux2_bad for w=4, s=0, a0=2, and a1=4.

module mux2_bad
#(int w = 4)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, a1);

assign x = !s && a0 || s && a1;

endmodule

In mux2 (a correct mux) when w=4, s=0, a0=2, and a1=4, output x=

In mux2 bad when w=4, s=0, a0=2, and a1=4, output x=

Explain the problem when w is not 1.

(c) Complete module mux2_1r below so that it recursively implements a 2-input w-bit mux. All that remains
to be done is completing the connections to the two recursive instances, m1 and mr.

module mux2_1r
#(int w = 5)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, a1);

if (w == 1) begin

assign x = !s && a0 || s && a1;

end else begin

mux2_1r #(1) m1(

mux2_1r #(w-1) mr(

end

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

← → Fall 2022 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Problem 2: [31 pts] The val output of atoi_it_m_to_l is the value of the radix-r ASCII-represented
number appearing at its input, str, and output nd is the number of digits. Unlike the Homework 2 Problem
2 module, this module starts at the most-significant digit rather than the least-significant digit.

module atoi_it_m_to_l
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))

(output logic [wv-1:0] val,

output logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n:0];

uwire is_digit[n:0];

uwire [wd-1:0] ndi[n:0];

assign is_digit[n] = 0;

assign ndi[n] = 0;

assign vali[n] = 0;

assign nd = ndi[0];

assign val = vali[0];

localparam int wcv = $clog2(r);

for (genvar i=n-1; i>=0; i--) begin

// Find Value of Digit i

uwire [wcv-1:0] vald;

atoi1 #(r,wcv) a(vald, is_digit[i], str[i]);

// Multiply (scale) the accumulated sum.

uwire [wv-1:0] valns;

mult_by_c #(.w_in(wv), .c(r), .w_out(wv)) mc(valns, vali[i+1]);

// Update accumulated value.

assign vali[i] = is_digit[i] ? valns + vald : 0;

// Update number of digits.

assign ndi[i] = !is_digit[i] ? 0 : is_digit[i+1] ? ndi[i+1] : i + 1;

end

endmodule

(a) Describe how the behavior of the module would change if the loop direction were changed as shown
below, but no other changes were made.

for (genvar i=0; i<n; i++) begin

Change in behavior with ascending loop:

(b) On the next (facing) page show the hardware that will be inferred for an instantiation of atoi_it_m_to_l
(descending loop version) with n=3 and r=10. Show each instantiation of atoi1 and mult_by_c as a box,
do not show their contents. The inferred hardware for atoi_it is shown for reference.

4

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

For reference, part of Homework 3 Problem 2 solution shown below.

str
0

atoi
.r(14)

str[0]

m_b_c
.c(1)

add

1

0
atoi

.r(14)

str[1]

m_b_c
.c(14)

add

2

0
atoi

.r(14)

str[2]

m_b_c
.c(196)

add

3

i=0 i=1 i=20

1
0
ndi[-1] ndi[0] ndi[1] ndi[2]

nd

val

is_valid[0] is_valid[1] is_valid[2]is_valid[-1]

vali[-1] vali[0]

vali[1]

atoi_it .r(14), .n(3)

valdr valdr valdrvald vald vald

vals vals vals

For reference, part of Homework 3 Problem 2 solution shown above.

Show inferred hardware for atoi it m to l for n=3 and r=10.

Show the hardware inferred for the operators, such as && and ?:.

Do not confuse parameters and ports and omit hardware that does not belong, such as “hardware” to
compute values needed at elaboration time.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

← → Fall 2022 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

(c) Module atoi_m_to_l will only show the value of numbers that are right-aligned in str, otherwise the
value will be shown as zero. For example, for input str="__123" the output would be val=123 and nd=3,
but for input str="_123_" the output would be val=0 (because the rightmost character is not a digit).
Modify the module so the val output is the value of the number regardless of its location. If there is more
than one number, say str="__12_345_", show the value of the rightmost number, 345 in this case.

Modify so that val and nd are for numbers whether or not they are right-aligned.

Do not use procedural code.

Avoid costly or slow solutions.

A correct solution only requires a few changes.

6

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

module atoi_it_m_to_l
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))

(output logic [wv-1:0] val,

output logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n:0];

uwire is_digit[n:0];

uwire [wd-1:0] ndi[n:0];

assign is_digit[n] = 0;

assign ndi[n] = 0;

assign vali[n] = 0;

assign nd = ndi[0];

assign val = vali[0];

localparam int wcv = $clog2(r);

for (genvar i=n-1; i>=0; i--) begin

// Find Value of Digit i

uwire [wcv-1:0] vald;

atoi1 #(r,wcv) a(vald, is_digit[i], str[i]);

// Multiply (scale) the accumulated sum.

uwire [wv-1:0] valns;

mult_by_c #(.w_in(wv), .c(r), .w_out(wv)) mc(valns, vali[i+1]);

// Update accumulated value.

assign vali[i] = is_digit[i] ? valns + vald : 0;

// Update number of digits.

assign ndi[i] = !is_digit[i] ? 0 : is_digit[i+1] ? ndi[i+1] : i + 1;

end

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

← → Fall 2022 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Problem 3: [20 pts] Illustrated below is the hardware for one of the atoi modules from Homework 3.
The delays for the add, atoi1, and mult_by_c modules are shown in blue. For atoi the delay of the value
(valdr) output is zero and the delay of the is_digit (lower) output is 3.

(a) Based on the illustrated delays and using the simple model find the delay at each output, val and nd,
and show the critical path to each.

Use the simple model and indicated delays to find the delay at outputs val and nd.

Show the critical path to both val and nd.

Take into account constant values.

str
0

atoi
.r(10)

str[0]

1

0
atoi

.r(10)

str[1]

m_b_c
.c(10)

add

2

0
atoi

.r(10)

str[2]

m_b_c
.c(100)

add

3
0
ndi[-1] ndi[0] ndi[1] ndi[2]

nd

val

is_valid[0] is_valid[1] is_valid[2]

vali[0]

vali[1]

atoi_it .r(10), .n(3)

valdr valdr valdrvald vald vald

vals vals

0

16

20

16

20

3

0 0

3 3

(b) Modify the design to reduce the delay at val by moving multiplexors. The modification is simple though
will increase cost. Show your modification either on the diagram or in the Verilog code below.

Modify to reduce the delay at val by moving multiplexors.

Do not change what the module does.

8

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

module atoi_it
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))

(output logic [wv-1:0] val, output logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n-1:-1];

uwire is_valid[n-1:-1];

uwire [wd-1:0] ndi[n-1:-1];

assign is_valid[-1] = 1;

assign ndi[-1] = 0;

assign vali[-1] = 0;

assign nd = ndi[n-1];

assign val = vali[n-1];

localparam int wcv = $clog2(r);

for (genvar i=0; i<n; i++) begin

uwire [wcv-1:0] valdr;

uwire is_digit;

atoi1 #(r,wcv) a(valdr, is_digit, str[i]); // Find Value of Digit i

// Determine if this digit continues a sequence of valid digits.

//

assign is_valid[i] = is_digit && is_valid[i-1];

// Replace value with zero if str[i] is not a digit, or if the

// string of valid digits has already ended.

//

uwire [wcv-1:0] vald = is_valid[i] ? valdr : 0;

// Multiply (scale) the digit value based on its position in the number.

//

uwire [wv-1:0] vals;

mult_by_c #(.w_in(wcv), .c(r**i), .w_out(wv)) mc(vals, vald);

// Add the scaled digit to the value accumulated so far.

//

add #(wv) a1(vali[i], vali[i-1], vals);

// Update the number of digits so far.

//

assign ndi[i] = is_valid[i] ? i+1 : ndi[i-1];

end

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

← → Fall 2022 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Problem 4: [12 pts] Answer each question below.

(a) The module below will not compile because of the way the module connections are declared. Fix the
problem by changing the declarations.

Change declaration to fix problem.

module yucx2
#(int w = 5)

(output uwire [w-1:0] x,

input uwire [1:0] s,

input uwire [w-1:0] a0, a1);

always_comb begin

x = a0;

if (s != 0) x = a1;

end

endmodule

(b) The mv output of findmax is supposed to be set to the value of the largest of the three inputs. Assuming
it compiles and simulates, it still won’t work. Identify the problem.

Why won’t mv be set to the maximum of a0, a1, a2?

Provide an example that illustrates the incorrect behavior.

module findmax
#(int w = 5)

(output logic [w-1:0] mv,

input uwire [w-1:0] a0, a1, a2);

initial mv = 0;

always_comb if (mv < a0) mv = a0;

always_comb if (mv < a1) mv = a1;

always_comb if (mv < a2) mv = a2;

endmodule

10

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Problem 5: [12 pts] Answer each question below.

(a) Type logic is an example of a four-state type. Name those four states and describe what the non-numeric
ones are used for.

Name the four logic states.

Describe what the non-numeric ones signify.

(b) Most synthesis programs will not synthesize a module that includes a delay, such as the one below. Why
not?

module madd
#(int w)

(output logic [w-1:0] w,

input uwire [w-1:0] a, b, c);

always_comb begin

w = a * b;

#5; // Allow enough time for multiplication to finish.

w = w + a;

end

endmodule

Why isn’t a delay synthesizeable?

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

← → Fall 2022 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Name Formatted For Two-Sided Printing

Digital Design using HDLs

LSU EE 4755

Final Examination

Friday, 9 December 2022 15:00-17:00 CST

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (20 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Problem 1: [20 pts] Module norm_comb, below, computes the normal of a vector using floating-point
arithmetic units from a library. The delay through each unit in nanoseconds is shown in the diagram.

fp_sq

fp_sq
fp_add

fp_rsqrt

fp_mul

fp_sq

fp_add

fp_mul

fp_mul

x
y
z

10

10

10

5
5 40

20

20

20

nx

ny

nz

norm_comb

(a) Compute the latency and throughput norm_comb given the timings shown in the diagram.

Compute the arrival time (delay) at each module output.

Show the critical path.

The latency of this module is:

The throughput of this module is:

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

(b) Draw a diagram of a pipelined implementation of the norm module. The goal is to maximize throughput
first then minimize latency given the delays shown in the diagram from part a. Give some thought as to
what arithmetic units go in what stage. Show the latency and throughput of your pipelined implementation.

Draw a diagram (not Verilog) of a pipelined version of this norm module. Be sure to show pipeline
latches.

For the given delays: Maximize throughput. Avoid a hasty solution that has a higher latency than is
necessary.

The latency of this pipelined implementation is:

The throughput of this pipelined implementation is:

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

← → Fall 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Problem 2: [20 pts] Incomplete module norm_comb_n is a version of the norm module from the previous

problem, now written for vectors of any length, not just 3. (Output ui = ni

(∑n−1
j=0 v2j

)− 1
2

.) It makes use

of module norm_sos to compute the sum
∑n−1

j=0 v2j . (That is, v20 + v21 + · · ·+ v2n−1.) Complete the modules
so that they compute their output combinationally. Use a recursive implementation for norm_sos and use
generate loops for the needed code in norm_comb_n.

Complete norm comb n so that it computes u in part by using norm sos. Use a generate loop. Use
fp mul, don’t use arithmetic operators.

module norm_comb_n #(int w = 32, int n = 8)

(output uwire [w-1:0] u[n], input uwire [w-1:0] v[n]);

uwire [w-1:0] sos; // Sum Of Squares

norm_sos #(w,n) ns(sos, v); // This part is correct, don’t modify it.

uwire [w-1:0] rmag, rs_in;

fp_rsqrt r(rmag, rs_in); // [] Rename rs_in, or connect it to something.

// [] Compute u[0] = v[0] * rmag; u[1] = v[1] * rmag; ...

endmodule

Complete norm sos so that it computes
∑n−1

j=0 v2j . Describe the module recursively. Use fp sq

and fp add, do not use arithmetic operators.

module norm_sos #(int w = 32, int n = 4)

(output uwire [w-1:0] sos, input uwire [w-1:0] v[n-1:0]);

// [] Recursively compute: sos = v[0]^2 + v[1]^2 + ...

endmodule

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Problem 3: [15 pts] Appearing below is the inferred hardware from the pipelined add accumulate module
covered in class. Based on the simple model, show the timing, including the critical path, and compute the
cost. The BFA module is, of course, a binary full adder. If you don’t remember its cost and delay, just work
it out.

add_pipe
add_p0

aout

a0

a1

saa

aout_v

ai_v

ai

sum

1

0 en

0 sum

sum_valid

sum_occupiedreset

clk

add_accum

a

b ci
s

co

BFA

w

w

0

Show the timing (signal arrival time at each component output) and the critical path. Note that
aout arrives at t = 0.

Compute the cost using the simple model. Do not include the cost of add pipe but include the cost of
the BFA. Pay attention to bit widths.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

← → Fall 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Problem 4: [20 pts] Appearing below are simplified solutions to Homework 4.

(a) Below is a simplified version of the “official” solution. (Reset hardware is not shown, ignore its absence.
Some object names shortened.) Show the hardware that will be inferred for this module when instantiated
with n_avg_of=4. (Some of the hardware will be similar to the r_avg2 module from the 2021 final exam.)

module word_count
#(int wl = 5, wn = 6, n_avg_of = 10)

(output logic word_start, word_part, word_ended,

output logic [wl-1:0] lword, lavg, output logic [wn-1:0] nwords,

input uwire [7:0] char, input uwire reset, clk);

uwire nws, nwp, nwd;

word_classify wc(word_start, word_part, word_ended,

nws, nwp, nwd, char, clk, reset);

logic [wl-1:0] lrecent[n_avg_of]; // len_recent

logic [wl+$clog2(n_avg_of):0] lsum; // len_sum

assign lavg = nwords >= n_avg_of ? lsum / n_avg_of : 0;

always_ff @ (posedge clk) begin

lword <= nws ? 1 : nwp ? lword+1 : lword;

nwords <= nwd ? nwords + 1 : nwords;

end

// Plan A Code (Referred to in next subproblem.)

always_ff @ (posedge clk) if (nwd) begin

lsum += lword - lrecent[n_avg_of-1];

for (int i=n_avg_of-1; i>0; i--) lrecent[i] = lrecent[i-1];

lrecent[0] = lword;

end

endmodule

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Show inferred hardware for n avg of=4.

Show word classify as a box, don’t attempt to show its contents.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

← → Fall 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

(b) The word_count_plan_b module below uses a different approach to keeping track of lsum. The only
difference is the hardware under the Plan B Code comment. This version avoids a loop! That’s great, right?
Show the hardware that will be inferred for the Plan B Code for n_avg_of = 4 and indicate impact on cost
and performance.

module word_count_plan_b
#(int wl = 5, wn = 6, n_avg_of = 10)

(output logic word_start, word_part, word_ended,

output logic [wl-1:0] lword, lavg, output logic [wn-1:0] nwords,

input uwire [7:0] char, input uwire reset, clk);

uwire nws, nwp, nwd;

word_classify wc(word_start, word_part, word_ended,

nws, nwp, nwd, char, clk, reset);

logic [wl-1:0] lrecent[n_avg_of];

logic [wl+$clog2(n_avg_of):0] lsum;

logic [$clog2(n_avg_of):0] tail;

assign lavg = nwords >= n_avg_of ? lsum / n_avg_of : 0;

always_ff @ (posedge clk) begin

lword <= nws ? 1 : nwp ? lword+1 : lword;

nwords <= nwd ? nwords + 1 : nwords;

end

// Plan B Code

always_ff @ (posedge clk) if (nwd) begin

lsum += lword - lrecent[tail];

lrecent[tail] = lword;

tail = tail == n_avg_of - 1 ? 0 : tail + 1;

end

endmodule

Describe impact on cost of Plan B compared to Plan A.

Describe impact on performance of Plan B compared to Plan A.

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Show inferred hardware for Plan B Code. (No need to show hardware for code above the Plan B Code

comment.)

Consider using an enable (en) signal on the registers to simplify the hardware.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

← → Fall 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Problem 5: [25 pts] Answer each question below.

(a) Show a sketch of the hardware for an 8-bit left shift module, using the logarithmic approach presented
in class.

Show hardware for 8-bit left shift module. Include the 3-bit shift amount input, the 8-bit data
input and 8-bit data output.

(b) Provide the following delays based on the simple model.

What is the delay for a w-bit ripple adder for the LSB and the MSB.

What is the delay for the sum of three w-bit values, say a + b + c, when computed using two ripple adders
and accounting for cascading. Delay of the sum’s LSB and MSB.

10 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

(c) In the code fragment below there is an error in one of the last two lines.

module examples(input uwire [31:0] a, b);

localparam logic [31:0] la = a + b;

uwire logic [31:0] ua = a + b;

Which line above is incorrect? Why?

(d) The code fragment below lacks declarations.

Declare objects aa, ca, and fa so that the code below is correct.

module examples(input uwire [31:0] a, b, input uwire clk);

assign aa = a + b;

always_comb ca = a + b;

always_ff @(posedge clk) fa = a + b;

(e) Again consider the code above that assigns aa, ca, and fa. Draw a timing diagram that includes values
of a, b, and clk for which at least one of the values aa, ca, and fa will at times differ from the others.

Draw a timing diagram showing how aa, ca, and fa won’t all be the same all the time.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

← → Fall 2022 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

3 Fall 2021

45

← → Fall 2021 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Name Formatted For 2-Sided Printing

Digital Design Using HDLs

LSU EE 4755

Midterm Examination

Wednesday, 27 October 2021, 11:30-12:20 CDT

Alias

Problem 1 (25 pts)

Problem 2 (30 pts)

Problem 3 (10 pts)

Problem 4 (10 pts)

Problem 5 (15 pts)

Problem 6 (10 pts)

Exam Total (100 pts)

V (mRNA) ⇒ Re < 1 Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Problem 1: [25 pts] Appearing in this problem are two variations on hardware that selects one of four
inputs, i, based on the position of the least-significant 1 in a 4-bit quantity, fmt. This is similar to the
hardware needed in the solution to Homework 2, except that here i[3] can be selected.

module nn_sparse #(int w = 20)

(output logic [w-1:0] o, input uwire [w-1:0] i[4], input uwire [3:0] fmt);

(a) Show the hardware that will be inferred for is0 and show that hardware after optimization.

uwire [w-1:0] is0 = fmt[0] ? i[0] : fmt[1] ? i[1] : fmt[2] ? i[2] : i[3];

Show inferred hardware.

Show optimized hardware. Hardware can be re-arranged to reduce delay.

Use only basic logic gates and multiplexors.

(b) Compute the cost and delay of the optimized hardware for is0 in terms of w. (That’s w, not its default
value.)

In terms of w cost is:

In terms of w delay is:

2

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

(c) Appearing below is an alternative design. Net is0b will have the same value as is0. Show the hardware
below before and after optimization. For isi0 do not show multiplexors after optimization. For is0b use
two-input multiplexors (as many as needed).

uwire [1:0] isi0 = fmt[0] ? 0 : fmt[1] ? 1 : fmt[2] ? 2 : 3;

uwire [w-1:0] is0b = i[isi0];

Show inferred hardware.

Show optimized hardware, optimize to reduce delay.

Use basic logic gates and no muxen for isi0 and two-input muxen (plus other logic) for is0b.

(d) Compute the cost and delay of the optimized hardware (from the previous part) in terms of w. (That’s
w, not its default value.)

In terms of w cost is:

In terms of w delay is:

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

← → Fall 2021 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Problem 2: [30 pts] The next_dist4 hardware illustrated below consists of several duplicated pieces of
hardware, one of which is circled. Call the circled hardware an ami unit (for add-minimum).

L L[0]

d

d[0]

L[1]

d[1]

L[2]

d[2]

<

1

0
<

1

0+

+

<

1

0

L[3]

d[3] +

+

e

next_dist4 (w)

w

w

w

w

w

w

w

w

w

(a) Compute the cost and delay of the module using the simple model, and show the critical path on the
illustration. Assume that the adder and comparison units are based on ripple adders.

Cost in terms of w:

Show critical path. Delay in terms of w:

Account for any cascading ripple units.

4

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

(b) Appearing below are two incomplete modules, one is an ami module the other is the next_dist4 module.
Complete these modules to match the diagram using as many ami modules as needed. The ami module can
use procedural or implicit structural code. The next_dist4 module must instantiate and use ami modules
but can contain procedural or implicit structural code.

Complete the ami module so that it matches the circled hardware.

Complete the next dist4 module using as many ami modules as needed.

Don’t forget to declare any intermediate objects that are used.

Noting that there are four adders and the width of each wire is w, declare and use parameters appro-
priately.

module ami

endmodule

module next_dist4 #(int w = 12)

(output uwire [w-1:0] e,

input uwire [w-1:0] L[4], d[4]);

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

← → Fall 2021 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

(c) Incomplete module next_dist is a generalization of next_dist4 to n elements per input. The module
includes a generate loop. Use that loop to instantiate ami modules so that it performs the correct calculation.
Keep the loop simple, don’t try to fix the delay problem.

Complete module, taking advantage of the generate loop.

Be sure to instantiate ami modules, connect the first ami correctly, and don’t leave e unconnected.

module next_dist #(int n = 20, w = 12)

(output uwire [w-1:0] e,

input uwire [w-1:0] L[n], input uwire [w-1:0] d[n]);

localparam logic [w-1:0] mv = ~w’(0); // Can use as input to first ami.

uwire [w-1:0]

for (genvar i=0; i<n; i++) begin

end

endmodule

6

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Problem 3: [10 pts] Consider the with_assign module below.

module with_assign #(int w = 10)

(output uwire [w-1:0] g, input uwire [w-1:0] b, c);

uwire [w-1:0] a, f;

assign g = f | c; // Line 1

assign f = a * c; // Line 2

assign a = b + c; // Line 3

endmodule

(a) Why might the module confuse or annoy humans?

with assign could be confusing because:

(b) The module makes extra work for simulators too. Suppose that the input values to with_assign, b and
c, change at t = 10. About how many times will each line below execute in a worst-case scenario? The
following sentence was not in the original exam: Use sensitivity lists to justify your answer.

About how many times does each line execute? Explain with sensitivity lists.

(c) Complete the sans_assign routine below so that it does the same thing as with_assign but is less
confusing and less work for simulators.

Complete routine below. (Yes, it’s easy but not trivial.)

module sans_assign #(int w = 10)

(output uwire [w-1:0] g, input uwire [w-1:0] b, c);

uwire [w-1:0] a, f;

always_comb begin

end

endmodule

Why does sans assign make less work for the simulator than with assign? Explain using sensitivity lists.S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

← → Fall 2021 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Problem 4: [10 pts] Appearing below is an ordinary multiplier, followed by a multiplier that is näıvely
designed to take advantage of special cases (first operand is 0 or 1), followed by a module that instantiates
both.

module mult #(int w = 32)

(output logic [w-1:0] p, input uwire [w-1:0] a, b);

always_comb p = a * b;

endmodule

module mult_1a #(int w = 32)

(output logic [w-1:0] p, input uwire [w-1:0] a, b);

always_comb begin

if (a == 0) p = 0;

else if (a == 1) p = b;

else p = a * b;

end

endmodule

module nm #(int w = 32, logic [w-1:0] c = 12)

(output uwire [w-1:0] prods[4], input uwire [w-1:0] a[4], b[4]);

mult #(w) m1 (prods[0], a[0], b[0]);

mult #(w) m2 (prods[1], c, b[1]);

mult_1a #(w) ma1(prods[2], a[0], b[0]);

mult_1a #(w) ma2(prods[3], c, b[1]);

endmodule

Explain why m1 will be faster (lower delay) than ma1, even when possible values of a[0] include 0, 1, and
other values. Assume good synthesis programs.

How will the cost and performance of m2 and ma2 compare (to each other) using good synthesis programs?
That is, which should be chosen when delay is the only concern and, which of the two should be
chosen when cost is the only concern. The answer should not depend on any particular value of c.

8

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Problem 5: [15 pts] Answer the following questions about Verilog syntax and semantics.

(a) Appearing below are four variations on a multiplier with a constant input. Most have errors that would
prevent them from compiling. For each indicate whether there is an error, and if so, what the error is and a
minimal fix.

Module is © correct or © has the following error and fix:

module mult_2a #(int w = 32, logic [w-1:0] a = 12)

(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (a == 0) p = 0;

else if (a == 1) p = b;

else p = a * b;

endmodule

Module is © correct or © has the following error and fix:

module mult_2b #(int w = 32, logic [w-1:0] a = 12)

(output uwire [w-1:0] p, input uwire [w-1:0] b);

always_comb begin

if (a == 0) p = 0;

else if (a == 1) p = b;

else p = a * b;

end

endmodule

Module is © correct or © has the following error and fix:

module mult_2c #(int w = 32, logic [w-1:0] a = 12)

(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (b == 0) p = 0;

else if (b == 1) p = a;

else p = a * b;

endmodule

Module is © correct or © has the following error and fix:

module mult_2d #(int w = 32, logic [w-1:0] a = 12)

(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (a == 0) assign p = 0;

else if (a == 1) assign p = b;

else assign p = a * b;

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

← → Fall 2021 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

(b) Show the values of b and c where requested below.

module assortment;
logic [15:0] a;

logic [0:15] b;

logic [16:1] c;

initial begin

a = 16’h1234;

b = a;

c = a;

// Show value of b and c after line above executes:

#1; // Not really needed.

for (int i=0; i<16; i++) b[i] = a[i];

// Show value of b after line above executes:

end

endmodule

10

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Problem 6: [10 pts] Answer the following synthesis questions.

(a) Cadence Genus defines the following three synthesis steps: syn_gen (generic), syn_map (mapped, or
technology mapping), and syn_opt (optimized). Answer the following questions about technology mapping.

Explain what happens during technology mapping.

Even if optimization were done before technology mapping why is it important optimize after technology
mapping?

(b) What is the big disadvantage of setting the delay target too low when performing synthesis? (The small
disadvantage is that it takes a longer time to run.)

Disadvantage of setting delay target too low during synthesis:

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

← → Fall 2021 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Name Formatted For Two-Sided Printing

Digital Design using HDLs

LSU EE 4755

Final Examination

Wednesday, 8 December 2021 7:30 CST

Alias

Problem 1 (30 pts)

Problem 2 (35 pts)

Problem 3 (15 pts)

Problem 4 (20 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Problem 1: [30 pts] For the modules in this problem input sample holds a new value each cycle, and
output r_avg holds the average of the last n_samples inputs. (Ignore the fact that the module needs but
lacks a reset.)

(a) For the module below show the hardware that will be inferred when instantiated with default parameters.
Be sure to optimize for the default value of n_samples.

module ravg2 #(int w = 8, n_samples = 4)

(output logic [w-1:0] r_avg,

input uwire [w-1:0] sample, input uwire clk);

logic [w-1:0] samples[n_samples];

parameter int wm = $clog2(n_samples);

parameter int ws = w + wm;

logic [ws-1:0] tot;

always_ff @(posedge clk) begin

samples[0] <= sample;

for (int i=1; i<n_samples; i++) samples[i] <= samples[i-1];

tot <= tot - samples[n_samples-1] + samples[0];

end

always_comb r_avg = tot / n_samples;

endmodule

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Show hardware for the module above using default parameter values.

Optimize for these parameter values.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

(b) The module to the right is similar to ravg2 except that it has three arithmetic unit instantiations: an
adder, a subtractor, and a divide-by-constant unit. Modify ravg3 so that it uses these modules. For full
credit connect them so that the critical path passes through at most one module per cycle. In a correct
solution r_avg will arrive at the output of ravg3 later than it would in module ravg2.

Modify ravg3 so that it uses the three arithmetic units.

For full credit, the critical path can go through at most one arithmetic unit per cycle.

The connections to the arithmetic units can be changed (say from aa1 to something else).

Do not add unnecessary cost or delay.

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

module ravg3 #(int w = 8, n_samples = 4)

(output logic [w-1:0] r_avg,

input uwire [w-1:0] sample,

input uwire clk);

logic [w-1:0] samples[n_samples];

parameter int wm = $clog2(n_samples);

parameter int ws = w + wm;

logic [ws-1:0] tot;

always_ff @(posedge clk) begin

samples[0] <= sample;

for (int i=1; i<n_samples; i++) samples[i] <= samples[i-1];

tot <= tot - samples[n_samples-1] + samples[0]; // Modify or eliminate this line.

end

always_comb r_avg = tot / n_samples; // Modify or eliminate this line.

uwire [ws-1:0] sum, diff;

uwire [ws-1:0] aa1, aa2, da1;

uwire [w-1:0] quot;

uwire [w-1:0] sa1, sa2;

our_adder #(ws,ws) add1(sum, aa1, aa2);

our_sub #(ws,w) sub2(diff, sa1, sa2);

our_div_by #(w,ws,n_samples) div3(quot, da1);

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Problem 2: [35 pts] Appearing below is a Verilog description of a lower-cost version of the bit_keeper

module from Homework 4 and a diagram of the hardware.

typedef enum { Cmd_Reset=0, Cmd_Rot_To=1, Cmd_Write=2, Cmd_Nop=3, Cmd_SIZE } Command;

module rot_left #(int w = 10, amt = 1)

(output uwire [w-1:0] r, input uwire [w-1:0] a);

assign r = { a[w-amt-1:0], a[w-1:w-amt] };

endmodule

module bit_keeper_lite #(int wb = 64, wi = 8, ws = $clog2(wb))

(output logic [wb-1:0] bits, output uwire ready,

input uwire [1:0] cmd, input uwire [wi-1:0] din,

input uwire [ws-1:0] pos, input uwire clk);

localparam int ramt_a = 1; // Specify Rotation Amounts

localparam int ramt_b = 1 << (ws >> 1);

uwire [wb-1:0] ra, rb;

rot_left #(wb,ramt_a) rl1(ra,bits);
rot_left #(wb,ramt_b) rl8(rb,bits);
logic [ws-1:0] rot_to_do; // Remaining amount of rotation to do.

assign ready = rot_to_do == 0;

always_ff @(posedge clk) case (cmd)

Cmd_Reset: begin bits = 0; rot_to_do = 0; end

Cmd_Rot_To: rot_to_do = pos; // Initialize rotation. Rotate during Nop.

Cmd_Write: bits[wi-1:0] = din;

Cmd_Nop: // Continue Executing a Cmd_Rot_To

if (rot_to_do >= ramt_b) begin

bits = rb; // Use output of larger rot module.

rot_to_do -= ramt_b; // Decrement remaining rot amt.

end else if (rot_to_do >= ramt_a) begin

bits = ra; // Use output of smaller rot module.

rot_to_do -= ramt_a; // Decrement remaining rot amt.

end

endcase

endmodule

(a) Find the cost and delay of the illustrated hardware using the simple model. Take into account the
presence of constants. For the addition and comparison units assume a ripple implementation. Show any
assumptions made. (See the next part before solving this one.)

Show cost in terms of wb, wi, and ws. Take into account constants.

Show delays and arrival times on the diagram, and highlight the critical path. These should be in terms
of wb, wi, and ws.

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

wb-1:wi

c
lk

0

p
o
s

ra
m
t_
b

ra
m
t_
a

-r
a
m
t_
b

-r
a
m
t_
a

>
>

+ +

rot_left
(amt=ramt_a)

rot_left
(amt=ramt_b) 0

lsb

c
m
d

d
in

bits

wb

wi

2

ws

bit_keeper_lite

wb

ws ro
t_to

_d
o

rot_to_do

bits

bits

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

(b) In class we assume that a four-input mux is implemented using a reduction tree of 3 two-input muxen.
For the illustrated hardware that would result in a longer critical path than is necessary. Modify the diagram
on the right to show a better way of implementing the four-input multiplexors.

Replace four-input multiplexors with two-input muxen connected to reduce critical path.

(c) Notice that care was taken to ensure that ramt_b is a power of 2. Explain how the fact that ramt_b is
a power of two reduces the cost of the adder and comparison unit operating on ramb_b. Also explain how a
power-of-2 ramb_b can reduce the cost of the other adder and comparison unit, if the synthesis program is
clever enough. Hint: Consider the binary representation of rot_to_do.

Since ramt b is a power of 2 the adder and comparison unit connected to ramt b are lower cost because:

Since ramt b is a power of 2 the adder and comparison unit connected to ramt a (yes, a) are lower cost
because:

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

wb-1:wi

c
lk

0

p
o
s

ra
m
t_
b

ra
m
t_
a

-r
a
m
t_
b

-r
a
m
t_
a

>
>

+ +

rot_left
(amt=ramt_a)

rot_left
(amt=ramt_b) 0

lsb

c
m
d

d
in

bits

wb

wi

2

ws

bit_keeper_lite

wb

ws ro
t_to

_d
o

rot_to_do

bits

bits

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

(d) Appearing below is a version of bit_keeper_lite with four ready outputs, r1, r2, r3, and r4. On the
diagram add hardware that will be synthesized for each.

module bit_keeper_lite #(int wb = 64, wi = 8, ws = $clog2(wb))

(output logic [wb-1:0] bits, output uwire r1, output logic r2, r3, r4,

input uwire [1:0] cmd, input uwire [wi-1:0] din,

input uwire [ws-1:0] pos, input uwire clk);

localparam int ramt_a = 1;

localparam int ramt_b = 1 << (ws >> 1);

uwire [wb-1:0] ra, rb;

rot_left #(wb,ramt_a) rl1(ra,bits);
rot_left #(wb,ramt_b) rl8(rb,bits);

logic [ws-1:0] rot_to_do;

assign r1 = rot_to_do == 0; // [] Show hardware for r1.

always_ff @(posedge clk) begin

r2 = rot_to_do == 0; // [] Show hardware for r2.

case (cmd)

Cmd_Reset: begin bits = 0; rot_to_do = 0; end

Cmd_Rot_To: rot_to_do = pos;

Cmd_Write: bits[wi-1:0] = din;

Cmd_Nop: begin

if (rot_to_do >= ramt_b) begin

bits = rb;

rot_to_do -= ramt_b;

end else if (rot_to_do >= ramt_a) begin

bits = ra;

rot_to_do -= ramt_a;

end

r3 = rot_to_do == 0; // [] Show hardware for r3.

end

endcase

r4 = rot_to_do == 0; // [] Show hardware for r4.

end

endmodule

Show hardware that will be synthesized for r1, r2, r3, and r4.

10 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

wb-1:wi

c
lk

0

p
o
s

ra
m
t_
b

ra
m
t_
a

-r
a
m
t_
b

-r
a
m
t_
a

>
>

+ +

rot_left
(amt=ramt_a)

rot_left
(amt=ramt_b) 0

lsb

c
m
d

d
in

bits

wb

wi

2

ws

bit_keeper_lite

wb

ws ro
t_to

_d
o

rot_to_do

bits

bits

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Problem 3: [15 pts] Consider the modules below.

module ba
(output logic [15:0] next_x, next_y, x, y,

input uwire [15:0] a, c, input uwire clk);

always_ff @(posedge clk) x = next_x;

assign next_x = a;

assign next_y = x + c;

always_ff @(posedge clk) y = next_y;

endmodule

module test_ba;

uwire [15:0] x, y, next_x, next_y;

logic [15:0] a, c;

logic clk;

ba ba1(next_x, next_y, x, y, a, c, clk);

initial begin

// t = 0

clk = 0;

a = 0; c = 0;

#1; // t = 1

clk = 1;

#1; // t = 2

clk = 0;

#1; // t = 3

clk = 1;

#1; // t = 4

clk = 0; a <= 1; c <= 10; // Line t4

#1; // t = 5

clk = 1;

#1; // t = 6

clk = 0;

#1; // t = 7

clk = 1; a <= 2; c <= 20; // Line t7

#1; // t = 8

clk = 0;

end

endmodule

12 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

0 1 2 3

a

c

next_x

next_y

x

y

4 5 6 7

0

0

1

10

2

20

0

0

0

0

8

(a) Complete the timing diagram so that it shows the values of next_x, next_y, x, and y that would be
produced with the modules above. Note: In the original exam test_ba did not use non-blocking assignments
to a and c.

Complete timing diagram from t = 4 to t = 8.1. Note that there is a negative clock edge at t = 4.

(b) At t = 5 we can be sure that y=next_y will execute before next_y=x+c. Explain how this ordering is
assured by the rules for the event queue.

Explain how event queue regions assure y=next y executes before next y=x+c at t = 5.

(c) Notice that a and c are assigned using non-blocking assignments on Lines t4 and t7. Explain why the
order of execution would be ambiguous at t = 7 if line t7 used blocking assignments: a=1; c=10;. Note:
This question was not in the original exam.

Describe ambiguity (more than one possible execution order) if blocking assignments were used.

Would non-blocking assignments x <= next x and y <= next y remove the ambiguity? Explain.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

13

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Problem 4: [20 pts] Answer each question below.

(a) The foolish sqrt module below has several issues.

module sqrt #(int w = 16)

(output logic [w-1:0] r, input uwire [w-1:0] a);

always_comb begin

r = 0;

while (r * r < a) r++;

end

endmodule

Explain why, due to the Verilog rules for bit widths, the expression r * r < a won’t compute the intended
result.

Why is the sqrt module likely not synthesizeable?

What would be the problem with the hardware if it were synthesizable?

14 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

(b) Consider the two division modules below. In the first a2 is a parameter, in the second it is a module
port. Use the div_demo module for your answers to the questions below.

module our_div_by
#(int wq = 5, wd = 10, logic [wd-1:0] a2 = 4)

(output uwire [wq-1:0] quot, input uwire [wd-1:0] a1);

assign quot = a1/a2;

endmodule

module our_div
#(int wq = 5, wd = 10)

(output uwire [wq-1:0] quot, input uwire [wd-1:0] a1, a2);

// cadence inline

assign quot = a1/a2;

endmodule

module div_demo
#(int w = 21)

(output uwire [w-1:0] d1, d2,

input uwire [w-1:0] x1, x2, x3, x4);

localparam logic [w-1:0] y1 = 4755;

endmodule

Show an instantiation of our div for which our div by could work.

Show an instantiation of our div for which our div by could not work.

Explain how the use of the cadence inline pragma in our div makes it possible to instantiate our div in
places that otherwise might need our div by.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

15

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

(c) Answer the following questions about latency and throughput.

Define latency.

Define throughput.

Consider a sequential circuit (such as mult_step from Homework 6) and a pipelined version of the sequential
circuit (such as multi_step_pipe). Assume that both have the same clock frequency.

Remembering that the clock frequencies are the same, compared to the sequential version, does the pipelined
version typically have

© lower latency, © the same latency, or © higher latency. Explain.

Compared to the sequential version, does the pipelined version typically have

© lower throughput, © the same throughput, or © higher throughput. Explain.

Ignoring the cost of registers, compared to the sequential version, does the pipelined version typically have

© lower cost, © the same cost, or © higher cost. Explain.

16 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

17

← → Fall 2021 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

4 Fall 2020

74

← → Fall 2020 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Name

Digital Design Using HDLs

LSU EE 4755

Solve-Home Midterm Examination

Friday, 6 Nov 2020 to early Monday, 9 Nov 2020 05:00 CST)

Work on this exam alone. Regular class resources, such as notes, pa-

pers, documentation, and code, can be used to find solutions. Outside

material that covers the same topics, such as Verilog tutorials, digital

logic design guides can also be used. Do not try to directly seek out

solutions to any question here. That is, don’t Web-search the text of

a problem. Do not discuss this exam with classmates or anyone else,

except questions or concerns about problems should be directed to Dr.

Koppelman.

Warning: Unlike homework assignments collaboration is not allowed

on exams. Suspected copying will be reported to the dean of students.

The kind of copying on a homework assignment that would result in a

comment like “See ee4755xx for grading comments” will be reported if

it occurs on an exam. Please do not take advantage of pandemic-forced

test conditions to cheat!

r ≥ 2 m ⇒ Re < 1

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2020 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Problem 1: [20 pts] Appearing below are some variations on a multiply accumulate module.

(a) Complete the Verilog code below so that it matches the illustration.

ai
h

+×

clk

mac1

ao
wh

wa wa

Complete the Verilog.

Use parameters for the bit widths wh and wa.

The registers inferred from the Verilog must match the diagram.

module mac1

endmodule

2

← → Fall 2020 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

(b) Complete the Verilog code below so that it matches the illustration, similar to the one on the previous
page.

ai
h

×

clk

mac2

ao
wh

wa wa+

Complete the Verilog.

Use parameters for the bit widths wh and wa.

The registers inferred from the Verilog must match the diagram.

module mac2

endmodule

3

← → Fall 2020 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Problem 2: [20 pts] The mac (multiply-accumulate) modules compute a running sum of products. The
alert student might have noticed that there is no way to reset the sum. In this problem a reset will be added.

The module below has an input r (for reset) which is to work as follows: When r=1 at a positive edge the
product h*ai should start a new running sum. That is, that particular h*ai should be added to zero. When
r=0 at a positive edge the product h*ai should be added to the sum of the previous products. (If r=0 is
always true then the hardware as illustrated works correctly.)

ai
h

×

clk

mac2r

ao
wh

wa wa+
r

Add hardware to the diagram to implement the reset. Complete the Verilog to implement the reset.

Use parameters for the bit widths wh and wa.

The registers inferred from the Verilog must match the diagram and be sure that the reset is applied
to the correct value.

module mac2r

endmodule

4

← → Fall 2020 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Problem 3: [20 pts] Appearing below are the modules from the previous problem. Suppose that in the
multiplier below bit i of the product were computed in time [4i+ 2] ut and that a ripple adder were used for
the sum. Let w denote the value of wh and wa (which means wh==wa).

ai
h

+×

clk

mac1

ao
wh

wa wa
ai
h

×

clk

mac2

ao
wh

wa wa+

(a) Find the minimum clock period for each using the simple model, and taking into account cascading. (The
clock period is the length of the critical path, including the register delay.)

Find the clock period for mac1 with cascading. Don’t forget to include the delay of the register.

Find the clock period for mac2 with cascading. Don’t forget to include the delay of the registers.

(b) Find the minimum clock period for each using the simple model assuming that the multiplier output and
adder input could not cascade.

Find the clock period for mac1 without cascading. Don’t forget to include the delay of the register.

Find the clock period for mac2 without cascading. Don’t forget to include the delay of the registers.

5

← → Fall 2020 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Problem 4: [20 pts] Appearing below is a recursively defined multiplier constructed using bfa (binary full
adder) and bha (binary half adder) modules.

module mult_tree_bfas #(int wa = 16, int wb = wa, int wp = wa + wb)

(output uwire [wp-1:0] prod, input uwire [wa-1:0] a, input uwire [wb-1:0] b);

if (wa == 1) begin

assign prod = a ? b : 0;

end else begin

// Split a in half and recursively instantiate a module for each half.

localparam int wn = wa / 2;

localparam int wx = wb + wn;

uwire [wx-1:0] prod_lo, prod_hi;

mult_tree_bfas #(wn,wb) mlo(prod_lo, a[wn-1:0], b);

mult_tree_bfas #(wn,wb) mhi(prod_hi, a[wa-1:wn], b);

assign prod[wn-1:0] = prod_lo[wn-1:0];

uwire c[wp-1:wn-1];

assign c[wn-1] = 0;

for (genvar i=wn; i<wx; i++)

bfa b(c[i], prod[i], prod_lo[i], prod_hi[i-wn], c[i-1]);

for (genvar i=wx; i<wx+wn; i++)

bha b(c[i], prod[i], prod_hi[i-wn], c[i-1]);

localparam int wz = wp - wx - wn;

if (wz > 0) assign prod[wp-1 :- wz] = 0;

end

endmodule

Show the hardware that will be inferred for two levels of recursion and compute its cost. That is, show three
instances of mult_tree_bfas: a top-level one, and two recursive instantiations. Show the hardware for the
top-level instance and both of the two recursive instantiations. (It is only necessary to show two levels.) Do
this for wa=8 in the top-level module.

Show the inferred hardware.

Be sure to distinguish hardware (such as a bfa module) from values computed during elaboration.

Compute the cost of the hardware in your diagram using the simple model. (Work out the cost of a bha by
hand.) The cost should be for two levels, not for hardware going down to the base case.

6

← → Fall 2020 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Problem 5: [20 pts] Answer each question below.

(a) Appearing below is a multiply/add module, nnMADDfp, that computes its result using a FP add and
multiply module. The values on the ports are IEEE 754 floats, and when wa=32 the format is IEEE 754
single, the same as a SystemVerilog shortreal. That is followed by an incomplete testbench module,
testnnMADD. The testbench module generates random values for the nnMADDfp module in variables ar, br,
and sir, and computes what the result should be, sor.

Add Verilog code to deliver ar, br, and sir to the nnMADDfp instance, and to put the output of nnMADDfp
into sor_mut so that sor_mut has the correct type of value. Note that one does not need to understand
what is inside of nnMADDfp, nnAddfp, nor nnMultfp.

Deliver (whatever that means) ar, br, and sir to nnMADDfp instance. Get output of the nnMADDfp

instance into variable sor mut.

module nnMADDfp #(int wa = 10)

(output uwire [wa-1:0] so, input uwire [wa-1:0] a, b, si);

uwire [wa-1:0] p;

nnMultfp #(wa) mu(p, a, b);

nnAddfp #(wa) ad(so, si, p);

endmodule

module testnnMADD;
localparam int w = 32, ntests = 100;

uwire [w-1:0] so;

logic [w-1:0] a, b, si;

nnMADDfp #(w) n(so, a, b, si);

initial begin

for (int t=0; t<ntests; t++) begin

shortreal sor, ar, br, sir, sor_mut;

ar = rand_fp(); // Value to be used as input a to nnMADDfp.

br = rand_fp(); // Value to be used as input b to nnMADDfp.

sir = rand_fp(); // Value to be used as input si to nnMADDfp.

sor = ar * br + sir;

#1;

sor_mut = ; // <-- DON’T FORGET.

if (sor != sor_mut) handle_incorrect_result();

end

end

endmodule

7

← → Fall 2020 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

(b) The module below will not compile or simulate due to multiple assignments to temperature, which is
declared uwire. Changing uwire to wire will fix the compile problem. Nevertheless, is that the right fix?

module more_stuff #(int w = 16)

(output uwire [w-1:0] v, y, input uwire [w-1:0] a, b, c);

uwire [w-1:0] temperature;

assign temperature = a + b;

assign v = temperature >> c;

assign temperature = a - b;

assign y = temperature << c;

endmodule

What problem remains after changing temperature from a uwire to a wire?

Fix the problem based on what the code looks like its trying to do.

(c) An important part of synthesis is optimizing. It is possible to optimize before and again after technology
mapping.

What is technology mapping? Show an example of logic before and after technology mapping. (Make
up some technology.)

Describe an optimization that can be done before technology mapping. Provide an example. (This is done
all the time in class.)

Describe an optimization that can be done only after technology mapping (or perhaps during). Provide an
example, feel free to make things up.

8

← → Fall 2020 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Name

Digital Design using HDLs

LSU EE 4755

Solve-Home Final Examination

Wednesday, 9 December 2020 to Friday, 11 December 2020 16:30 CST

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (10 pts)

Problem 5 (35 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2020 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Problem 1: [20 pts] Module prob1_seq, below, is based on the solution to 2016 Final Exam Problem
1 (also appearing in problem set https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf,
please look at that solution). In that problem an incomplete diagram of the hardware was given, similar to
the one on the next page, and a module was to be completed so that it computes v0*v0 + v0*v1 + v1*v1

consistent with the hardware. The completed module appears below, with minor simplifications. If you must
know, the simplifications include omitting the floating-point modules’ round inputs and status outputs. Also,
the case statement was replaced by an if/else statement. In case anyone is concerned, this wordy aside
would be omitted from an in-class exam.

Though module prob1_seq is now complete, the hardware diagram isn’t. In this problem complete the
diagram of the synthesized hardware based on the module below. The diagram omits the hardware for step,
select signals for the multiplexors, enable signals for some of the registers, etc. Optimize the hardware that
compares step to a constant. Do so by showing individual gates rather than an equality or comparison unit.

Complete the diagram so that it shows inferred hardware after some optimization.

Where step is compared to a constant, show individual gates, not a comparison unit.

module prob1_seq
(output logic [31:0] result, output logic ready,

input uwire [31:0] v0, v1, input uwire start, clk);

uwire [31:0] mul_a, mul_b, add_a, add_b, prod, sum;

logic [2:0] step;

logic [31:0] ac0, ac1;

localparam int last_step = 4;

always_ff @(posedge clk)

if (start) step <= 0;

else if (step < last_step) step <= step + 1;

CW_fp_mult m1(.a(mul_a), .b(mul_b), .z(prod));

CW_fp_add a1(.a(add_a), .b(add_b), .z(sum));

assign mul_a = step < 2 ? v0 : v1;

assign mul_b = step == 0 ? v0 : v1;

assign add_a = ac0, add_b = ac1;

always_ff @(posedge clk)

begin

ac0 <= prod;

if (step < 3) ac1 <= step ? sum : 0;

if (start) ready <= 0; else if (step == last_step-1) ready <= 1;

end

assign result = sum;

endmodule

2

← → Fall 2020 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf
https://www.ece.lsu.edu/ee4755/2020/fe.pdf

v0

v1

clk

CW_fp_mult
m1

CW_fp_add
a1

32'd0

ac0

ac1

re
s
u
lt

start

ready

prob1_seq

3

← → Fall 2020 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Problem 2: [20 pts] Consider again that module from Problem 1 of the 2016 final exam. Appearing below
is the start of a Verilog description of a pipelined version of this module. The ports are the same as in
the sequential version from the previous problem, however the module must operate in pipelined fashion,
meaning that a new v0, v1 pair could arrive at the inputs each cycle.

Complete the module. Two floating-point units are instantiated for your convenience. Add floating-point
and other hardware as needed.

Complete module so that it operates in pipelined fashion.

module prob1_pipe (output uwire [31:0] result, output uwire ready,

input uwire [31:0] v0, v1, input uwire start, clk);

uwire [31:0] mul_a, mul_b;

uwire [31:0] add_a, add_b;

uwire [31:0] prod, sum;

// Add or modify FP units and other hardware.

CW_fp_mult m1(.a(mul_a), .b(mul_b), .z(prod));

CW_fp_add a1(.a(add_a), .b(add_b), .z(sum));

endmodule

4

← → Fall 2020 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Problem 3: [15 pts] Yet again, consider the solution to 2016 Final Exam Problem 1. (The solution appears
in the sequential problem set, https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf, feel
free to look at it.) Appearing below is an incomplete diagram of the hardware with some timing information
shown, and a timing diagram. In this problem several performance measures will be computed based on the
simple model.

v0

v1

clk

CW_fp_mult
m1

CW_fp_add
a1

32'd0

ac0

ac1

re
s
u
lt

start

ready

prob1_seq

4

4

5
15

start

clk

prod

ac0

ac1

sum

ready

step

v0² v0v1

v0v1+
 v0²

4 0 1 2 3

v1²

v0² v0v1 v1²

4

0 v0²

v0²

v0v1 + v0²

v1² + v0v1 + v0²

mul_a v0 v1

mul_b v0 v1 Mux delay.

Mult delay.

Let tm = 25 ut denote the delay of the CW_fp_mult unit and let ta = 20 ut denote the delay of the CW_fp_add
unit. The arrival times of signals at the multiplexor select inputs and at the ready register are shown

boxed in blue . Base the delay of the registers and multiplexors on the simple model.

(a) Determine the clock period for this module using the assumptions above and show the critical path on
which this clock period is based.

Determine the clock period. Show critical path used to determine the clock period.

Show work, and state any assumptions.

(b) Based on your answers above determine the latency and throughput for this calculation.

The latency is:

The throughput is:

5

← → Fall 2020 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf
https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Problem 4: [10 pts] The bfa_tree_bfas module below has a flaw: It won’t compile if wp < wa+wb. That’s
a big deal, because in many—perhaps most—cases when one multiplies two w-bit integers all one wants is
the w least significant bits of the product.

Modify the module so that it will work correctly for values of wp<=wa+wb. Do so in a way that generates
less hardware even without optimization of unconnected nets and unread variables.

module mult_tree_bfas #(int wa = 16, int wb = wa, int wp = wa + wb)

(output uwire [wp-1:0] prod,

input uwire [wa-1:0] a, input uwire [wb-1:0] b);

if (wa == 1) begin

assign prod = a ? b : 0;

end else begin

localparam int wn = wa / 2;

localparam int wx = wb + wn;

uwire [wx-1:0] prod_lo;

uwire [wx-1:0] prod_hi;

mult_tree_bfas #(wn,wb) mlo(prod_lo, a[wn-1:0], b);

mult_tree_bfas #(wn,wb) mhi(prod_hi, a[wa-1:wn], b);

assign prod[wn-1:0] = prod_lo[wn-1:0];

uwire c[wp-1:wn-1];

assign c[wn-1] = 0;

for (genvar i=wn; i<wx; i++)

bfa b(c[i], prod[i], prod_lo[i], prod_hi[i-wn], c[i-1]);

for (genvar i=wx; i<wx+wn; i++)

bha b(c[i], prod[i], prod_hi[i-wn], c[i-1]);

localparam int wz = wp - wx - wn;

if (wz > 0) assign prod[wp-1 :- wz] = 0;

end

endmodule

6

← → Fall 2020 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Problem 5: [35 pts] Answer each question below.

(a) When is it less expensive to implement design X using an FPGA, and when is it less expensive to
implement design X (the same design) using an ASIC? Cost here refers to the purchase price, not something
computed using the simple model.

An FPGA is less expensive for design X when . . . Explain.

An ASIC is less expensive for design X when . . . Explain.

(b) A testbench is written to verify whether a Verilog module does what it is supposed to do. (It’s not just
for homework assignments.) Consider a component that could quickly and thoroughly be tested after it has
been manufactured.

Is a testbench still necessary for the Verilog description of this component?

Explain.

A company has two testbench teams, the good team, and the okay team. (The good team is much better
than the okay team.) Is it better to use the good team (rather than the okay team) for the testbench when
the design is being made into an FPGA or when the design is being made into an ASIC?

Better to use the good team for writing the testbench when fabricating an © FPGA or © ASIC .

Explain.

7

← → Fall 2020 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2020/fe.pdf

(c) In each code fragment below indicate whether the non-blocking assignments are necessary, must be
replaced by a blocking assignment, or whether it does not matter which is used. Assume typical use of
Verilog.

Are the non-blocking assignments © necessary, © must be replaced by blocking assignments, © either
one will work .

Explain.

// Fragment A

always_comb begin x <= a + y; end // Line 1

always_comb begin a <= b + c; end // Line 2

Are the non-blocking assignments © necessary, © must be replaced by blocking assignments, © either
one will work .

Explain.

// Fragment B

always_ff @(posedge clk) begin x <= a + y; end // Line 1

always_ff @(posedge clk) begin a <= b + c; end // Line 2

(d) Consider three ways of designing digital hardware: combinational, sequential, and pipelined.

Sequential hardware is the lowest-cost alternative for many designs. (Some of which appear on this test.)
Provide an example of some non-trivial hardware for which a sequential design would not be less expensive
than a combinational design. The hardware might compute an arithmetic expression, as does the hardware
in Problem 1.

Non-trivial hardware that can’t be made less expensive with a sequential design compared with a combina-
tional design. Explain.

8

← → Fall 2020 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2020/fe.pdf

(e) Both modules below have an input port providing an array of unsigned integers, and an output port,
elt_min, which is set to the smallest of these numbers. The two modules are nearly identical, the difference
is that in min_b_s (the s is for shortcut) the loop ends when a value of 0 is found (because there can’t be
anything smaller, so why bother looking), while in min_b the loop always iterates for n-1 iterations. Consider
a situation in which most inputs contain a zero. Which module has a shorter critical path (meaning that it
is faster in a typical digital design)?

module min_b #(int w = 4, int n = 8)

(output logic [w-1:0] elt_min, input uwire [w-1:0] elts[n]);

always_comb begin

elt_min = elts[0];

for (int i=1; i<n; i++)

if (elts[i] < elt_min) elt_min = elts[i];

end

endmodule

module min_b_s #(int w = 4, int n = 8)

(output logic [w-1:0] elt_min, input uwire [w-1:0] elts[n]);

always_comb begin

elt_min = elts[0];

for (int i=1; i<n && elt_min > 0; i++)

if (elts[i] < elt_min) elt_min = elts[i];

end

endmodule

Which module has a shorter critical path, © min b or © min b s ?

Explain.

9

← → Fall 2020 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2020/fe.pdf

5 Fall 2019

92

← → Fall 2019 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Name

Digital Design Using HDLs

LSU EE 4755

Midterm Examination

Wednesday, 30 October 2019 10:30–11:20 CDT

Alias

Problem 1 (20 pts)

Problem 2 (25 pts)

Problem 3 (27 pts)

Problem 4 (28 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2019 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Problem 1: [20 pts] Appearing below is one of the solutions to Homework 2, the count leading zeros
module.

module clz_bi_tree #(int w = 19, int ww = $clog2(w+1))

(output uwire [ww:1] nlz, input uwire [w:1] a);

if (w == 1) begin

assign nlz = ~ a;

end else begin

localparam int wlo = w/2, whi = w - wlo;

localparam int wwlo = $clog2(wlo+1), wwhi = $clog2(whi+1);

uwire [wwlo:1] lz_lo;

uwire [wwhi:1] lz_hi;

clz_bi_tree #(wlo) clo(lz_lo, a[wlo:1]);

clz_bi_tree #(whi) chi(lz_hi, a[w:wlo+1]);

assign nlz = lz_lo < wlo ? lz_lo : wlo + lz_hi;

end

endmodule

Show the hardware that will be inferred for the module for w > 1. Just show one level, don’t show what is
inside of clo and chi.

Show synthesized hardware for one level. Be sure to show clo and chi (but not their contents).

2

← → Fall 2019 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Problem 2: [25 pts] In Homework 2 a clz (count leading zeros) module was constructed recursively by
splitting the input bit vector and connecting each half to a smaller instance. The incomplete module below
is similar except that the input vector is to be split into thirds and each third connected to a recursive
instance. Complete the module.

Complete so that clz tri tree computes clz.

module clz_tri_tree #(int w = 19, int ww = $clog2(w+1))

(output uwire [ww-1:0] nlz, input uwire [w-1:0] a);

if (w == 1) begin

assign nlz = ~ a;

// Make any needed changes to terminal case(s).

end else begin

// Finish these localparams.

localparam int wlo =

localparam int wmi =

localparam int whi =

localparam int wwlo = $clog2(wlo+1), wwmi = $clog2(wmi+1), wwhi = $clog2(whi+1);

uwire [wwlo-1:0] lz_lo; // No need to change these four lines.

uwire [wwmi-1:0] lz_mi;

uwire [wwhi-1:0] lz_hi;

// Finish module connections below.

clz_tri_tree #(wlo) clo(lz_lo, a[]);

clz_tri_tree #(wmi) cmi(lz_mi, a[]);

clz_tri_tree #(whi) chi(lz_hi, a[]);

// Finish nlz.

assign nlz =

end

endmodule

3

← → Fall 2019 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Problem 3: [27 pts] Appearing below are modules that test if two bit vectors are equal in some way.

(a) Show the hardware for the module below at the default size using basic gates: AND, OR, XOR, NOTs,
and bubbled inputs and outputs. Do not use something like == .

module eq #(int w = 4)(output uwire equal, input uwire [w-1:0] a, b);

assign equal = a == b;

endmodule

Show hardware using basic gates at default size.

(b) Show the cost and delay of the module in terms of w (the value of parameter w) using the simple model.

In terms of w: Cost and Delay.

4

← → Fall 2019 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

(c) The module below also tests equality but it does so after shifting the first operand. Show the hardware
in terms of basic gates after optimization.

module eqs #(int w = 6, int s = 2)(output uwire equal, input uwire [w-1:0] a, b);

localparam logic [w+s-1:0] zero = 0;

assign equal = zero + (a << s) == b;

endmodule

Show hardware at default size after optimization.

(d) The module below performs a different operation than the one above. Explain the difference and show
an example.

module eqt #(int w = 16, int s = 5) (output uwire equal, input uwire [w-1:0] a, b);

assign equal = (a << s) == b;

endmodule

Difference between operation eqs and eqt.

Show a value for a and b for which the output of eqs and eqt are different.

5

← → Fall 2019 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Problem 4: [28 pts] Answer each question below.

(a) Appearing below is synthesis data taken from the solution to Homework 2. The Delay Target column
shows the maximum delay constraint given to the synthesis program.

Module Name Area Delay Delay

Actual Target

clz_w32 26290 3.110 10.000 ns

clz_tree_w32 21706 1.425 10.000 ns

clz_w32_1 36476 1.007 0.100 ns

clz_tree_w32_5 37356 0.577 0.100 ns

In general, which result should be used if the only goal were to minimize area,

the results for the © 10.0 ns Target or for the © 0.1 ns Target ? Explain.

In general, which result should be used if the only goal were to minimize delay,

the results for the © 10.0 ns Target or for the © 0.1 ns Target ? Explain.

(b) Provide w-bit declarations requested below.

// Declare each object to be w bits and consistent with its name.

//

uwire [] bit_zero_is_msb;

uwire [] bit_zero_is_lsb;

uwire [] bit_zero_is_middle;

6

← → Fall 2019 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

(c) The module fragment below starts with six declarations (the object names starting with r), each providing
a value (either a+b or x+y). Some of those declarations will result in compile errors. Identify them and explain
the problem. If possible fix the problem without changing the object kind (localparam, uwire, var).

module my_mod
#(int w = 10, int x = 11, int y = 12)

(input uwire [w:1] a, b);

localparam logic [w:1] r1p = a + b;

localparam logic [w:1] r2p = x + y;

uwire [w:1] r1w = a + b;

uwire [w:1] r2w = x + y;

logic [w:1] r1l = a + b;

logic [w:1] r2l = x + y;

Indicate which ones are wrong and the reason that they are wrong.

Indicate which can’t be fixed and and explain why not.

(d) Explain what $realtobits does, and what hardware will be synthesized for it, if any.

always_comb begin

x = $realtobits(r);

end

Purpose of realtobits.

Synthesized hardware.

7

← → Fall 2019 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Name Formatted For 2-Sided Printing

Digital Design using HDLs

LSU EE 4755

Final Examination

Friday, 13 December 2019 10:00-12:00 CST

Alias

Problem 1 (30 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (25 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

H
er
e

S
ta
p
le

H
er
e

← → Fall 2019 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2019/fe.pdf

Problem 1: [30 pts] Appearing below is the solution to Homework 6, the accumulation module. The next
page shows the pipelined adder and st_occ, which is some of the inferred hardware. Show the rest of the
inferred hardware after some optimization. Leave the pipelined adder as a box.

module add_accum #(int w = 21, n_stages = 3)

(output logic [w-1:0] sum, output logic sum_valid,

input uwire [w-1:0] ai, input uwire ai_v, reset, clk);

logic [n_stages-1:0] st_occ;

assign sum_valid = !st_occ;

uwire aout_v = st_occ[n_stages-1];

uwire [w-1:0] aout;

uwire [w-1:0] a0 = ai_v ? ai : sum;

uwire [w-1:0] a1 = aout_v ? aout : sum;

add_pipe #(w,n_stages) add_p0(aout, a0, a1, clk);

logic sum_occupied;

uwire [1:0] n_values = ai_v + sum_occupied + aout_v;

uwire saa = n_values >= 2; // Start an addition.

uwire write_sum = !sum_occupied && n_values == 1;

always_ff @(posedge clk) if (reset) begin

sum <= 0;

sum_occupied <= 0;

st_occ <= 0;

end else begin

if (write_sum) sum <= aout_v ? aout : ai;

sum_occupied <= n_values[0];

st_occ <= { st_occ[n_stages-1:0], saa };

end

endmodule

Show inferred hardware after some optimization, but leave add pipe as a box.

Show logic associated with n values as basic gates and a single BFA, do not show adders and do not show
comparison units.

Clearly show all input and output ports, do not confuse parameters with ports.

Avoid effortlessly optimized hardware, such as gates with constant inputs.

2 S
ta
p
le

H
er
e

S
ta
p
le

H
er
e

← → Fall 2019 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

add_pipe
add_p0

aout
a0

a1

saa aout_v

S
ta
p
le

H
er
e

S
ta
p
le

H
er
e

3

← → Fall 2019 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

Problem 2: [25 pts] Appearing below is hardware from the solution to Homework 5, Problem 2. The
parameter names have been shortened, such as changing wv to v and using lg v for wvb. The diagram shows
the delay through some of the modules, including the pop module. Treat e and a (delays for = and +)
as given constants for the first part.

(a) Based on the provided delays and using the simple model for others, compute the arrival time (delay) of
signals at each register input. That’s two inputs for each of five registers. The solution for ready is shown
in blue, so only four registers remain. Also, highlight the/a critical path to the err register.

val

key

err

start

clk

re
a
d
y

cu
rr_p

o
s

sh
_v

a
l

pos

en

en

en

v
-k

1

en

enpop
p

1

0
1'b0

v-1:1

<

~0

k-
1

:0

0

ready

best_match
v,k

sh
_v

a
l

start

msb

lsb

=

+

st
a
rt

st
a
rt

v

k

lg k

lg vlg v

6 lg k

2 lg k

e

a

e+1

1

1Sample solution
in blue italic.

1

Show the arrival time of the enable and data signal at each register input and Highlight a critical path
to err with a squiggly line.

Take into account constant inputs when computing delays.

4 S
ta
p
le

H
er
e

S
ta
p
le

H
er
e

← → Fall 2019 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

(b) The equality module is shown with a delay of e. Show the hardware for that module and compute the
cost and delay using the simple model. Take into account the width of the inputs and the fact that one
input is a constant.

Sketch hardware for equality module for lg v = 8 and v − k = 1011 00012, and taking into account the
constant input.

Show the cost of the hardware for the equality module above based on the simple model in terms of lg v.
Don’t forget to take the constant input into account.

Show the delay of the hardware based on the simple model in terms of lg v. Don’t forget to take the
constant input into account.

S
ta
p
le

H
er
e

S
ta
p
le

H
er
e

5

← → Fall 2019 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

reset

clk

0

0

1 +

1

+

Fi

i

fibo, w=16

w

w

Problem 3: [20 pts] The hardware illustrated
to the right emits a famous integer sequence.
Write a synthesizable Verilog description of the
hardware.

Complete the module, be sure that it is
synthesizable.

Use non-blocking assignments carefully.

Be sure to include all input and output ports
and parameters.

Make sure that all objects have the appropriate
widths.

module fibo

endmodule

6 S
ta
p
le

H
er
e

S
ta
p
le

H
er
e

← → Fall 2019 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

Problem 4: [25 pts] Answer each question below.

(a) Appearing below are synthesis script results for the pipelined integer adder from Homework 6. That
adder computes a w-bit integer sum using an n-stage pipeline in which each stage computes dw/ne bits of
the sum, starting with the dw/ne least-significant bits in the first stage.

All syntheses are of a w = 24-bit adder, versions with n = 1, 2, 3, 4, and 6 stages are synthesized. The delay
target is set to an easy 90 ns.

Module Name Area Delay Delay

Actual Target

add_pipe_w24_n_stages1 29928 10.174 90.000 ns

add_pipe_w24_n_stages2 47043 5.428 90.000 ns

add_pipe_w24_n_stages3 64159 3.701 90.000 ns

add_pipe_w24_n_stages4 81275 2.837 90.000 ns

add_pipe_w24_n_stages6 115506 1.973 90.000 ns

Based on this data provide the latency and throughput for the three-stage adder. Be sure to
use appropriate units for the throughput.

Note that the area (cost) increases with the number of stages. Based on the description above what is the
main contributor to the increase in cost?

S
ta
p
le

H
er
e

S
ta
p
le

H
er
e

7

← → Fall 2019 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

(b) The two modules below appear to be similar.

module plan_I(output logic [7:0] e, input logic [7:0] a,b);

logic [7:0] c;

always_comb begin

c = a + b;

e = c + a;

end

endmodule

module plan_II(output logic [7:0] e, input logic [7:0] a,b);

logic [7:0] c;

always_comb e = c + a;

always_comb c = a + b;

endmodule

For which module will the simulator perform unnecessary addition? Explain.

Is the result computed by the two modules different or the same? Explain.

(c) What value will y have at the end of the initial block?

module s;
logic [15:0] a,b,y;

initial begin

a = 1;

b = 100;

b <= 10;

y = 0;

y <= a + b;

y = 999;

#1;

a = 2;

b <= 20;

#200;

// Show value of y at this point in execution.

end

endmodule

Value of y at end of block is:

8 S
ta
p
le

H
er
e

S
ta
p
le

H
er
e

← → Fall 2019 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

(d) Consider the declarations below.

module types;
int en;

logic [31:0] lo;

bit [31:0] b;

uwire [31:0] u = 33;

localparam int p = 22;

endmodule

Object u has the same data type as one of the other objects. Which is it?

What is the difference between lo and b (logic and bit)?

Notice that u is assigned a value. What is it about object lo that makes it illegal to assign a value in its
declaration?

Add correct code to assign value 44 to lo.

S
ta
p
le

H
er
e

S
ta
p
le

H
er
e

9

← → Fall 2019 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

6 Fall 2018

109

← → Fall 2018 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Name

Digital Design using HDLs

LSU EE 4755

Midterm Examination

Friday, 26 October 2018 9:30–10:20 CDT

Alias

Problem 1 (22 pts)

Problem 2 (20 pts)

Problem 3 (23 pts)

Problem 4 (10 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2018 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Problem 1: [22 pts] The illustration below shows some of the inferred hardware for the behav_merge

module from the solution to Homework 6. The hardware that’s shown is for typical iterations i and i+1.
Show the hardware for iterations i=0 and i=1 with optimizations applied.

Show hardware for iterations i=0 and i=1.

Also show hardware for code before for loop.

Optimize hardware. Take into account possible values
of ia and ib.

module behav_merge
#(int n = 4, int w = 8)

(output logic [w-1:0] x[2*n],

input uwire [w-1:0] a[n], b[n]);

logic [$clog2(n+1)-1:0] ia, ib;

always_comb begin

ia = 0; ib = 0;

for (int i = 0; i < 2*n; i++)

if (ib==n || ia!=n && a[ia]<=b[ib])

x[i] = a[ia++]; else x[i] = b[ib++];

end

endmodule

behav_merge, n, w
a

b

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

�

1 1

+ +

=

0

1

00 11

x[i]

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

�

1 1

+ +

=

0

1

0

ibia

0 11

x[i+1]

x

w

lg n

w

lg n

w

w

2

← → Fall 2018 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Problem 2: [20 pts] Appearing once again is part of the Homework 6 solution, this time with items labeled
in blue. Show the cost and delay of these, as requested below. See the previous problem for the Verilog
description. The phrase most expensive means for the value of i for which the device needs all inputs, even
after optimization. For the mux, show the cost and delay for the tree implementation.

behav_merge, n, w
a

b

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

≤

1 1

+ +

=

0

1

00 11

x[i]

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

≤

1 1

+ +

=

0

1

0

ibia

0 11

x[i+1]

x

w

lg n

w

lg n

w

w

a-mux

i-mux

a-lim

Cost of most expensive a-mux in terms of
n and w.

Delay of most expensive a-mux in terms
of n and w.

Cost of most expensive i-mux in terms of
n and w.

Delay of most expensive i-mux in terms
of n and w.

Cost of most expensive a-lim in terms of n and w after optimizing for constant inputs.

Delay of most expensive a-lim in terms of n and w after optimizing for constant inputs.

3

← → Fall 2018 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Problem 3: [23 pts] Output lt of module comp, below, should be 1 iff a is strictly less than b, and eq

should be 1 iff a==b. Both a and b are unsigned integers. The module recursively instantiates two instances
of itself, one is supposed to compare the low bits of the inputs, the other compares the high bits. Complete
the module so that it works for any positive w.

Complete the module, don’t miss the FILL IN items.

Make sure that it works for odd and even values of w.

module comp
#(int w = 8)

(output uwire lt, eq, input uwire [w-1:0] a, b);

if () begin // Terminating Case Condition <---- FILL IN

assign lt = !a && b;

assign eq = a == b;

end else begin

uwire llo, lhi, elo, ehi;

// Instantiate two comp modules, connect each to about half the inputs.

//

// ---- -------------- -------------- <-- FILL IN

comp #() clo(llo, elo, a[], b[]);

comp #() chi(lhi, ehi, a[], b[]);

assign lt = ; // <---- FILL IN

assign eq = ; // <---- FILL IN

end

endmodule

4

← → Fall 2018 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Problem 4: [10 pts] The output of plus_amt, x, is to be set to b + amt. Input b and output x are expected
to be in IEEE 754 double FP format (the same format as type real). (Note: the port declarations are not
to be modified in the problems below.) Several variations on the module appear below. Hint: Solution to
this problem require the correct use of realtobits and/or bitstoreal. Grading Note: The bonus problem
was not on the original exam.

(a) The module below does not compute the correct result. Fix the module by modifying the always_comb

block. The module does not need to be synthesizable.

Fix so that x is assigned the correct result, amt plus value of b.

module plus_amt
#(real amt = 1.5)

(output logic [63:0] x, input uwire [63:0] b); // DO NOT modify ports.

// Both x and b are IEEE 754 doubles (reals).

always_comb begin

// Change code below.

x = b + amt;

end

endmodule

(b) [0 pts] Bonus Problem Complete the module below so that it uses the CW_fp_add module to do the
addition. The parameters to CW_fp_add are already correct, just connect the inputs and outputs.

Complete so that it computes the correct result.

module plus_amt
#(real amt = 1.5)

(output logic [63:0] x, input uwire [63:0] b); // DO NOT modify ports.

// Both x and b are IEEE 754 doubles (reals).

uwire logic [7:0] s; // Unused.

// Computes z = a + b.

CW_fp_add #(.sig_width(52),.exp_width(11)) // This line correct, don’t change.

fadd(.status(s), .rnd(0), // This line correct, don’t change.

.z(), .a(), .b());

endmodule

5

← → Fall 2018 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Problem 5: [25 pts] Show the hardware that will be inferred for the Verilog code below.

Clearly show module ports.

Show inferred hardware. Don’t optimize.

Pay close attention to what is and is not inferred as a register.

module regs #(int w = 10, int k1 = 20, int k2 = 30)

(output logic [w-1:0] y,

input logic [w-1:0] b, c,

input uwire clk);

logic [w-1:0] a, x, z;

always_ff @(posedge clk) begin

a = b + c;

if (a > k1) x = b + 10;

if (a > k2) z = b + x; else z = c - x;

y = x + z;

end

endmodule

6

← → Fall 2018 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Name

Digital Design using HDLs

LSU EE 4755

Final Examination

Wednesday, 5 December 2018 15:00-17:00 CST

Alias

Problem 1 (20 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2018 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/fe.pdf

clk

mult_seq_d_prob_2 (w,m)
p
ro
d

a
c
c
u

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_
v
a
lid

0
1

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m

�

0

n-1

>n-1

0

w
-1

-m
:w

-2
m

�

n-2

>n-2

0 �

1

>1

2
m

-1
:m

0

+

iter

iter

cand

iter

i=n-1 i=n-2 i=1

=

1

oa_new

sv_prod

Problem 1: [20 pts] Appearing to the right is the
hardware inferred for the Homework 7 Problem 2
module, the fast sequential multiplier which skipped
over zeros in the multiplicand.

(a) Notice that some hardware is circled in blue. Op-
timize that hardware and show the cost of the op-
timized hardware. The optimized hardware should
generate signals sv prod and oa new. If possible,
replace the multiplexors with simpler gates.

Show optimized hardware.

Cost of optimized hardware:

2

← → Fall 2018 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

clk

mult_seq_d_prob_2 (w,m)
p
ro
d

a
c
c
u

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_
v
a
lid

0
1

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m ≠

0

n-1

[n-1]

0

w
-1
-m

:w
-2
m

≠

n-2

0 ≠

1

2
m
-1
:m

0

+

iter

cand

iter

i=n-1 i=n-2 i=1

=

1

gt

[n-2] [1]

ngti-n

gtv

(b) In the version of the module appearing be-
low the > units have been replaced by one
module, gt, the changed hardware appears in
blue. As can be inferred from the diagram bit
i of the output of gt, gtv, is 1 iff i>iter. In
the Verilog code below gt is instantiated but it
is not being used. Modify the Verilog code so
that the existing for loop uses the output of
gt instead of the > operators. Pay attention
to the version of iter used by gt.

Use gt output in existing for loop.

Make sure that gt uses correct iter version.

module mult_seq_d_prob_2
#(int w = 16, int m = 2)

(output logic [2*w-1:0] prod,

output logic out_avail,

input uwire clk, in_valid,

input uwire [w-1:0] plier, cand);

localparam int n = (w + m - 1) / m;

localparam int iter_lg = $clog2(n);

uwire [n-1:0][m-1:0] cand_2d = cand;

bit [iter_lg-1:0] iter, next_iter;

logic [2*w-1:0] accum;

uwire [n-1:0] gtv;

uwire [iter_lg-1:0] gt_iter = 0; // FILL IN

gt #(n,iter_lg) gti(gtv, gt_iter);

always_ff @(posedge clk) begin

if (in_valid) begin

iter = 0; accum = 0; out_avail = 0;

end else if (!out_avail && iter == 0) begin

prod = accum; out_avail = 1;

end

accum += plier * cand_2d[iter] << (iter * m);

next_iter = 0;

for (int i=n-1; i>0; i--) if (i>iter && cand_2d[i]) next_iter = i;

iter = next_iter;

end

endmodule

3

← → Fall 2018 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Problem 2: [25 pts] The point of the gt module in the previous problem was to reduce cost, just in case
the synthesis program didn’t notice that the cost of computing each of n-1>iter, n-2>iter, . . ., 2>iter,
1>iter, would be less than n − 1 times the cost of computing one of them. The recursive module below
computes these quantities and can be used for the gt module from the previous problem.

module gtd_rec #(int n = 16, int lgn = $clog2(n))

(output logic [n-1:0] gt, input uwire [lgn-1:0] iter);

localparam int nh = n / 2; // Note: n must be a power of 2.

if (n == 2) begin

assign gt[0] = 0;

assign gt[1] = !iter[0];

end else begin

uwire [nh-1:0] gtlo;

gtd_rec #(nh) glo(gtlo, iter[lgn-2:0]);

localparam logic [nh-1:0] zeros = 0, ones = -1;

assign gt = iter[lgn-1] ? { gtlo, zeros } : { ones, gtlo };

end

endmodule

(a) Show the hardware that will be inferred for this module for an arbitrary value of n. In this case, do not
show what is inside the recursively instantiated module.

Show hardware for arbitrary n > 2. (Don’t show recursive module contents.)

(b) There should be a significant optimization opportunity in the hardware above. Show it.

Show how the hardware will be optimized. The result should be AND, OR, and other basic logic gates.

4

← → Fall 2018 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

(c) Show the hardware that will be inferred for n = 8 after elaboration. That is, show the hardware inside
all of the recursive instantiations.

Show hardware for n = 8. Show the contents of all recursively instantiated modules.

(d) Compute the cost and delay using the simple model. Show these in terms of n assuming that n is a
power of 2.

Cost and delay in terms of n.

5

← → Fall 2018 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Problem 3: [20 pts] Consider the module below.

module misc #(int n = 8)

(output logic [n-1:0] a, g, e,

input uwire [n-1:0] b, c, j, f, input uwire clk);

logic [n-1:0] z;

always_ff @(posedge clk) begin

a <= b + c; // Note: nonblocking assignment.

z = a + j;

g = z;

end

always_comb begin

e = a * f;

end

endmodule

(a) Show the hardware that will be inferred for the module above.

Show inferred hardware. Pay attention to what is and is not a register. Clearly show module
ports.

6

← → Fall 2018 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

module misc #(int n = 8)

(output logic [n-1:0] a, g, e,

input uwire [n-1:0] b, c, j, f, input uwire clk);

logic [n-1:0] z;

always_ff @(posedge clk) begin // Code Position Label: alf

a <= b + c; // Note: nonblocking assignment.

z = a + j;

g = z;

end

always_comb begin // Code Position Label: alc

e = a * f;

end

endmodule

(b) Suppose that the event queue is empty at t = 10 when simulating the module above. Show the contents
of the event queue for the code above based on the following changes: At t = 10 j changes. At t = 12 clk

changes from 0 to 1. At t = 14 f changes.

Show the state of the event queue from t = 10 until it is empty.

7

← → Fall 2018 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Problem 4: [10 pts] Answer each question below.

(a) The module below is not compilable. Explain why and fix it based on what it looks like it is trying to
do.

module more
(input uwire [5:0] w,

input uwire [w-1:0] a, b,

output uwire [w:0] s);

assign s = a + b;

endmodule

Fix the problem.

Describe the problem:

(b) The module below is supposed to count cycles but it won’t work as written. Describe the problem and
fix it.

module tic_toc
(output logic [7:0] cycles,

input uwire clk, reset);

always_comb begin

if (reset) cycles = 0;

else if (clk) cycles = cycles + 1;

end

endmodule

Describe the problem:

Fix the problem.

8

← → Fall 2018 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Problem 5: [25 pts] Answer each question below.

(a) Appearing below is synthesis data showing the clock period of degree-m sequential workfront multipliers
and degree-m sequential regular (dm) multipliers for sizes m = 1, m = 2, m = 4, and m = 8.

Module Name Area Period Period Total

Target Actual Latency

mult_seq_wfront_m_w32_m1 191334 1000 3766 241024

mult_seq_wfront_m_w32_m2 205303 1000 3857 123424

mult_seq_wfront_m_w32_m4 260182 1000 5266 84256

mult_seq_wfront_m_w32_m8 351910 1000 7031 56248

mult_seq_dm_w32_m1 246818 1000 31113 995616

mult_seq_dm_w32_m2 279486 1000 30994 495904

mult_seq_dm_w32_m4 314724 1000 32127 257016

mult_seq_dm_w32_m8 408659 1000 31251 125004

As m increases the clock period of the workfront multiplier increases by a significant amount, while the
period of the sequential multiplier barely changes. Why?

Why does the workfront period increase so much more than that of the regular multiplier?

Let pw(m) and pr(m) denote the clock period of the degree-m workfront and regular multipliers. Show
expressions for lw(m) and lr(m), the latencies of these multipliers.

Finish the following expression for latency: lw(m) = pw(m)

Finish the following expression for latency: lr(m) = pr(m)

(b) The reasoning in the statement below is, as of this writing, incorrect. Provide the correct reason to not
spend time on multiplier modules.

“One should not spend time trying to develop efficient multiplication hardware because the synthesis program
is very good at optimizing logic and will synthesize something at least as good as a human can.”

When working on a design that makes heavy use of multiplication one should just use multiplication operators
and not try to implement your own because:

9

← → Fall 2018 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

(c) Sequential multipliers S0 and S1 have the same latency and cost, but the clock period for S1 is lower
than S0.

Which is preferred? Explain.

Pipelined multipliers P0 and P1 have the same latency and cost, but the clock period for P1 is lower than
P0.

Which is preferred? Explain.

10

← → Fall 2018 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

(d) In the module below notice that cand_2d is no longer available. Modify the line updating accum to use
cand instead.

module mult_seq_dm #(int w = 16, int m = 2)

(output logic [2*w-1:0] prod,

input uwire [w-1:0] plier, cand, input uwire clk);

localparam int iterations = (w + m - 1) / m;

localparam int iter_lg = $clog2(iterations);

// uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg:1] iter;

logic [2*w-1:0] accum;

always @(posedge clk) begin

if (iter == iter_lg’(iterations)) begin

prod = accum; accum = 0; iter = 0;

end

// Fix line below

accum += plier * cand_2d[iter] << (iter * m);

iter++;

end

endmodule

11

← → Fall 2018 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

7 Fall 2017

127

← → Fall 2017 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Name

Digital Design using HDLs

EE 4755

Midterm Examination

Monday, 16 October 2017 9:30–10:20 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (15 pts)

Problem 5 (10 pts)

Problem 6 (15 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2017 ← → Midterm Exam Exam Solution mt.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Problem 1: [20 pts] Write a Verilog description of the hardware illustrated below. The description must
include the modules and instantiations as illustrated. The description can be behavioral or structural, but
it must be synthesizable.

a

b

ci c
o

s
u
mBFA_fast a

b

ci c
o

s
u
mBFA_fast

a

b

ci

a[0]

b[0]

2

2

a[1]

b[1]

s
u
mlsb

msb

3

bf1bf0

tba

Verilog corresponding to illustrated hardware.

Show instantiations, Verilog for instantiated module(s), and all module ports.

2

← → Fall 2017 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Problem 2: [20 pts] Appearing below is a partially completed recursive description of an n = 2b-input,
w-bit multiplexor, which is a generalized version of the multiplexors appearing in Homework 1. Complete it.

Fill in the condition and code for the terminating case.

Complete recursive case, including the instantiation port and parameter connections (look for FILL IN).

module muxn #(int w = 5, int b = 4, int n = 1 << b)

(output uwire [w-1:0] x, input uwire [b-1:0] sel, input uwire [w-1:0] a[0:n-1]);

if () // Terminating Case Condition <---- FILL IN

begin

// Terminating Case

end else begin

// Recursive Case

uwire [w-1:0] y[2];

// Instantiate two n/2-input muxen, and connect each to half the inputs.

//

// ---- ---- <---- FILL IN

muxn #(.w(), .b()) mlo(y[0], sel[b-2:0], a[0 : n/2-1]);

// ---- ---- ----- <---- FILL IN

muxn #(.w(), .b()) mhi(y[1], sel[], a[n/2 : n-1]);

// Instantiate one 2-input mux.

//

// ---- ---- ------------------- <---- FILL IN

muxn #(.w(), .b()) m2()

end

endmodule

3

← → Fall 2017 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Problem 3: [20 pts] Appearing below to the right is an 8-input multiplexor constructed from 2-input
multiplexors using the technique from Homework 1 and from the previous problem. Call a multiplexor
constructed this way a tree mux. Appearing below to the left is a diagram showing a flat mux, the kind
usually used in class. The flat mux diagram shows a timing analysis based on the simple model, and some
details about cost.

For reference:
∑b−1

i=0 a2
i = a(2b − 1). Assume that n is a power of 2.

1:10:0

select

a0

a1

a2

a3

a4

a5

a6

a7

x

2:2
s

a0

a1

x

mux n, w

s=0

s
[0
]

s
[1
]

s
[lg

(n
)-1

]

a(n-1)

s=1

s=n-1

w

w

w

lg n

lg
 lg

 n

1

One decode AND per input (n total).

w gate ANDs per

input (nw total).

0

0

0

0

(lg
 lg

 n
) +

 1
 +

 lg
 n

w
 O

R
 g

a
te

s

(a) Compute the cost of an n-input, w-bit flat mux using the simple
model and without optimization.

Cost of flat mux in terms of n and w.

(b) Compute the cost of an n-input, w-bit tree mux using the simple model.

Cost of tree mux in terms of n and w. Describe assumptions made about 2-input mux implementation.

(c) Compute the delay of an n-input, w-bit tree mux using the simple model.

Delay of tree mux in terms of n and w.

4

← → Fall 2017 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Problem 4: [15 pts] Show the hardware that will be synthesized for the modules below.

(a) Show the hardware that will be inferred for the module below, including the minimum number of bits in

each wire. Assume that sqrt is defined in a library somewhere.

module wqf
#(int w = 16)

(output logic signed [2*w-1:0] rad,

output uwire [31:0] srad,

input uwire [w-1:0] a, b, c);

sqrt #(32,2*w) s1(srad,rad);

always_comb begin

rad = b*b - 4 * a * c;

if (rad < 0) rad = 0;

end

endmodule

Show inferred hardware. Show minimum correct bit widths.

(b) Show the hardware that will be inferred for the module below.

module sort2 #(int w = 4)

(output logic [w-1:0] x[2], input uwire [w-1:0] a[2]);

always_comb begin

for (int i=0; i<2; i++) x[i] = a[i];

if (a[0] < a[1]) begin x[0] = a[1]; x[1] = a[0]; end

end

endmodule

Show inferred hardware.

5

← → Fall 2017 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Problem 5: [10 pts] Answer each question below.

(a) The mux2 module below uses implicit structural code. Modify it so that it uses behavioral (procedural)
code.

module mux2 #(int w = 16)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a,b);

assign x = s == 0 ? a : b;

endmodule

Modify so that is procedural. Change ports if necessary.

(b) Modify the module port and parameter declarations below so that the Verilog is correct. Do not modify

the contents of the module itself. Note that opt is not defined, but that it should be. Note: In the original

exam assign was omitted from the module body, making the problem impossible to solve.

module sum_or_dff
#(int w = 16)

(output uwire [w-1:0] x,

input uwire [w-1:0] a, b);

if (opt == 0) assign x = a+b; else assign x = a-b;

endmodule

Modify port and parameter declarations for correctness.

6

← → Fall 2017 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Problem 6: [15 pts] Answer each question below.

(a) Why is always_comb preferred over always @(x or y or ..) when describing combinational logic?

always comb preferred because . . .

What is the risk with always @(x or y or ..)?

(b) Describe what the technology mapping step of synthesis is, and the kind of optimizations that need to
be performed after technology mapping.

Technology mapping is:

Optimizations that must be performed after technology mapping:

(c) The module below adds a real and an integer and assigns the sum (in real format) to its output. It is

valid Verilog but is not synthesizable by Owr EDA software. So, you call Owr EDA and ask, “why not?”.

They answer, “because it is impossible to add an integer to a real.” Is that the real reason? Explain.

module plusri (output real sum, input real a, input [20:0] x);

assign sum = a + x;

endmodule

Reason a+x not synthesizable by Owr EDA software:

7

← → Fall 2017 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Name

Digital Design using HDLs

LSU EE 4755

Final Examination

Wednesday, 6 December 2017 15:00-17:00 CST

Alias

Problem 1 (15 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (30 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2017 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Problem 1: [15 pts] The Verilog code below is the solution to Problem 1a of Homework 7. Below that is
the hardware for a slightly different pipelined multiplier. Modify the hardware to match the Verilog code.
Changes need to be made for each line commented DIFFERS.

Modify hardware to reflect Verilog.

module mult_fast_1a #(int w = 16, int m = 4)

(output uwire [2*w-1:0] prod,

output uwire out_avail, input uwire clk, in_valid, // DIFFERS

input uwire [w-1:0] plier, cand);

localparam int nstages = (w + m - 1) / m;

logic [2*w-1:0] pl_accum[0:nstages];

logic [w-1:0] pl_plier[0:nstages], pl_cand[0:nstages];

logic pl_occ[0:nstages]; // DIFFERS

assign prod = pl_accum[nstages];

assign out_avail = pl_occ[nstages]; // DIFFERS

always_ff @(posedge clk) begin

pl_occ[0] = in_valid; // DIFFERS

pl_accum[0] = 0; pl_plier[0] = plier; pl_cand[0] = cand;

for (int stage=0; stage<nstages; stage++) begin

pl_plier[stage+1] <= pl_plier[stage];

pl_accum[stage+1] <= pl_accum[stage] + (pl_plier[stage]

* pl_cand[stage][m-1:0] << stage*m); // DIFFERS

pl_cand[stage+1] <= pl_cand[stage] >> m; // DIFFERS

pl_occ[stage+1] <= pl_occ[stage]; // DIFFERS

end

end

endmodule

clk
2w

mult_fast_1a w=16, m=4

w

0

w

ls
b

m
s
b

4'b0

+

p
l_
a
c
c
u
m
[1
]

p
l_
p
li
e
r[
1
]

p
l_
c
a
n
d
[1
]

w

7:4

p
l_
a
c
c
u
m
[2
]

p
l_
p
li
e
r[
2
]

p
l_
c
a
n
d
[2
]

p
l_
a
c
c
u
m
[3
]

p
l_
p
li
e
r[
3
]

p
l_
c
a
n
d
[3
]

p
l_
a
c
c
u
m
[4
]

p
l_
p
li
e
r[
4
]

p
l_
c
a
n
d
[4
]

pl_accum[0]

pl_cand[0]

pl_plier[0]
plier

cand

prod

2w2w

w
×

w

+

w

3:0

×

w

ls
b

m
s
b

8'b0

+

w

11:8

2w

×

w

ls
b

m
s
b

12'b0

+

w

15:12

2w

×

2

← → Fall 2017 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Problem 2: [25 pts] Module oldest_find_plan_b, illustrated below, is based on an alternative solution
to Homework 7 Problem 1b. Below the hardware illustration is incomplete Verilog code for this module.
The Verilog code uses abbreviated names, such as ns, comments show the original names from the assign-
ment, such as nstages. Complete the module. Note: This problem can be solved without having ever seen
Homework 7, though not as quickly.

oldest_find_plan_b w, ns

ns+1

[w][ns+1]

0
=

ca[0]

0
=

ca[1]

0
=

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail�

ox

oc

ca

1+�lg ns⌉

Complete the module so that it matches the hardware above.

module oldest_find_plan_b
#(int w = 15, int ns = 3 /* nstages */)

(output logic [$clog2(ns):0] ox, // oldest_idx

output uwire avail, // out_avail

input uwire oc[0:ns], // pl_occ

input uwire [w-1:0] ca[0:ns]); // pl_cand

endmodule

3

← → Fall 2017 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Problem 3: [20 pts] Appearing below are two variations on the oldest index module from the previous
problem. The Plan A version is based on the code from the posted Homework 7 solution. The Plan B
module is slightly different.

(a) Compute the cost of each module based on the simple model after optimizing for constant values. Use
symbol w (for w) and n (for ns). Base the cost of an α-input, β-bit multiplexor on the tree (recursive)
implementation. Recall that the tree implementation consists of α− 1 two-input multiplexors arranged in a
tree.

Plan A cost in terms of w and n. Show cost components on diagram, such as cost of big mux,
don’t forget to account for the constant inputs, and for the number of bits in each wire.

oldest_�nd_plan_a w, ns

ns+1

[w][ns+1]

0

ca[0]

ca[1]

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail≠

ox

oc

ca

1+⌈lg ns⌉

=

Plan B cost in terms of w and n. Show cost components on diagram, such as cost of big mux,
don’t forget to account for the constant inputs and, for the number of bits in each wire.

oldest_find_plan_b w, ns

ns+1

[w][ns+1]

0
=

ca[0]

0
=

ca[1]

0
=

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail≠

ox

oc

ca

1+⌈lg ns⌉

4

← → Fall 2017 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

(b) Show the delay along all paths and show the critical path. Compute delay based on the simple model
after optimizing for constant values. Use the tree mux described in the previous part.

Plan A: show delay along all paths, highlight the critical path, and show the delay through
each component. Show these in terms of w and n, and account for constant inputs such as the
zeros in the equality units.

oldest_find_plan_a w, ns

ns+1

[w][ns+1]

0

ca[0]

ca[1]

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail≠

ox

oc

ca

1+⌈lg ns⌉

=

Plan B: show delay along all paths, highlight the critical path, and show the delay through
each component. Show these in terms of w and n, and account for constant inputs such as the
zeros in the equality units.

oldest_find_plan_b w, ns

ns+1

[w][ns+1]

0
=

ca[0]

0
=

ca[1]

0
=

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail≠

ox

oc

ca

1+⌈lg ns⌉

5

← → Fall 2017 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Problem 4: [10 pts] Explain why each of the modules below is not synthesizable by Cadence Encounter
(or similar tools) and modify the code so that it is without changing what the module does. Note: The
warning about not changing what the module does was not in the original exam.

module one_run #(int w = 16, int lw = $clog2(w))

(output logic all_1s, input uwire [w-1:0] a, input uwire [lw:0] start, stop);

always_comb begin

all_1s = 1;

for (int i=start; i<stop; i++)

all_1s = all_1s && a[i];

end

endmodule

Reason code above is not synthsizable:

Modify code so that it is.

module running_sum #(int w = 32)

(output logic [w-1:0] rsum,

input uwire [w-1:0] a, input uwire reset, clk);

always @(posedge clk) begin

if (reset) rsum <= 0;

end

always @(posedge clk) begin

rsum <= rsum + a;

end

endmodule

Modify code so that it is synthsizable.

Reason code above was not synthsizable:

Explain assumption about intended behavior of this module.

6

← → Fall 2017 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Problem 5: [30 pts] Answer each question below.

(a) Show when each piece of code below executes (use the C labels) up until the start of C5c, and show when

and in which region each piece is scheduled. See the table below.

module eq;
logic [7:0] a, b, c, d, x, y, x1, x2, y1, y2, z2;

always_comb begin // C1

x1 = a + b;

y1 = 2 * b;

end

assign x2 = 100 + a + b; // C2

assign y2 = 4 * b; // C3

assign z2 = y2 + 1; // C4

initial begin

// C5a

a = 0;

b = 10;

#2;

// C5b

a = 1;

b <= 11;

#2;

// C5c

a = 2;

b = 12;

end

endmodule

Continue the diagram below so that it shows scheduling up to the point where C5c executes.

Step 1

t = 0
Active

C5a
ր

Inactive

NBA

Step 2

t = 0
Active

Inactive

C1

C2

C3
NBA

t = 2
Inactive

C5b

Step 3

t = 0
Active

7

← → Fall 2017 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

(b) Which of the two modules does what it looks like it’s trying to do? Explain.

module sa1(input logic [7:0] a, b, c, d, output wire [7:0] x, y);

assign x = a + b;

assign y = 2 * x;

assign x = c + d;

endmodule

module sa2(input logic [7:0] a, b, c, d, output logic [7:0] x, y);

always_comb begin

x = a + b;

y = 2 * x;

x = c + d;

end

endmodule

Module that is probably correct is:

Major problem with other module.

Provide a possible wrong answer from other module.

8

← → Fall 2017 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

(c) Define throughput and latency and indicate where each is preferred. Provide examples appropriate for
pipelined systems.

Throughput is:

For example:

Latency is:

For example,

If the goal is to improve throughput is higher throughput good or bad?

If the goal is to improve latency, is higher latency good or bad?

In what situation is latency more important than throughput?

(d) When we synthesize we specified a target delay, for example, 400 ns.

Does specifying a larger delay mean that there will be less optimization?

Explain.

9

← → Fall 2017 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

8 Fall 2016

144

← → Fall 2016 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Name

Digital Design using HDLs

EE 4755

Midterm Examination

Friday, 21 October 2016 12:30–13:20 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (10 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2016 ← → Midterm Exam Exam Solution mt.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Problem 1: [20 pts] Write a Verilog description of the hardware illustrated below. The description must
include the modules and instantiations as illustrated. The description can be behavioral or structural, but
it must be synthesizable.

ma1

ma2

mod a

a

b

c

y mod a

a

b

c

y
0:0

1:1

2:2

3:3

e

f

mod b

x

w

Verilog corresponding to illustrated hardware.

Show instantiations, Verilog for instantiated module(s), and all module ports.

2

← → Fall 2016 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Problem 2: [20 pts] Appearing below is the lookup_elt module from Homework 4 and following that an
incomplete module named match_amt_elt. Complete match_amt_elt so that the value at output port md is
set to the number of bits in clook that match corresponding bits in celt. For example, if clook=5’b00111
and celt=5’b00111 then md should be 5, if clook=5’b00101 and celt=5’b00111 then md should be 4,
and if clook=5’b11000 and celt=5’b00111 then md should be 0. Code must be synthesizable, but can be
behavioral or structural.

Complete the module so that md is set to the number of matching bits.

Make sure that md is declared with sufficient width.

module lookup_elt #(int charsz = 32) // This module is for reference only.

(output logic match, input uwire [charsz-1:0] char_lookup, char_elt);

always_comb match = char_lookup == char_elt;

endmodule

module match_amt_elt
#(int charsz = 32)

(output logic md,

input uwire [charsz-1:0] clook,

input uwire [charsz-1:0] celt);

endmodule

3

← → Fall 2016 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Problem 3: [20 pts] Show the hardware that will be synthesized for the modules below.

(a) Show the hardware that will be inferred for the module below. Show acme_ip_sqrt as a box.

module vmag(output uwire [31:0] mag, input uwire signed [31:0] v [3]);

logic [63:0] sos;

acme_ip_sqrt #(32) s1(mag,sos);

always_comb begin

sos = 0;

for (int i=0; i<3; i++) sos += v[i] * v[i];

end

endmodule

Show inferred hardware. Don’t forget acme ip sqrt.

Clearly show input and output ports of vmag.

4

← → Fall 2016 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Problem 3, continued:

(b) Show the hardware that will be inferred for the module below, before and after optimization. Note: In
the original exam the input was named vi.

module min_elt(output logic [1:0] idx_min, input uwire signed [31:0] v [3]);

always_comb begin

idx_min = 0;

for (int i=1; i<3; i++) if (v[i] < v[idx_min]) idx_min = i;

end

endmodule

Show inferred hardware. Clearly show input and output ports.

Show hardware after some optimization.

5

← → Fall 2016 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Problem 4: [10 pts] Appearing in this problem are several variations on a counter.

(a) Show the hardware inferred for each counter below.

module ctr_a(output uwire [9:0] count, input clk);

logic [9:0] last_count;

assign count = last_count + 1;

always_ff @(posedge clk) last_count <= count;

endmodule

module ctr_b(output logic [9:0] count, input clk);

uwire [9:0] next_count = count + 1;

always_ff @(posedge clk) count <= next_count;

endmodule

Inferred hardware for ctr a and ctr b.

(b) There is a big difference in the timing of the outputs of ctr_a and ctr_b. Explain the difference and
illustrate with a timing diagram.

Difference between two modules. Timing Diagram.

6

← → Fall 2016 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Problem 5: [10 pts] Appearing below is the solution to the 2015 midterm exam Problem 2. Estimate the
cost of this module as illustrated but use variable s for the number of bits in sum (shown as sswid) and in
each a element (shown as parameter f). Assume that the cost of a BFA is 10 units and that the cost of a
n-input AND and OR gate is n− 1 units. Take into account the 0 input to one of the multiplexors.

module ssum #(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [f-1:0] a[n]);

always @* begin

sum = 0;

for (int i=0; i<n; i++) if (mask[i]) sum += a[i];

end

endmodule

a[0] a[1]

1:0mask[1:0]

a[2]

2:2mask[2]

+

mask

a

0 sum

ssum n=3, f=4, sswid = 6

i=0 and 1 i=2

+

Cost of illustrated hardware. Account for 0 mux input.

7

← → Fall 2016 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Problem 6: [20 pts] Answer each question below.

(a) Show the values of the variables as indicated below:

module tryout();
logic [15:0] a;

logic [0:15] b;

logic [3:0][3:0] e;

logic [3:0] x1, x2;

initial begin

a = 16’h1234;

x1 = a[3:0]; // Value of x1 is:

b = 16’h1234;

x2 = b[0:3]; // Value of x2 is:

e = 16’h1234;

e[0] = e[0] + ’hf; // Value of e is:

e = 16’h1234;

e[0][0] = e[0][0] + ’hf; // Value of e is:

end

endmodule

(b) Describe something that can be done during elaboration that cannot be done during simulation, and
something that can be done during simulation, that cannot be done during elaboration.

Something that can be done during elaboration but not during simulation is:

Something that can be done during simulation but not during elaboration is:

8

← → Fall 2016 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

(c) Appearing below are two alternatives for an integer division module, Plan A and Plan B. Both are
impractical, but Plan A is not even synthesizable.

module div_plan_a #(int w = 16) (output logic [w-1:0] quo, input uwire [w-1:0] a, b);

always_comb begin

for (quo = 0; a > quo * b; quo++);

end

endmodule

module div_plan_b #(int w = 16) (output logic [w-1:0] quo, input uwire [w-1:0] a, b);

localparam int LIMIT = 1 << w;

always_comb begin

quo = 0;

for (int i=0; i<LIMIT; i++) if (a < i * b) quo++;

end

endmodule

Why isn’t Plan A synthesizable? Be specific as possible.

What might be a practical objection to the Plan B approach?

(d) The magfp module below is not synthesizable due to the use of the real data type. How would the
module need to be changed so that it would be synthesizable and would operate on floating-point values.

module magfp(output real mag, input real vi [3]);

real sos;

sqrt #(32) s1(mag,sos);

always_comb begin

sos = 0;

for (int i=0; i<3; i++) sos += vi[i] * vi[i];

end

endmodule

Show changes to port declaration for synthesizability.

Explain with a few examples how the rest of the code would need to be changed.

9

← → Fall 2016 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Name

Digital Design using HDLs

EE 4755

Final Examination

Thursday, 8 December 2016 12:30-14:30 CST

Alias

Problem 1 (30 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (15 pts)

Problem 5 (10 pts)

Problem 6 (10 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2016 ← → Final Exam Exam Solution fe.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Problem 1: [30 pts] The diagram and Verilog code below show incomplete versions of module prob1_seq.
This module is to operate something like mag_seq from Homework 6. When start is 1 at a positive clock
edge the module will set ready to 0 and start computing v0*v0 + v0*v1 + v1*v1, where v0 and v1 are
each IEEE 754 FP single values. The module will set ready to 1 at the first positive edge after the result is
ready.

Complete the Verilog code so that the module works as indicated and is consistent with the diagram. It is
okay to change declarations from, say, logic to uwire. But the synthesized hardware cannot change what is
already on the diagram, for example, don’t remove a register such as ac0 and don’t insert any new registers
in existing wires, such as those between the multiplier inputs and the multiplexors.

Don’t modify this diagram, write Verilog code.

v0

v1

clk

CW_fp_mult

m1

rnd

3
'b
0

CW_fp_add

a1

rnd

3'b0

32'd0

ac0

ac1

re
s
u
lt

start
readyprob1_seq

Don’t modify this diagram, write Verilog code.

module prob1_seq(output uwire [31:0] result, output uwire ready,

input uwire [31:0] v0, v1, input uwire start, clk);

uwire [7:0] mul_s, add_s;

uwire [31:0] mul_a, mul_b; uwire [31:0] add_a, add_b; uwire [31:0] prod, sum;

logic [31:0] ac0, ac1; logic [2:0] step;

localparam int last_step = 1;

always_ff @(posedge clk)

if (start) step <= 0; else if (step < last_step) step <= step + 1;

CW_fp_mult m1(.a(mul_a), .b(mul_b), .rnd(3’d0), .z(prod), .status(mul_s));

CW_fp_add a1(.a(add_a), .b(add_b), .rnd(3’d0), .z(sum), .status(add_s));

assign ready = step == last_step; /// THIS MUST BE CHANGED.

/// USE NEXT PAGE FOR SOLUTION!

endmodule

2

← → Fall 2016 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Don’t modify, Verilog only.

v0

v1

clk

CW_fp_mult

m1

rnd

3
'b
0

CW_fp_add

a1

rnd

3'b0

32'd0

ac0

ac1

re
s
u
lt

start
readyprob1_seq

Problem 1, continued: Solution on this page.

Complete Verilog so that module
computes v0*v0 + v0*v1 + v1*v1.

Synthesized hardware must be consistent with di-
agram, especially synthesized registers.

Note that ready must come from a register.

Don’t skip the easy part: connections to adder.

module prob1_seq(output uwire [31:0] result, output uwire ready,

input uwire [31:0] v0, v1, input uwire start, clk);

uwire [7:0] mul_s, add_s;

uwire [31:0] mul_a, mul_b; uwire [31:0] add_a, add_b; uwire [31:0] prod, sum;

logic [31:0] ac0, ac1; logic [2:0] step;

localparam int last_step = 1; // MUST BE CHANGED.

always_ff @(posedge clk)

if (start) step <= 0; else if (step < last_step) step <= step + 1;

CW_fp_mult m1(.a(mul_a), .b(mul_b), .rnd(3’d0), .z(prod), .status(mul_s));

CW_fp_add a1(.a(add_a), .b(add_b), .rnd(3’d0), .z(sum), .status(add_s));

assign ready = step == last_step; // MUST BE CHANGED.

endmodule

3

← → Fall 2016 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Problem 2: [20 pts] Analyze the timing of the two similar modules on the next page using the timing
model used in class, as requested in the subproblems. Assume that all adders are synthesized as a ripple
connection of binary full adders and that the comparison units are also based on ripple hardware.

(a) Before analyzing the modules, show the delay of each of the components listed below using the simple
model given in class. For this part assume that all inputs are available at t = 0.

Delay for BFA is:

Explain or show diagram.

Delay for a w-bit adder is:

Explain or show diagram.

Delay for a w-bit < (less than) comparison unit is:

Explain or show diagram.

Delay for a w-bit, n-input multiplexor is:

Explain or show diagram.

4

← → Fall 2016 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Problem 2, continued:

(b) Find the length of critical path in the two modules below using the timings above. Where applicable
make the reasonable assumption that a ripple adder can start when its lower bits arrive, not when all bits
of its input are stable.

01

01

+

0

sum

<

sum

<

limit

a

01

+

<

01

+

<

a
[0
]

a
[1
]

a
[2
]

a
[3
]

greedy_fit

w

w

w

ww

w

01

01

0

sum

<

sum

<

limit

a

a
[0
]

a
[1
]

a
[2
]

a
[3
]

fcfs_ t

+

01

+

<

01

+

<

w

w

w

w

w

Length of critical path for greedy fit in terms of w. Show work for partial credit.

Length of critical path for fcfs fit in terms of w. Show work for partial credit.

5

← → Fall 2016 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

01

01

0

sum

<

sum

<

limit

a

a
[0
]

a
[1
]

a
[2
]

a
[3
]

fcfs_fit

+

01

+

<

01

+

<

w

w

w

w

w

Problem 3: [15 pts] Complete the Verilog code so that it cor-
responds to the module shown.

Complete module.

module fcfs_fit #(int nelts = 4, int w = 16)

(output logic [w-1:0] sum,

input uwire [w-1:0] a[nelts], limit);

always begin // FINISH ALWAYS STATEMENT

for (int i=0; i<nelts; i++) begin

end

end

endmodule

6

← → Fall 2016 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

01

01

0

sum

<

sum

<

limit

a
[0
]

a
[1
]

a
[2
]

a
[3
]

fcfs_cfit n=4, w=16, a=

+

01

+

<

01

+

<

w

w

w

w

w

1
6
h
'2

7
4
0

1
6
h
'3

7
5
5

1
6
h
'4

7
2
0

1
6
h
'4

7
5
5

Problem 4: [15 pts] Appearing to the right is fcfs_cfit, a
version of the fcfs_fit module in which the a input has been
changed to a parameter, meaning that a is an elaboration-time
constant. Compute the cost of this module using the simple
model used in class and accounting for optimization based on
the constant values. As in an earlier problem, adders and com-
parision units are ripple-style.

Cost of the a[0] comparison unit.

Explain.

Cost of the a[1] adder.

Explain.

Cost of the a[0] multiplexor.

Explain.

Cost of the a[2] multiplexor.

Explain.

Total cost.

7

← → Fall 2016 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Problem 5: [10 pts] Answer each question below.

(a) A time slot in the Verilog event queue contains many regions, among them active, inactive, and NBA.

Explain how an event gets put in each region. (You can use the next subproblem for examples.)

An event is put into the active region when:

An event is put into the inactive region when:

An event is put into the NBA region when:

(b) In the code fragment below show the order in which the statements are executed after the posedge clk.
Identify a statement by the value that is assigned. The first two statements executed are a and b, that’s
shown. (Since a is a nonblocking assignment, the execution of a only means that a+1 was computed, it
doesn’t mean that a was changed.) Complete the “Order of statements” list.

module regions;
always_ff @(posedge clk) begin

a <= a + 1;

b = b + 1;

end

always_comb s = a + b;

always_comb ax = a + 2;

always_comb ay = ax + 5;

always_comb by = bx + 4;

always_comb bx = b + 3;

endmodule

Order of statements: a, b,

8

← → Fall 2016 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Problem 6: [10 pts] Appearing below is the pipelined mag module from Homework 6.

(a) Suppose it turns out that the multiply (CW_fp_mult) takes twice as long as the add (CW_fp_add). Based
on this fact, modify the pipeline to reduce cost, but without affecting clock frequency. Draw in your changes,
there’s no need to write Verilog. Also, comment on latency and throughput changes.

Modify for lower cost based on faster adder.

Does the change help throughput? Does it help latency?

32

m
a
gv

32

32

[0
]

[1
]

[2
]

[1
][
0
]

[2
][
2
]

2

[2
]

[1
][
1
]

[1
][
2
]

[3
]

mag

Stage 0

C�����

3
'b

0

������

a2

3'b0

������

a1

3'b0

C�����

3
'b

0

C�����

3
'b

0

Stage 1 Stage 2

(b) Suppose that the v input arrives very early in the clock cycle. Based on this modify the pipeline to reduce
cost.

Modify for early-arriving v.

32

m
a
gv

32

32

[0
]

[1
]

[2
]

[1
][
0
]

[2
][
2
]

2

[2
]

[1
][
1
]

[1
][
2
]

[3
]

clk

mag

Stage 0

	
���

3
'b

0

������

a2

3'b0

������

a1

3'b0

	
���

3
'b

0

	
���

3
'b

0

Stage 1 Stage 2

9

← → Fall 2016 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

9 Fall 2015

163

← → Fall 2015 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Name

Digital Design using HDLs

EE 4755

Midterm Examination

Wednesday, 28 October 2015 11:30–12:20 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2015 ← → Midterm Exam Exam Solution mt.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Problem 1: [20 pts] Complete the Verilog description of the hardware illustrated below. It’s okay—and a
time saver—to use the == operator.

a
[0
]

a
[1
]

a
[2
]

a
[3
]

x

y

a

ezmod

Complete the port declarations.

Complete the module.

module ezmod

(output // DON’T FORGET

input); // THE PORTS

endmodule

2

← → Fall 2015 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Problem 2: [20 pts] Consider the module below.

module ssum #(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [f-1:0] a[n]);

always @* begin

sum = 0;

for (int i=0; i<n; i++) if (mask[i]) sum += a[i];

end

endmodule

(a) Show the hardware that will be synthesized without optimization and using default parameters.

Hardware without optimization.

(b) Show the hardware that will be synthesized using the default parameters with optimization. In particular,
try to make use of a four-input multiplexor for the first two iterations of the i loop.

Hardware with optimization and using a four-input mux.

3

← → Fall 2015 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Problem 3: [20 pts] Appearing below is the ssum module from the previous problem and the start of
a recursive version of the module, ssum_rec. Finish ssum_rec so that it performs the same computation,
but does so using a tree connection of hardware rather than the linear connection that ssum describes.
(For partial credit only use a generate loop to instantiate ssum modules of a fixed size; for full credit use
recursion.)

module ssum #(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [f-1:0] a[n]);

always @* begin

sum = 0;

for (int i=0; i<n; i++) if (mask[i]) sum += a[i];

end

endmodule

Complete module so that it describes a tree structure specified using recursion.

module ssum_rec
#(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask,

input logic [f-1:0] a [n-1:0]);

endmodule

4

← → Fall 2015 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Problem 4: [20 pts] Show the hardware that will be synthesized for the module below.

module yam(output logic [7:0] x, y, z,

input uwire [7:0] a, b, c, input uwire [1:0] op, input uwire run, clk);

logic [7:0] x1, x2, e;

always_ff @(posedge clk) begin

e = b;

z = a + b;

if (op == 0) e = z;

else if (op == 1) e = a + x;

else if (op == 2) e = a + x1;

x2 = x1;

x1 = x;

if (run) x = e;

end

always_comb y = x1 + x2 - c;

endmodule

Show hardware, including registers and module ports.

5

← → Fall 2015 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Problem 5: [20 pts] Answer each question below.

(a) Show the values of a, b, and c when the code reaches Point 1 and Point 2.

module short_answers;
int a, b, c;

initial begin

a = 0; b = 0; c = 0;

a = 1;

a <= 2;

a <= #3 3; //

b = a + 10; // ---a--- ---b--- ---c---

c <= a + 20; //

// Point 1:

#1;

// Point 2.

end

my_prog my_prog_instance(a,b,c); // Ignore for part (a).

endmodule

At Point 1, values for a, b, and c.

At Point 2, values for a, b, and c.

(b) The definition of the my_prog program from the previous part appears below. Show the contents of the
Verilog event queue at Point 1 in the code from the previous part, include the effect of code in short_answers

as well as my_prog. Show events in the form “t = 1969, region=NL-East, Resume Point 3” and “t = 2015,
region=X, Update variable z,” but use real region names.

program my_prog(input int a, b, c);

initial forever @(a or b or c) begin

// Point 3;

$display("Let’s go Mets!");

end

endprogram

Contents of event queue at Point 1, show region names and time stamps.

6

← → Fall 2015 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

(c) The module below is in explicit structural form, in which only primitive gates (and module instantiations)
are used. Will the synthesis program synthesize exactly that arrangement of gates? Explain.

module bfa_structural(output uwire sum, cout, input uwire a, b, cin);

uwire term001, term010, term100, term111;

uwire ab, bc, ac;

uwire na, nb, nc;

not n1(na, a);

not n2(nb, b);

not n3(nc, cin);

and a1(term001, na, nb, cin);

and a2(term010, na, b, nc);

and a3(term100, a, nb, nc);

and a4(term111, a, b, cin);

or o1(sum, term001, term010, term100, term111);

and a10(ab, a, b);

and a11(bc, b, cin);

and a12(ac, a, cin);

or o2(cout, ab, bc, ac);

endmodule

Will synthesis program emit exactly these gates? Explain.

(d) Based on a hand analysis of my_mut we expect it to have a clock period of 12 ns. Shown below is an
excerpt from the testbench for my_mut that includes the code for generating a clock. Assume that the Verilog
time unit is set to 1 ns. How does the clock declaration below affect the timing of the synthesized hardware?

module testbench();
logic clock;

initial clock = 0;

always #5 clock = !clock;

// Other declarations omitted.

my_mut woof(x,y,a,b,clock);

The effect of the declaration of clock on timing of synthesized hardware is . . . because

7

← → Fall 2015 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Name

Digital Design using HDLs

LSU EE 4755

Final Examination

Saturday, 12 December 2015 12:30-14:30 CST

Alias

Problem 1 (15 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (15 pts)

Problem 5 (10 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2015 ← → Final Exam Exam Solution fe.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Problem 1: [15 pts] Write a Verilog description of the hardware illustrated below.

+
*

en

en

b1

b2

b3

b0

c

a x

s

+

16

8

8

thing

clk

Verilog description of hardware including port declarations and port and other sizes.

2

← → Fall 2015 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Problem 2: [20 pts] The module below implements a simple memory module.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(a) Show the hardware that will be synthesized for this module when elaborated with size_lg = 2. Use
registers, multiplexors, decoders, and basic gates. Do not use a memory module.

Show synthesized hardware, including hardware for reading and writing.

3

← → Fall 2015 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Problem 2, continued: Appearing below is the module from the previous page.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(b) Assume that initially location 1 (storage[1]) holds a 10, location 2 holds a 20, location 3 holds a 30,
and so on. Complete the timing diagram below, consistent with this module.

clk

write

wr_idx

rd_idx

wr_data

rd_data

1 2 3

33

3

1

0 4

0 44

Complete rd data row of timing diagram.

4

← → Fall 2015 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

clk

write

wr_idx

rd_idx

wr_data

rd_data

3

33

30

0

30 33

(c) Modify the module below (same as one on previous
page) so that its behavior is consistent with the timing
diagram to the right. That is, if the location being
written is the same as the one being read the rd_data

output shows the data on wr_data. If the locations
don’t match or nothing is being written the behavior
is unchanged.

Modify the module.

module smemory_bp #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

5

← → Fall 2015 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Problem 3: [20 pts] The module below and the similar one on the next page are like the memory module
from the previous problem, except that their output is the sum of locations rd_start, rd_start+1, . . .,
rd_start+rd_len-1. Assume that rd_start+rd_len <= size.

module rsum_plan_a #(int sz_lg = 4, int ebits = 8, int size = 1 << sz_lg)

(output logic [ebits-1:0] sum,

input [sz_lg-1:0] wr_idx, input [ebits-1:0] wr_data, input write,

input [sz_lg-1:0] rd_start, input [sz_lg-1:0] rd_len, input clk);

logic [ebits-1:0] storage [size-1:0];

// Don’t show synthesized hardware for line below.

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

// Plan A -- Show Synthesized Hardware for this Verilog

always_comb begin

sum = 0;

for (int i=0; i<size; i++) if (i < rd_len) sum += storage[i + rd_start];

end

endmodule

(a) Show the hardware that will be synthesized for the always_comb block. Include basic optimizations, but
don’t optimize to the point where hardware is identical to Plan B (next page).

Show not-too-optimized hardware for sum.

6

← → Fall 2015 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

(b) Appearing below is Plan B for the module. Though we know it produces the same value for sum as Plan
A, it might be synthesized into different hardware. Show the hardware synthesized for Plan B.

module rsum_plan_b #(int sz_lg = 4, int ebits = 8, int size = 1 << sz_lg)

(output logic [ebits-1:0] sum,

input [sz_lg-1:0] wr_idx, input [ebits-1:0] wr_data, input write,

input [sz_lg-1:0] rd_start, input [sz_lg-1:0] rd_len, input clk);

logic [ebits-1:0] storage [size-1:0];

// Don’t show synthesized hardware for line below.

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

// Plan B -- Show Synthesized Hardware for this Verilog

always_comb begin

sum = 0;

for (int i=0; i<size; i++)

if (i >= rd_start && i < rd_start + rd_len) sum += storage[i];

end

endmodule

Show the hardware that will be synthesized for Plan B.

(c) Which one is better?

Which is better, © Plan A or © Plan B .

Explain, with a rough estimate of cost and timing.

7

← → Fall 2015 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Problem 4: [15 pts] Appearing below are excerpts based on the cam_hash module used in class, showing
what we called the hash_early design. Recall that with the early hash design the hash function (in module
hash) is computed before the positive clock edge while the lookup occurs after the positive edge. We assumed
that the hash could be computed in about 1

2 of our target clock period.

module cam_hash_exceprt
(output [dwid:1] out_data, output out_valid, output ready,

input [kwid:1] in_key, input [dwid:1] in_data,

input Cam_Command in_cmd, input clk);

logic [kwid:1] b_key;

logic [dwid:1] b_data;

logic [hkey_size-1:0] b_hash;

Cam_Command b_cmd;

uwire [hkey_size-1:0] ohm_key_out;

always_ff @(posedge clk) begin

b_key <= in_key;

b_data <= in_data;

b_cmd <= in_cmd;

b_hash <= ohm_key_out;

end

hash #(kwid,num_sets_lg) our_hash_module(ohm_key_out, in_key);

/// Hardware to find matching key below ...

(a) The early hash design requires that the external hardware has the right timing behavior. Show a timing
diagram in which the timing behavior is correct for early hash, and one in which it is wrong. The “wrong”
behavior should result in incorrect results using the early hash design, but correct results without the early
hash design.

Timing diagram showing correct and wrong behavior.

8

← → Fall 2015 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Problem 4, continued:

(b) Register b_hash saves the hashed version of in_key, and b_key holds the unhashed version. Why do we
need the unhashed version?

b_key is needed because ...

9

← → Fall 2015 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Problem 5: [10 pts] The Verilog below is part of a testbench (taken from icomp.v).

initial begin

/// Watchdog – Stop simulation if it’s taking too long.
//

fork begin

automatic int cyc_limit = in_str.len() * 100;

fork

wait (cycle_num == cyc_limit);

wait (tb_insert_done && tb_remove_done);

join_any

if (cycle_num >= cyc_limit) begin

$write("Exceeded cycle limit, exiting.\n");

$fatal(1);

end

end join_none

// Below: Send data to module under test.

(a) Generically explain what a fork and join pair do (ignoring the code above).

fork and join ...

(b) How would execution be effected if the last join_none were changed to join_any?

Impact of changing join_none to join_any in code above.

(c) How would execution be effected if the inner join_any were changed to a join_all?

Impact of changing join_any to join_all in code above.

10

← → Fall 2015 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Problem 6: [20 pts] Answer each question below.

(a) Suppose we would like our hardware to operate at a 1GHz clock frequency. How do we tell the synthesis
program? (The exact syntax is not important.)

Method to tell synthesis program the clock frequency.

(b) The synthesis program will apply our target clock frequency to paths starting at launch points and
ending at capture points. We could explicitly specify such points but if we don’t it will use default launch
and capture points. What are they?

By default timing is computed for paths that start at:

and end at:

(c) Suppose our target clock frequency is 1GHz. What is the harm in telling the synthesis program to
synthesize for 2GHz? For 0.5GHz?.

Harm in specifying 2GHz when we just need 1GHz:

Harm in specifying 0.5GHz when we just need 1GHz:

11

← → Fall 2015 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

(d) The code below will inconsistently assign a variable. Explain why and fix the problem.

module short_ans(output logic [7:0] x, y, input [7:0] a, b, c, input clk);

always @(posedge clk) begin

x = a + b;

end

always @(posedge clk) begin

y = x + c;

end

endmodule

Reason for inconsistent behavior:

Fix problem.

(e) Describe the problem with the module below. How might it affect simulation?

module short_ans2(output logic [7:0] x, input [7:0] a, b, input reset);

always_comb begin

if (reset) x = a; else x = x + b;

end

endmodule

Problem with module.

Impact on simulation.

12

← → Fall 2015 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

10 Fall 2014

183

← → Fall 2014 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Name

Digital Design using HDLs

EE 4755

Midterm Examination

Monday, 10 November 2014 11:30–12:20 CST

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (10 pts)

Problem 4 (15 pts)

Problem 5 (13 pts)

Problem 6 (22 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2014 ← → Midterm Exam Exam Solution mt.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Problem 1: [20 pts] Write a Verilog description of the hardware shown below.

+

- <

>8'b0

en
1:1

0:0

sa

sb

val

op

hi

ok

lo

clk

Write a Verilog module corresponding to the hardware above.

Be sure to declare module ports and any wires and vars (logic) used inside.

Pay attention to the differences between lo and hi and the differences between sa and sb.

2

← → Fall 2014 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Problem 2: [20 pts] Appearing below is the multiply circuit from the solution to Homework 3, in Verilog
(slightly simplified) and as a diagram showing what hardware a synthesis program might infer.

module mult_seq_csa_m #(int wid = 16, int pp_per_cycle = 2)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier, input logic [wid-1:0] cand, input uwire clk);

localparam int iterations = (wid + pp_per_cycle - 1) / pp_per_cycle;

localparam int iter_lg = $clog2(iterations);

localparam int wid_lg = $clog2(wid);

logic [iter_lg:0] iter;

uwire [2*wid-1:0] accum_sum_a[0:pp_per_cycle], accum_sum_b[0:pp_per_cycle];

logic [2*wid-1:0] accum_sum_a_reg, accum_sum_b_reg;

assign accum_sum_a[0] = accum_sum_a_reg;

assign accum_sum_b[0] = accum_sum_b_reg;

for (genvar i=0; i<pp_per_cycle; i++) begin

uwire [wid_lg:1] pos = iter * pp_per_cycle + i;

uwire [2*wid-1:0] pp = pos < wid && cand[pos] ? plier << pos : 0;

CW_csa #(2*wid) csa
(.sum(accum_sum_a[i+1]), .carry(accum_sum_b[i+1]), .a(accum_sum_a[i]), .b(accum_sum_b[i]), .c(pp));

end

always @(posedge clk)

if (iter == iterations) begin

prod <= accum_sum_a_reg + accum_sum_b_reg;

accum_sum_a_reg <= 0;

accum_sum_b_reg <= 0;

iter <= 0;

end else begin

prod <= prod;

accum_sum_a_reg <= accum_sum_a[pp_per_cycle];

accum_sum_b_reg <= accum_sum_b[pp_per_cycle];

iter <= iter + 1;

end

endmodule USE NEXT PAGE FOR SOLUTION

CW_csa

a
c
c
u
m
_
s
u
m
-

_
a
_
re
g

+

+

=

ite
r

<<

p
ro
d

en

it
e
ra

ti
o
n
s

1

0

0

prod

plier

cand

a
c
c
u
m
_
s
u
m
-

_
b
_
re
g

pp

accum_sum_a[1]

accum_sum_b[1]

csa

CW_csa

csa

* +

<

2
 (

p
p
_
p
e
r_

it
e
ra

ti
o
n
)

0
 (

i)

w
id

<<

0 pp

* +

<

1
 (

i)

w
id

2 (pp_per_iteration)

0

wid

wid

USE NEXT PAGE FOR SOLUTION

3

← → Fall 2014 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

(a) Show optimizations that might be performed that exploit the value m = 2 (that is, pp_per_iteration=2).

(b) Show the optimizations that might be performed assuming that wid is odd, and assuming that wid is
even, both for m = 2.

Modify diagram to show optimizations for pp per iteration = m = 2 and arbitrary wid.
Modify diagram to show optimizations for pp per iteration = m = 2 and odd wid.
Modify diagram to show optimizations for pp per iteration = m = 2 and even wid.

CW_csa

a
c
c
u
m
_
s
u
m
-

_
a
_
re
g

+

+

=

ite
r

<<

p
ro
d

en

it
e
ra

ti
o
n
s

1

0

0

prod

plier

cand

a
c
c
u
m
_
s
u
m
-

_
b
_
re
g

pp

accum_sum_a[1]

accum_sum_b[1]

csa

CW_csa

csa

* +

<

2
 (

p
p
_
p
e
r_

it
e
ra

ti
o
n
)

0
 (

i)

w
id

<<

0 pp

* +

<

1
 (

i)

w
id

2 (pp_per_iteration)

0

wid

wid

4

← → Fall 2014 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Problem 2, continued:

(c) The cost of the shifters with input plier in the design on the previous pages is significant. Explain how
these shifters can be eliminated by adding a register. Quickly sketch the hardware to illustrate your answer.

Show how a register can be used to eliminate the costly shifters.

(d) Explain how the streamlined multiplier described in class eliminated the plier shifter without having to
add a register.

Show how the streamlined multiplier does not need an extra register to eliminate the shifter.

5

← → Fall 2014 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Problem 3: [10 pts] The module below computes the prefix sum of a sequence of integers at its input.

module prefix_sum #(int len=8, int wid = 8)

(output logic [wid:1] psum [len], input uwire [wid:1] elts[len]);

always @* begin

psum[0] = elts[0];

for (int i=1; i<len; i++) psum[i] = psum[i-1] + elts[i];

end

endmodule

(a) Show the hardware that would be synthesized for the module before optimization, elaborated with
parameters len=4 and wid=8. Label the input ports elts[0], elts[1], elts[2], and elts[3]; and label
the output ports psum[0], psum[1], psum[2], and psum[3].

Show synthesized hardware.

(b) Estimate the delay for the synthesized hardware before optimization. Use w for the value of wid and L
for len. Assume that a w-bit adder has delay w.

Delay in terms of w and L:

6

← → Fall 2014 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Problem 4: [15 pts] Answer the following questions about the Verilog module below.

module timing();
logic [7:0] a, e, f2, g, g1, g2; logic clk; uwire [7:0] e1, f, f1;

initial begin

clk = 0;

a = 11;

#1;

a = 1;

a <= 22;

a <= #5 a + 1;

#9;

a = 7;

e = 10;

f2 = 30;

g = 40;

g1 = 50;

g2 = 60;

#10;

// B0

a <= 700;

clk = 1;

#1;

// POINT X (See subproblem.)

end

always @(posedge clk) e = a; // B1

always @* e1 = a; // B2

always @* f = e + 1; // B3

always @* f1 = e1 + 1; // B4

always @(posedge clk) f2 <= e + 1; // B5

always @(posedge clk) begin // B6

g = f; g1 = f1; g2 = f2; end

endmodule

(a) Show values for a versus time in the table below. For this part, only a. The table already shows that
a has value 11 from time 0 to time 1. Extend the table as long as necessary, and be sure to show values
for both t and a. Note: The original exam did not provide the table. Also, in the original exam there were
differences in how a was assigned.

Complete the table.

t 0 1
a 11

(b) Show the values that will be present on g, g1, g2 when execution reaches the POINT X comment in the
module above. For partial credit also show intermediate values for other signals used to compute the g’s.
(Look at next part before solving this one.)

At POINT X g= , g1= , g2= .

(c) Recall that the event queue used for Verilog simulation has active, inactive, and NBA regions, among
others. Just before B1 starts execution in module timing above the active region might contain B1, B5, and
B6 (see the comments on the right). (What the other regions contain is part of this problem.) Show the
contents of the three regions when B5 starts. Assume that events in a region are scheduled in order.

When B5 starts: Active = { }. Inactive = { }. NBA = { }.

7

← → Fall 2014 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Problem 5: Answer each question below.

(a) [5 pts] Module add3 is supposed to compute the sum of its three inputs using instances of our_adder,
but it won’t work. Fix the problem. The fixed module should still use our_adder.

Fix add3.

module add3(output uwire [15:0] sum, input uwire [15:0] a,b,c);

our_adder a1(sum , a , b);

our_adder a2(sum , sum , c);

endmodule

(b) [8 pts] The output of the module below is like the input except the bit positions are reversed (after
enough clock cycles). Re-write the module so that it synthesizes to combinational logic (the clk input will
no longer be needed). Add a parameter to indicate the input and output bit width.

module bitrev(output logic [7:0] x, input uwire [7:0] a, input uwire clk);

logic [2:0] pos;

initial pos = 0;

always @(posedge clk) begin

x[pos] = a[7-pos];

pos++;

end

endmodule

Re-write so that it is combinational.

Include a parameter wid to specify the size.

8

← → Fall 2014 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Problem 6: Answer each question below.

(a) [5 pts] A Verilog module computes a result in one clock cycle. In our design we need that result in 3 ns,
which can easily be achieved. The right way to achieve that in Cadence Encounter is to use the define_clock
command to set the target clock period to 3 ns. Suppose instead we used define_clock to set the period
to 1 ps, an impossible goal. Note: The original exam did not have the “can easily be achieved” phrase.

Would the synthesized design meet our 3 ns performance goal?

Considering typical design goals, what would be the disadvantage of setting the period to 1 ps for our design
even though we needed 3 ns?

(b) [10 pts] In the module below, translate directives are used to prevent the synthesis program from
reading the line with initial.

module mult_seq(output logic [311:0] prod, input logic [15:0] plier, cand, input uwire clk);

logic [3:0] pos; logic [31:0] accum;

// cadence translate_off <-- The translate synthesizer directive.

initial pos = 0;

// cadence translate_on <-- The translate synthesizer directive.

always @(posedge clk) begin

if (pos == 0) begin prod = accum; accum = 0; end

if (cand[pos] == 1) accum += plier << pos;

pos++;

end

endmodule

Why shouldn’t the synthesis program see the line with initial?

What would happen if the synthesis program saw the initial line?

What would happen if the simulation program didn’t see the line with initial?

9

← → Fall 2014 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

(c) [7 pts] All four variables below have a size of 32 bits, but there are differences between them.

logic [31:0] a;

logic b [31:0];

logic [0:31] c;

int e;

Difference between a and b?

Difference between a and c?

Difference between a and e?

10

← → Fall 2014 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Name

Digital Design using HDLs

EE 4755

Final Examination

Monday, 8 December 2014 10:00-12:00 CST

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2014 ← → Final Exam Exam Solution fe.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Problem 1: [20 pts] The encode module below, based on Homework 4, is used to convert a decimal value
to binary one ASCII digit at a time. Input val_prev is the binary value so far, and output val_next is the
binary value after using ASCII character ascii_char. If ascii_char isn’t a numeric digit non_digit is set
to 1 and val_next is set to zero. There is also an overflow output.

module encode
#(int width = 32)

(output logic [width-1:0] val_next,

output logic overflow, output uwire non_digit,

input uwire [7:0] ascii_char, input uwire [width-1:0] val_prev);

logic [width+3:0] val_curr; logic [3:0] high_bits, bin_char;

assign non_digit = ascii_char < Char_0 || ascii_char > Char_9;

always_comb begin

bin_char = ascii_char - Char_0;

val_curr = 10 * val_prev + bin_char;

high_bits = val_curr >> width;

if (non_digit) begin overflow = 0; val_next = 0; end

else begin

overflow = high_bits != 0;

val_next = val_curr;

end

end

endmodule

(a) Show the hardware that will be synthesized for this module. Take into account optimizations (see the
next subproblem).

Synthesized hardware.

(b) Indicate how many units such as adders, multipliers, shifters, and multiplexors will actually be present
in the optimized hardware. The count should be based on the units that are present after optimization, not
on the hardware first inferred from the Verilog.

Number of adders. Number of multipliers. Number of shifters. Number of multiplexors.

2

← → Fall 2014 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Problem 2: [20 pts] Appearing below is another encode module, this one has a new input radix, which
indicates the radix (base) of the number to be converted. When completed the module should function like
the module from the previous problem, except that the digits form a radix-radix number. For example, if
radix were 10 it would operate like the previous module. If radix were 8 the digits would be octal, etc.

(a) Modify the module so that it takes into account the radix. Assume that radix can be any value from 2
to 16. Note that for a radix of 16 the valid digits are 0-9 and A-F (only consider upper case).

Modify the module to generate the correct non_digit output.

Modify the module to update val_next correctly given the radix.

typedef enum {Char_0 = 48, Char_9 = 57, Char_A = 65, Char_F = 70} Chars;

module encode_radix #(int width = 32)

(output logic [width-1:0] val_next,

output logic overflow, output uwire non_digit,

input uwire [7:0] ascii_char, input uwire [width-1:0] val_prev,

input uwire [4:0] radix);

logic [width+3:0] val_curr;

logic [3:0] high_bits, bin_char;

always_comb begin

val_curr =

high_bits = val_curr >> width;

if (non_digit) begin

overflow = 0;

val_next = 0;

end else begin

overflow = high_bits != 0;

val_next = val_curr;

end

end

endmodule

3

← → Fall 2014 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Problem 2, continued:

(b) Suppose that module encode_radix (from the previous part) were to be used in a larger design in which
the values of radix could only be 2, 8, 10, and 16. Also suppose that the synthesis program can’t figure
out that radix is limited to these values. Why would the cost be higher than necessary, and how could
encode_radix be modified to get the lower cost hardware?

Explain why the cost will be higher than is necessary.

Show the changes to encode_radix so that the synthesis program will generate the lower cost design. The
port definitions cannot be changed.

4

← → Fall 2014 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

=

p
a
t

en

s
h
_
p
a
t

en

31:31

msb

lsb

30:0

p
e
r

en

+
1

=
32

start

in_pat

done

per
clk

find_period

32

Problem 3: [20 pts] Ap-
pearing to the right is hard-
ware and a corresponding
Verilog module. The mod-
ule is incomplete, finish it.
Hint: The hardware includes
an end-around shift, that’s
the part with the msb/lsb la-
bels.

Add sizes and other infor-
mation to port declarations.

Finish the Verilog code.

module find_period
(output per, output done,

input in_pat,

input start, input clk);

endmodule

5

← → Fall 2014 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Problem 4: [20 pts] The Verilog below is the key lookup part of the simple CAM module used in class.

logic [dwid:1] storage_data [ssize];

logic [kwid:1] storage_key [ssize];

logic [ssize-1:0] storage_full;

always_comb begin

mmatch = 0; midx = 0;

for (int i=0; i<ssize; i++)

if (storage_full[i] && storage_key[i] == key) begin mmatch = 1; midx = i; end

end

assign out_data = storage_data[midx];

(a) Starting with the registers and key shown below, sketch the hardware synthesized for this code without
optimization. The hardware should produce values for mmatch and midx (but not out_data). Do so for
ssize=3. In class we often showed part of this as a box labeled “priority encoder” (or “pri” for short), in
this problem actually show the hardware.

Synthesized hardware for ssize = 3 to generate mmatch and midx.

storage_key[0]

storage_full[0]

storage_key[1]

storage_full[1]

storage_key[2]

storage_full[2]

key

(b) Assume that the cost of an a-bit comparison unit is a, and its delay is also a. Assume that the cost of an
a-input, b-bit multiplexor is ab and the delay is 1. Compute the cost and delay of the logic used to compute
midx in terms of ssize (use s in your formulas) and kwid (use k in your formulas). As with the previous
part, do this for the unoptimized hardware. Remember to solve this for an arbitrary value of ssize (s), not
for s = 3.

Cost in terms of s and k:

Delay in terms of s and k:

6

← → Fall 2014 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Problem 4, continued: Appearing below is a variation on the key lookup from the CAM module. Instead
of finding a matching key it finds the largest stored key that is ≤ to the lookup key. Note that this version
doesn’t include storage_full.

logic [dwid:1] storage_data [ssize];

logic [kwid:1] storage_key [ssize];

always_comb begin

midx = 0; bkey = 0;

for (int i=0; i<ssize; i++)

if (storage_key[i] >= bkey && storage_key[i] <= key) // READ THIS LINE CAREFULLY

begin midx = i; bkey = storage_key[i]; end

end

assign out_data = storage_data[midx];

(c) Sketch the hardware for ssize=3.

Sketch the synthesized hardware needed to generate bkey.

storage_key[0]

storage_key[1]

storage_key[2]

key

(d) Compute the cost and performance in terms of ssize (use s) and the key size (use k). As before a k-bit
comparison unit (equality or magnitude) costs k and has a delay of k and an a-input, b-bit mux costs ab and
has a delay of 1. Hint: There’s a big difference.

Cost in terms of s and k:

Delay in terms of s and k:

7

← → Fall 2014 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Problem 5: [20 pts] Answer each question below.

(a) The module below is supposed to count from 0 to max (inclusive), then return to zero. Strictly speaking
it does, but there are problems, including the fact that it’s not synthesizable. Fix the problems.

module counter #(int max = 3)(output logic [7:0] count, input uwire clk);

always @(posedge clk) begin

count <= count + 1;

end

always @* begin

if (count == max) count <= 0;

end

endmodule

Why isn’t the module synthesizable?

Fix the problem.

8

← → Fall 2014 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

(b) There is a problem with the module below due to the way that a is declared.

module sa1(output uwire a, input uwire c, d);

always_comb begin

a = c & d;

end

endmodule

Fix the problem by changing the declaration of a.

Fix the problem without changing the declaration of a.

(c) Describe a situation in which using always_comb has a benefit over using always @*.

Situation where always_comb helps.

9

← → Fall 2014 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

(d) The module below is supposed to be computing x2 + y2.

module sa2(output logic [63:0] sos, input uwire [63:0] x, y);

logic [63:0] a1, b1, a2, b2;

uwire [63:0] p, s;

fpmul f1(p,a1,b1);
fpadd f2(s,a2,b2);

always @* begin

// Compute x^2.

a1 = x; b1 = x;

#1;

sos = p;

// Compute y^2.

a1 = y; b1 = y;

#1;

// Compute x^2 + y^2.

a2 = p; b2 = sos;

#1;

sos = s;

end

endmodule

Explain why the module is not synthesizable.

Fix the problem.

10

← → Fall 2014 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

11 Spring 2001

204

← → Spring 2001 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Name

Digital Design Using Verilog

EE 4702-1

Midterm Examination

16 March 2001 8:40-9:30 CST

Alias

Problem 1 (30 pts)

Problem 2 (25 pts)

Problem 3 (35 pts)

Problem 4 (10 pts)

Exam Total (100 pts)

Good Luck!

← → Spring 2001 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Problem 1: Complete the Verilog behavioral description below so that it operates as follows.
Compute 32-bit output eq_time so that it is the number of consecutive positive edges of input
clk for which 32-bit inputs siga and sigb remain equal. The counting should start on the first
positive edge of clk after siga becomes equal to sigb; the count starts at zero at the moment they
become equal, and while they remain equal the count is incremented at each positive edge. The
count should go back to zero at the first positive edge of clk after siga becomes unequal to sigb.
The count goes to zero even if siga and sigb become equal again before the positive edge. Sample
output appears in the timing diagram below. (30 pts)

0 50 100 150 200

m/siga 0 1 3 7

m/sigb 1 2 1 7

m/clk

m/eq_time 0 1 0 1 2 0 1 2

module monitor(eq_time, siga, sigb, clk);

input siga, sigb, clk;

output eq_time;

// Don’t forget to declare port types.

endmodule

Don’t get bogged down: There are eight more problems, some can be answered quickly.

2

← → Spring 2001 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Problem 2: Complete the following timing diagram problems.

(a) Complete the timing diagram below. (15 pts)

module timing_stuff();

reg clk, clk3, clk2a, clk2b, clk2c, clk2d,

initial begin

clk = 0; clk2a = 0; clk2b = 0; clk2c = 0; clk2d = 0; clk3 = 0;

end

Time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

always #5 clk = !clk

always @(posedge clk) clk2a = !clk2a

always #12 @(posedge clk) clk2b = !clk2b

always @(posedge clk) #12 clk2c = !clk2c

always @(posedge clk) clk2d <= #12 !clk2d

← → Spring 2001 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

(b) Complete the timing diagram below. Be sure to clearly indicate when a signal value changes.
(10 pts)

module timing();

integer a, b, c, d;

initial begin

a = 0;

b = 10;

c = 20;

d <= #0 3;

d = 30;

d <= #1 300;

d <= #2 3000;

#1;

b = 100;

c <= 200;

a <= #5 b + c;

#1;

b = 1000;

c <= 2000;

#10;

end

endmodule

Time 0 2 4 6 8 10

a

b

c

d

4

← → Spring 2001 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Problem 3: Answer each question below. Some can be answered quickly, try answering those
questions first.

(a) The match_count_x modules below are supposed to count the number of times input symbol is
the same as input targ. Output count should be incremented if symbol is the same as targ after
a change in symbol. Most or all of the modules below don’t work properly. For each non-working
module describe the problem and how it is simulated. It is important to describe how the incorrect
Verilog is simulated and why it is wrong.

Port declarations and initializations are not shown, but assume they are present and correct. Be-
havior for unknown and high-impedance values is undefined. In other words, the problems are not
related to declarations, initialization, or unknown values. (10 pts)

module count_match_1(count,symbol,targ); // Declarations and init. not shown.

always wait(symbol == targ) count = count + 1;

endmodule

module count_match_3(count,symbol,targ); // Declarations and init. not shown.

always #10 if (symbol == targ) count = count + 1;

endmodule

module count_match_4(count,symbol,targ); // Declarations and init. not shown.

always @(symbol == targ) count = count + 1;

endmodule

5

← → Spring 2001 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

(b) Show how each of the three adders below can be used in the module use_adders to add seven
to input a. Do not modify the adders themselves. (10 pts)

module adder1(x,a,b);

input a, b;

output x;

wire [31:0] a, b;

wire [31:0] x = a + b;

endmodule

module adder2(x,a);

input a;

output x;

parameter b = 0;

wire [31:0] a;

wire [31:0] x = a + b;

endmodule

module adder3(x,a);

input a;

output x;

wire [31:0] a;

wire [31:0] x = a + ‘b;

endmodule

module use_adders(x_1,x_2,x_3,a);

input a;

output x_1, x_2, x_3; // Each output should be a + 7

// Use adder1, adder2, and adder3 to generate respective x_ outputs.

endmodule

6

← → Spring 2001 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

(c) Show the values that will be assigned in each assignment to r. Variables a, c, and r are six-bit
registers. (5 pts)

a = 6’b101010;

c = 6’bx1x0x1;

r = & a;

r = | a;

r = ^ a;

r = & c;

r = | c;

r = ^ c;

(d) Do the two code fragments below do the same thing? If not, how do they differ? (5 pts)

// Fragment A.

if (foo > bar) x = x + 1; else y = y + 1;

// Fragment B.

case (foo > bar)

1: x = x + 1;

default: y = y + 1;

endcase

7

← → Spring 2001 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

(e) Why can’t the following increment macro be re-written as a function or task in Verilog 95?
(5 pts)

‘define incr(a) a=a+1

// ...

// Sample uses of macro.

for (i=0; i<10; ‘incr(i)) x = x + y;

for (j=0; j<10; ‘incr(j)) begin foo(j); k = k + x; end

Problem 4: The module below counts the number of five’s and nine’s appearing at input c.
Explain exactly when five’s and nine’s are counted (start cycle and end cycle), and describe any
restrictions on the counts. (10 pts)

module yet_another_symbol_counter(fives, nines, c);

input c;

output fives, nines;

wire [7:0] c;

reg [31:0] fives, nines;

initial fork

begin

fives = 0;

nines = 0;

end

#50 fork:A

repeat (42) @(c) if (c == 5) fives = fives + 1;

#100 disable A;

join

#70 fork:B

forever @(c) if (c == 9) nines = nines + 1;

#200 disable B;

join

join

endmodule

8

← → Spring 2001 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Name

Digital Design Using Verilog

EE 4702-1

Final Examination

9 May 2001 7:30-9:30 CDT

Alias

Problem 1 (15 pts)

Problem 2 (18 pts)

Problem 3 (17 pts)

Problem 4 (18 pts)

Problem 5 (12 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Spring 2001 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Problem 1: The module below is in an explicit structural form.

(a) Re-write the module in behavioral form. The delays can be assumed to be pipeline delays.
(10 pts)

(b) What is the difference between pipeline and inertial delays? Which kind of delay is used in your
solution to the problem above? (5 pts)

module expl_str(x,y,a,b,c);

input a, b, c;

output x, y;

wire a, b, c, x, y;

wire na, nb, nc, t3, t5, t6;

not n1(na,a);

not n2(nb,b);

not n3(nc,c);

and #1 a1(t3,na,b,c);

and a2(t5,a,nb,c);

and a3(t6,a,b,nc);

or o1(x,t3,t6);

or #3 o2(y,a,t5);

endmodule

module behavioral(x,y,a,b,c);

input a, b, c;

output x, y;

// Solution here. Don’t forget types for ports!

endmodule

2

← → Spring 2001 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Problem 2: The module below sets output rot to the number of times that input a must be
rotated (end-around shifted) to obtain the value on input b, or to 32 if a is not a rotated version
of b.

(a) Write a testbench module that tests rots with input pairs a=0,b=0; a=0,b=1; a=0,b=2; and
a=0,b=3. (The rot output should be zero for the first pair and 32 for the others.) The testbench
should include an integer err and set it to the number of incorrect outputs.

It is important that the testbench makes correct use of ready and start. (Part of the problem
is determining just what is “correct use.”) The testbench should use ready rather than assumed
timing. Also, test only a single instance of rots and don’t forget the clock. (18 pts)

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk; output ready, rot;

reg ready; wire [31:0] a, b;

reg [5:0] rot; wire start, clk;

reg [31:0] acpy;

initial rot = 0;

always @(posedge clk) begin

ready = 1; while (!start) @(posedge clk);

ready = 0; while (start) @(posedge clk);

rot = 0; acpy = a;

while (acpy != b && rot < 32) @(posedge clk) begin

acpy = { acpy[30:0], acpy[31] };

if (acpy == a) rot = 32; else rot = rot + 1;

end

end

endmodule

module testrot();

integer err;

endmodule

3

← → Spring 2001 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Problem 3: Convert the rots module (repeated below) to synthesizable Form 2 (edge-triggered
flip-flops). Do not change the ports or what it does. In particular, ready and start must be used
the same way. Ignore reset. (17 pts)

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk; output ready, rot;

reg ready; wire [31:0] a, b;

reg [5:0] rot; wire start, clk;

reg [31:0] acpy;

initial rot = 0;

always @(posedge clk) begin

ready = 1; while (!start) @(posedge clk);

ready = 0; while (start) @(posedge clk);

rot = 0; acpy = a;

while (acpy != b && rot < 32) @(posedge clk) begin

acpy = { acpy[30:0], acpy[31] };

if (acpy == a) rot = 32; else rot = rot + 1;

end

end

endmodule

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk;

output ready, rot; // Don’t forget port types and other declarations.

acpy = { acpy[30:0], acpy[31] };

if (acpy == a) rot = 32; else rot = rot + 1;

endmodule

4

← → Spring 2001 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Problem 4: Two synthesizable descriptions appear below.

(a) In what synthesizable form is the Verilog description below? (2 pts)

(b) Draw a schematic showing the approximate RTL-level description generated by a synthesis
program like Leonardo. (7 pts)

module whatsyna(x, y, z, a, b, op);

input a, b, op;

output x, y, z;

wire [7:0] a, b;

wire [1:0] op;

reg [7:0] x, y, z;

always @(op or a or b) begin

if (a == 0) y = b;

if (a < b) z = a; else z = b;

case (op)

0: x = a + b;

1: x = a;

2: x = b;

endcase

end

endmodule

5

← → Spring 2001 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Problem 4, continued:

(c) In what synthesizable form is the Verilog description below? (2 pts)

(d) Draw a schematic showing the approximate RTL-level description generated by a synthesis
program like Leonardo. (7 pts)

module whatsyn2(sum, nibbles, a, b, c);

input nibbles, a, b, c;

output sum;

wire [15:0] nibbles;

wire a, b, c;

reg [6:0] sum;

reg [15:0] n2;

reg last_c;

integer i;

always @(posedge a or negedge b)

if (!b) begin

sum = 0;

end else begin

if (c != last_c) begin

n2 = nibbles;

for (i=0; i < 4; i = i + 1) begin

sum = sum + n2[3:0];

n2 = n2 >> 4;

end

end

last_c = c;

end

endmodule

6

← → Spring 2001 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Problem 5: In the diagram below c, d, and identifiers starting with clk are all initialized to zero.
Complete the timing diagram. (12 pts)

Time 0 5 10 15 20 25 30 35 40 45 50

a

b

always @(posedge a) clk1 = !clk1

always @(a) @(b) clk2 = !clk2

always @(a or b) clk3 = !clk3

always @(a | b) clk4 = !clk4

always @(posedge (a | b)) clk5 = !clk5

always @(a) c <= a

always @(a) d <= #1 c

always @(a or c) clk6 = !clk6

always @(a or c) #0 clk7 = !clk7

always @(a or c) #2 clk8 = !clk8

7

← → Spring 2001 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Problem 6: Answer each question below.

(a) The code below, based on the Homework 3 solution, simulates properly before synthesis but in
the post-synthesis simulation the testbench reports an incorrect beep time.

What goes wrong? Fix the problem without modifying the code below the indicated line. Hint:
The beep can start (and stop) at a slightly different time than the code below. (5 pts)

module beepprob(beep, clk);

input clk;

output beep;

assign beep = | beep_timer;

// DO NOT MODIFY CODE BELOW THIS LINE.

always @(posedge clk) begin

// Lots of stuff;

if (beep_timer) beep_timer = beep_timer - 1;

end

endmodule

(b) Describe something that a parameter can be used for that an ordinary input port cannot and
something that an input port can be used for that a parameter cannot. (5 pts)

8

← → Spring 2001 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

(c) What is the difference between case, casex, and casez? (5 pts)

(d) Explain how each of the three statements below behave differently with unknown values. In
particular, explain what has to be unknown and how the results of each statement is different.
(5 pts)

m1 = a > b ? c : d;

if (a > b) m2 = c; else m2 = d;

case (a > b)

1: m3 = c;

default: m3 = d;

endcase

9

← → Spring 2001 ← → Final Exam Exam Solution fe.pdf

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

12 Spring 2000

222

← → Spring 2000 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

Name

Digital Design Using Verilog

EE 4702-1

Midterm Examination

5 April 2000 8:40-9:30 CDT

Alias

Problem 1 (40 pts)

Problem 2 (60 pts)

Exam Total (100 pts)

Good Luck!

← → Spring 2000 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

Problem 1: Complete the Verilog description (below) of a FIFO-like module which has a 3-bit
data input, in; a 7-bit output, out; 1-bit inputs inclk and outclk; and 1-bit outputs full and
empty. The module operates like a FIFO (first in, first out) except that the width of the data input
and output ports are different: it reads data 3 bits at a time (on a positive edge of inclk) and
outputs 7 bits at a time (consisting of data from two input words plus one bit of a third). Unless
the module has less than 3 bits of space left, on a positive edge of inclk the value on in is stored.
The oldest 7 bits stored by the module always appear on output out. On a positive edge of outclk
the oldest 7 bits are removed and the output displays the next 7 bits. Output full is 1 if the
module cannot accept another 3 bits of input and is 0 otherwise; output empty is 1 if the module
is empty and is 0 otherwise. Parameter storage is the total number of bits stored by the module.
An example of the module operating is shown in the timing diagram below. (40 pts)

0 10 20

inclk

in 001 010 011 100 101 110 111 000 001 010 011 100

outclk

out 0000000 0000001 0010001 1010001 0110001 1111101 0001000

full

empty

module width_change(out,full,empty,outclk,in,inclk);

input outclk, in, inclk;

output out, full, empty;

parameter storage = 20;

wire [6:0] out; // Can change to reg for solution.

wire [2:0] in;

wire inclk, outclk;

wire full, empty; // Can change to reg for solution.

reg [storage-1:0] sto; // Storage for data.

integer amt; // Number of occupied bits in sto.

// USE THE NEXT PAGE FOR THE SOLUTION.

endmodule // width_change

2

← → Spring 2000 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

Problem 1, continued: The diagram and code from the previous page are repeated below.

0 10 20

inclk

in 001 010 011 100 101 110 111 000 001 010 011 100

outclk

out 0000000 0000001 0010001 1010001 0110001 1111101 0001000

full

empty

module width_change(out,full,empty,outclk,in,inclk);

input outclk, in, inclk;

output out, full, empty;

parameter storage = 20;

wire [6:0] out; // Can change to reg for solution.

wire [2:0] in;

wire inclk, outclk;

wire full, empty; // Can change to reg for solution.

reg [storage-1:0] sto; // Storage for data.

integer amt; // Number of occupied bits in sto.

// Solution goes here.

endmodule // width_change

3

← → Spring 2000 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

Problem 2: Answer each question below.

(a) Describe something that a function can do (or be used for) that a task cannot. Describe
something that a task can do (or be used for) that a function cannot. (10 pts)

(b) Convert the following behavioral code to explicit structural code. (10 pts)

module btos(x, a, b);

input a, b;

output x;

wire a, b;

reg x;

always @(a or b) if(a) x = b; else x = ~b;

endmodule // btos

4

← → Spring 2000 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

(c) Show the changes (values and times) to a and b in the module below. (10 pts)

module assig();

reg [15:0] a, b;

initial

begin

a = 1;

b = 2;

#1;

a <= b;

b <= a;

#1;

a <= b + 10;

b <= #5 b + 20;

#1;

b = #1 3;

b <= 4;

b <= #2 5;

b <= #10 6;

b = 7;

#20;

end

endmodule

5

← → Spring 2000 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

(d) Show the changes (values and times) to x in the module below using the timing diagram
provided. (10 pts)

module events1();

wire a, b, c, d;

reg [2:0] x;

reg [3:0] i;

assign {d,c,b,a} = i;

initial begin

i = 0;

forever #10 i = i + 1;

end

always begin

#15;

@(a);

x = 1;

@(posedge a) x = 2;

@(a or b) x = 3;

@(a | b | c | d) x = 4;

wait(a | b) x = 5;

wait(a) x = 6;

wait(~a) x = 7;

end // always begin

endmodule // events1

0 100 200 300

a

b

c

d

x

6

← → Spring 2000 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

(e) Show the changes (values and times) to aa in the module below. (10 pts)

module d();

reg a;

wire aa;

and #(2,3) (aa,a,1);

initial begin

a = 0;

10;

a = 1;

10;

a = 0;

10;

a = 1;

1;

a = 0;

10;

end

endmodule // d

7

← → Spring 2000 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

(f) Complete module after so that it does the same thing as before. All procedural code in module
after must go in the one initial process. The solution must use fork and join. Structural code
cannot be added. (10 pts)

module before(asum,bsum,out,a,ainp,b,binp,c);

output asum, bsum, out;

input a, ainp, b, binp, c;

reg [9:0] asum, bsum, out;

wire [9:0] ainp, binp;

wire a,b,c;

always @(a) asum = asum + ainp;

always @(b) bsum = bsum + binp;

always @(posedge c) out = asum + bsum;

endmodule

module after(asum,bsum,out,a,ainp,b,binp,c);

output asum, bsum, out;

input a, ainp, b, binp, c;

reg [9:0] asum, bsum, out;

wire [9:0] ainp, binp;

wire a,b,c;

// ALL code must go in the initial process below.

initial begin

end // initial

endmodule

8

← → Spring 2000 ← → Midterm Exam Exam Solution mt.pdf

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

Name

Digital Design Using Verilog

EE 4702-1

Final Examination

8 May 2000, 7:30–9:30 CDT

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe.pdf

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

Problem 1: The modules below are supposed to describe combinational logic that rearranges bits.
The output of module rearrange, below, is a rearranged version of its input a; input op determines
how the bits are rearranged. Module rerearrange uses two instances of rearrange to reverse and
then left shift its inputs. Unfortunately, the modules are not quite ready for tape out because both
contain errors.

Find and fix the following kinds of errors. (Points may be deducted if correct Verilog is identified
as having errors.) (20 pts)

• A: One compile error. (Modelsim will not compile it.)

• B: One load error or warning. (Modelsim will compile it but will issue a warning or
error message when loading it.)

• C: Three errors that result in incorrect output. The code will simulate but the output,
if any, will be incorrect.

Lines with the comment // Okay do not have errors. None of the errors are typographical or are
due to syntactic minutiæ such as missing semicolons.

module rerearrange(y,a);

input a; output y;

wire [7:0] a; reg [7:0] y; wire [0:7] temp;

wire operation;

assign operation = e1.op_reverse;

rearrange e1(temp,a,operation);

assign operation = e1.op_left_shift;

rearrange e2(y,temp,operation);

endmodule

module rearrange(x,a,op);

input a, op; output x;

wire [7:0] a; wire [1:0] op;

reg [7:0] x; reg [2:0] ptr, ptr_plus_one;

parameter op_reverse = 0; // Reverse order of bits. // Okay

parameter op_identity = 1; // No change. // Okay

parameter op_left_shift = 2; // Circular (end-around) left shift. // Okay

parameter op_right_shift = 3; // Circular (end-around) right shift.// Okay

always @(a) for(ptr=0; ptr<8; ptr=ptr+1) begin

ptr_plus_one = ptr + 1; // Okay

case(op)

op_reverse: x[ptr] = a[7-ptr]; // Okay

op_identity: x[ptr] = a[ptr]; // Okay

op_right_shift: x[ptr] = a[ptr_plus_one]; // Okay

op_left_shift: x[ptr_plus_one] = a[ptr]; // Okay

endcase

end

endmodule

2

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe.pdf

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

Problem 2: Using the grid show the register values for the first 40 time units of execution of the
module below. (20 pts)

module clocks();

reg clk, clk2, clk3, clk4, clk5, clk6, clk7, clk8;

initial begin

clk = 0; clk2 = 0; clk3 = 0; clk4 = 0;

clk5 = 0; clk6 = 0; clk7 = 0; clk8 = 0;

end

always #8 clk = ~clk;

always @(clk) #4 clk2 = ~clk2;

always @(clk) clk3 <= #10 clk;

always @(posedge clk) clk4 = ~clk4;

always #2 forever #8 clk5 = ~clk5;

always wait(clk) #3 clk6 = ~clk6;

always @(clk | clk4) clk7 = ~clk7;

always @(clk or clk4) clk8 = ~clk8;

endmodule

Time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

clk

clk2

clk3

clk4

clk5

clk6

clk7

clk8

3

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe.pdf

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

Problem 3: Draw a schematic of the hardware Leonardo will synthesize for the following Verilog
code examples. These should approximate the RTL schematic, showing the hardware before opti-
mization and technology mapping. If flip flops are used, indicate if they are level triggered or edge
triggered. Otherwise, don’t worry about using the precisely correct gate or symbol, as long as it’s
functionally correct.

(a) Show an approximate RTL schematic for the module below. What form is the description in?
Hint: think about what form the code is in. (6 pts)

module mod_a(x,y,a,b,c);

input a,b,c;

output x,y;

wire [7:0] b, c;

reg [8:0] x, y;

always @(a or b or c) begin

if(a) begin

x = b + c;

y = b - c;

end else begin

x = b - c;

end

end

endmodule

4

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe.pdf

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

Problem 3, continued: (b) Show an approximate RTL schematic for the module below. What
form is the description in? Hint: think about what form the code is in. (6 pts)

module mod_b(x,y,d,e,f,g,h);

input d,e,f,g,h;

output x,y;

reg x,y;

always @(posedge d or negedge e or posedge f)

if(d) begin

x = 0;

y = 1;

end else if (f) begin

x = 1;

end else begin

if(g) x = h;

y = h;

end

endmodule

5

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe.pdf

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

Problem 3, continued: (c) Show an approximate RTL schematic for the module below. Assume
that the synthesis program will not infer that this module performs magnitude comparison. Use

symbols < and > for bit comparison. (8 pts)

module compare(gt, lt, a, b);

input a, b;

output gt, lt;

wire [2:0] a, b;

reg gt, lt;

integer i;

always @(a or b) begin

gt = 0; lt = 0;

for(i=2; i>=0; i=i-1) if(!gt && !lt) begin

if(a[i] < b[i]) lt = 1;

if(a[i] > b[i]) gt = 1;

end

end

endmodule

6

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe.pdf

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

Problem 4: The incomplete code below, compare_ism, is for a magnitude comparison module
(similar to the one in the previous problem, except it’s sequential).

When input start is set to 1, output valid goes to zero and the module computes lt and gt.
When lt and gt are set to their proper values valid is set to one. The module is to compare one
bit position per cycle of input clk. Output valid should go to one as soon as possible.

Complete the module so that it is in the form of an implicit state machine, synthesizable by
Leonardo. The solution can be based on the combinational module compare, below. Don’t forget
signals start and valid. (20 pts) Hint: The solution is very similar to the combinational module.
For partial credit ignore synthesizability but follow other specifications.

module compare(gt, lt, a, b); // Synthesizable combinational implementation.

input a, b; output gt, lt;

wire [31:0] a, b;

reg gt, lt; integer i;

always @(a or b) begin

gt = 0; lt = 0;

for(i=31; i>=0; i=i-1) if(!gt && !lt) begin

if(a[i] < b[i]) lt = 1;

if(a[i] > b[i]) gt = 1;

end

end

endmodule

// Implicit state machine implementation.

module compare_ism(gt, lt, valid, a, b, start, clk);

input a, b, start, clk; output gt, lt, valid;

wire [31:0] a, b; reg gt, lt, valid;

wire start, clk; integer i;

if(a[i] < b[i]) lt = 1; // Part of solution.

if(a[i] > b[i]) gt = 1;

endmodule

7

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe.pdf

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

Problem 5: Answer each question below.

(a) Complete the module below so that it will stop simulation (using the system task $stop) if there
is no change in signal heartbeat for 1000 simulator time units. There might be many changes
in heartbeat, but the first time heartbeat remains unchanged for 1000 simulator time units
simulation should be stopped. Hint: use a fork. Also, the answer is short. (5 pts)

module watchdog(heartbeat);

input heartbeat;

wire heartbeat;

endmodule // watchdog

(b) What is a critical path? At what point in the design flow can one first find out about critical
paths? (5 pts)

8

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe.pdf

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

(c) Provide an example case statement in which the directive exemplar case_parallel is needed.
What is its effect? (5 pts)

(d) The module below is supposed to zero the middle 3 bits of its input. It’s rejected by the compiler
(the ”b=” line), identify and fix the problem. (5 pts)

module whatswrong(a,b);

input a; output b;

wire [8:0] a; wire [8:0] b;

assign b = {a[8:6],0,a[2:0]};

endmodule

9

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe.pdf

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

13 Fall 2023 Solutions

240

← → Fall 2023 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Name Solution

Digital Design Using HDLs

LSU EE 4755

Midterm Examination

Friday, 27 October 2023, 11:30-12:20 CDT

Alias Again on 8 April!

Problem 1 (30 pts)

Problem 2 (25 pts)

Problem 3 (30 pts)

Problem 4 (15 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2023 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Problem 1: [30 pts] Appearing below is the permutation module from the solution to Homework 3.
Using the illustration of the ports show the inferred hardware for an instantiation with n=4. Show the n=4

instantiation but not what is inside the n=3 recursive instantiation.

module perm
#(int w = 8, n = 20, wd = $clog2(n))

(output uwire [w-1:0] pdata_out[n], output uwire [wd-1:0] pnum_out[n],

output uwire carry_out,

input uwire [w-1:0] pdata_in[n], input uwire [wd-1:0] pnum_in[n]);

if (n == 1) begin

assign pdata_out[0] = pdata_in[0];

assign carry_out = 1;

assign pnum_out[0] = 0;

end else begin

uwire [wd-1:0] pos = n - 1 - pnum_in[n-1];

assign pdata_out[n-1] = pdata_in[pos];

uwire [w-1:0] prdata_in[n-1];

for (genvar i=0; i<n-1; i++)

assign prdata_in[i] = i < pos ? pdata_in[i] : pdata_in[i+1];

uwire co;

perm #(w,n-1,wd) rp(pdata_out[0:n-2], pnum_out[0:n-2], co,

prdata_in, pnum_in[0:n-2]);

uwire [wd-1:0] dnext = pnum_in[n-1] + co;

assign carry_out = dnext >= n;

assign pnum_out[n-1] = carry_out ? 0 : dnext;

end

endmodule

2

← → Fall 2023 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

� Show inferred hardware for n=4. Be sure to use � the illustrated module ports and to show � the
recursively instantiated module (but not its contents).

� Show hardware, � do not confuse elaboration-time computation with computation hardware.

Solution appears below. Notice that elaboration-time constants such as i and n are replaced by their values. Notice also that
pdata in[i] for i=0 is inferred simply as a wire connecting to input pdata in[0], whereas pdata in[pos], because pos
is not a constant, is inferred as a multiplexor with data inputs connecting to each pdata in input.

pdata_in[1]

 [2]

 [3]

p
d

a
ta

_in

pnum_in[0]

 [1]

 [2]

 [3]

p
n

u
m

_in

3 pos

2 <

1

0

p
d

a
ta

_in

perm
n=3

rp

p
n
u
m

_in

p
d

a
ta

_o
u
t

p
n
u
m

_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥4

perm n=4

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]
[2]

pnum_out[0]
[1]
[2]

[0]

[2]

[0]

[2]

[0]

[0]

[3]

[3]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[2]

[3]

 [0]

+

p
rd

a
ta

_in
[2

]

prdata_in[0]

3

← → Fall 2023 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Problem 2: [25 pts] A ripple adder to compute a + b is to be used in situations where a is a constant.

(a) Find the cost and delay of a BFA with input a constant (for use in the ripple adder). A BFA is shown
for your convenience.

� Show the BFA(s) optimized for input a constant.

Use a truth table to find optimizations not revealed by constant pushing: in a correct solution the delay
does not depend upon a.

� Show simple-model cost of this(these) module(s) and � show simple-model delay(s) of this(these) mod-
ule(s).

a

b

ci co
su
m

BFA

a

b

ci co
su
m

BFA

0

1

0

Optimization Plan

b

~b

b

~b & ci

~b & ci | b → ci | b

1

0

a

b

ci co
su
m

BHA
0

Optimized Hardware, Showing Timing

0

0

1

2

a

b

ci co
su
m

BHA
1

0

0

1

2

a

b

ci c
o

s
u
m

BFA

The optimized BFAs appear on the right. The
first row shows optimization for a=0 and the
second row for a=1. The first column, headed
Optimization Plan, shows the impact of the
constant a value on gates in the full BFA, the
second column shows a cleaned-up version of
the logic, and, for the timing analysis, with ar-
rival times labeled in green.

A binary full adder with one constant input is little different than a binary half adder, and so a constant-input BFA is labeled BHA.
The optimization for the a=0 case is straightforward. For the a=1 case an initial optimization would use both an AND gate and an
OR gate to compute co. But the logic can be simplified further by noting that when b=1 directly connecting ci to the OR gate has
no effect, and when b=0 directly connecting ci to the OR gate has the intended effect. Or perhaps one just remembers the Boolean
algebra identity x + xy = x + y.

The cost of each module is 3 + 1 = 4 uc. Actually, the cost of each module can be reduced to just 3 uc by splitting the XOR into
three gates and using the AND or OR gate to replace one of those gates with other zero-cost changes needed to compute exclusive
or. Final exam problem?

The arrival times are labeled in green. In both modules the delay of sum is 2 ut and the delay of co is 1 ut . Lucky for us the
delay of co is 1 ut, because that impacts the delay of the ripple adder.

(b) On the facing page show the optimized hardware, cost, LSB delay, and MSB delay of a w-bit ripple adder

for computing a+ b+ cin, where cin is a carry-in bit (cin in the diagram) and a is a constant. (� See the
check box items for details.) Use the illustration on the facing page as a starting point.

� Show the hardware optimized for a constant a and a non-constant cin.

�Compute the simple-model cost of this hardware in terms of w.

�Compute the simple-model delay of the LSB of the sum.

�Compute the simple-model delay of the MSB of the sum in terms of w and � show the critical path.

�Don’t forget that a is a constant.

4

← → Fall 2023 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

a

b

ci c
o

s
u

m

BFA

cin

a

b

w

w

a[w-1]

Bit 0 -- LSB Bit 1 Bit 2 Bit w-1 -- MSB
b[w-1]

sum

ripple_adder w

a[2]

b[2]

a[1]

b[1]

a
[0
]

b[0]

w

a

b

ci c
o

s
u

m

BFA
a

b

ci c
o

s
u

m

BFA
a

b

ci c
o

s
u

m

BFA

a

b

ci c
o

s
u

m

BHA

cin

a

b

w

w

a[w-1]

Bit 0 -- LSB Bit 2 Bit w-1 -- MSB
b[w-1]

sum

ripple_adder w

a[2]

b[2]

a[1]

b[1]

a
[0
]

b[0]

w

a

b

ci c
o

s
u

m a

b

ci c
o

s
u

m

BHA
a

b

ci c
o

s
u

m

BHA
0

(w)'b1010

1

Bit 1

BHA
0 0

0

0

0

0 2

1

0 0 0

1 2

3

2 3

4

ww-1

w+1

w+1MSB Delay2LSB Delay

Solution to part b appears above. The exact BHA units to use depend on the value of a. The diagram is for a = 10102.

The cost of each BHA is 4 uc, so the total cost is 4w uc . Based on the analysis shown in green on the diagram the LSB delay is 2 ut

and the MSB delay is [w + 1] ut . The critical path for the MSB is shown in red.

(c) If cin were removed (or set to zero) the cost and delay of the optimized adder would depend on a.
Explain why, and illustrate with the example of a=2.

�How are cost and delay dependent on a when cin removed? �Explain using the example a=2.

If cin=0 the cost of the bit 0 BHA drops to zero. If bit a[0]=0 then the co of the bit 0 BHA is 0, a constant, while if a[0]=1
the co output is b[0], not a constant. So for the case of a = 102 the co output of the bit 0 BHA is 0, but the co output of the
Bit 1 BHA is b[1], which is not a constant. For this a = 102 case the cost of the bit 0 and bit 1 BHAs is zero, but the cost of the
remaining BHAs is 4 uc each. For a = 1002 the cost of the first three BHAs would be zero. So the cost of the constant adder with
cin=0 depends on the number of consecutive 0s starting at the LSB of a.

5

← → Fall 2023 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Problem 3: [30 pts] Answer the following Verilog questions.

(a) The module below makes extensive use of multidimensional arrays.

// 2 1 3 4 1 2

module mda(input uwire [2:1] c [5:1], input uwire [7:1][2:1] a [5:1][3:1]);

// � Add dimension(s) to the declaration of e so that the assignment is correct.

//

// SOLUTION

uwire [2:1] e = c[1];

// � Add dimension(s) to the declaration of b so that the assignment is correct.

//

// SOLUTION

uwire [7:1][2:1] b [3:1] = a[1];

logic g [7:0];

logic [7:0] h;

initial begin

// � Which is correct, © the assignment to g or
⊗

the assignment to h. � Explain.

g = 1; // Compile error because g is an unpacked array and 1 is a scalar.

h = 1; // Correct, h is a packed array and so is treated as an integer.

end

endmodule

�What is the size of c, in bits? �What is the size of a, in bits?

The size of object c is 2× 5 = 10 bits. The size of object a is 7× 2× 5× 3 = 210 bits.

(b) The module below does not compile.

module more_stuff #(int n = 20) (output uwire [31:0] sum, input uwire [31:0] a [n]);

logic [31:0] acc;

always_comb begin

acc = a[0];

for (int i=1; i<n; i++)

my_fixed_adder a1(acc, acc, a[i]);

end

assign sum = acc;

endmodule

�Describe the major problem. �DO NOT try to fix the problem.

A module cannot be instantiated in procedural code, which the code above is doing with my fixed adder. This is a major problem
because it can’t be fixed by just changing a declaration or adding new objects. The instantiation must be removed from the procedural
code. Another problem is that acc connects to two parts of my fixed adder. A reasonable guess would be that one of those is
an output and the other is an input. It makes no sense to connect the same object to both an input and an output.

6

← → Fall 2023 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

(c) The module below is supposed to set x = a2 + b2.

module wrong_way(output logic [31:0] x, input uwire [15:0] a, b);

logic [31:0] asq;

uwire [31:0] bsq = b * b;

// initial asq = a * a; // Original line.

always_comb asq = a * a; // Corrected line.

always_comb x = asq + bsq;

endmodule

�Explain the problem. �Using sample inputs show the expected output and the actual output.

� Fix the problem.

Because asq is assigned in an initial block it will only be assigned once. Suppose at t = 0 the inputs are a=2 and b=3. Then
the correct output will appear, x=13. But suppose at t = 1 the inputs change to a=5 and b=6. Object asq will keep its initial
value, 4, and so the output will be x = 22 + 62 = 40 (computed using the t = 0 value of a and the t = 1 value of b).

The simplest fix is to change initial to always comb, that’s shown above.

(d) The module below does not compile.

module my_adder(output uwire [31:0] s, input uwire [31:0] a, b);

always_comb s = a + b;

endmodule

module my_adder(output logic [31:0] s, input uwire [31:0] a, b);

// Fixed module.

always_comb s = a + b;

endmodule

�Why won’t module above compile? � Fix problem by changing declarations.

Because s is assigned in procedural code it must be a var kind, not a net kind. (A uwire is a net kind.) The fixed module is shown
below the broken one.

7

← → Fall 2023 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

(e) The module below compiles but does not provide the expected outputs, pa = a2, pb = b2, and p = a2 +b2.

module incorrect_way(output logic [31:0] pa,pb,p, input uwire [15:0] a, b);

wire [31:0] sq;

assign sq = a * a;

always_comb pa = sq;

assign sq = b * b;

always_comb pb = sq;

always_comb p = pa + pb;

endmodule

module correct_way(output logic [31:0] pa,pb,p, input uwire [15:0] a, b);

/// SOLUTION
uwire [31:0] sqa, sqb;

assign sqa = a * a;

always_comb pa = sqa;

assign sqb = b * b;

always_comb pb = sqb;

always_comb p = pa + pb;

endmodule

�What will be the values of outputs pa, pb, and p?

If a 6= b the value of each output will be x, the Verilog value indicating (in this case) conflicting drivers to an output. If a = b then
the correct result will be computed.

�Describe the problem. � Fix it.

The problem is that sq is continuously assigned in two places, which though it does not violate any Verilog rules (note that sq is
declared wire rather than uwire) it nevertheless does nothing useful. Suppose the a*a line drives sq[0] toward 0 and the b*b
line drives bit sq[0] toward 1. The value of sq[0] will be x, which is not what we want.

A simple fix is to use different objects for a*a and b*b. That is shown above.

Grading Note: Many students incorrectly described the value of sq as alternating between a*a and b*b. That doesn’t happen
because the simulator computes sq by first combining the a*a and b*b values (maybe using an old a or b, but always combining
the two). So there is never a time when sq is cleanly equal to a*a or b*b (unless a=b).

8

← → Fall 2023 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Problem 4: [15 pts] Answer each question below.

(a) A company has two teams, A (very good) and C (slackers) working on modules and a testbench for an
important product. Describe the following consequences:

�The A team works on the modules and the C team works on the testbench. A possible bad outcome is:

The testbench passes the modules, indicating that the modules produce the correct outputs. The company then manufactures the
modules and ships them to customers. The customers discover flaws in the modules that the testbench should have, but didn’t,
uncover. Fortunately the customers weren’t avionics or medical equipment manufacturers.

�The A team works on the testbench and the C team works on the modules. A possible bad outcome is:

The testbench correctly identifies erroneous module outputs and the C team fixes problem after problem identified by the testbench
until eventually they have a set of modules that the testbench passes. The company ships the modules to customers and customers
find that the modules do indeed work flawlessly. The only problem is that the modules cost twice as much as competitors’ products
and use five times the energy. The customers go out of business and so there are no follow-on orders.

Grading Note: Many students assumed that the C team could not get the modules working at all. That would be the F team.
We should assume that experienced practicing engineers can get things working and won’t be tripped up by problems that might have
plagued them in their student days.

(b) In typical use when running simulation a testbench generates inputs for a module-under-test and the
outputs are checked by the testbench to see whether they are correct. After running synthesis we learn how
fast the module is. If simulation is computing the module outputs why can’t it tell us how fast the module
is?

� Synthesis can provide timing information and simulation can’t because:

Determining what the output of a module is, is not the same thing as determining when that output will arrive (the delay of the
output). To determine timing one needs to know the target technology, and that is not provided to the simulator. Further, one needs
to optimize a design, and that’s also not something a simulator does. A synthesis program reads the Verilog, a target technology (in
the form of a design kit) and transforms the original design into one using components from the target technology, and then optimizes
the design to meet a timing constraint at minimum cost.

(c) A gadget can be build using an ASIC or an FPGA. Describe which is more appropriate for each situation
below.

�The gadget must be working within a month. © ASIC or
⊗

FPGA. �Explain.

An ASIC must be manufactured, a time consuming process that can last months.

�Per-gadget cost must be under $1000. Only ten will be made. © ASIC or
⊗

FPGA. �Explain.

Full-Credit Answer: One can easily buy one FPGA for under £1000, but the minimum order for an ASIC is thousands of units.

Explanation: The minimum number of ASICs that can be manufactured is one wafer with, which might fit hundreds of chips. To
make a wafer one must make shadow masks, which themselves aren’t cheap. So it makes no sense to use an ASIC target for only ten
chips. In contrast, an FPGA is programmed after it is manufactured. Programming an FPGA is more like writing memory. So even
if you just buy ten FPFAs there are others buying the same model of FPGA and sharing the development costs.

�Per-gadget cost must be under $100. Ten thousand will be made.
⊗

ASIC or © FPGA. �Explain.

The high costs of setting up an ASIC target can be divided by the 10,000 units that will be sold, resulting in a cost that might be
lower than an FPGA.

9

← → Fall 2023 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

14 Fall 2022 Solutions

250

← → Fall 2022 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Name Solution

Digital Design Using HDLs

LSU EE 4755

Midterm Examination

Wednesday, 19 October 2022, 11:30-12:20 CDT

Alias
Sentient?

Problem 1 (25 pts)

Problem 2 (31 pts)

Problem 3 (20 pts)

Problem 4 (12 pts)

Problem 5 (12 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2022 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Problem 1: [25 pts] Answer the following multiplexor questions.

(a) Complete module mux4 so that it implements a 4-input multiplexor using instantiations of the 2-input
multiplexor shown below. Do not use procedural code.

� Complete mux4 so that it implements a 4-input multiplexor � using mux2 instantiations.

� Do not use procedural code. � Do not change the ports or default parameters of mux4 or mux2.

� Don’t forget to declare any objects that are used.

The solution appears below. The first two muxen, m01 and m23, connect to the data inputs (a0-a3), two per mux. Note that both
of these muxen use s[0] as the select bit. The select connection of the third mux, m0123, connects to bit s[1].

module mux4
#(int w = 3)

(output uwire [w-1:0] x,

input uwire [1:0] s, input uwire [w-1:0] a0, a1, a2, a3);

// SOLUTION

//

uwire [w-1:0] a01, a23;

mux2 #(w) m01(a01, s[0], a0, a1);

mux2 #(w) m23(a23, s[0], a2, a3);

mux2 #(w) m0123(x, s[1], a01, a23);

endmodule

module mux2
#(int w = 6)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, a1);

assign x = s ? a1 : a0;

endmodule

2

← → Fall 2022 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

(b) Module mux2_bad only works for w=1. Describe the problem and show the correct mux output and the
output of mux2_bad for w=4, s=0, a0=2, and a1=4.

module mux2_bad
#(int w = 4)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, a1);

assign x = !s && a0 || s && a1;

endmodule

� In mux2 (a correct mux) when w=4, s=0, a0=2, and a1=4, � output x= 2

� In mux2 bad when w=4, s=0, a0=2, and a1=4, � output x= 1

� Explain the problem when w is not 1.

The problem is that a0 and a1 are operands of a logical AND operator, &&, and so they will be converted to a Boolean (1-bit) type.
That changes both the 2 and 4 in the example to a 1. There would be no problem if a0 and a1 were already 1 bit.

(c) Complete module mux2_1r below so that it recursively implements a 2-input w-bit mux. All that remains
to be done is completing the connections to the two recursive instances, m1 and mr.

The solution is shown below. Note that instance m1 was declared with w=1 and mr was declared with w=w-1 as part of the problem.
So to complete the module instance m1 connects with one bit of each of x, a0, and a1. Here bit zero was chosen but any bit position
would do. Instance mr connects to the remaining w-1 bits of x, a0, and a1. The select signal is the same for both instances.

Note that there is no practical reason to recursively describe a 2-input multiplexor this way, or to recursively describe a 2-input
multiplexor at all.

module mux2_1r
#(int w = 5)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, a1);

if (w == 1) begin

assign x = !s && a0 || s && a1;

end else begin

// SOLUTION

mux2_1r #(1) m1(x[0], s, a0[0], a1[0]);

mux2_1r #(w-1) mr(x[w-1:1], s, a0[w-1:1], a1[w-1:1]);

end

endmodule

3

← → Fall 2022 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Problem 2: [31 pts] The val output of atoi_it_m_to_l is the value of the radix-r ASCII-represented
number appearing at its input, str, and output nd is the number of digits. Unlike the Homework 2 Problem
2 module, this module starts at the most-significant digit rather than the least-significant digit.

module atoi_it_m_to_l
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))

(output logic [wv-1:0] val,

output logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n:0];

uwire is_digit[n:0];

uwire [wd-1:0] ndi[n:0];

assign is_digit[n] = 0;

assign ndi[n] = 0;

assign vali[n] = 0;

assign nd = ndi[0];

assign val = vali[0];

localparam int wcv = $clog2(r);

for (genvar i=n-1; i>=0; i--) begin

// Find Value of Digit i

uwire [wcv-1:0] vald;

atoi1 #(r,wcv) a(vald, is_digit[i], str[i]);

// Multiply (scale) the accumulated sum.

uwire [wv-1:0] valns;

mult_by_c #(.w_in(wv), .c(r), .w_out(wv)) mc(valns, vali[i+1]);

// Update accumulated value.

assign vali[i] = is_digit[i] ? valns + vald : 0;

// Update number of digits.

assign ndi[i] = !is_digit[i] ? 0 : is_digit[i+1] ? ndi[i+1] : i + 1;

end

endmodule

(a) Describe how the behavior of the module would change if the loop direction were changed as shown
below, but no other changes were made.

for (genvar i=0; i<n; i++) begin

� Change in behavior with ascending loop:

There will be no change in behavior. It may be more confusing to a human with the direction of the loop reversed, but the module does
exactly the same thing. To see that look at the line assigning ndi[i]. It is computed using ndi[i+1]. In a procedural language
the forward loop would not work because ndi[i+1] would not have been computed at iteration i when ndi[i] is written. But
this is Verilog and assign is a continuous assignment that re-executes whenever its live-in values change, is digit[i],
is digit[i+1], and ndi[i+1] in this case. All the generate loop is doing is describing hardware, each iteration describes one set
of hardware. When the hardware for assign ndi from iteration x+1 executes it writes ndi[x+1] which results in the assign

4

← → Fall 2022 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

ndi for iteration x to execute because ndi[x+1] is in the sensitivity list for the assign.

(b) On the next (facing) page show the hardware that will be inferred for an instantiation of atoi_it_m_to_l
(descending loop version) with n=3 and r=10. Show each instantiation of atoi1 and mult_by_c as a box,
do not show their contents. The inferred hardware for atoi_it is shown for reference.

For reference, part of Homework 3 Problem 2 solution shown below.

str
0

atoi
.r(14)

str[0]

m_b_c
.c(1)

add

1

0
atoi

.r(14)

str[1]

m_b_c
.c(14)

add

2

0
atoi

.r(14)

str[2]

m_b_c
.c(196)

add

3

i=0 i=1 i=20

1
0
ndi[-1] ndi[0] ndi[1] ndi[2]

nd

val

is_valid[0] is_valid[1] is_valid[2]is_valid[-1]

vali[-1] vali[0]

vali[1]

atoi_it .r(14), .n(3)

valdr valdr valdrvald vald vald

vals vals vals

For reference, part of Homework 3 Problem 2 solution shown above.

� Show inferred hardware for atoi it m to l for n=3 and r=10.

� Show the hardware inferred for the operators, such as && and ?:.

� Do not confuse parameters and ports and omit hardware that does not belong, such as “hardware” to
compute values needed at elaboration time.

Solution appears below. Hardware that can easily be eliminated by optimization appears in gray.

atoi_it_m_to_l .r(10), .n(3)
str

nd

valis
_d

ig
it

[3
]

atoi
.r(10)

is_digit[2]

0 ndi[2]
2

m_b_c
.c(10)0

v
a
li[

3
]

add
0

0

atoi
.r(10)

is_digit[1]

0 ndi[1]

m_b_c
.c(10)

add
0

1

atoi
.r(10)

is_digit[0]

m_b_c
.c(10)

add
0

0 ndi[0]
3

n
d
i[

2
] i=2

v
a
li[2

]

i=1 i=0

v
a
li[1

]

v
a
li[0

]

0

5

← → Fall 2022 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

(c) Module atoi_m_to_l will only show the value of numbers that are right-aligned in str, otherwise the
value will be shown as zero. For example, for input str="__123" the output would be val=123 and nd=3,
but for input str="_123_" the output would be val=0 (because the rightmost character is not a digit).
Modify the module so the val output is the value of the number regardless of its location. If there is more
than one number, say str="__12_345_", show the value of the rightmost number, 345 in this case.

� Modify so that val and nd are for numbers whether or not they are right-aligned.

� Do not use procedural code.

� Avoid costly or slow solutions.

� A correct solution only requires a few changes.

Solution appears in the Verilog on the next page.

In the original code, if is digit[i] was false then the value and length were set to zero. But now since there can be non-digit
characters to the right of the number we can’t set these to zero. So the first case in the expressions assigning vali[i] and ndi[i]
pass the value and length along when is digit[i] is false.

If both is digit[i] and is digit[i+1] are true then a number is continuing at position i. For vali[i] we need to add
on the scaled number from the left (valns) and the current digit, vald. If is digit[i] is true but is digit[i+1] is false
then vali is just the value of the current digit, vald. Unlike in the original hardware we can’t rely on valns being zero for this
case.

In the original hardware the value of i+1 was used for ndi[i] at the left-most digit. That won’t work here because there could be
non-digit characters to the right of the number, so we can’t use the position of the first non-digit character to compute the length.
Instead, when a number is continuing, both is digit[i] and is digit[i+1] are true, the hardware adds 1 to the previous
value of the length (ndi[i+1]).

6

← → Fall 2022 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

module atoi_it_m_to_l
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))

(output logic [wv-1:0] val,

output logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n:0];

uwire is_digit[n:0];

uwire [wd-1:0] ndi[n:0];

assign is_digit[n] = 0;

assign ndi[n] = 0;

assign vali[n] = 0;

assign nd = ndi[0];

assign val = vali[0];

localparam int wcv = $clog2(r);

for (genvar i=n-1; i>=0; i--) begin

// Find Value of Digit i

uwire [wcv-1:0] vald;

atoi1 #(r,wcv) a(vald, is_digit[i], str[i]);

// Multiply (scale) the accumulated sum.

uwire [wv-1:0] valns;

mult_by_c #(.w_in(wv), .c(r), .w_out(wv)) mc(valns, vali[i+1]);

// Update accumulated value.

// assign vali[i] = is_digit[i] ? valns + vald : 0;

/// SOLUTION
assign vali[i] =

!is_digit[i] ? vali[i+1] :

is_digit[i+1] ? valns + vald : vald;

// Update number of digits.

// assign ndi[i] = !is_digit[i] ? 0 : is_digit[i+1] ? ndi[i+1] : i + 1;

/// SOLUTION
assign ndi[i] =

!is_digit[i] ? ndi[i+1] :

is_digit[i+1] ? ndi[i+1] + 1 : 1;

end

endmodule

7

← → Fall 2022 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Problem 3: [20 pts] Illustrated below is the hardware for one of the atoi modules from Homework 3.
The delays for the add, atoi1, and mult_by_c modules are shown in blue. For atoi the delay of the value
(valdr) output is zero and the delay of the is_digit (lower) output is 3.

(a) Based on the illustrated delays and using the simple model find the delay at each output, val and nd,
and show the critical path to each.

� Use the simple model and indicated delays to find the delay at outputs val and nd.

� Show the critical path to both val and nd.

� Take into account constant values.

Solution appears below. Note that the delay of a 2-input mux with one constant input is 1, and the delay with two constant inputs
is zero.

str

0
atoi

.r(10)st
r[

0
]

1

0
atoi

.r(10)st
r[

1
]

m_b_c
.c(10)

add

2

0
atoi

.r(10)st
r[

2
]

m_b_c
.c(100)

add

3
0
ndi[-1] ndi[0] ndi[1]

ndi[2]
nd

val

is_valid[0] is_valid[1]

is_valid[2]

vali[0]
vali[1]

atoi_it .r(10), .n(3)

valdr valdr valdrv
a
ld

v
a
ld

v
a
ld

vals

vals

0

16

20

16

20

3

0 0

3 3

0

3

10 1

11

1 1

1

3

4

4

4

5

5

5

25

41

6

6

26

57

3

63

(b) Modify the design to reduce the delay at val by moving multiplexors. The modification is simple though
will increase cost. Show your modification either on the diagram or in the Verilog code below.

� Modify to reduce the delay at val by moving multiplexors.

� Do not change what the module does.

The solution appears below, with the moved mux shown in orange. By moving the mux to the output of the m b c module it can
start at t = 0 rather than waiting for the mux select signal to arrive.

str

0
atoi

.r(10)st
r[

0
]

1

0

atoi
.r(10)st

r[
1

]

m_b_c
.c(10)

add

2

0
atoi

.r(10)st
r[

2
]

m_b_c
.c(100)

add

3
0
ndi[-1] ndi[0] ndi[1]

ndi[2]
nd

val

is_valid[0]
is_valid[1] is_valid[2]

vali[0]
vali[1]

atoi_it .r(10), .n(3)

valdr

v
a
ld

r valdrv
a
ld

v
a
ld

v
a
ld

vals

vals

0

16

20

16

20

3

0 0

3 3

0

3

10 1

1

1

1 1

1

3

4

4

4

3 5

5

5

21

37

6

6

26

53

3

6

0
20

8

← → Fall 2022 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Problem 4: [12 pts] Answer each question below.

(a) The module below will not compile because of the way the module connections are declared. Fix the
problem by changing the declarations.

� Change declaration to fix problem.

The solution appears below. Since x is assigned proceduraly it must be declared logic, which make it a var kind rather than a
net kind.

module yucx2
#(int w = 5)

(output logic [w-1:0] x, // SOLUTION: Change port from uwire to logic.

input uwire [1:0] s, input uwire [w-1:0] a0, a1);

always_comb begin

x = a0;

if (s != 0) x = a1;

end

endmodule

(b) The mv output of findmax is supposed to be set to the value of the largest of the three inputs. Assuming
it compiles and simulates, it still won’t work. Identify the problem.

� Why won’t mv be set to the maximum of a0, a1, a2?

Because mv is only initialized once, at the beginning of simulation whereas a0, a1, and a2 can change any time.

� Provide an example that illustrates the incorrect behavior.

At t = 10 the inputs are a0=4, a1=7, a2=3. The output will be mv=7. Later at t = 10 inputs are a0=3, a1=2, a2=0. The
output will still be mv=7 because there is no way for mv to be set to a smaller value.

module findmax
#(int w = 5)

(output logic [w-1:0] mv,

input uwire [w-1:0] a0, a1, a2);

initial mv = 0;

always_comb if (mv < a0) mv = a0;

always_comb if (mv < a1) mv = a1;

always_comb if (mv < a2) mv = a2;

endmodule

module findmax
#(int w = 5)

(output logic [w-1:0] mv, input uwire [w-1:0] a0, a1, a2);

always_comb begin // SOLUTION: Possible fix. (Not the best.)

mv = 0; // mv is initialized whenever the a’s change.

if (mv < a0) mv = a0;

if (mv < a1) mv = a1;

if (mv < a2) mv = a2;

end

endmodule

9

← → Fall 2022 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Problem 5: [12 pts] Answer each question below.

(a) Type logic is an example of a four-state type. Name those four states and describe what the non-numeric
ones are used for.

� Name the four logic states.

They are 0, 1, x, and z.

� Describe what the non-numeric ones signify.

State x for var types can mean uninitialized. For both var and uwire it can mean an ambiguous results. For net kinds (such as
uwire) it can mean a bit is driven by more than one driver. State z for net types means it is not being driven (in a high impedance
state).

(b) Most synthesis programs will not synthesize a module that includes a delay, such as the one below. Why
not?

module madd
#(int w)

(output logic [w-1:0] w,

input uwire [w-1:0] a, b, c);

always_comb begin

w = a * b;

#5; // Allow enough time for multiplication to finish.

w = w + a;

end

endmodule

� Why isn’t a delay synthesizeable?

Though it would be possible for a synthesis program and technology target to provide for delays, it would not be very useful, especially
in digital logic design. In the module above the output of the multiplier connects to the input of the adder. A delay has no role to
play, since the inferred hardware is just a bunch of connected gates. There is no way to, and no need to, tell the gates that their
input values have arrived and so now its time to start working.

10

← → Fall 2022 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Name Solution Formatted For Two-Sided Printing

Digital Design using HDLs

LSU EE 4755

Final Examination

Friday, 9 December 2022 15:00-17:00 CST

Alias Multiplexor Mayhem (Student Suggestion)

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (20 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Problem 1: [20 pts] Module norm_comb, below, computes the normal of a vector using floating-point
arithmetic units from a library. The delay through each unit in nanoseconds is shown in the diagram.

fp_sq

fp_sq
fp_add

fp_rsqrt

fp_mul

fp_sq

fp_add

fp_mul

fp_mul

x
y
z

10

10

10

5
5 40

20

20

20

nx

ny

nz

norm_comb

10

10

10

15
20

60

0 0

0

80

80

80

Critical Path (One of several possible.)

(a) Compute the latency and throughput norm_comb given the timings shown in the diagram.

�Compute the arrival time (delay) at each module output.

Arrival times and delays at the outputs are shown as circled purple numbers.

� Show the critical path.

A critical path is shown as a red dotted line. Several others are possible, for example, another critical path starts at y. The illustrated
critical path ends at nz, but it could have ended at ny or nx.

�The latency of this module is:

The latency is 80 ns .

(Because this is a combinational module, the latency is the same as the critical path.)

�The throughput of this module is:

Assuming that the clock period is the same as the critical path length, the throughput is 1 op
80 ns = 12.5 M op

s , where op refers to a
normalization operation. (The throughput is given in units of work per unit time. The unit of work here is a normalization, and the
unit of time is second.)

(b) Draw a diagram of a pipelined implementation of the norm module. The goal is to maximize throughput
first then minimize latency given the delays shown in the diagram from part a. Give some thought as to
what arithmetic units go in what stage. Show the latency and throughput of your pipelined implementation.

�Draw a diagram (not Verilog) of a pipelined version of this norm module. � Be sure to show pipeline
latches.

� For the given delays: Maximize throughput. �Avoid a hasty solution that has a higher latency than is
necessary.

The diagram appears below. Stage boundaries were chosen to minimize critical path, which is 40 ns due to the fp rsqrt module.

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

The following discussion is to help future students understand the solution. Those taking the test need only
show the diagram. To make it a pipeline, pipeline latches (collections of registers) have been inserted to divide the arithmetic
units into three stages. The positioning of the pipeline latches has been chosen to minimize the critical path, and so maximizing clock
frequency and throughput.

Recall from course material that the launch points are assumed to be module inputs and are always at register outputs. The arrival
times at launch points are by definition zero. The capture points are always register inputs. In general they can be module outputs,
but here we are assuming that the module outputs are not capture points, meaning that module outputs must be stable at the
beginning of a clock cycle. (It would also be correct to assume that module outputs were capture points, so long as the
computation of latency and throughput took this into account.) The diagram shows arrival times circled in purple including delays
at the capture points.

The critical path, shown in a red dashed line, is 40 ns, and so the clock period must be set to 40 ns (plus the delay of the register).
The path length in the other two stages is 20 ns. Were it not for fp rsqrt the clock period would be half (and so the clock
frequency would be twice as high). But it is what it is, and so the calculations in the first and last stages finish with 20 ns of slack
(meaning they arrive 20 ns before the end of the clock cycle, which by coincidence is 20 ns after the start of the clock cycle).

In a correct solution the fp rsqrt module must be in a stage by itself. For example, were an fp mul moved into the stage with
the fp rsqrt then the critical path would increase to 60 ns, hurting performance. Though it would be possible to put the two
adders in their own stage without changing the clock period, that would increase cost because another pipeline latch would be needed.

fp_sq

fp_sq
fp_add

fp_rsqrt

fp_mul

fp_sq

fp_add

fp_mul

fp_mul

x
y
z

10

10

10

5
5 40

20

20

20

nx

ny

nz

norm_comb_pipe

0 0

0

0

0

40 20

0

0

0

00

0
0

0

Critical Path (the only one)

15

10

10

10

10
20

20

�The latency of this pipelined implementation is:

Latency refers to the time to complete a normalization operation. The pipeline has three stages and the clock period is at least 40 ns

(the critical path length). Therefore the latency is 3× 40 ns = 120 ns .

Notice that the latency is higher than the combinational module. That is due to the 20 ns of slack in the first and last stages.

�The throughput of this pipelined implementation is:

Because the implementation is pipelined a new result is computed each clock cycle so the throughput is cyc
40 ns

op
cyc = 25 M op

s .
Notice that the throughput is higher than the combinational module. That’s because the module simultaneously computes three
operations.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

← → Fall 2022 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Problem 2: [20 pts] Incomplete module norm_comb_n is a version of the norm module from the previous

problem, now written for vectors of any length, not just 3. (Output ui = ni

(∑n−1
j=0 v2j

)− 1
2

.) It makes use

of module norm_sos to compute the sum
∑n−1

j=0 v2j . (That is, v20 + v21 + · · ·+ v2n−1.) Complete the modules
so that they compute their output combinationally. Use a recursive implementation for norm_sos and use
generate loops for the needed code in norm_comb_n.

�Complete norm comb n so that it computes u in part by using norm sos. �Use a generate loop. �Use
fp mul, � don’t use arithmetic operators.

// SOLUTION

module norm_comb_n #(int w = 32, int n = 8)

(output uwire [w-1:0] u[n], input uwire [w-1:0] v[n]);

uwire [w-1:0] sos; // Sum Of Squares

norm_sos #(w,n) ns(sos, v); // This part is correct, don’t modify it.

uwire [w-1:0] rmag, rs_in;

fp_rsqrt r(rmag, sos); // SOLUTION: Changed rs_in to sos.

// SOLUTION: Use a genvar loop to instantiate one fp_mul per element.

for (genvar i=0; i<n; i++)

fp_mul mi(u[i], v[i], rmag);

endmodule

�Complete norm sos so that it computes
∑n−1

j=0 v2j . � Describe the module recursively. � Use fp sq

and fp add, � do not use arithmetic operators.

module norm_sos #(int w = 32, int n = 4)

(output uwire [w-1:0] sos, input uwire [w-1:0] v[n-1:0]);

// SOLUTION

if (n == 1) begin

fp_sq s(sos, v[0]);

end else begin

localparam int nlo = n/2;

localparam int nhi = n - nlo;

uwire [w-1:0] soslo, soshi;

norm_sos #(w,nlo) slo(soslo, v[nlo-1:0]);

norm_sos #(w,nhi) shi(soshi, v[n-1:nlo]);

fp_add #(w) a(sos, soslo, soshi);

end

endmodule

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Problem 3: [15 pts] Appearing below is the inferred hardware from the pipelined add accumulate module
covered in class. Based on the simple model, show the timing, including the critical path, and compute the
cost. The BFA module is, of course, a binary full adder. If you don’t remember its cost and delay, just work
it out.

add_pipe
add_p0

aout

a0

a1

saa

aout_v

ai_v

ai

sum

1

0 en

0

s
u
m

sum_valid

sum_occupied
reset

clk

add_accum

a

b ci
s

co

BFA

w

w

0

0

0

0

0 0 0

0

0

0

2

0

0
4

4
5 6 7

0

5

0

2

2
3 7

4

2

0

� Show the timing (signal arrival time at each component output) and � the critical path. �Note that
aout arrives at t = 0.

Solution appears above. Arrival times are circled purple numbers and the critical path is a dashed red line.

�Compute the cost using the simple model. Do not include the cost of add pipe but � include the cost of
the BFA. �Pay attention to bit widths.

The total cost is [34w + 43] uc . The table below shows the cost of each kind of component.

Item Count Each Total

Non-Constant 2-input, w-bit Multiplexors 3 3w 9w

Constant 2-input, w-bit Multiplexor 1 w w

w-bit Register with Enable 1 10w 10w

w-bit Registers without Enable 2 7w 14w

1-bit Registers 4 7 28

2-input Gates 4 1 4

3-input NOR Gate 1 2 2

BFA 1 9 9

Total Cost 34w + 43

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

← → Fall 2022 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Problem 4: [20 pts] Appearing below are simplified solutions to Homework 4.

(a) Below is a simplified version of the “official” solution. (Reset hardware is not shown, ignore its absence.
Some object names shortened.) Show the hardware that will be inferred for this module when instantiated
with n_avg_of=4. (Some of the hardware will be similar to the r_avg2 module from the 2021 final exam.)

module word_count
#(int wl = 5, wn = 6, n_avg_of = 10)

(output logic word_start, word_part, word_ended,

output logic [wl-1:0] lword, lavg, output logic [wn-1:0] nwords,

input uwire [7:0] char, input uwire reset, clk);

uwire nws, nwp, nwd;

word_classify wc(word_start, word_part, word_ended,

nws, nwp, nwd, char, clk, reset);

logic [wl-1:0] lrecent[n_avg_of]; // len_recent

logic [wl+$clog2(n_avg_of):0] lsum; // len_sum

assign lavg = nwords >= n_avg_of ? lsum / n_avg_of : 0;

always_ff @ (posedge clk) begin

lword <= nws ? 1 : nwp ? lword+1 : lword;

nwords <= nwd ? nwords + 1 : nwords;

end

// Plan A Code (Referred to in next subproblem.)

always_ff @ (posedge clk) if (nwd) begin

lsum += lword - lrecent[n_avg_of-1];

for (int i=n_avg_of-1; i>0; i--) lrecent[i] = lrecent[i-1];

lrecent[0] = lword;

end

endmodule

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

� Show inferred hardware for n avg of=4.

� Show word classify as a box, don’t attempt to show its contents.

Solution appears below.

Note that the value of lword used to compute lsum += lword - lrecent[n avg of] is the value at the register output.
That’s because lword is assigned using a non-blocking assignment. (It would have been wrong to assign lword using a blocking
assignment because then whether the lsum expression used an old or new lword would depend on simulator timing.)

Because n avg of = 4 (a power of 2) the term lsum/n avg of has been inferred as simply consisting of all but the two
least-significant bits of lsum. Dividers are expensive so this is a good thing.

The body of the last always ff block is guarded by a if (nwd). That is inferred as an enable on all of the registers inferred
for that block, which is lsum and the lrecent registers.

en

clk

8

1 +

1 +

nwords

lsum

lword

+

1

en en en

wl+3:2

0 lavg

⩾

4 (n_avg_of)

w
ord_classify

nwd

nwp
nws

char

reset

–

word_start

word_part

word_ended

lw
ord

word_count (n_avg_of=4)wc

lre¢[0]

lre¢[1]

lre¢[2]

lre¢[3]

en

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

← → Fall 2022 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

(b) The word_count_plan_b module below uses a different approach to keeping track of lsum. The only
difference is the hardware under the Plan B Code comment. This version avoids a loop! That’s great, right?
Show the hardware that will be inferred for the Plan B Code for n_avg_of = 4 and indicate impact on cost
and performance.

module word_count_plan_b
#(int wl = 5, wn = 6, n_avg_of = 10)

(output logic word_start, word_part, word_ended,

output logic [wl-1:0] lword, lavg, output logic [wn-1:0] nwords,

input uwire [7:0] char, input uwire reset, clk);

uwire nws, nwp, nwd;

word_classify wc(word_start, word_part, word_ended,

nws, nwp, nwd, char, clk, reset);

logic [wl-1:0] lrecent[n_avg_of];

logic [wl+$clog2(n_avg_of):0] lsum;

logic [$clog2(n_avg_of):0] tail;

assign lavg = nwords >= n_avg_of ? lsum / n_avg_of : 0;

always_ff @ (posedge clk) begin

lword <= nws ? 1 : nwp ? lword+1 : lword;

nwords <= nwd ? nwords + 1 : nwords;

end

// Plan B Code

always_ff @ (posedge clk) if (nwd) begin

lsum += lword - lrecent[tail];

lrecent[tail] = lword;

tail = tail == n_avg_of - 1 ? 0 : tail + 1;

end

endmodule

�Describe impact on cost of Plan B compared to Plan A.

Plan B would be much more expensive due to the lrecent[tail] terms. The inferred hardware for lrecent[tail] used on
the right-hand-side of an expression is an n avg of-input multiplexor. The cost of the hardware for lrecent[tail]=lword
would be a decoder to provide enable inputs to the lrecent registers. There is also the cost of the tail register and the associated
adder. None of this hardware is needed for Plan A.

�Describe impact on performance of Plan B compared to Plan A.

Because of the two arithmetic units (subtract and add) operating on non-constant values it is likely that lrecent[tail] and
lrecent[n avg of] are on the critical paths in their respective modules. Plan B adds 2 lg navg of ut to the critical path in
comparison with Plan A, so it certainly hurts performance.

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

� Show inferred hardware for Plan B Code. (No need to show hardware for code above the Plan B Code

comment.)

�Consider using an enable (en) signal on the registers to simplify the hardware.

The inferred hardware corresponding to the Plan B Code appears below, circled by a green dotted line. The four lrecent
registers also appear in the Plan A design. Everything else is an added cost.

clk

8

1 +

1 +

nwords

lsum

lword

+

1

wl+3:2

0 lavg

⩾

4 (n_avg_of)

w
ord_classify

nwd

nwp
nws

char

reset

–

word_start

word_part

word_ended

lw
ord

word_count (n_avg_of=4)wc

lre¢[0]

lre¢[1]

lre¢[2]

lre¢[3]

en

en

en

en

en

1 tail

1:1
0:0

+
en

nwd

lre
¢[
ta
il]

ta
il

Plan B
Hardware

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

← → Fall 2022 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Problem 5: [25 pts] Answer each question below.

(a) Show a sketch of the hardware for an 8-bit left shift module, using the logarithmic approach presented
in class.

� Show hardware for 8-bit left shift module. Include the �3-bit shift amount input, � the 8-bit data �
input and 8-bit data output.

Solution appears below.

6:0

1'b0 2'b0

5:0

Shift by 0 or 1

msb

lsb

a
m
t

d
a
ta
_in

d
a
ta
_o
u
t

shift_left_logarithmic

amt[0] amt[1]

4'b0

3:0

amt[2]

Shift by 0 or 2 Shift by 0 or 4

8

3

8 8 8

(b) Provide the following delays based on the simple model.

�What is the delay for a w-bit ripple adder for � the LSB and � the MSB.

The delay of the LSB is 4 ut and the delay of the MSB is 2(w + 1) ut .

�What is the delay for the sum of three w-bit values, say a + b + c, when computed using two ripple adders
and accounting for cascading. Delay of the sum’s � LSB and �MSB.

The general formula for the simple-model delay of bit i at the output of n cascaded ripple adders is [4(n− 1) + 2(i+ 2)] ut. For
this case substitute n→ 2. For the LSB, i→ 0 and for the MSB, i→ w − 1.

The delay of the LSB is 8 ut and the delay of the MSB is [8 + 2(w − 1)] ut .

10 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2022 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

(c) In the code fragment below there is an error in one of the last two lines.

module examples(input uwire [31:0] a, b);

localparam logic [31:0] la = a + b; // Incorrect.

uwire logic [31:0] ua = a + b; // Correct.

�Which line above is incorrect? �Why?

The first line is incorrect because the value assigned to localparam must be an elaboration-time constant. Since a and b are
module inputs they are not elaboration time constants.

(d) The code fragment below lacks declarations.

�Declare objects aa, ca, and fa so that the code below is correct.

module examples(input uwire [31:0] a, b, input uwire clk);

uwire [31:0] aa; // SOLUTION

logic [31:0] ca, fa; // SOLUTION

assign aa = a + b;

always_comb ca = a + b;

always_ff @(posedge clk) fa = a + b;

(e) Again consider the code above that assigns aa, ca, and fa. Draw a timing diagram that includes values
of a, b, and clk for which at least one of the values aa, ca, and fa will at times differ from the others.

�Draw a timing diagram showing how aa, ca, and fa won’t all be the same all the time.

clk

a

b

aa, ca

fa

10

2 3 4 5 6

12 13 14 15 16 17

12 13 15 17

7 8

18

18

aa and fa
different

aa and fa
similar

40.0 50.0 60.0t/ps 70.0 80.0The timing diagram appears to the right. The timing of the
changes on input b before t = 70.0 result in the output
fa being different than aa and ca for much of the time.
This is because changes b occur well before the positive edge
of clk. Outputs aa and ca, because they are driven by
combinational logic, will start changing as soon as b starts
changing. In contrast fa only starts changing at the positive
edge of clk, and the changes are based on the values of a
and b that were present at the positive edge. For example,
b starts to change at t = 40.0, which is too late for fa to
change immediately, it must wait until t = 50.0. Starting
at t = 70.0 changes to b complete just before the positive
edge, and so aa and fa have close to identical timing.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

← → Fall 2022 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

15 Fall 2021 Solutions

272

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Name Solution

Digital Design Using HDLs

LSU EE 4755

Midterm Examination

Wednesday, 27 October 2021, 11:30-12:20 CDT

Alias
Vwl Shrtg

Problem 1 (25 pts)

Problem 2 (30 pts)

Problem 3 (10 pts)

Problem 4 (10 pts)

Problem 5 (15 pts)

Problem 6 (10 pts)

Exam Total (100 pts)

V (mRNA) ⇒ Re < 1 Good Luck!

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Problem 1: [25 pts] Appearing in this problem are two variations on hardware that selects one of four
inputs, i, based on the position of the least-significant 1 in a 4-bit quantity, fmt. This is similar to the
hardware needed in the solution to Homework 2, except that here i[3] can be selected.

module nn_sparse #(int w = 20)

(output logic [w-1:0] o, input uwire [w-1:0] i[4], input uwire [3:0] fmt);

(a) Show the hardware that will be inferred for is0 and show that hardware after optimization.

uwire [w-1:0] is0 = fmt[0] ? i[0] : fmt[1] ? i[1] : fmt[2] ? i[2] : i[3];

� Show inferred hardware.

� Show optimized hardware. Hardware can be re-arranged to reduce delay.

� Use only basic logic gates and multiplexors.

Solution appears below. The unoptimized hardware follows the rules for inference of the conditional operator (?:). In the optimized
version the critical path is reduced by two units by rearranging the three multiplexors into a reduction tree and using an OR gate to
provide a control signal for the mux at the root.

4

fmt

i

nn_sparse (w)

w ✕ 4

2:2

i[2]
w

i[3]
w

i[1]
w

i[0]
w

1:1 0:0

is0

4

fmt

i

w ✕ 4

2:2

i[2]
w

i[3]
w

i[1]
w

i[0]
w

0:0

is0

1:1

Unoptimized.
Critical path length is 6 ut.

Optimized.
Critical path length is 4 ut.

Critical path
shown in red.

nn_sparse (w)

Critical path
shown in red.

(b) Compute the cost and delay of the optimized hardware for is0 in terms of w. (That’s w, not its default
value.)

� In terms of w cost is:

Each multiplexor (optimized or not) cost 3w uc and the OR gate cost 1 uc. The total cost for the unoptimized version is 9w uc

and the total cost for the optimized version is [9w + 1] uc.

� In terms of w delay is:

The delay through a 2-input multiplexor is 2 ut. In the unoptimized version the critical path passes through three multiplexors, for
a delay of 6 ut. In the optimized version the critical path passes through just 2 muxen, for a delay of 4 ut.

Note that the delay is not a function of w. Be sure that you thoroughly understand why this is true.

2

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

(c) Appearing below is an alternative design. Net is0b will have the same value as is0. Show the hardware
below before and after optimization. For isi0 do not show multiplexors after optimization. For is0b use
two-input multiplexors (as many as needed).

uwire [1:0] isi0 = fmt[0] ? 0 : fmt[1] ? 1 : fmt[2] ? 2 : 3;

uwire [w-1:0] is0b = i[isi0];

� Show inferred hardware.

The inferred hardware appears below. The logic computing isi0 is similar to the logic computing is0 in the previous part, except
that its inputs are constants rather than elements of i. The inferred logic for is0 here is a four-input multiplexor.

4

fmt

i

nn_sparse (w)

w ✕ 4

2:2

i[1]
w

i[0]
w

i[2]
w

i[3]
w

1:1 0:0

is0b

Unoptimized hardware.
Purple shows mux delays
after optimization.

Critical path shown in red.

2'd3

2'd2 2'd1 2'd0

isi0

4

1 10

3

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

� Show optimized hardware, optimize to reduce delay.

� Use basic logic gates and � no muxen for isi0 and � two-input muxen (plus other logic) for is0b.

The optimized logic computing isi0 appears below after several steps in the optimization process. At the last step the logic for
is0b is also shown, but that logic is not fully optimized. The optimization shown below is based on the Verilog code above. A
synthesis program that has not been provided with the limit on the values of fmt could do no better. (With knowledge that exactly
one bit of fmt will be 1 a synthesis program (or human) would optimize the two lines above into the logic given for the solution to
part (a) of this problem.)

4

fmt

2:2 1:1 0:0
2'd3

2'd2 2'd1 2'd0

isi0

lsb

msb

4

fmt

2:2 1:1 0:0

2'b11

2'b10

lsb

msb

4

fmt

2:2 1:1 0:0

2'b11

2'b10

lsb

msb
2'b01

lsb

msb
2'b01

2'b00

2'b00

lsb

4

fmt

2:2 1:1 0:0

2'b11

2'b10

lsb

2'b01
2'b00

isi0

i

w ✕ 4
is0b

i[0] w

i[1] w

i[2] w

i[3] w

isi0
[0

]
isi0

[1
]

msb

lsb

isi0

isi0
[0

]
isi0

[1
]

msb

lsb

isi0
[0

]

isi0
[1

]

4

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

(d) Compute the cost and delay of the optimized hardware (from the previous part) in terms of w. (That’s
w, not its default value.)

� In terms of w cost is:

The cost of the logic in the last section of the illustration above the cost is [3+3×3w] uc. The cost would drop to [1+3×3w] uc

if the select signals to the first two multiplexors were connected as shown in the optimized solution to part (a).

� In terms of w delay is:

The delay of the hardware in the last section of the illustration above is [1 + 1 + 2 + 2] ut, with the critical path passing through
the logic generating isi0[0]. One cycle can be saved by switching the positions of isi0[0] and isi0[1] and correspondingly
rearrange the order of the i inputs to the first two multiplexors to i[0], i[2], i[1], i[3]. That would reduce the critical
path by 1.

5

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Problem 2: [30 pts] The next_dist4 hardware illustrated below consists of several duplicated pieces of
hardware, one of which is circled. Call the circled hardware an ami unit (for add-minimum).

L L[0]

d

d[0]

L[1]

d[1]

L[2]

d[2]

<

1

0
<

1

0+

+

<

1

0

L[3]

d[3] +

+

e

next_dist4 (w)

w

w

w

w

w

w

w

w

w

Critical path
is red dashed line.

Cascaded

(a) Compute the cost and delay of the module using the simple model, and show the critical path on the
illustration. Assume that the adder and comparison units are based on ripple adders.

� Cost in terms of w:

The module consists for four adders, three comparison units and 3 multiplexors. Each of these devices operate on w bits. Based on
the slides describing the simple model, the cost of a w-bit ripple adder is 9w uc, the cost of a w-bit comparison unit is 4w uc, and

the cost of a w-bit 2-input multiplexor is 3w. The total cost is [4× 9w + 3× 4w + 3× 3w] uc = 57w uc .

� Show critical path. � Delay in terms of w:

� Account for any cascading ripple units.

The critical path appears on the illustration as a red dashed line.

The start of the path passes through an adder and a comparison unit. In isolation the delay of an adder is 2(w + 1) ut and the
delay of a comparison unit is slightly less, [2w + 1] ut according to the simple model slides. But because the output of the adder
(actually two adders) connects to the comparison unit the cascaded delay can be used, which is [4 + 2(w + 1)] ut = [2w + 6] ut.
Because of the multiplexors cascading delays cannot be used for the other two comparison units. That is because their upper inputs
don’t arrive until the mux select signal stabilizes. So the remaining delay is that of three 2-input muxen and two w-bit comparison

units: [3× 2 + 2× (2w + 1)] ut = [4w + 8] ut. The total delay is [2w + 6 + 4w + 8] ut = [6w + 14] ut .

6

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

(b) Appearing below are two incomplete modules, one is an ami module the other is the next_dist4 module.
Complete these modules to match the diagram using as many ami modules as needed. The ami module can
use procedural or implicit structural code. The next_dist4 module must instantiate and use ami modules
but can contain procedural or implicit structural code.

� Complete the ami module so that it matches the circled hardware.

� Complete the next dist4 module using as many ami modules as needed.

� Don’t forget to �declare any intermediate objects that are used.

� Noting that there are four adders and the width of each wire is w, � declare and use parameters appro-
priately.

module ami #(int w = 22) /// SOLUTION

(output uwire [w-1:0] s_out,

input uwire [w-1:0] L, d, s_in);

// Compute sum ..

//

uwire [w-1:0] sum = L + d;

//

// .. and connect it to s_out if it’s smaller than input value, s_in.

//

assign s_out = sum < s_in ? sum : s_in;

endmodule

module next_dist4 #(int w = 12) /// SOLUTION

(output uwire [w-1:0] e,

input uwire [w-1:0] L[4], d[4]);

// Compute first sum. This does not need a comparison, so don’t use ami.

//

uwire [w-1:0] e0 = L[0] + d[0];

// Interconnections between ami instances.

//

uwire [w-1:0] e1, e2;

// Instantiate three ami modules and interconnect them properly.

//

ami #(w) a1(e1, L[1], d[1], e0);

ami #(w) a2(e2, L[2], d[2], e1);

ami #(w) a3(e, L[3], d[3], e2);

endmodule

7

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

(c) Incomplete module next_dist is a generalization of next_dist4 to n elements per input. The module
includes a generate loop. Use that loop to instantiate ami modules so that it performs the correct calculation.
Keep the loop simple, don’t try to fix the delay problem.

� Complete module, taking advantage of the generate loop.

� Be sure to instantiate ami modules, �connect the first ami correctly, �and don’t leave e unconnected.

module next_dist /// SOLUTION

#(int n = 20, w = 12)

(output uwire [w-1:0] e,

input uwire [w-1:0] L[n], d[n]);

localparam logic [w-1:0] mv = ~w’(0);

uwire [w-1:0] ee[n-1:-1];

assign ee[-1] = mv;

assign e = ee[n-1];

for (genvar i=0; i<n; i++) begin

ami #(w) a(ee[i], L[i], d[i], ee[i-1]);

end

endmodule

8

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Problem 3: [10 pts] Consider the with_assign module below.

module with_assign #(int w = 10)

(output uwire [w-1:0] g, input uwire [w-1:0] b, c);

uwire [w-1:0] a, f;

// Sensit. Execution Time

// List And Scheduled Lines

assign g = f | c; // Line 1 f,c x x x

assign f = a * c; // Line 2 a,c x ->(L1) x ->(L1)

assign a = b + c; // Line 3 b,c x ->(L2)

// ----- ----- ---

// Active Active Active

// List List List

endmodule

(a) Why might the module confuse or annoy humans?

� with assign could be confusing because:

The dataflow order (order of dependencies) is from bottom to top but humans expect to read these things from top to bottom. (Line
2 depends on Line 3, Line 1 depends on Line 2.) That would be annoying.

(b) The module makes extra work for simulators too. Suppose that the input values to with_assign, b and
c, change at t = 10. About how many times will each line below execute in a worst-case scenario? The
following sentence was not in the original exam: Use sensitivity lists to justify your answer.

� About how many times does each line execute? � Explain with sensitivity lists.

See the work in the comments above for this discussion. At t = 10 because b and c change Lines 1-3 are all put first in the inactive
list, then in the active list for execution. As a result of their execution Line 1 and Line 2 are placed in the inactive list. That becomes
the active list when the first one shown is empty. The execution of Lines 2 causes Line 1 to be scheduled a third time. So in total,
Line 1 executes 3 times, Line 2 executes twice and Line 3 once.

(c) Complete the sans_assign routine below so that it does the same thing as with_assign but is less
confusing and less work for simulators.

� Complete routine below. (Yes, it’s easy but not trivial.)

module sans_assign #(int w = 10)

(output logic [w-1:0] g, input uwire [w-1:0] b, c);

logic [w-1:0] a, f; // SOLUTION: Change to logic. Also g.

always_comb begin

// SOLUTION: Put lines in dataflow order.

a = b + c; // Line 3

f = a * c; // Line 2

g = f | c; // Line 1

end

endmodule

9

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

� Why does sans assign make less work for the simulator than with assign? Explain using sensitivity lists.

The sensitivity list of the always comb consists of just b and c. Objects a, f, and g are not in the sensitivity list (because their
values when begin is reached are not used). The always comb block will only be scheduled for execution when b or c changes.
So for the t = 10 scenario the block—and each line—is executed just once.

10

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Problem 4: [10 pts] Appearing below is an ordinary multiplier, followed by a multiplier that is näıvely
designed to take advantage of special cases (first operand is 0 or 1), followed by a module that instantiates
both.

module mult #(int w = 32)

(output logic [w-1:0] p, input uwire [w-1:0] a, b);

always_comb p = a * b;

endmodule

module mult_1a #(int w = 32)

(output logic [w-1:0] p, input uwire [w-1:0] a, b);

always_comb begin

if (a == 0) p = 0;

else if (a == 1) p = b;

else p = a * b;

end

endmodule

module nm #(int w = 32, logic [w-1:0] c = 12)

(output uwire [w-1:0] prods[4], input uwire [w-1:0] a[4], b[4]);

mult #(w) m1 (prods[0], a[0], b[0]);

mult #(w) m2 (prods[1], c, b[1]);

mult_1a #(w) ma1(prods[2], a[0], b[0]);

mult_1a #(w) ma2(prods[3], c, b[1]);

endmodule

� Explain why m1 will be faster (lower delay) than ma1, even when possible values of a[0] include 0, 1, and
other values. Assume good synthesis programs.

The critical path of mult goes through just a multiplier. The critical path of mult 1a goes through a multiplier and a multiplexor,
and so the critical path is longer. The fact that the output is available sooner for the two special cases does not change the critical
path.

� How will the cost and performance of m2 and ma2 compare (to each other) using good synthesis programs?
That is, � which should be chosen when delay is the only concern and, � which of the two should be
chosen when cost is the only concern. The answer should not depend on any particular value of c.

In m2 and ma2 the a input is a constant. The synthesis program will then be able to determine, for mult 1a, which part of the
if/else chain executes and synthesize only for that. If a=3 then it will be the a*b part, and so the two modules are identical. In
both m2 and ma2 the synthesis program can see that the a input is a constant and will optimize the multiplier appropriately. That
means if a=1 ma2 will have no advantage.

11

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Problem 5: [15 pts] Answer the following questions about Verilog syntax and semantics.

(a) Appearing below are four variations on a multiplier with a constant input. Most have errors that would
prevent them from compiling. For each indicate whether there is an error, and if so, what the error is and a
minimal fix.

� Module is © correct or �© has the following error and fix:

The assignment statements, such as p=0;, in the module below are an error in a module context.

module mult_2a #(int w = 32, logic [w-1:0] a = 12)

(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (a == 0) p = 0;

else if (a == 1) p = b;

else p = a * b;

endmodule

One solution is to switch to a continuous assignment (an assign statement), that has been done below.

module mult_2a #(int w = 32, logic [w-1:0] a = 12) /// SOLUTION

(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (a == 0) assign p = 0; // SOLUTION: Use assign.

else if (a == 1) assign p = b;

else assign p = a * b;

endmodule

12

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

� Module is © correct or �© has the following error and fix:

A procedural assign is being used on a net kind (uwire in this case). So, unlike mult 2a, the kind of assignment statement is
correct here since the assignment occurs in procedural code. The problem is kind of object being assigned.

module mult_2b #(int w = 32, logic [w-1:0] a = 12)

(output uwire [w-1:0] p, input uwire [w-1:0] b);

always_comb begin

if (a == 0) p = 0;

else if (a == 1) p = b;

else p = a * b;

end

endmodule

A simple fix is to change p to a var. Note that uwire is short for uwire logic and that logic is short for var logic.

module mult_2b #(int w = 32, logic [w-1:0] a = 12)

(output logic [w-1:0] p, input uwire [w-1:0] b);

// SOLUTION: Change p from "uwire logic" to "var logic".

always_comb begin

if (a == 0) p = 0;

else if (a == 1) p = b;

else p = a * b;

end

endmodule

13

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

� Module is © correct or �© has the following error and fix:

The if in the code below is a generate if, and its condition, b==0, is not an elaboration-time constant. (The expression b==0 is
not an elaboration-time constant because b is a module input.)

module mult_2c #(int w = 32, logic [w-1:0] a = 12)

(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (b == 0) p = 0;

else if (b == 1) p = a;

else p = a * b;

endmodule

A fix is to make the code procedural by wrapping it in an always block and making p a var.

Note: Changing b to a in the if condition is NOT an appropriate fix because it changes what the module does.

module mult_2c #(int w = 32, logic [w-1:0] a = 12)

(output logic [w-1:0] p, input uwire [w-1:0] b);

always_comb /// SOLUTION: Change generate if to procedural if.

if (b == 0) p = 0;

else if (b == 1) p = a;

else p = a * b;

endmodule

� Module is �© correct or © has the following error and fix:

module mult_2d #(int w = 32, logic [w-1:0] a = 12)

(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (a == 0) assign p = 0;

else if (a == 1) assign p = b;

else assign p = a * b;

endmodule

14

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

(b) Show the values of b and c where requested below.

The solution appears below. The difference between a, b, and c are in how the bits are numbered. That only impacts the use of the
indexing (bit select) operator, [i]. It does not affect assignments and other references to the objects. For that reason b and c on
the first assignment are the same as a. However, the second assignment of b refers to the bits, so they are reversed.

module assortment;
logic [15:0] a;

logic [0:15] b;

logic [16:1] c;

initial begin

a = 16’h1234;

b = a;

c = a;

// � Show value of b and c after line above executes:

// SOLUTION:

// b = 16’h1234

// c = 16’h1234

#1; // Not really needed.

for (int i=0; i<16; i++) b[i] = a[i];

// � Show value of b after line above executes:

// SOLUTION

// b = 16’h2c48

// = 16’b_0010_1100_0100_1000

//

// Note that:

// a = 16’b_0001_0010_0011_0100

end

endmodule

15

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Problem 6: [10 pts] Answer the following synthesis questions.

(a) Cadence Genus defines the following three synthesis steps: syn_gen (generic), syn_map (mapped, or
technology mapping), and syn_opt (optimized). Answer the following questions about technology mapping.

� Explain what happens during technology mapping.

In technology mapping generic gates (say, a 3-input AND gate) are replaced by gates in the target technology. The replacement can
also happen at a higher level, so a generic adder module would be replaced by an adder in the target technology, if such a thing is
provided.

� Even if optimization were done before technology mapping why is it important optimize after technology
mapping?

The optimization would be on generic gates, which might be available at any size. The target technology might have gates with, say,
2, 4, or 6 inputs, but not 3 or 5 inputs. So another round of optimization might find a way to use those wasted inputs. Also, after
technology mapping the delay of gates are known, and so delay optimization can occur.

(b) What is the big disadvantage of setting the delay target too low when performing synthesis? (The small
disadvantage is that it takes a longer time to run.)

� Disadvantage of setting delay target too low during synthesis:

With a very large delay target the optimization program can minimize cost. As the delay is lowered the optimization will have to
substitute higher-cost alternatives to meet the delay target. (For example, substituting a carry lookahead adder for a ripple adder.)
Making the delay smaller than it needs to be can result in costs higher than they need to be.

16

← → Fall 2021 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Name Solution Formatted For Two-Sided Printing

Digital Design using HDLs

LSU EE 4755

Final Examination

Wednesday, 8 December 2021 7:30 CST

Alias Good Luck JWST!

Problem 1 (30 pts)

Problem 2 (35 pts)

Problem 3 (15 pts)

Problem 4 (20 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Problem 1: [30 pts] For the modules in this problem input sample holds a new value each cycle, and
output r_avg holds the average of the last n_samples inputs. (Ignore the fact that the module needs but
lacks a reset.)

(a) For the module below show the hardware that will be inferred when instantiated with default parameters.
Be sure to optimize for the default value of n_samples.

module ravg2 #(int w = 8, n_samples = 4)

(output logic [w-1:0] r_avg,

input uwire [w-1:0] sample, input uwire clk);

logic [w-1:0] samples[n_samples];

parameter int wm = $clog2(n_samples);

parameter int ws = w + wm;

logic [ws-1:0] tot;

always_ff @(posedge clk) begin

samples[0] <= sample;

for (int i=1; i<n_samples; i++) samples[i] <= samples[i-1];

tot <= tot - samples[n_samples-1] + samples[0];

end

always_comb r_avg = tot / n_samples;

endmodule

Solution on next page.

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

� Show hardware for the module above using default parameter values.

�Optimize for these parameter values.

Solution shown below. Notice that because non-blocking assignments were used to assign samples[i], the computation of tot
uses the register outputs. In particular samples[0] is the register output, which is the value of sample from the previous cycle.

Because n samples=4 is a power of 2, the division, tot/n samples, can be done by shifting right by two bits. Since the shift
is constant just use bits 7:2 of tot and place two bits of zero in the MSB of the output.

s
a
m

p
le

r_
a
v
g

r_avg2 (w=8, n_samples=4)

8

8

c
lk

2
'b

0
sa
m
p
le
s[0

]

sa
m
p
le
s[1

]

sa
m
p
le
s[2

]

sa
m
p
le
s[3

]

tot
lsb

msb

7:2+−

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

(b) The module to the right is similar to ravg2 except that it has three arithmetic unit instantiations: an
adder, a subtractor, and a divide-by-constant unit. Modify ravg3 so that it uses these modules. For full
credit connect them so that the critical path passes through at most one module per cycle. In a correct
solution r_avg will arrive at the output of ravg3 later than it would in module ravg2.

�Modify ravg3 so that it uses the three arithmetic units.

� For full credit, the critical path can go through at most one arithmetic unit per cycle.

�The connections to the arithmetic units can be changed (say from aa1 to something else).

�Do not add unnecessary cost or delay.

Solution appears below.

Please be sure to understand the following important points.

So that the critical path passes through at most one arithmetic module, the inputs to the arithmetic modules cannot connect to
arithmetic module outputs. Instead, they connect to registers, such as tot and samples[0].

So that the running sum is correct, the values of samples[0] and samples[n samples-1] must be used in the same cycle.
For that reason the subtractor is used to compute samples[0] - samples[n samples-1]. It would not be correct to
compute diff = tot - samples[n samples-1] in one cycle and tot = diff-samples[0] in the next cycle because
samples[0] is the wrong value.

Notice that samples[0] was directly connected to the subtractor input. That’s more convenient than using an intermediate
variable, say sa1.

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

module ravg3 #(int w = 8, n_samples = 4)

(output logic [w-1:0] r_avg,

input uwire [w-1:0] sample,

input uwire clk);

logic [w-1:0] samples[n_samples];

parameter int wm = $clog2(n_samples);

parameter int ws = w + wm;

logic [ws-1:0] tot;

// SOLUTION - Declare a register to hold output of subtractor.

logic [ws-1:0] pl_diff;

always_ff @(posedge clk) begin

samples[0] <= sample;

for (int i=1; i<n_samples; i++) samples[i] <= samples[i-1];

// tot <= tot - samples[n_samples-1] + samples[0]; // Modify or eliminate this line.

// SOLUTION - Write output of subtractor and adder into registers.

pl_diff <= diff;

tot <= sum;

end

// always_comb r_avg = tot / n_samples; // Modify or eliminate this line.

// SOLUTION - Remove unneeded declarations. (aa1, etc.)

uwire [ws-1:0] sum, diff;

// SOLUTION - Use subtract to compute samples[0] - samples[n_samples-1]

our_sub #(ws,w) sub2(diff, samples[0], samples[n_samples-1]);

// SOLUTION - Use adder to compute new value of tot.

our_adder #(ws,ws) adder1(sum, tot, pl_diff);

// SOLUTION - Use divider to compute r_avg.

our_div_by #(w,ws,n_samples) div3(r_avg, tot);

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Problem 2: [35 pts] Appearing below is a Verilog description of a lower-cost version of the bit_keeper

module from Homework 4 and a diagram of the hardware.

typedef enum { Cmd_Reset=0, Cmd_Rot_To=1, Cmd_Write=2, Cmd_Nop=3, Cmd_SIZE } Command;

module rot_left #(int w = 10, amt = 1)

(output uwire [w-1:0] r, input uwire [w-1:0] a);

assign r = { a[w-amt-1:0], a[w-1:w-amt] };

endmodule

module bit_keeper_lite #(int wb = 64, wi = 8, ws = $clog2(wb))

(output logic [wb-1:0] bits, output uwire ready,

input uwire [1:0] cmd, input uwire [wi-1:0] din,

input uwire [ws-1:0] pos, input uwire clk);

localparam int ramt_a = 1; // Specify Rotation Amounts

localparam int ramt_b = 1 << (ws >> 1);

uwire [wb-1:0] ra, rb;

rot_left #(wb,ramt_a) rl1(ra,bits);
rot_left #(wb,ramt_b) rl8(rb,bits);
logic [ws-1:0] rot_to_do; // Remaining amount of rotation to do.

assign ready = rot_to_do == 0;

always_ff @(posedge clk) case (cmd)

Cmd_Reset: begin bits = 0; rot_to_do = 0; end

Cmd_Rot_To: rot_to_do = pos; // Initialize rotation. Rotate during Nop.

Cmd_Write: bits[wi-1:0] = din;

Cmd_Nop: // Continue Executing a Cmd_Rot_To

if (rot_to_do >= ramt_b) begin

bits = rb; // Use output of larger rot module.

rot_to_do -= ramt_b; // Decrement remaining rot amt.

end else if (rot_to_do >= ramt_a) begin

bits = ra; // Use output of smaller rot module.

rot_to_do -= ramt_a; // Decrement remaining rot amt.

end

endcase

endmodule

(a) Find the cost and delay of the illustrated hardware using the simple model. Take into account the
presence of constants. For the addition and comparison units assume a ripple implementation. Show any
assumptions made. (See the next part before solving this one.)

� Show cost in terms of wb, wi, and ws. �Take into account constants.

The hardware consists of registers, multiplexors, adders, comparison units, and constant shifters.

Shifters: Since they shift by a constant amount the total shifter cost is zero .

Registers: The cost of a w-bit register is 7w uc. There are two registers, bits and rot to do. There sizes are wb and ws,

so their combined cost is 7(wb + ws) uc .

Two-Input Multiplexors: The cost of a w-bit, 2-input mux is 3w uc. In the illustrated hardware there are two wb-bit 2-input

muxen and two ws-bit 2-input muxen. (None of their inputs are constant.) Their total cost is [2× 3wb + 2× 3ws] uc = 6(wb + ws) uc .

Four-Input Multiplexors: A w-bit four-input mux can be constructed from three 2-input muxen, and so its cost would is
3 × 3w uc = 9w uc. The cost of a w-bit, 2-input mux with a constant data input is w uc. Each of the four-input muxen has a

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

constant data input, reducing the cost to (2 × 3 + 1)w uc = 7w uc. The total cost of the two four-input muxen accounting for

the constant input is 7(wb + ws) uc .

Adders: An ordinary w-bit ripple adder costs 9w uc. A w-bit ripple adder with one constant input costs 4w uc. The two adders
each have one constant input. Based on just that their costs are 4× 2ws uc. But the value of ramt b is 2ws/2, and so the ws/2
least-significant bits of ramt b are zero. That means the adder passes those low bits through unchanged, reducing the adder cost to
just ws/2 uc. Looking at the ramt a adder in isolation one would have to conclude that its cost is 4ws uc with ramt a=1. But the
output of the adder is ignored if rot to do>ramt b meaning that we can assume the input to the ramt a adder is no greater than

ramt b and so we only need a ws/2-bit adder. With both of those optimizations the total adder cost is 2× 4ws

2 uc = 4ws uc .

Comparison Unit: Recall that a ripple comparison unit is constructed from the carry logic of ripple subtractor. The cost of a
w-bit comparison is 4w uc. But one constant input reduces the cost to just w uc. With no further optimizations the cost of the
two comparison units is 2ws uc.

The ramt a comparison is irrelevant if rot to to is greater than ramt b, and so only ws/2 bits need be examined. If the
ramb b comparison operation were ≥ then it could just examine ws/2 bits. But since the operation is strictly greater than all bits
must be considered. But using the output of the ramt a comparison the >ramt b comparison could be done by examining ws/2

more bits. The total comparison cost is 2× ws

2 uc = ws uc .

� Show delays and arrival times on the diagram, and �highlight the critical path. These should be in terms
of wb, wi, and ws.

wb-1:wi

c
lk

0

p
o
s

ra
m
t_
b

ra
m
t_
a

-r
a
m
t_
b

-r
a
m
t_
a

>
>

+ +

rot_left
(amt=ramt_a)

rot_left
(amt=ramt_b) 0

lsb

c
m
d

d
in

bits

wb

wi

2

ws

bit_keeper_lite

wb

ws ro
t_to

_d
o

rot_to_do

bits

bits

2
2

2
2

4

4

ws /2

ws /2
ws /2

ws /2

0
0

0

0

0

0

0

w
s /2

w
s /2

ws /2 + 2

w
s /2

ws /2

w
s /2

 +
 8

w
s /2

 +
 4

ws /2 + 2

The timings and critical path are shown on the di-
agram. Blue shows the delay through a component,
such as 2 for two-input multiplexors. Circled times
show the delay of the longest path starting at module
inputs and register outputs. A critical path is shown
as a red dotted line. Note that there are several criti-
cal paths in this circuit though only one is illustrated.

Multiplexor Delay: The delay of an ordinary two-
input mux is 2 ut. If one input is constant the delay
is 1 ut. The delay of an n-input mux is dlg ne2 ut,
which works out to 4 ut for a four-input mux. The
next sub-problem shows how that delay can effectively
be reduced to 2 ut on the critical path. The diagram
to the right does not reflect that optimization.

Adder Delay: The delay of a w-bit ripple adder
with a constant input is w ut. The timings in the
diagram are based on ws/2-bit adders.

Comparison Delay: The delay of a w-bit ripple comparison unit with a constant input is w ut. The timings in the diagram are
based on ws/2-bit comparison units.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

(b) In class we assume that a four-input mux is implemented using a reduction tree of 3 two-input muxen.
For the illustrated hardware that would result in a longer critical path than is necessary. Modify the diagram
on the right to show a better way of implementing the four-input multiplexors.

�Replace four-input multiplexors with two-input muxen connected to reduce critical path.

Solution appears on the lower half of the next page. The four-input mux has been replaced by three two-input muxen, but not
connected in a reduction tree. The benefit of this non-tree connection is that one of the inputs, the fourth as used here, has a delay
of only 2 ut. That is the input that carries the critical path, and so the critical path delay is reduced by 2 ut.

(c) Notice that care was taken to ensure that ramt_b is a power of 2. Explain how the fact that ramt_b is
a power of two reduces the cost of the adder and comparison unit operating on ramb_b. Also explain how a
power-of-2 ramb_b can reduce the cost of the other adder and comparison unit, if the synthesis program is
clever enough. Hint: Consider the binary representation of rot_to_do.

� Since ramt b is a power of 2 the adder and comparison unit connected to ramt b are lower cost because:

Because the lower ws/2 bits of ramt b are all zero. Because ramt b is also a constant there is no need for an adder at all for the
least significant ws/2 bits.

� Since ramt b is a power of 2 the adder and comparison unit connected to ramt a (yes, a) are lower cost
because:

Because the output of the ramt a adder is only used if rot to do <= ramt b. Therefore there is no point in providing an adder
that can handle more than ws/2 bits. For the same reason the comparison unit need only consider the lower ws/2 bits.

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

wb-1:wi

c
lk

0

p
o
s

ra
m
t_
b

ra
m
t_
a

-r
a
m
t_
b

-r
a
m
t_
a

>
>

+ +

rot_left
(amt=ramt_a)

rot_left
(amt=ramt_b) 0

lsb

c
m
d

d
in

bits

wb

wi

2

ws

bit_keeper_lite

wb

ws ro
t_to

_d
o

rot_to_do

bits

bits

Solution appears below.

wb-1:wi

c
lk

p
o
s

ra
m
t_
b

ra
m
t_
a

-r
a
m
t_
b

-r
a
m
t_
a

>
>

+ +

rot_left
(amt=ramt_a)

rot_left
(amt=ramt_b)

lsb
c
m
d

d
in

bits

wb

wi

2

ws

bit_keeper_lite

wb

ws

ro
t_to

_d
o

rot_to_do

bits

bits

1:1

0

0:0

0

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

(d) Appearing below is a version of bit_keeper_lite with four ready outputs, r1, r2, r3, and r4. On the
diagram add hardware that will be synthesized for each.

module bit_keeper_lite #(int wb = 64, wi = 8, ws = $clog2(wb))

(output logic [wb-1:0] bits, output uwire r1, output logic r2, r3, r4,

input uwire [1:0] cmd, input uwire [wi-1:0] din,

input uwire [ws-1:0] pos, input uwire clk);

localparam int ramt_a = 1;

localparam int ramt_b = 1 << (ws >> 1);

uwire [wb-1:0] ra, rb;

rot_left #(wb,ramt_a) rl1(ra,bits);
rot_left #(wb,ramt_b) rl8(rb,bits);

logic [ws-1:0] rot_to_do;

assign r1 = rot_to_do == 0; // [�] Show hardware for r1.

always_ff @(posedge clk) begin

r2 = rot_to_do == 0; // [�] Show hardware for r2.

case (cmd)

Cmd_Reset: begin bits = 0; rot_to_do = 0; end

Cmd_Rot_To: rot_to_do = pos;

Cmd_Write: bits[wi-1:0] = din;

Cmd_Nop: begin

if (rot_to_do >= ramt_b) begin

bits = rb;

rot_to_do -= ramt_b;

end else if (rot_to_do >= ramt_a) begin

bits = ra;

rot_to_do -= ramt_a;

end

r3 = rot_to_do == 0; // [�] Show hardware for r3.

end

endcase

r4 = rot_to_do == 0; // [�] Show hardware for r4.

end

endmodule

� Show hardware that will be synthesized for r1, r2, r3, and r4.

Solution appears on the next page. Because they are assigned in an always ff, the values of r2, r3, and r4 visible outside
the block come from registers. Pay close attention to where rot to do is assigned and where its value is referenced. For r1 it
is referenced outside of the always ff block and so the value is from the register. The value of rot to do used for r2 also
comes from the register output because it had not been assigned yet in the block. For r3 the value of rot to do assigned in the
cmd=Cmd Nop case is used. A mux keeps r3 unchanged when cmd is not Cmd Nop. (The value of enumeration constant Cmd Nop

is 3.) Finally, r4 is assigned at the end of the block, so it uses the value of rot to do that will be written to the register.

10 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

wb-1:wi

c
lk

0

p
o
s

ra
m
t_
b

ra
m
t_
a

-r
a
m
t_
b

-r
a
m
t_
a

>
>

+ +

rot_left
(amt=ramt_a)

rot_left
(amt=ramt_b) 0

lsb

c
m
d

d
in

bits

wb

wi

2

ws

bit_keeper_lite

wb

ws

ro
t_to

_d
o

rot_to_do

bits

bits

r1

r2

=0

=0 r3

r4
=0

1:1

0:0 cmd=3

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Problem 3: [15 pts] Consider the modules below.

module ba
(output logic [15:0] next_x, next_y, x, y,

input uwire [15:0] a, c, input uwire clk);

always_ff @(posedge clk) x = next_x;

assign next_x = a;

assign next_y = x + c;

always_ff @(posedge clk) y = next_y;

endmodule

module test_ba;

uwire [15:0] x, y, next_x, next_y;

logic [15:0] a, c;

logic clk;

ba ba1(next_x, next_y, x, y, a, c, clk);

initial begin

// t = 0

clk = 0;

a = 0; c = 0;

#1; // t = 1

clk = 1;

#1; // t = 2

clk = 0;

#1; // t = 3

clk = 1;

#1; // t = 4

clk = 0; a <= 1; c <= 10; // Line t4

#1; // t = 5

clk = 1;

#1; // t = 6

clk = 0;

#1; // t = 7

clk = 1; a <= 2; c <= 20; // Line t7

#1; // t = 8

clk = 0;

end

endmodule

12 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

0 1 2 3

a

c

next_x

next_y

x

y

4 5 6 7

0

0

1

10

2

20

0

0

0

0

8

1 2

1

10 11

10

21

11

(a) Complete the timing diagram so that it shows the values of next_x, next_y, x, and y that would be
produced with the modules above. Note: In the original exam test_ba did not use non-blocking assignments
to a and c.

�Complete timing diagram from t = 4 to t = 8.1. �Note that there is a negative clock edge at t = 4.

Solution appears above.

(b) At t = 5 we can be sure that y=next_y will execute before next_y=x+c. Explain how this ordering is
assured by the rules for the event queue.

�Explain how event queue regions assure y=next y executes before next y=x+c at t = 5.

At t = 5 clk changes from 0 to 1, resulting in the two always ff items being scheduled. The two will eventually reach the active
region of the event queue, and one of them will be chosen first. Assume that the first always ff is chosen first. The next y

assignment has x and c in its sensitivity list, and so it is only scheduled for execution when at least one of these changes. At t = 5
x changes, and that will result in the next y assignment being placed in the inactive region of the event queue. The scheduler will
continue to remove and execute events from the active region until the active region is empty. Therefore the second always ff is
guaranteed to execute before the next y assignment.

(c) Notice that a and c are assigned using non-blocking assignments on Lines t4 and t7. Explain why the
order of execution would be ambiguous at t = 7 if line t7 used blocking assignments: a=1; c=10;. Note:
This question was not in the original exam.

Describe ambiguity (more than one possible execution order) if blocking assignments were used.

Would non-blocking assignments x <= next x and y <= next y remove the ambiguity? Explain.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

13

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Problem 4: [20 pts] Answer each question below.

(a) The foolish sqrt module below has several issues.

module sqrt #(int w = 16)

(output logic [w-1:0] r, input uwire [w-1:0] a);

always_comb begin

r = 0;

while (r * r < a) r++;

end

endmodule

�Explain why, due to the Verilog rules for bit widths, the expression r * r < a won’t compute the intended
result.

Because r and a are 16 bits the computation will be done to 16 bits of precision, and so due to overflow r*r<a can be false when
it should be true.

�Why is the sqrt module likely not synthesizeable?

Because the maximum number of iterations of the while loop cannot be directly determined. The maximum number of iterations
in fact will be about 2w/2, and it’s not impossible that a synthesis program would figure that out. It’s just not likely because this is
not the typical loop that would be used to describe hardware.

�What would be the problem with the hardware if it were synthesizable?

The maximum number of iterations is 2w/2. For the default value that’s 28 = 256. There would need to be 256 multiply units,
256 comparison units, and 256 muxen. That’s alot of hardware. And anyway there are much better ways of computing a square root.

14 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

(b) Consider the two division modules below. In the first a2 is a parameter, in the second it is a module
port. Use the div_demo module for your answers to the questions below.

module our_div_by
#(int wq = 5, wd = 10, logic [wd-1:0] a2 = 4)

(output uwire [wq-1:0] quot, input uwire [wd-1:0] a1);

assign quot = a1/a2;

endmodule

module our_div
#(int wq = 5, wd = 10)

(output uwire [wq-1:0] quot, input uwire [wd-1:0] a1, a2);

// cadence inline

assign quot = a1/a2;

endmodule

module div_demo
#(int w = 21)

(output uwire [w-1:0] d1, d2,

input uwire [w-1:0] x1, x2, x3, x4);

localparam logic [w-1:0] y1 = 4755;

// Could replace our_div with our_div_by because y1 is constant.

our_div #(w,w) dwould_work(d1, x1, y1);

// Could not replace our_div with our_div_by because

// divisor (x2) not a constant.

our_div #(w,w) dwould_not_work(d2, x1, x2);

endmodule

� Show an instantiation of our div for which our div by could work.

� Show an instantiation of our div for which our div by could not work.

Solution appears above. To use our div by the divisor needs to be a constant. That’s the case in the first example, but not in
the second example

�Explain how the use of the cadence inline pragma in our div makes it possible to instantiate our div in
places that otherwise might need our div by.

It ensures that each instantiation of our div will be optimized separately based on its arguments. Without the pragma the synthesis
program might optimize our div once, assuming two non-constant inputs, and then copy the optimized description to places where
there are constant inputs.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

15

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

(c) Answer the following questions about latency and throughput.

�Define latency.

Latency is the amount of time needed to compute a result from start to finish. What a result is depends on the context. The result
might be computed combinationally, or sequentially over several cycles.

�Define throughput.

Throughput is the number of results computed per unit time. For example, if over 10 seconds 200 results are computed, the throughput
is 200/10 = 20 results per second.

Consider a sequential circuit (such as mult_step from Homework 6) and a pipelined version of the sequential
circuit (such as multi_step_pipe). Assume that both have the same clock frequency.

�Remembering that the clock frequencies are the same, compared to the sequential version, does the pipelined
version typically have

© lower latency, ×© the same latency, or ×© higher latency. �Explain.

It depends. In a reasonable design the latency of the sequential version will be equal to or possibly greater than the pipelined version.
A sequential design can re-use hardware, and so if it prioritizes low cost it will use less hardware over a greater number of cycles
resulting in a higher latency than a pipelined design.

�Compared to the sequential version, does the pipelined version typically have

© lower throughput, © the same throughput, or ×© higher throughput. �Explain.

By definition, a pipelined circuit computes a result each clock cycle, and so its throughput is high. A sequential circuit will require
several cycles to compute something and so its throughput will be lower.

� Ignoring the cost of registers, compared to the sequential version, does the pipelined version typically have

© lower cost, © the same cost, or ×© higher cost. �Explain.

The sequential version re-uses units (such as arithmetic units) over multiple cycles. The pipelined version must have one unit for each
operation, and so its cost will be higher.

16 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

17

← → Fall 2021 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

16 Fall 2020 Solutions

306

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Name Solution

Digital Design Using HDLs

LSU EE 4755

Solve-Home Midterm Examination

Friday, 6 Nov 2020 to early Monday, 9 Nov 2020 05:00 CST)

Work on this exam alone. Regular class resources, such as notes, pa-

pers, documentation, and code, can be used to find solutions. Outside

material that covers the same topics, such as Verilog tutorials, digital

logic design guides can also be used. Do not try to directly seek out

solutions to any question here. That is, don’t Web-search the text of

a problem. Do not discuss this exam with classmates or anyone else,

except questions or concerns about problems should be directed to Dr.

Koppelman.

Warning: Unlike homework assignments collaboration is not allowed

on exams. Suspected copying will be reported to the dean of students.

The kind of copying on a homework assignment that would result in a

comment like “See ee4755xx for grading comments” will be reported if

it occurs on an exam. Please do not take advantage of pandemic-forced

test conditions to cheat!

r ≥ 2 m ⇒ Re < 1

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Problem 1: [20 pts] Appearing below are some variations on a multiply accumulate module.

(a) Complete the Verilog code below so that it matches the illustration.

ai
h

+×

clk

mac1

ao
wh

wa wa

� Complete the Verilog.

� Use parameters for the bit widths wh and wa.

� The registers inferred from the Verilog must match the diagram.

/// SOLUTION
module mac1
#(int wa = 32, wh = 16)

(output logic [wa-1:0] ao,

input uwire [wh-1:0] h,

input uwire [wa-1:0] ai,

input uwire clk);

always_ff @(posedge clk) ao <= h * ai + ao;

endmodule

2

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

(b) Complete the Verilog code below so that it matches the illustration, similar to the one on the previous
page.

ai
h

×

clk

mac2

ao
wh

wa wa+

� Complete the Verilog.

� Use parameters for the bit widths wh and wa.

� The registers inferred from the Verilog must match the diagram.

/// SOLUTION
module mac2

#(int wh = 4, wa = 3)

(output logic [wa-1:0] ao,

input uwire [wh-1:0] h,

input uwire [wa-1:0] ai,

input uwire clk);

logic [wa-1:0] p;

always_ff @(posedge clk) begin

p <= h * ai;

ao <= p + ao;

end

endmodule

3

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Problem 2: [20 pts] The mac (multiply-accumulate) modules compute a running sum of products. The
alert student might have noticed that there is no way to reset the sum. In this problem a reset will be added.

The module below has an input r (for reset) which is to work as follows: When r=1 at a positive edge the
product h*ai should start a new running sum. That is, that particular h*ai should be added to zero. When
r=0 at a positive edge the product h*ai should be added to the sum of the previous products. (If r=0 is
always true then the hardware as illustrated works correctly.)

ai
h

×

clk

mac2r

ao
wh

wa wa
r

0
r1

p

+
1 0

� Add hardware to the diagram to implement the reset. � Complete the Verilog to implement the reset.

� Use parameters for the bit widths wh and wa.

� The registers inferred from the Verilog must match the diagram and � be sure that the reset is applied
to the correct value.

The hardware changes appear above in green and the Verilog code appears below in all sorts of colors.

The problem states that when r=1 the accompanying values of h and ai must start a new running sum. To implement this a register
has been added, r1, so that the value of r moves with the product h*ai, so that in the next cycle that product h*ai is added to
zero rather than to ao. If r were connected directly to the multiplexor then the h*ai arriving with r would be added to a non-zero
value.

Grading Note: No one solved this 100% correctly.

/// SOLUTION
module mac2r #(int wh = 4, wa = 3)

(output logic [wa-1:0] ao,

input uwire [wh-1:0] h,

input uwire [wa-1:0] ai,

input uwire r, clk);

logic [wa-1:0] p;

logic r1;

always_ff @(posedge clk) begin

r1 <= r;

p <= h * ai;

ao <= p + (r1 ? 0 : ao);

end

endmodule

4

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Problem 3: [20 pts] Appearing below are the modules from the previous problem. Suppose that in the
multiplier below bit i of the product were computed in time [4i+ 2] ut and that a ripple adder were used for
the sum. Let w denote the value of wh and wa (which means wh==wa).

ai
h

+×

clk

mac1

ao
wh

wa wa
ai
h

×

clk

mac2

ao
wh

wa wa+

(a) Find the minimum clock period for each using the simple model, and taking into account cascading. (The
clock period is the length of the critical path, including the register delay.)

� Find the clock period for mac1 with cascading. � Don’t forget to include the delay of the register.

Short answer: The clock period is [4(w − 1) + 2 + 4 + 6] ut = [4w + 8] ut.

Explanation: Taking into account cascading in this case means that when we compute the time needed to compute the addition we
take into account the fact that bit i arrives at time 4i+ 2 and that a ripple adder is used to compute the sum. Bit 0 of the product
arrives at the adder’s bit 0 BFA at time 4× 0 + 2 = 2, and so its outputs, sum and carry-out, arrive at 2 + 4 = 6. Bit 1 of the
product arrives at the adder’s bit 1 BFA at time 4× 1 + 2 = 6 as does the carry out from bit 0, so the sum and carry out won’t
be available until 6 + 4 = 10. This pattern persists, so bit i of the adder output is available at time 4i + 2 + 4 = 4i + 6. The
adder is w bits wide, so the MSB is not available until time [4(w − 1) + 6] ut = [4w + 2] ut. To compute the clock period we
need to tack on the 6 ut register delay, bringing the clock period to [4w + 2 + 6] ut = [4w + 8] ut.

� Find the clock period for mac2 with cascading. � Don’t forget to include the delay of the registers.

Short answer: The clock period is [max{ 4(w − 1) + 2, 2(w + 1) } + 6] ut = [max{ 4w − 2, 2w + 2 } + 6] ut =
[4w − 2 + 6] ut = [4w + 4] ut, for w ≥ 2.

Explanation: The clock period is determined by the critical (longest) path. Paths start at launch points and end at capture points.
Register outputs are launch points and register inputs (both data and enable) and capture points. Usually (but not always) module
inputs are launch points and module outputs are capture points. There are two possible critical paths. Path one is from h (or ai),
through the multiplier, to the register input, path two is from ao, through the adder, to the register input. The length of path one
is 4(w− 1) + 2 + 6 = 4w + 4 and the length of path two is 2(w + 1) + 6 = 2w + 8. When w ≥ 1 path one is longer and so
the clock period must be [4w + 4] ut.

And what about cascading? That doesn’t apply here because there is a register between the multiplier and the adder and so all bits
arrive at the input to the adder at the same time.

(b) Find the minimum clock period for each using the simple model assuming that the multiplier output and
adder input could not cascade.

� Find the clock period for mac1 without cascading. � Don’t forget to include the delay of the register.

Short Answer: The clock period is [4(w − 1) + 2 + 2(w + 1) + 6] ut = [6w + 6] ut.

Explanation: Without cascading the adder must wait for every bit of the product to be computed. The last bit of the product is
available at 4(w − 1) + 2 and only then can the addition start (with the no-cascading assumption). So adding the addition time,
2(w + 1), and register delay, 6, gives the clock period.

Note that the no-cascading assumption was made for pedagogical reasons. If indeed bit i of the product arrives at 4i + 2 and a
ripple adder is used, cascading should be taken into account when computing the delay.

5

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

� Find the clock period for mac2 without cascading. � Don’t forget to include the delay of the registers.

The clock period for mac2 is the same with and without the cascading assumption, so the period is the same as the one computed
above, [4w + 4] ut.

6

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Problem 4: [20 pts] Appearing below is a recursively defined multiplier constructed using bfa (binary full
adder) and bha (binary half adder) modules.

module mult_tree_bfas #(int wa = 16, int wb = wa, int wp = wa + wb)

(output uwire [wp-1:0] prod, input uwire [wa-1:0] a, input uwire [wb-1:0] b);

if (wa == 1) begin

assign prod = a ? b : 0;

end else begin

// Split a in half and recursively instantiate a module for each half.

localparam int wn = wa / 2;

localparam int wx = wb + wn;

uwire [wx-1:0] prod_lo, prod_hi;

mult_tree_bfas #(wn,wb) mlo(prod_lo, a[wn-1:0], b);

mult_tree_bfas #(wn,wb) mhi(prod_hi, a[wa-1:wn], b);

assign prod[wn-1:0] = prod_lo[wn-1:0];

uwire c[wp-1:wn-1];

assign c[wn-1] = 0;

for (genvar i=wn; i<wx; i++)

bfa b(c[i], prod[i], prod_lo[i], prod_hi[i-wn], c[i-1]);

for (genvar i=wx; i<wx+wn; i++)

bha b(c[i], prod[i], prod_hi[i-wn], c[i-1]);

localparam int wz = wp - wx - wn;

if (wz > 0) assign prod[wp-1 :- wz] = 0;

end

endmodule

Show the hardware that will be inferred for two levels of recursion and compute its cost. That is, show three
instances of mult_tree_bfas: a top-level one, and two recursive instantiations. Show the hardware for the
top-level instance and both of the two recursive instantiations. (It is only necessary to show two levels.) Do
this for wa=8 in the top-level module.

Continued on next page.

7

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

� Show the inferred hardware.

The inferred hardware is shown on the next page. The binary full and half adders are shown as boxes. Only the carry-out port
is labeled, with a co, of course. As most reading this should easily figure out, the port at the top of each BFA and BHA module
is carry-in, the port on the right-hand side is the sum, and the two BFA inputs on the left hand side are the two bits to be added
together.

Note that the bits of a are split so that the less significant bits connect to mlo and the more significant bits connect to mhi. In
contrast all bits of b connect to both mlo and mhi.

� Be sure to distinguish hardware (such as a bfa module) from values computed during elaboration.

An example of a value computed during elaboration is wx. The value at each level is shown. Since the value has been computed
during elaboration there is no need to emit hardware to compute a value that is already known.

� Compute the cost of the hardware in your diagram using the simple model. (Work out the cost of a bha by
hand.) � The cost should be for two levels, not for hardware going down to the base case.

As can be seen by looking at the loop bounds of the generate loops, each instance consists of wb BFA modules and wn BHA modules.
For the top-level (wa=8) instance wb=8 and wn=4. In the mlo and mhi instances instantiated in the top level wb=8 and wn=2.
(Yes, wb is 8 at every level.) So the number of BFA modules is 8 + 2×8 = 24, and the number of BHA modules is 4 + 2×2 = 8.
The cost of a BFA is 9 uc. A BHA can be constructed with an XOR gate for the sum and an AND gate for the carry out, for a cost
of 4 uc. However the carry out can be used to compute the sum: s = (a || ci) & !co where co = a && ci. Such a
construction has a cost of just 3 uc.

The total cost is [24× 9 + 8× 3] uc = 240 uc using the 3 uc BHA or [24× 9 + 8× 4] uc = 248 uc using the 4 uc BHA.

8

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

BFA
co

[0]

[4]

[5]
BFA

co
[1]

BFA
co

[2]

[6]

[7]
BFA

co
[3]

BFA
co

[4]

[8]

[9]
BFA

co
[5]

BFA
co

[6]

[10]

[11]
BFA

co
[7]

BHA
co

BHA
co

BHA
co

BHA
co

[8]

[9]

[10]

[11]

3:0

BFA
co

[0]

[2]

[3]
BFA

co
[1]

BFA
co

[2]

[4]

[5]
BFA

co
[3]

BFA
co

[4]

[6]

[7]
BFA

co
[5]

BFA
co

[6]

[8]

[9]
BFA

co
[7]

BHA
co

BHA
co

[8]

[9]

1:0

p
ro

d
_lo

p
ro

d
_h

i

p
ro
d

a

b

1:0 a

8 b

mlo

mult_tree_bfas, wa=4, wb=8
wn=2, wx=10

mult_tree_bfas
wa=2, wb=8

mhi

p
ro
d

p
ro

d
_lo

mult_tree_bfas
wa=2, wb=8

a

8 b

3:2

p
ro

d
_h

i

BFA
co

[0]

[2]

[3]
BFA

co
[1]

BFA
co

[2]

[4]

[5]
BFA

co
[3]

BFA
co

[4]

[6]

[7]
BFA

co
[5]

BFA
co

[6]

[8]

[9]
BFA

co
[7]

BHA
co

BHA
co

[8]

[9]

1:0

a

b

1:0 a

8 b

mlo

mult_tree_bfas, wa=4, wb=8
wn=2, wx=10

mult_tree_bfas
wa=2, wb=8

mhi

p
ro

d
_lo

mult_tree_bfas
wa=2, wb=8

a

8 b

3:2

p
ro

d
_h

i

mlo

mhi

8

4

4

8

mult_tree_bfas, wa=8, wb=8
wn=4, wx=12

8

a

b
8

8

3:0

7:4

p
ro
d

p
ro
d

p
ro
d

p
ro
d

p
ro
d

9

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Problem 5: [20 pts] Answer each question below.

(a) Appearing below is a multiply/add module, nnMADDfp, that computes its result using a FP add and
multiply module. The values on the ports are IEEE 754 floats, and when wa=32 the format is IEEE 754
single, the same as a SystemVerilog shortreal. That is followed by an incomplete testbench module,
testnnMADD. The testbench module generates random values for the nnMADDfp module in variables ar, br,
and sir, and computes what the result should be, sor.

Add Verilog code to deliver ar, br, and sir to the nnMADDfp instance, and to put the output of nnMADDfp
into sor_mut so that sor_mut has the correct type of value. Note that one does not need to understand
what is inside of nnMADDfp, nnAddfp, nor nnMultfp.

� Deliver (whatever that means) ar, br, and sir to nnMADDfp instance. � Get output of the nnMADDfp

instance into variable sor mut.

The solution is shown below. First the inputs to instance n of nnMADDfp, variables a, b, and si, must be assigned the values in
variables ar, br, and sir. Because a, b, and si are of type logic a statement like a=ar won’t work because for such a statement
Verilog will first convert ar from a shortreal to a 32-bit unsigned integer (logic [31:0]). It won’t work because module
nnMADDfp expects a, though declared logic, to be in the same format as shortreal. To avoid the problem the Verilog system
task $shortrealtobits is used. That avoids the shortreal-to-integer or any other conversion. The bits are left unchanged.
A similar function is used for re-interpreting the module output, so, from logic to shortreal.

A serious error which too many students made was instantiating an nnMADDfp module inside the t loop. First, the module is already
instantiated. Second, it makes no sense to instantiate a module in procedural code.

Note: In the original exam ar, br, etc. were declared real instead of shortreal. The solution would be no different:
$shortrealtobits should still be used. But the explanation above would have been more complicated since in statement
a=$shortrealtobits(ar) there would be a conversion: ar would be converted from real to shortreal, but then the bits
in the shortreal would be assigned to a with no further changes.

Verilog code, including the solution, on next page.

10

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

module nnMADDfp #(int wa = 10)

(output uwire [wa-1:0] so, input uwire [wa-1:0] a, b, si);

uwire [wa-1:0] p;

nnMultfp #(wa) mu(p, a, b);

nnAddfp #(wa) ad(so, si, p);

endmodule

module testnnMADD;
localparam int w = 32, ntests = 100;

uwire [w-1:0] so;

logic [w-1:0] a, b, si;

nnMADDfp #(w) n(so, a, b, si);

initial begin

for (int t=0; t<ntests; t++) begin

shortreal sor, ar, br, sir, sor_mut;

ar = rand_fp(); // Value to be used as input a to nnMADDfp.

br = rand_fp(); // Value to be used as input b to nnMADDfp.

sir = rand_fp(); // Value to be used as input si to nnMADDfp.

sor = ar * br + sir;

/// SOLUTION
a = $shortrealtobits(ar); // Move bits of ar to a without changing them.

b = $shortrealtobits(br); // This operation is sometimes called ..

si = $shortrealtobits(sir); // .. a reinterpretation cast.

#1;

sor_mut = $bitstoshortreal(so); // <-- MORE OF THE SOLUTION.

if (sor != sor_mut) handle_incorrect_result();

end

end

endmodule

11

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

(b) The module below will not compile or simulate due to multiple assignments to temperature, which is
declared uwire. Changing uwire to wire will fix the compile problem. Nevertheless, is that the right fix?

module more_stuff #(int w = 16)

(output uwire [w-1:0] v, y, input uwire [w-1:0] a, b, c);

uwire [w-1:0] temperature;

assign temperature = a + b;

assign v = temperature >> c;

assign temperature = a - b;

assign y = temperature << c;

endmodule

module more_stuff #(int w = 16)

(output uwire [w-1:0] v, y, input uwire [w-1:0] a, b, c);

/// SOLUTION

uwire [w-1:0] t1, t2;

assign t1 = a + b;

assign v = t1 >> c;

assign t2 = a - b;

assign y = t2 << c;

endmodule

� What problem remains after changing temperature from a uwire to a wire?

Short answer: The same value of temperature is used to compute both v and y, though the coder’s intent may have been different
values. That value of temperature consists of bits common to a+b and a-b, and x’s elsewhere. It’s not likely the coder intended
that either.

Longer explanation: With the “fix” object temperature is driven by two different assignments, a+b and a-b. In bit positions
where a+b and a-b are both 0, the value would be 0. In bit positions where a+b and a-b are both 1, the value would be 1. But,
in bit positions where a+b and a-b differ the value would be x.

An important thing to remember is that continuous assignments, which is what the assign keyword specifies, are executed whenever
objects on the right-hand side change. As a consequence the values for both v and y will ultimately be computed with the same
value of temperature.

� Fix the problem based on what the code looks like its trying to do.

Solution appears above.

12

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

(c) An important part of synthesis is optimizing. It is possible to optimize before and again after technology
mapping.

� What is technology mapping? � Show an example of logic before and after technology mapping. (Make
up some technology.)

In the technology mapping step generic gates are replaced with gates in the target technology. For example, consider the expression
y=!(a & b || c & d). That might be inferred into the following generic gates: two AND gates and one NOR gate. A target
technology might have a special AND-OR-INVERT gate that computes the entire expression, and because of the way CMOS FETs
can be interconnected does so using less time or area than two AND gates and a NOR gate in the same technology.

� Describe an optimization that can be done before technology mapping. Provide an example. (This is done
all the time in class.)

Expression a || (!a) && b can be optimized to a || b. Other examples include constant propagation and folding, such as a
&& 1 being optimized to a.

� Describe an optimization that can be done only after technology mapping (or perhaps during). Provide an
example, feel free to make things up.

Realistic timing data is available for the gates used in technology mapping. For that reason, any optimization that reduces delay
should be done after technology mapping.

13

← → Fall 2020 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Name Solution

Digital Design using HDLs

LSU EE 4755

Solve-Home Final Examination

Wednesday, 9 December 2020 to Friday, 11 December 2020 16:30 CST

Alias mRNA!

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (10 pts)

Problem 5 (35 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2020 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Problem 1: [20 pts] Module prob1_seq, below, is based on the solution to 2016 Final Exam Problem
1 (also appearing in problem set https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf,
please look at that solution). In that problem an incomplete diagram of the hardware was given, similar to
the one on the next page, and a module was to be completed so that it computes v0*v0 + v0*v1 + v1*v1

consistent with the hardware. The completed module appears below, with minor simplifications. If you must
know, the simplifications include omitting the floating-point modules’ round inputs and status outputs. Also,
the case statement was replaced by an if/else statement. In case anyone is concerned, this wordy aside
would be omitted from an in-class exam.

Though module prob1_seq is now complete, the hardware diagram isn’t. In this problem complete the
diagram of the synthesized hardware based on the module below. The diagram omits the hardware for step,
select signals for the multiplexors, enable signals for some of the registers, etc. Optimize the hardware that
compares step to a constant. Do so by showing individual gates rather than an equality or comparison unit.

�Complete the diagram so that it shows inferred hardware after some optimization.

�Where step is compared to a constant, show individual gates, not a comparison unit.

module prob1_seq
(output logic [31:0] result, output logic ready,

input uwire [31:0] v0, v1, input uwire start, clk);

uwire [31:0] mul_a, mul_b, add_a, add_b, prod, sum;

logic [2:0] step;

logic [31:0] ac0, ac1;

localparam int last_step = 4;

always_ff @(posedge clk)

if (start) step <= 0;

else if (step < last_step) step <= step + 1;

CW_fp_mult m1(.a(mul_a), .b(mul_b), .z(prod));

CW_fp_add a1(.a(add_a), .b(add_b), .z(sum));

assign mul_a = step < 2 ? v0 : v1;

assign mul_b = step == 0 ? v0 : v1;

assign add_a = ac0, add_b = ac1;

always_ff @(posedge clk)

begin

ac0 <= prod;

if (step < 3) ac1 <= step ? sum : 0;

if (start) ready <= 0; else if (step == last_step-1) ready <= 1;

end

assign result = sum;

endmodule

2

← → Fall 2020 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf
https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Solution appears below in blue. A register was added to hold step. The value of step and start are used to determine multiplexor
select signals and register enable inputs. The solution is labeled with some step comparison results, such as step < 2. Those who
are unsure of how the illustrated logic computes these values are strongly urged to draw a truth table.

v0

v1

clk

CW_fp_mult
m1

CW_fp_add
a1

ac0

ac1

re
s
u
lt

start

ready

prob1_seq
step < 2

3'b0
3'd1

2:2

en

1:1

0:0

2:2

en

+

en
step

st
e
p

step = 3

step ≠ 0

step < 3

1

0

step < 4

step < 4

start

st
e
p

3
2

'd
0

3

← → Fall 2020 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Problem 2: [20 pts] Consider again that module from Problem 1 of the 2016 final exam. Appearing below
is the start of a Verilog description of a pipelined version of this module. The ports are the same as in
the sequential version from the previous problem, however the module must operate in pipelined fashion,
meaning that a new v0, v1 pair could arrive at the inputs each cycle.

Complete the module. Two floating-point units are instantiated for your convenience. Add floating-point
and other hardware as needed.

�Complete module so that it operates in pipelined fashion.

The solution that appears below is what would be expected on an exam. This problem was assigned as 2021 Homework 6 as a
programming assignment. See that solution for additional details. In the solution below notice that the start signal is carried along
the pipeline and finally connected to the ready output port.

The sequential hardware uses the value of register step so determine multiplexor and enable settings. That’s not needed here
because each stage does a particular step, in effect make step a constant. (Also, because there are more functional units fewer steps
are needed.) For that reason there is no equivalent to the step register in the pipelined solution.

module prob1_pipe(output logic [31:0] result, output logic ready,

input uwire [31:0] v0, v1, input uwire start, clk);

/// SOLUTION

uwire [31:0] v00, v01, v11, s1, s2;

logic [31:0] pl_1_v00, pl_1_v01, pl_1_v11;

logic [31:0] pl_2_v0001, pl_2_v11;

logic pl_1_occ, pl_2_occ;

CW_fp_mult m00(.a(v0), .b(v0), .z(v00));

CW_fp_mult m01(.a(v0), .b(v1), .z(v01));

CW_fp_mult m11(.a(v1), .b(v1), .z(v11));

CW_fp_add a1(.a(pl_1_v00), .b(pl_1_v01), .z(s1));

CW_fp_add a2(.a(pl_2_v0001), .b(pl_2_v11), .z(s2));

always_ff @(posedge clk) begin

pl_1_v00 <= v00;

pl_1_v01 <= v01;

pl_1_v11 <= v11;

pl_1_occ <= start;

pl_2_v0001 <= s1;

pl_2_v11 <= pl_1_v11;

pl_2_occ <= pl_1_occ;

result <= s2;

ready <= pl_2_occ;

end

endmodule

4

← → Fall 2020 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/koppel/v/2021/hw06-sol.v.html
https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Problem 3: [15 pts] Yet again, consider the solution to 2016 Final Exam Problem 1. (The solution appears
in the sequential problem set, https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf, feel
free to look at it.) Appearing below is an incomplete diagram of the hardware with some timing information
shown, and a timing diagram. In this problem several performance measures will be computed based on the
simple model.

v0

v1

clk

CW_fp_mult
m1

CW_fp_add
a1

32'd0

ac0

ac1

re
s
u
lt

start

ready

prob1_seq

4

4

5
15

20
25

31
0

0

0

0

6

6

20

21

20

0

start

clk

prod

ac0

ac1

sum

ready

step

v0² v0v1

v0v1+
 v0²

4 0 1 2 3

v1²

v0² v0v1 v1²

4

0 v0²

v0²

v0v1 + v0²

v1² + v0v1 + v0²

mul_a v0 v1

mul_b v0 v1 Mux delay.

Mult delay.

Let tm = 25 ut denote the delay of the CW_fp_mult unit and let ta = 20 ut denote the delay of the CW_fp_add
unit. The arrival times of signals at the multiplexor select inputs and at the ready register are shown

boxed in blue . Base the delay of the registers and multiplexors on the simple model.

(a) Determine the clock period for this module using the assumptions above and show the critical path on
which this clock period is based.

�Determine the clock period. � Show critical path used to determine the clock period.

� Show work, and state any assumptions.

The arrival times of stable values are shown in the diagram boxed in green and a critical path is shown as a red dashed line.
Another critical path (which must of the same length) pass through the upper multiplexor. Note that the critical path is through
the multiplexor select signal, not through the data inputs. The critical path length is 31 ut, adding on the register delay, we get the
clock period of [31 + 6] ut = 37 ut.

(b) Based on your answers above determine the latency and throughput for this calculation.

�The latency is:

Since it takes four cycles to compute a result the latency is 4× 37 ut = 148 ut.

�The throughput is:

The unit of work is computing a v20 + v0v1 + v21 value. It takes four cycles to do so, so in this case the throughput is one over the
latency or 1

4×37 ut
= 1

148 ut
. If ut = 1 ns then the throughput would be 1

148 ns or 6756756 calculations per second.

5

← → Fall 2020 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf
https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Problem 4: [10 pts] The mult_tree_bfas module below has a flaw: It won’t compile if wp < wa+wb.
That’s a big deal, because in many—perhaps most—cases when one multiplies two w-bit integers all one
wants is the w least significant bits of the product. Note: In the original exam some object names were
different and there was unused code setting high bits of the product to zero.

�Modify the module so that it will work correctly for values of wp<=wa+wb. �Do so in a way that generates
less hardware even without optimization of unconnected nets and unread variables.

module mult_tree_bfas #(int wa = 16, int wb = wa, int wp = wa + wb)

(output uwire [wp-1:0] prod,

input uwire [wa-1:0] a, input uwire [wb-1:0] b);

if (wa == 1) begin

assign prod = a ? b : 0;

end else begin

localparam int wa_re = wa / 2;

localparam int wp_re = wb + wa_re;

uwire [wp_re-1:0] prod_lo;

uwire [wp_re-1:0] prod_hi;

mult_tree_bfas #(wa_re,wb) mlo(prod_lo, a[wa_re-1:0], b);

mult_tree_bfas #(wa_re,wb) mhi(prod_hi, a[wa-1:wa_re], b);

assign prod[wa_re-1:0] = prod_lo[wa_re-1:0];

uwire c[wp-1:wa_re-1];

assign c[wa_re-1] = 0;

for (genvar i=wa_re; i<wp_re; i++)

bfa b(c[i], prod[i], prod_lo[i], prod_hi[i-wa_re], c[i-1]);

for (genvar i=wp_re; i<wp_re+wa_re; i++)

bha b(c[i], prod[i], prod_hi[i-wa_re], c[i-1]);

end

endmodule

The solution is on the next page.

6

← → Fall 2020 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

module mult_tree_bfas #(int wa = 16, int wb = wa, int wp = wa + wb)

(output uwire [wp-1:0] prod,

input uwire [wa-1:0] a, input uwire [wb-1:0] b);

if (wa == 1) begin

assign prod = a ? b : 0;

end else begin

localparam int wa_re = wa / 2;

localparam int wp_re = wb + wa_re;

// SOLUTION:

// Compute the width of the product actually needed from the lo and hi modules.

localparam int wp_lo = min(wp_re, wp);

localparam int wp_hi = min(wp_re, wp - wa_re);

// SOLUTION: Possibly use fewer than wp_re bits for the product.

uwire [wp_lo-1:0] prod_lo;

uwire [wp_hi-1:0] prod_hi;

// SOLUTION: Compute how many bits of b are needed in the hi module.

localparam int wb_hi = min(wb, wp_hi);

// SOLUTION: Instantiate using the smaller values for the number

// of bits in the product (wp_lo, wp_hi) and a smaller value for

// the number of bits in b (wb_hi).

mult_tree_bfas #(wa_re, wb, wp_lo) mlo(prod_lo, a[wa_re-1:0], b);

mult_tree_bfas #(wa_re, wb_hi, wp_hi) mhi(prod_hi, a[wa-1:wa_re], b[wb_hi-1:0]);

assign prod[wa_re-1:0] = prod_lo[wa_re-1:0];

uwire c[wp-1:wa_re-1];

assign c[wa_re-1] = 0;

// SOLUTION: Use wp_lo and wp_hi in the loop bounds so that

// there are only as many BFA and BHA modules as needed.

for (genvar i=wa_re; i<wp_lo; i++)

bfa b(c[i], prod[i], prod_lo[i], prod_hi[i-wa_re], c[i-1]);

for (genvar i=wp_lo; i<wp_hi+wa_re; i++)

bha b(c[i], prod[i], prod_hi[i-wa_re], c[i-1]);

end

endmodule

7

← → Fall 2020 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Problem 5: [35 pts] Answer each question below.

(a) When is it less expensive to implement design X using an FPGA, and when is it less expensive to
implement design X (the same design) using an ASIC? Cost here refers to the purchase price, not something
computed using the simple model.

�An FPGA is less expensive for design X when . . . �Explain.

. . . when only a small number will be fabricated, say 1. An FPGA is a moderately priced mass-produced component, so you are
sharing the development costs with many other customers. An ASIC is made just for you, so even if you want one you are paying for
a whole wafer full of chips, plus the cost of the masks needed for fabrication.

�An ASIC is less expensive for design X when . . . �Explain.

. . . when a large number will be fabricated, say 10,000. An ASIC contains just the logic you need, unlike an FPGA which has
customizable logic (such as little look-up tables), customizable connections between the logic, not to mention left-over stuff that you
didn’t use. Therefore, if you fabricate enough ASIC chips the per-chip cost will be less than an FPGA.

(b) A testbench is written to verify whether a Verilog module does what it is supposed to do. (It’s not just
for homework assignments.) Consider a component that could quickly and thoroughly be tested after it has
been manufactured.

� Is a testbench still necessary for the Verilog description of this component?

�Explain.

Strictly speaking a testbench is not necessary, but practically speaking it is very necessary. A testbench can let the engineer know if
the HDL has an error in a short time, perhaps seconds. The testbench might even provide information that can be used to find the
flaw in the HDL. If there was no testbench then the component would need synthesized, fabricated, then tested. At best that would
take minutes (say, for an FPGA), but for an ASIC it might take weeks. Even if it were just minutes, that would add up until the
design were working correctly.

A company has two testbench teams, the good team, and the okay team. (The good team is much better
than the okay team.) Is it better to use the good team (rather than the okay team) for the testbench when
the design is being made into an FPGA or when the design is being made into an ASIC?

�Better to use the good team for writing the testbench when fabricating an © FPGA or
⊗

ASIC .

�Explain.

Suppose the testbench written by the good team finds a flaw that the okay team’s testbench missed. For the ASIC, that discovered
flaw would result in weeks of lost time while the flawed design was fabricated and then tested. It would also cost lots of money. For
the FPGA, perhaps only hours of time are wasted by synthesizing and downloading a flawed design. So for that reason it better to
use the good team for the ASIC designs.

8

← → Fall 2020 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

(c) In each code fragment below indicate whether the non-blocking assignments are necessary, must be
replaced by a blocking assignment, or whether it does not matter which is used. Assume typical use of
Verilog.

�Are the non-blocking assignments © necessary, © must be replaced by blocking assignments,
⊗

either
one will work .

�Explain.

// Fragment A

always_comb begin x <= a + y; end // Line 1

always_comb begin a <= b + c; end // Line 2

Short answer: The value of x will be updated either way (with or without the non-blocking assignments) in the same time step.

Discussion: Notice that a is referenced in Line 1 and written in Line 2. Each is an always comb, and so each line executes whenever
its live-in objects change. The live-in objects for Line 1 are a and y, and the live-in objects for Line 2 are b and c. If y and b both
change, then Line 1 might be executed before Line 2. But because Line 2 changes a Line 1 will execute a second time. Because
a is assigned using a non-blocking assignment a is not actually changed until all the active-region work is complete. But once that
happens a is changed and that leads to an execution of Line 1.

�Are the non-blocking assignments
⊗

necessary, © must be replaced by blocking assignments, © either
one will work .

�Explain.

// Fragment B

always_ff @(posedge clk) begin x <= a + y; end // Line 1

always_ff @(posedge clk) begin a <= b + c; end // Line 2

The non-blocking assignments are necessary because each line will execute just once in reaction to the positive edge. Without the
non-blocking assignment results would depend on whether Line 1 was executed before or after Line 2.

(d) Consider three ways of designing digital hardware: combinational, sequential, and pipelined.

Sequential hardware is the lowest-cost alternative for many designs. (Some of which appear on this test.)
Provide an example of some non-trivial hardware for which a sequential design would not be less expensive
than a combinational design. The hardware might compute an arithmetic expression, as does the hardware
in Problem 1.

�Non-trivial hardware that can’t be made less expensive with a sequential design compared with a combina-
tional design. �Explain.

Short Answer: Hardware for computing a ∗ b + c, because the each operation is performed once. (Assuming a sequential adder and
multiplier are not practical.)

Explanation: A sequential design has a lower cost than a combinational design when something in the combinational design can be
used multiple times. Expression v20 + v0v1 + v21 can be computed by a sequential circuit consisting of one multiplier (used three
times) and one adder (used twice). But for a ∗ b + c there would be one multiplier and one adder in both the combinational and
sequential designs, so there is no cost benefit for the sequential design.

9

← → Fall 2020 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

(e) Both modules below have an input port providing an array of unsigned integers, and an output port,
elt_min, which is set to the smallest of these numbers. The two modules are nearly identical, the difference
is that in min_b_s (the s is for shortcut) the loop ends when a value of 0 is found (because there can’t be
anything smaller, so why bother looking), while in min_b the loop always iterates for n-1 iterations. Consider
a situation in which most inputs contain a zero. Which module has a shorter critical path (meaning that it
is faster in a typical digital design)?

module min_b #(int w = 4, int n = 8)

(output logic [w-1:0] elt_min, input uwire [w-1:0] elts[n]);

always_comb begin

elt_min = elts[0];

for (int i=1; i<n; i++)

if (elts[i] < elt_min) elt_min = elts[i];

end

endmodule

module min_b_s #(int w = 4, int n = 8)

(output logic [w-1:0] elt_min, input uwire [w-1:0] elts[n]);

always_comb begin

elt_min = elts[0];

for (int i=1; i<n && elt_min > 0; i++)

if (elts[i] < elt_min) elt_min = elts[i];

end

endmodule

�Which module has a shorter critical path,
⊗

min b or © min b s ?

�Explain.

The hardware in min b is simpler so it likely has a shorter critical path. For hardware there is no benefit in ending the loop early.

10

← → Fall 2020 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

17 Fall 2019 Solutions

330

← → Fall 2019 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Name Solution

Digital Design Using HDLs

LSU EE 4755

Midterm Examination

Wednesday, 30 October 2019 10:30–11:20 CDT

Alias
That’s · · · all.

Problem 1 (20 pts)

Problem 2 (25 pts)

Problem 3 (27 pts)

Problem 4 (28 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2019 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Problem 1: [20 pts] Appearing below is one of the solutions to Homework 2, the count leading zeros
module.

module clz_bi_tree #(int w = 19, int ww = $clog2(w+1))

(output uwire [ww:1] nlz, input uwire [w:1] a);

if (w == 1) begin

assign nlz = ~ a;

end else begin

localparam int wlo = w/2, whi = w - wlo;

localparam int wwlo = $clog2(wlo+1), wwhi = $clog2(whi+1);

uwire [wwlo:1] lz_lo;

uwire [wwhi:1] lz_hi;

clz_bi_tree #(wlo) clo(lz_lo, a[wlo:1]);

clz_bi_tree #(whi) chi(lz_hi, a[w:wlo+1]);

assign nlz = lz_lo < wlo ? lz_lo : wlo + lz_hi;

end

endmodule

Show the hardware that will be inferred for the module for w > 1. Just show one level, don’t show what is
inside of clo and chi.

� Show synthesized hardware for one level. � Be sure to show clo and chi (but not their contents).

� Clearly show module input and output ports, � and show bit range in connections.

The solution appears below. Because w > 1 the terminal case is not elaborated and so not inferred. Of course, there is no hardware
for computing elaboration-time constants such as wwlo.

clz_bi_treew:wlo+1

a

n
lz

w

ww

chi

clz_bi_treewlo:1

clo

wlo +

clz_bi_tree

lz_lo

lz_hi

wlo
<

2

← → Fall 2019 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Problem 2: [25 pts] In Homework 2 a clz (count leading zeros) module was constructed recursively by
splitting the input bit vector and connecting each half to a smaller instance. The incomplete module below
is similar except that the input vector is to be split into thirds and each third connected to a recursive
instance. Complete the module.

� Complete so that clz tri tree computes clz.

The solution appears below.

module clz_tri_tree
#(int w = 19, int ww = $clog2(w+1))

(output uwire [ww-1:0] nlz, input uwire [w-1:0] a);

if (w == 1) begin

assign nlz = ~ a;

// SOLUTION: Add a case for w=2 to avoid a zero-bit recursive instance.

end else if (w == 2) begin

assign nlz = a[0] ? 0 : a[1] ? 1 : 2;

end else begin

// SOLUTION: Divide bits between modules, be sure not to loose any.

localparam int wlo = w/3;

localparam int wmi = wlo;

localparam int whi = w - wlo - wmi;

localparam int wwlo = $clog2(wlo+1), wwmi = $clog2(wmi+1), wwhi = $clog2(whi+1);

uwire [wwlo-1:0] lz_lo;

uwire [wwmi-1:0] lz_mi;

uwire [wwhi-1:0] lz_hi;

// SOLUTION: Divide a between modules.

clz_tri_tree #(wlo) clo(lz_lo, a[wlo-1 : 0]);

clz_tri_tree #(wmi) cmi(lz_mi, a[w-whi-1 : wlo]);

clz_tri_tree #(whi) chi(lz_hi, a[w-1 : w-whi]);

// SOLUTION: Combine the results of the three modules.

assign nlz = lz_lo < wlo ? lz_lo :

lz_mi < wmi ? wlo + lz_mi : wlo + wmi + lz_hi;

end

endmodule

3

← → Fall 2019 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Problem 3: [27 pts] Appearing below are modules that test if two bit vectors are equal in some way.

(a) Show the hardware for the module below at the default size using basic gates: AND, OR, XOR, NOTs,
and bubbled inputs and outputs. Do not use something like == .

module eq #(int w = 4)(output uwire equal, input uwire [w-1:0] a, b);

assign equal = a == b;

endmodule

� Show hardware using basic gates at default size.

The solution appears below with some colored labels to help with the next subproblem. Note that—never forget that—equality is
tested using XNOR (exclusive nor) gates.

a[0]

b[0]

a[1]

b[1]

a[2]

b[2]

a[3]

b[3]

a

b

w

w

e
q
u
a
l

2 lg w
eq

A critical path.

(b) Show the cost and delay of the module in terms of w (the value of parameter w) using the simple model.

� In terms of w: � Cost and � Delay.

The cost is [3w + w − 1] uc = [4w − 1] uc. The 3w term is for the XNOR gates and w − 1 term is for the big AND gate.
(In the solution above three 2-input AND gates are shown rather than one 4-input AND gate.) The delay is [2 + dlgwe] ut, the 2
term is for an XNOR gate and the lgw term is for a path through the big AND gate.

To compute delay a critical path is needed. A critical path for the equality unit is shown above in red, starting at a[1]. Because of
symmetry in the equality unit the critical path could have started at any input bit. The path through an XNOR is two gates, and a
path through the big AND is dlgwe gates.

4

← → Fall 2019 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

(c) The module below also tests equality but it does so after shifting the first operand. Show the hardware
in terms of basic gates after optimization.

module eqs #(int w = 6, int s = 2)(output uwire equal, input uwire [w-1:0] a, b);

localparam logic [w+s-1:0] zero = 0;

assign equal = zero + (a << s) == b;

endmodule

� Show hardware at default size after optimization.

The solution appears below. Because the shift is by a constant amount no shifter is needed, instead the bit positions are adjusted
(which is why, for example, b[2] is compared to a[0]). Because we are adding zero no adder is needed. Because of the shift the
low bits of b and the high bits of a are compared to zero.

a[0]

b[2]

a[1]

b[3]

a[2]

b[4]

a[3]

b[5]

a

b

6

6

e
q
u
a
l

eqs
b[1]

b[0]

a[5]

a[4]

(d) The module below performs a different operation than the one above. Explain the difference and show
an example.

module eqt #(int w = 6, int s = 2) (output uwire equal, input uwire [w-1:0] a, b);

assign equal = (a << s) == b;

endmodule

� Difference between operation eqs and eqt.

� Show a value for a and b for which the output of eqs and eqt are different.

In module eqs the s MSB are compared to zero, whereas in eqt the s MSB are ignored. For example, consider w = 6 and s = 2, and
for a = 10 11112 and b = 11 11002. Module eqs finds them not equal (because eight-bit quantities 1011 11002 6= 0011 11002)
but eqt finds them equal (because six-bit quantities 11 11002 = 11 11002).

5

← → Fall 2019 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Problem 4: [28 pts] Answer each question below.

(a) Appearing below is synthesis data taken from the solution to Homework 2. The Delay Target column
shows the maximum delay constraint given to the synthesis program.

Module Name Area Delay Delay

Actual Target

clz_w32 26290 3.110 10.000 ns

clz_tree_w32 21706 1.425 10.000 ns

clz_w32_1 36476 1.007 0.100 ns

clz_tree_w32_5 37356 0.577 0.100 ns

� In general, which result should be used if the only goal were to minimize area,

the results for the �© 10.0 ns Target or for the © 0.1 ns Target ? � Explain.

When the delay target is large the synthesis program is freer to minimize area (cost). It can try different cost-reducing optimizations
without having them being rejected because they result in higher delay (as long as that delay is below the delay target).

� In general, which result should be used if the only goal were to minimize delay,

the results for the © 10.0 ns Target or for the �© 0.1 ns Target ? � Explain.

The synthesis program first tries to meet the delay target, then reduces cost. If the delay target is very low it will devote all of its
effort to reducing delay.

(b) Provide w-bit declarations requested below.

uwire [0 : w-1] bit_zero_is_msb; // SOLUTION

uwire [w-1 : 0] bit_zero_is_lsb; // SOLUTION

uwire [w/2 : -w/2] bit_zero_is_middle; // SOLUTION.

6

← → Fall 2019 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

(c) The module fragment below starts with six declarations (the object names starting with r), each providing
a value (either a+b or x+y). Some of those declarations will result in compile errors. Identify them and explain
the problem. If possible fix the problem without changing the object kind (localparam, uwire, var).

module my_mod
#(int w = 10, int x = 11, int y = 12)

(input uwire [w:1] a, b);

localparam logic [w:1] r1p = a + b; // SOL: Can’t fix, a + b not constant.

localparam logic [w:1] r2p = x + y; // SOL: Okay.

uwire [w:1] r1w = a + b; // SOL: Okay.

uwire [w:1] r2w = x + y; // SOL: Okay.

logic [w:1] r1l = a + b; // SOL: Wrong, can’t continuously assign var type.

logic [w:1] r2l = x + y; // SOL: Wrong, can’t continuously assign var type.

// SOLUTION: Fixes:

logic [w:1] r1l, r2l;

always_comb begin r1l = a + b; r2l = x + y; end

// The following is not wrong, but it’s longer than the original.

uwire [w:1] r12, r2w;

assign r1w = a + b;

assign r2w = x + y;

� Indicate which ones are wrong and � the reason that they are wrong.

� Indicate which can’t be fixed and � and explain why not.

The value assigned to a localparam must be an elaboration-time constant. That’s true for x+y because they are parameters, but
it’s not true for a+b because a and b are module inputs and so could never be elaboration-time constants.

The assignments to r1w and r2w are fine. SystemVerilog allows a net (including uwire) declaration to include a continuous
assignment.

The assignments to r1l and r2l are wrong because var objects can only be assigned in procedural code. That’s easy to fix by
providing an always block, which is shown above.

(Note that a declaration like logic [w:1] v; is shorthand for var logic [w:1] v; and a declaration like uwire [w:1]

u; is shorthand for uwire logic [w:1] u;.)

Other than for r1p the size, type, and kind of a, b, x, and y are not a problem. The sum x+y is a 32-bit 2-state integer.
It’s not an error to assign that to a w-bit four state type. Also note that the data type for all of the r[12][pwl] objects are
logic. (Note that r[12][pwl] is an ad-hoc regular expression matching the objects being assigned above. Regular expressions are
something you should know in general, but not for this course.)

Grading Note: Students had more difficulty with this problem than I expected. As I pointed out in class, if
you don’t understand the different object kinds (net, var, param) and how they should be used you’ll waste
lots of time blindly changing things until the error messages go away.

7

← → Fall 2019 ← → Midterm Exam Exam Solution mt sol.pdf

https://xkcd.com/208/
https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

(d) Explain what $realtobits does, and what hardware will be synthesized for it, if any.

always_comb begin

x = $realtobits(r);

end

� Purpose of realtobits.

The realbits system task is used to move a set of bits from an object declared real to one declared as some kind of integer (say,
logic [63:0]). The bits are moved unchanged. If, instead the assignment were x=r; the simulator would convert the real
value in r to an integer.

� Synthesized hardware.

None. If we were to draw a diagram, there would be a wire labeled with both x and r.

8

← → Fall 2019 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Name Solution

Digital Design using HDLs

LSU EE 4755

Final Examination

Friday, 13 December 2019 10:00-12:00 CST

Alias It Begins

Problem 1 (30 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (25 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2019 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Problem 1: [30 pts] Appearing below is the solution to Homework 6, the accumulation module. The next
page shows the pipelined adder and st_occ, which is some of the inferred hardware. Show the rest of the
inferred hardware after some optimization. Leave the pipelined adder as a box.

module add_accum #(int w = 21, n_stages = 3)

(output logic [w-1:0] sum, output logic sum_valid,

input uwire [w-1:0] ai, input uwire ai_v, reset, clk);

logic [n_stages-1:0] st_occ;

assign sum_valid = !st_occ;

uwire aout_v = st_occ[n_stages-1];

uwire [w-1:0] aout;

uwire [w-1:0] a0 = ai_v ? ai : sum;

uwire [w-1:0] a1 = aout_v ? aout : sum;

add_pipe #(w,n_stages) add_p0(aout, a0, a1, clk);

logic sum_occupied;

uwire [1:0] n_values = ai_v + sum_occupied + aout_v;

uwire saa = n_values >= 2; // Start an addition.

uwire write_sum = !sum_occupied && n_values == 1;

always_ff @(posedge clk) if (reset) begin

sum <= 0;

sum_occupied <= 0;

st_occ <= 0;

end else begin

if (write_sum) sum <= aout_v ? aout : ai;

sum_occupied <= n_values[0];

st_occ <= { st_occ[n_stages-1:0], saa };

end

endmodule

� Show inferred hardware after some optimization, but �leave add pipe as a box.

� Show logic associated with n values as basic gates and a single BFA, do not show adders and do not show
comparison units.

�Clearly show all input and output ports, do not confuse parameters with ports.

�Avoid effortlessly optimized hardware, such as gates with constant inputs.

2

← → Fall 2019 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Solution appears below.

add_pipe
add_p0

aout
a0

a1

saa

aout_v

ai_v

ai

sum

1

0 en

0 sum

sum_valid

sum_occupiedreset

clk

add_accum

a

b ci
s

co

BFA

3

← → Fall 2019 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Problem 2: [25 pts] Appearing below is hardware from the solution to Homework 5, Problem 2. The
parameter names have been shortened, such as changing wv to v and using lg v for wvb. The diagram shows
the delay through some of the modules, including the pop module. Treat e and a (delays for = and +)
as given constants for the first part.

(a) Based on the provided delays and using the simple model for others, compute the arrival time (delay) of
signals at each register input. That’s two inputs for each of five registers. The solution for ready is shown
in blue, so only four registers remain. Also, highlight the/a critical path to the err register.

val

key

err

start

clk

re
a
d
y

cu
rr_p

o
s

sh
_v

a
l

pos

en

en

en

v
-k

1

en

enpop
p

1

0
1'b0

v-1:1

<

~0

k-
1

:0

0

ready

best_match
v,k

sh
_v

a
l

start

msb

lsb

=

+

st
a
rt

st
a
rt

v

k

lg k

lg vlg v

6 lg k

2 lg k

e

a

e+1

1

1Sample solution
in blue italic.

1

0

0

0

0

0

0

a
a
+

1

2
2

2+6lg k2
2

2+8lg k

2+6lg k + 1

0
2+8lg k+2

2+8lg k+3
= 5 + 8lg k

Solution
in green.

Critical Path

1

1

2

� Show the arrival time of the enable and data signal at each register input and �Highlight a critical path
to err with a squiggly line.

�Take into account constant inputs when computing delays.

4

← → Fall 2019 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Solution to part a: Arrival times at register inputs, as well as the delay at other points, shown in green. The critical path appears as
a red dashed (not squiggly) line.

Note that the delay of a mux with a constant data input is 1, which applies to two of the multiplexors in the diagram.

The critical path in the solution starts at key. It would also be correct to start the critical path at sh val (and passing through
the XOR gates).

A common mistake was to show the critical path passing through a register. Paths start at register outputs and end at register
inputs.

(b) The equality module is shown with a delay of e. Show the hardware for that module and compute the
cost and delay using the simple model. Take into account the width of the inputs and the fact that one
input is a constant.

� Sketch hardware for equality module for lg v = 8 and v − k = 1011 00012, and � taking into account the
constant input.

a[0]

b[0]

a[1]

b[1]

a[2]

b[2]

a[3]

b[3]

a

b

a
=
=
b

a[4]

b[4]

a[5]

b[5]

a[6]

b[6]

a[7]

b[7]

8b'1011001

0

0

0

1

1

1

1

a[0]

a[1]

a[2]

a[3]

a

b

a
=
=
b

a[4]

a[5]

a[6]

a[7]

8b'1011001

0

O
p
tim

ize
d
 b

a
se

d
 o

n
co

n
sta

n
t v

a
lu

e
 o

f b
.

R
e
g
u
la

r 8
-b

it
e
q
u
a
lity

 lo
g
ic.

Because of the constant input each XNOR gate
is optimized to either a NOT gate (where the
constant bit is 0) or just wire (where the con-
stant bit is 1). So the equality module is just
a dlg ve-input AND gate. See the illustration
to the right.

� Show the cost of the hardware for the equality module above based on the simple model in terms of lg v.�Don’t forget to take the constant input into account.

The hardware consists of a single lg v-input AND gate. Its cost is [lg v − 1] uc.

� Show the delay of the hardware based on the simple model in terms of lg v. � Don’t forget to take the
constant input into account.

The delay of an lg v-input AND gate is dlgdlg vee ut.

5

← → Fall 2019 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

reset

clk

0

0

1 +

1

+

Fi

i

fibo, w=16

w

w

Problem 3: [20 pts] The hardware illustrated
to the right emits a famous integer sequence.
Write a synthesizable Verilog description of the
hardware.

�Complete the module, � be sure that it is
synthesizable.

�Use non-blocking assignments carefully.

�Be sure to include all �input and output ports
and �parameters.

�Make sure that all objects have the appropriate
widths.

Solution appears below. The warning about non-blocking assignments needed to be heeded in the solution below so that the value of
Fi used when updating Fi next would be based on the old value of Fi.

// SOLUTION

module fibo
#(int w = 16)

(output logic [w-1:0] Fi, i,

input uwire reset, clk);

logic [w-1:0] Fi_next;

always_ff @(posedge clk) if (reset) begin

Fi <= 0;

Fi_next <= 1;

i <= 0;

end else begin

Fi <= Fi_next;

// Note: The non-blocking assignment above insures that the Fi +

// Fi_next expression below is computed using the old value of Fi.

Fi_next <= Fi + Fi_next;

i <= i + 1;

end

endmodule

6

← → Fall 2019 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Problem 4: [25 pts] Answer each question below.

(a) Appearing below are synthesis script results for the pipelined integer adder from Homework 6. That
adder computes a w-bit integer sum using an n-stage pipeline in which each stage computes dw/ne bits of
the sum, starting with the dw/ne least-significant bits in the first stage.

All syntheses are of a w = 24-bit adder, versions with n = 1, 2, 3, 4, and 6 stages are synthesized. The delay
target is set to an easy 90 ns.

Module Name Area Delay Delay

Actual Target

add_pipe_w24_n_stages1 29928 10.174 90.000 ns

add_pipe_w24_n_stages2 47043 5.428 90.000 ns

add_pipe_w24_n_stages3 64159 3.701 90.000 ns

add_pipe_w24_n_stages4 81275 2.837 90.000 ns

add_pipe_w24_n_stages6 115506 1.973 90.000 ns

�Based on this data provide the � latency and � throughput for the three-stage adder. Be sure to �
use appropriate units for the throughput.

The latency is 3× 3.701 = 11.103 ns. The throughput is 1 addition
3.701 ns = 270.2× 106 additions per second.

�Note that the area (cost) increases with the number of stages. Based on the description above what is the
main contributor to the increase in cost?

The main contributor to cost are the registers. Each stage requires three registers, two for the source operands and one for the sum.

7

← → Fall 2019 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

(b) The two modules below appear to be similar.

module plan_I(output logic [7:0] e, input logic [7:0] a,b);

logic [7:0] c;

always_comb begin

c = a + b;

e = c + a;

end

endmodule

module plan_II(output logic [7:0] e, input logic [7:0] a,b);

logic [7:0] c;

always_comb e = c + a;

always_comb c = a + b;

endmodule

�For which module will the simulator perform unnecessary addition? �Explain.

Module plan II will require extra work because when a changes the e = c + a can be executed twice, first for the change in a

then for the change in c due to execution of the c = a + b.

� Is the result computed by the two modules different or the same? �Explain.

The result at the end of a time step is the same. However plan II can leave e in different value than plan I during a time step
(before e = c+a executes a second time, as described above).

8

← → Fall 2019 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

(c) What value will y have at the end of the initial block?

module s;
logic [15:0] a,b,y;

initial begin

a = 1; // SOLUTION information in comments below.

b = 100; // Value of b set to 100.

b <= 10; // Update event b = 10 is put in NBA region. b still 100.

y = 0; // Value of y set to zero.

y <= a + b; // a+b computed: 1 + 100 = 101. Update event y=101 put in NBA region.

y = 999; // Value of y set to 999.

#1; // After #1 reached NBA events executed:

// b set to 10

// y set to 101. (a+b computed above using older b).

// The lines below have no impact on y.

a = 2;

b <= 20;

#200;

// Show value of y at this point in execution.

// SOLUTION: y is 101.

end

endmodule

�Value of y at end of block is:

Short answer: y=101.

Explanation: y is assigned three times. For the blocking assignments, y=0 and y=999, the value is written when the respective
statement is executed. For the non-blocking assignment, y<=a+b, the value a+b is computed when the statement is reached, but
the result is not assigned until the simulator reaches the timeslot t = 0 NBA region. The same holds for non-blocking assignment
b<=10. For that reason a+b is computed using a=1 and b=100. See the comments in the code above.

9

← → Fall 2019 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

(d) Consider the declarations below.

module types;
int en;

logic [31:0] lo;

bit [31:0] b;

uwire [31:0] u = 33;

localparam int p = 22;

endmodule

�Object u has the same data type as one of the other objects. Which is it?

It has the same data type as lo . The data type is logic. Declarator uwire is an object kind, not a data type. For uwire
kinds the default data type is logic.

�What is the difference between lo and b (logic and bit)?

Both are used to represent one bit. Type bit has two states, 0 and 1, while logic has four states, 0, 1, x, and z. The var
logic objects have value x until they are assigned a value. In net logic objects (such as something declared wire) the value is x
when there is more than one driver and at least one is driving a 0 and at least another is driving a 1. A net object with zero drivers
has value z. It is also possible to specify these values in literals, such as 1’bz.

�Notice that u is assigned a value. What is it about object lo that makes it illegal to assign a value in its
declaration?

Object lo is a variable type, and so it can only be assigned in procedural code.

�Add correct code to assign value 44 to lo.

The solution appears below. If the goal is to assign an initial value then an initial block is appropriate.

An assign lo=44; is wrong because lo is a var kind and continuous assignments (including assign) should only be performed
on net kinds, such as uwire.

// SOLUTION

initial lo = 44;

10

← → Fall 2019 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

18 Fall 2018 Solutions

349

← → Fall 2018 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Name Solution

Digital Design using HDLs

LSU EE 4755

Midterm Examination

Friday, 26 October 2018 9:30–10:20 CDT

Alias Blockchain Apocalypse

Problem 1 (22 pts)

Problem 2 (20 pts)

Problem 3 (23 pts)

Problem 4 (10 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2018 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Problem 1: [22 pts] The illustration below shows some of the inferred hardware for the behav_merge

module from the solution to Homework 6. The hardware that’s shown is for typical iterations i and i+1.
Show the hardware for iterations i=0 and i=1 with optimizations applied.

behav_merge, n, w
a

b

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

1 1

+ +

=

0

1

00 11

x[i]

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

1 1

+ +

=

0

1

0

ibia

0 11

x[i+1]

x

w

lg n

w

lg n

w

w

a

b

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

1 1

+ +

0

1

00 11

x[0]

w
lg n

w

lg n

w

0 0

0

0
=

ibia

n

n

=

1 1

+ +

0

1

00 11

x[1]

ibia

w

w

w

0

0
=

a[2]

b[2]

a[0]

a[1]

b[0]

b[1]

a[2]

b[2]

a

b

a[0]

b[0]

0

1 x[0]

w

w

w

ibia

1 1

+ +

0

1

00 11

x[1]

ibia

w

w

w

a[0]

a[1]

b[0]

b[1]

Optimization
Plan

Completed
Optimization

Maximum ib
value is 1,
assume n > 2.

SOLUTION ABOVE

� Show hardware for iterations i=0 and i=1.

� Also show hardware for code before for loop.

� Optimize hardware. Take into account possible values
of ia and ib.

See the next page for a discussion of the solution.

module behav_merge
#(int n = 4, int w = 8)

(output logic [w-1:0] x[2*n],

input uwire [w-1:0] a[n], b[n]);

logic [$clog2(n+1)-1:0] ia, ib;

always_comb begin

ia = 0; ib = 0;

for (int i = 0; i < 2*n; i++)

if (ib==n || ia!=n && a[ia]<=b[ib])

x[i] = a[ia++]; else x[i] = b[ib++];

end

endmodule

2

← → Fall 2018 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

behav_merge, n, w
a

b

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

≤

1 1

+ +

=

0

1

00 11

x[i]

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

≤

1 1

+ +

=

0

1

0

ibia

0 11

x[i+1]

x

w

lg n

w

lg n

w

w

a

b

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

≤

1 1

+ +

0

1

00 11

x[0]

w
lg n

w

lg n

w

0 0

0

0
=

ibia

n

n

=

≤

1 1

+ +

0

1

00 11

x[1]

ibia

w

w

w

0

0
=

a[2]

b[2]

a[0]

a[1]

b[0]

b[1]

a[2]

b[2]

a

b

a[0]

b[0]

≤
0

1 x[0]

w

w

w

ibia

≤

1 1

+ +

0

1

00 11
x[1]

ibia

w

w

w

a[0]

a[1]

b[0]

b[1]

Optimization
Plan

Completed
Optimization

Maximum ib
value is 1,
assume n > 2.

SOLUTION ABOVE

Solution appears above.

Explanation: To the left hardware that’s no longer
needed appears in gray. On the right the diagram
is redrawn with the unneeded hardware removed.
The initial zero values for ia and ib make the
a[ia] and b[ib] muxen unnecessary. For i=1
those muxen each have two inputs since the possi-
ble values for ia and ib are either 0 or 1.

A value for n was not given, but it is reasonable to
assume that it is greater than 1. In that case the
output of all of the =n logic blocks will be false.
This makes the AND and OR gates unnecessary,

and so the output of the ≤ block can connect
directly to the x mux and to the logic generating
the new ia and ib signals. For i=0 the ia signal

is equal to the output fo the ≤ block (that is, a
0 or 1), for ib (or to be exact, the least significant
bit of ib) the output is inverted.

3

← → Fall 2018 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Problem 2: [20 pts] Appearing once again is part of the Homework 6 solution, this time with items labeled
in blue. Show the cost and delay of these, as requested below. See the previous problem for the Verilog
description. The phrase most expensive means for the value of i for which the device needs all inputs, even
after optimization. For the mux, show the cost and delay for the tree implementation.

behav_merge, n, w
a

b

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

≤

1 1

+ +

=

0

1

00 11

x[i]

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

≤

1 1

+ +

=

0

1

0

ibia

0 11

x[i+1]

x

w

lg n

w

lg n

w

w

a-mux

i-mux

a-lim

� Cost of most expensive a-mux in terms of
n and w.

The mux has n inputs (the size of the a array) of

w bits each. The cost is 3w(n− 1) uc .

� Delay of most expensive a-mux in terms
of n and w.

The delay is 2⌈lg n⌉ ut .

� Cost of most expensive i-mux in terms of
n and w.

The i-mux has just two inputs of lg n bits each
according to the diagram. According to the Verilog
the number of bits is ⌈lg(n + 1)⌉. The cost is

3⌈lg(n + 1)⌉ uc . Note: 3 lg n would get full
credit.

� Delay of most expensive i-mux in terms
of n and w.

Since there are only two inputs the delay is 2 ut .

� Cost of most expensive a-lim in terms of n and w � after optimizing for constant inputs.

Input n to the equality unit is a constant, so the first column of XOR gates is replaced by NOT gates (in positions where the n bit

is 0). So the equality module is just the NOT gates plus n-input AND gate, the cost of which is (⌈lg(n + 1)⌉ − 1) uc .

� Delay of most expensive a-lim in terms of n and w � after optimizing for constant inputs.

The delay is ⌈lg⌈lg(n + 1)⌉⌉ ut .

4

← → Fall 2018 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Problem 3: [23 pts] Output lt of module comp, below, should be 1 iff a is strictly less than b, and eq

should be 1 iff a==b. Both a and b are unsigned integers. The module recursively instantiates two instances
of itself, one is supposed to compare the low bits of the inputs, the other compares the high bits. Complete
the module so that it works for any positive w.

� Complete the module, don’t miss the � FILL IN items.

� Make sure that it works for odd and even values of w.

module comp
#(int w = 8)

(output uwire lt, eq, input uwire [w-1:0] a, b);

if (w == 1) begin // Terminating Case Condition <---- � FILL IN

assign lt = !a && b;

assign eq = a == b;

end else begin

uwire llo, lhi, elo, ehi;

localparam int wlo = w / 2;
localparam int whi = w - wlo;

// Instantiate two comp modules, connect each to about half the inputs.

//

// ---- -------------- -------------- <-- � FILL IN

comp #(wlo) lo(llo, elo, a[wlo - 1 : 0], b[wlo - 1 : 0]);

comp #(whi) hi(lhi, ehi, a[w - 1 : wlo], b[w - 1 : wlo]);

assign lt = lhi || ehi && llo ; <---- � FILL IN

assign eq = elo && ehi ; <---- � FILL IN

end

endmodule

Solution appears above, in blue, of course.

Explanation: The termination condition must be set to w==1 because the expression !a && b would not set lt to the correct
value if a and b were more than one-bit quantities. Setting w==0 would make no sense from a functionality viewpoint.

The non-terminating case splits the bits making up the two inputs, a and b, between the two recursive instantiations, clo and chi,
in a straightforward manner. Notice that wlo and whi are computed separately (rather than using w/2 for both) to handle odd
values of w.

Finally, outputs lt and eq must be computed from the outputs of clo and chi. Equal is the easier one. Input a equals b if their
low bits and high bits are both equal. That is, eq = elo && ehi. For lt to be true either lhi is true (meaning that a<b
looking only at the most-significant bits) or if the high bits are equal, ehi, and llo is true.

5

← → Fall 2018 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Problem 4: [10 pts] The output of plus_amt, x, is to be set to b + amt. Input b and output x are expected
to be in IEEE 754 double FP format (the same format as type real). (Note: the port declarations are not
to be modified in the problems below.) Several variations on the module appear below. Hint: Solution to
this problem require the correct use of realtobits and/or bitstoreal. Grading Note: The bonus problem
was not on the original exam.

(a) The module below does not compute the correct result. Fix the module by modifying the always_comb

block. The module does not need to be synthesizable.

� Fix so that x is assigned the correct result, amt plus value of b.

Two solutions appears below. In the original code one operand was an integer type, b, the other was a real type, amt. In such cases
the simulator would add code to convert b from an integer to a real. The simulator has no way of knowing that b already holds a
value in the real format. Once b is converted the value is ruined. Two solutions are shown below. In the first solution two new real
variables are declared, one for b and one for x. The re-interpretation system task $bitstoreal is used to move the value in b to
b real without changing the bits. In the statement x real = b real + amt; all three variables are real, so the simulator
does not do any type conversion. Finally, x is assigned from x real using the re-interpretation system task $realtobits. The
second solution uses these system tasks the same way but without the intermediate variables.

module plus_amt
#(real amt = 1.5)

(output logic [63:0] x, input uwire [63:0] b);

// Both x and b are IEEE 754 doubles (reals).

real b_real, x_real; // Declare vars to hold real values.

always_comb begin

b_real = $bitstoreal(b); // Re-interpret b as a real.

x_real = b_real + amt; // Note: Both operands are FP, so do FP add.

x = $realtobits(x_real); // Re-interpret x_real as logic vector (int).

end

endmodule

module plus_amt // Compact solution, avoids need for new variables.

#(real amt = 1.5) (output logic [63:0] x, input uwire [63:0] b);

always_comb x = $realtobits($bitstoreal(b) + amt);

endmodule

6

← → Fall 2018 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

(b) [0 pts] Bonus Problem Complete the module below so that it uses the CW_fp_add module to do the
addition. The parameters to CW_fp_add are already correct, just connect the inputs and outputs.

Complete so that it computes the correct result.

7

← → Fall 2018 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Problem 5: [25 pts] Show the hardware that will be inferred for the Verilog code below.

� Clearly show module ports.

� Show inferred hardware. Don’t optimize.

� Pay close attention to what is and is not inferred as a register.

module regs #(int w = 10, int k1 = 20, int k2 = 30)

(output logic [w-1:0] y,

input logic [w-1:0] b, c,

input uwire clk);

logic [w-1:0] a, x, z;

always_ff @(posedge clk) begin

a = b + c;

if (a > k1) x = b + 10;

if (a > k2) z = b + x; else z = c - x;

y = x + z;

end

endmodule

Solution appears below.

Explanation: The area corresponding to the always ff block is outlined in a green dashed line. Registers are shown on the right-
hand boundary because the value that gets clocked into a register is the value present when control reaches the end of the block (the
end statement above). Four values are assigned within the block, a, x, z, and y. Registers are inferred only for those variables that
are a live out object of the block. That is true for y since it’s also a module output and so its value is needed outside the block. In
contrast, the value of a that is computed in the block is not used again after the end is reached. (When the block is re-entered a
new value of a will be computed.) The same is true for z. But the value of x may be used after end is reached. That happens when
the block is re-entered and a ≤ k1, in which case x is set to the previous value of x (the one in the register) rather than b+10.

regs, w, k1, k2

c

b

1

w
+

a

+
10

k1
>

>
k2

x

-

+

+

z

y

z
z

y

x

x

clk

w

always_ff @ (posedge clk)

8

← → Fall 2018 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Name Solution

Digital Design using HDLs

LSU EE 4755

Final Examination

Wednesday, 5 December 2018 15:00-17:00 CST

Alias In Color

Problem 1 (20 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

clk

mult_seq_d_prob_2 (w,m)
p
ro
d

a
c
c
u

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_
v
a
lid

0
1

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m �

0

n-1

>n-1

0

w
-1

-m
:w

-2
m

�

n-2

>n-2

0 �

1

>1

2
m

-1
:m

0

+

iter

iter

cand

iter

i=n-1 i=n-2 i=1

=

1

oa_new

sv_prod

Problem 1: [20 pts] Appearing to the right is the
hardware inferred for the Homework 7 Problem 2
module, the fast sequential multiplier which skipped
over zeros in the multiplicand.

(a) Notice that some hardware is circled in blue. Op-
timize that hardware and show the cost of the op-
timized hardware. The optimized hardware should
generate signals sv prod and oa new. If possible,
replace the multiplexors with simpler gates.

� Show optimized hardware.

Solution appears to the lower-right in purple.

�Cost of optimized hardware:

The ⌈lg n⌉-input NOR gate implementing iter==0 costs
[⌈lg n⌉ − 1] uc.

The new AND and OR gates cost 1 uc each. The existing (and
unchanged) three-input AND gate costs 2 uc. The total cost is
[⌈lg n⌉ + 3] uc.

clk

mult_seq_d_prob_2 (w,m)

p
ro
d

a
c
c
u

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

in
_
v
a
lid

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m ≠

0

n-1

>n-1

0

w
-1

-m
:w

-2
m

≠

n-2

>n-2

0 ≠

1

>1

2
m

-1
:m

0

+

iter

iter

cand

iter

i=n-1 i=n-2 i=1

1

oa_new

sv_prod

2

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

clk

mult_seq_d_prob_2 (w,m)
p
ro
d

a
c
c
u

m

iter

cand

plier

2w

2w

lg w/m

w

w

0

0

in
_
v
a
lid

0
1

o
u
t_
a
v
a
il

w+m

Unoptimized

2w

<<m-1:0

2m-1:m

3m-1:2m

w-1:w-m

m lg m
0

amt

0

n = w/m

w
-1

:w
-m ≠

0

n-1

[n-1]

0

w
-1

-m
:w

-2
m

≠

n-2

0 ≠

1

2
m

-1
:m

0

+

iter

cand

iter

i=n-1 i=n-2 i=1

=

1

gt

[n-2] [1]

ngti-n

gtv

(b) In the version of the module appearing be-
low the > units have been replaced by one
module, gt, the changed hardware appears in
blue. As can be inferred from the diagram bit
i of the output of gt, gtv, is 1 iff i>iter. In
the Verilog code below gt is instantiated but it
is not being used. Modify the Verilog code so
that the existing for loop uses the output of
gt instead of the > operators. Pay attention
to the version of iter used by gt.

�Use gt output in existing for loop.

�Make sure that gt uses correct iter version.

module mult_seq_d_prob_2
#(int w = 16, int m = 2)

(output logic [2*w-1:0] prod,

output logic out_avail,

input uwire clk, in_valid,

input uwire [w-1:0] plier, cand);

localparam int n = (w + m - 1) / m;

localparam int iter_lg = $clog2(n);

uwire [n-1:0][m-1:0] cand_2d = cand;

bit [iter_lg-1:0] iter, next_iter;

logic [2*w-1:0] accum;

uwire [n-1:0] gtv;

uwire [iter_lg-1:0] gt_iter = (in˙valid ? 0 : iter); // � FILL IN

gt #(n,iter_lg) gti(gtv, gt_iter);

always_ff @(posedge clk) begin

if (in_valid) begin

iter = 0; accum = 0; out_avail = 0;

end else if (!out_avail && iter == 0) begin

prod = accum; out_avail = 1;

end

accum += plier * cand_2d[iter] << (iter * m);

next_iter = 0;

// for (int i=n-1; i>0; i--) if (i>iter && cand_2d[i]) next_iter = i;

for (int i=n-1; i>0; i--) if (gtv[i] && cand_2d[i]) next_iter = i;

iter = next_iter;

end

endmodule

3

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Problem 2: [25 pts] The point of the gt module in the previous problem was to reduce cost, just in case
the synthesis program didn’t notice that the cost of computing each of n-1>iter, n-2>iter, . . ., 2>iter,
1>iter, would be less than n − 1 times the cost of computing one of them. The recursive module below
computes these quantities and can be used for the gt module from the previous problem.

module gtd_rec #(int n = 16, int lgn = $clog2(n))

(output logic [n-1:0] gt, input uwire [lgn-1:0] iter);

localparam int nh = n / 2; // Note: n must be a power of 2.

if (n == 2) begin

assign gt[0] = 0;

assign gt[1] = !iter[0];

end else begin

uwire [nh-1:0] gtlo;

gtd_rec #(nh) glo(gtlo, iter[lgn-2:0]);

localparam logic [nh-1:0] zeros = 0, ones = -1;

assign gt = iter[lgn-1] ? { gtlo, zeros } : { ones, gtlo };

end

endmodule

(a) Show the hardware that will be inferred for this module for an arbitrary value of n. In this case, do not
show what is inside the recursively instantiated module.

� Show hardware for arbitrary n > 2. (Don’t show recursive module contents.)

Solution appears below.

lsb

msb

gtd_rec, n, lgn

gtd_rec,

n/2, lgn-1iter

msb
1

l����

l��

'b11…11

l��

msb

'b00…00

�n�

�n�

�n�

gtn

n

n

g�	

4

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

(b) There should be a significant optimization opportunity in the hardware above. Show it.

� Show how the hardware will be optimized. The result should be AND, OR, and other basic logic gates.

Solution appears below. From the previous solution notice that the n/2 LSB of the lower mux input are all zeros. Therefore we can
optimize the three gates per bit, into just an AND gate using the inverted select signal. Similarly, the n/2 MSB of the upper mux
input are all 1’s, so we can optimize those bits into just an OR gate.

lsb

gtd_rec, n, lgn

gtd_rec,

n/2, lgn-1iter

msb 1

���

��

msb

��� gtn

���

��
����

��
����

��
�����1]

5

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

(c) Show the hardware that will be inferred for n = 8 after elaboration. That is, show the hardware inside
all of the recursive instantiations.

� Show hardware for n = 8. Show the contents of all recursively instantiated modules.

The solution appears below.

lsb

gtd_rec, n=8, lgn=3

iter

msb 1

3

msb

4 gt8

�������

����� �

�����!�

�����"�

�������

����� �

1'b0

1
1

msb

�#$

(d) Compute the cost and delay using the simple model. Show these in terms of n assuming that n is a
power of 2.

�Cost and � delay in terms of n.

The cost of the hardware for n = 2 is 0 (because with the simple model NOT gates are free!). The cost of the hardware for size
n = 2η , η > 1 is n gates plus the cost of a size n/2 module. The total cost for a module of size n = 2η , η > 1 is

η∑

l=2

2l = 2η+1 − 4 = (2n− 4) uc.

Since the critical path through each level is 1, the total delay is

η∑

l=2

1 ut = (η − 1) ut = (lg n− 1) ut.

6

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Problem 3: [20 pts] Consider the module below.

module misc #(int n = 8)

(output logic [n-1:0] a, g, e,

input uwire [n-1:0] b, c, j, f, input uwire clk);

logic [n-1:0] z;

always_ff @(posedge clk) begin

a <= b + c; // Note: nonblocking assignment.

z = a + j;

g = z;

end

always_comb begin

e = a * f;

end

endmodule

(a) Show the hardware that will be inferred for the module above.

� Show inferred hardware. � Pay attention to what is and is not a register. � Clearly show module
ports.

Solution appears below. Registers are inferred for a and g because they are live out values of the always ff block. Because a
non-blocking assignment is used for a the previous value of a is used (the one before assigning b+c) when computing a+j.

b

c

+

f
e

j
z g

a

a

m%&'

+

clk

7

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

module misc #(int n = 8)

(output logic [n-1:0] a, g, e,

input uwire [n-1:0] b, c, j, f, input uwire clk);

logic [n-1:0] z;

always_ff @(posedge clk) begin // Code Position Label: alf

a <= b + c; // Note: nonblocking assignment.

z = a + j;

g = z;

end

always_comb begin // Code Position Label: alc

e = a * f;

end

endmodule

(b) Suppose that the event queue is empty at t = 10 when simulating the module above. Show the contents
of the event queue for the code above based on the following changes: At t = 10 j changes. At t = 12 clk

changes from 0 to 1. At t = 14 f changes.

� Show the state of the event queue from t = 10 until it is empty.

The solution appears below. Call the numbers along the top of the diagrams below steps. Step 1 shows the state of the event queue
at t = 10. At step 2 j changes. Object j is not in the sensitivity list for any piece of code so nothing happens, which is why step 3
is exactly like step 1. Sorry j. At step 6 clk changes from 0 to 1. Since clk is in the sensitivity list for the always ff block’s
event control, @(posedge clk), the simulator will put a resume event for that block, shown as alf, in the inactive region. At
step 7 the active region is empty, so the inactive region is copied into the active region and so the always ff block will execute in
step 9. (If there were several items in the active region, they would execute one at time.) In step 11 the a <= b+c line results in an
update event for a being scheduled in the NBA region, shown as Upd-a. When the Upd-a event executes it causes the always comb

block, shown as alc, to be scheduled because both a and f are on the sensitivity list for that block. Event alc executes at step 17,
after which there is no more work to do for t = 12. At t = 14 f changes causing alc to be seceduled again.

1
t = 10
active
inactive
nba

2
→

3
t = 10
active
inactive
nba

4
→

5
t = 12
active
inactive
nba

6
→

7
t = 12
active
inactive

alf
nba

8
→

9
t = 12
active

alf
inactive
nba

10
→

11
t = 12
active

alf
inactive
nba

Upd-a

12
→

13
t = 12
active
inactive
nba

Upd-a

14
→

15
t = 12
active

Upd-a

inactive
nba

16
→

17
t = 12
active
inactive

alc
nba

18
→

19
t = 12
active

alc
inactive
nba

20
→

21
t = 12
active
inactive
nba

22
→

23
t = 14
active
inactive
nba

24
→

25
t = 14
active
inactive

alc
nba

26
→

27
t = 14
active

alc
inactive
nba

28
→

29
t = 14
active
inactive
nba

8

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Problem 4: [10 pts] Answer each question below.

(a) The module below is not compilable. Explain why and fix it based on what it looks like it is trying to
do.

module more
(input uwire [5:0] w,

input uwire [w-1:0] a, b,

output uwire [w:0] s);

assign s = a + b;

endmodule

// SOLUTION

module more
#(int w = 16)

(input uwire [w-1:0] a, b,

output uwire [w:0] s);

assign s = a + b;

endmodule

�Fix the problem.

�Describe the problem:

Packed vector dimensions must be specified using elaboration-time constants, but the dimensions of a, b, and s are specified in terms
of a module input, which is not a constant value. The fix assumes that w was supposed to be a module parameter.

9

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

(b) The module below is supposed to count cycles but it won’t work as written. Describe the problem and
fix it.

module tic_toc
(output logic [7:0] cycles,

input uwire clk, reset);

always_comb begin

if (reset) cycles = 0;

else if (clk) cycles = cycles + 1;

end

endmodule

// SOLUTION

module tic_toc
(output logic [7:0] cycles,

input uwire clk, reset);

always_ff @(posedge clk)

if (reset) cycles = 0; else cycles = cycles + 1;

endmodule

�Describe the problem:

The sensitivity list of the always comb module includes live-in values, including cycles in this case. But cycles is also a
live-out, and so there is the potential for an infinite loop since each change in cycle will cause the always comb to reëxecute.

�Fix the problem.

In the fixed code, appearing above, the always comb is replaced by an always ff.

10

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Problem 5: [25 pts] Answer each question below.

(a) Appearing below is synthesis data showing the clock period of degree-m sequential workfront multipliers
and degree-m sequential regular (dm) multipliers for sizes m = 1, m = 2, m = 4, and m = 8.

Module Name Area Period Period Total

Target Actual Latency

mult_seq_wfront_m_w32_m1 191334 1000 3766 241024

mult_seq_wfront_m_w32_m2 205303 1000 3857 123424

mult_seq_wfront_m_w32_m4 260182 1000 5266 84256

mult_seq_wfront_m_w32_m8 351910 1000 7031 56248

mult_seq_dm_w32_m1 246818 1000 31113 995616

mult_seq_dm_w32_m2 279486 1000 30994 495904

mult_seq_dm_w32_m4 314724 1000 32127 257016

mult_seq_dm_w32_m8 408659 1000 31251 125004

As m increases the clock period of the workfront multiplier increases by a significant amount, while the
period of the sequential multiplier barely changes. Why?

�Why does the workfront period increase so much more than that of the regular multiplier?

The critical path of a degree-m workfront multiplier passes through m binary-full adders (BFAs), whereas the critical path for the
degree-m regular multiplier passes through m − 1 + 2w BFAs (or m − 1 + w for the streamlined version). For the workfront
multipliers the BFA part of the critical path length increases by a factor of 8 when the degree increases from m = 1 to m = 8. In
contrast the BFA component of the critical path for the regular multipliers increases by a factor of 64+7

64 ≈ 1.11. That’s a much
smaller increase and its effect is harder to see (that is 1.11 × 31113 6= 31251) because the synthesis program can do more to
optimize longer critical path lengths.

Let pw(m) and pr(m) denote the clock period of the degree-m workfront and regular multipliers. Show
expressions for lw(m) and lr(m), the latencies of these multipliers.

�Finish the following expression for latency: lw(m) = pw(m) ×2⌈w/m⌉

Solution is boxed above. The workfront multiplier requires 2⌈w/m⌉ clock cycles to compute a solution. That’s twice as many
cycles as the regular multiplier, but the clock period is much lower.

�Finish the following expression for latency: lr(m) = pr(m) ×⌈w/m⌉

Solution is boxed above. The regular multiplier requires ⌈w/m⌉ clock cycles to compute a solution. That’s half the number of
cycles of workfront, but the period is much longer.

(b) The reasoning in the statement below is, as of this writing, incorrect. Provide the correct reason to not
spend time on multiplier modules.

“One should not spend time trying to develop efficient multiplication hardware because the synthesis program
is very good at optimizing logic and will synthesize something at least as good as a human can.”

�When working on a design that makes heavy use of multiplication one should just use multiplication operators
and not try to implement your own because:

The problem with the statement above is that as of this writing, we can’t expect a synthesis program to discover faster equivalent
versions of circuits that we enter for circuits of any complexity. For example, the synthesis program does not come close to optimizing
the behavioral merge module from Homework 5 to the performance of a Batcher merge module. There are two reasons for using
multiply operators. First, we expect that humans have provided the synthesis program with a library of different multiplier designs
that the synthesis program will choose from. We don’t expect our designs to be better than the designs produced by these humans.
The second reason is that by using multiplication operators rather than providing your own modules, the synthesis program might be
able to apply algebraic simplifications to some expressions.

11

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

(c) Sequential multipliers S0 and S1 have the same latency and cost, but the clock period for S1 is lower
than S0.

�Which is preferred? �Explain.

Both multipliers have the same cost, latency, and throughput. If no other factors are important then either one could be used.
Generally sequential logic uses more power at higher frequencies and so the higher clock period, and so S0, is preferred.

Note that since the clock period of S1 is lower, it must require more cycles to compute a product than S0. For example, suppose that
the period for S1 was 0.5 ns and the period for S0 was 1 ns. Suppose that S1 took 10 cyc to compute a product. The problem
states that the latency of S0 and S1 are the same, therefore S0 must take 5 cyc.

Pipelined multipliers P0 and P1 have the same latency and cost, but the clock period for P1 is lower than
P0.

�Which is preferred? �Explain.

Because these multipliers are pipelined the clock frequency determines throughput. Therefore P1, which has the higher higher clock
frequency, will have higher throughput.

12

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

(d) In the module below notice that cand_2d is no longer available. Modify the line updating accum to use
cand instead.

module mult_seq_dm #(int w = 16, int m = 2)

(output logic [2*w-1:0] prod,

input uwire [w-1:0] plier, cand, input uwire clk);

localparam int iterations = (w + m - 1) / m;

localparam int iter_lg = $clog2(iterations);

// uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg:1] iter;

logic [2*w-1:0] accum;

always @(posedge clk) begin

if (iter == iter_lg’(iterations)) begin

prod = accum; accum = 0; iter = 0;

end

// � Fix line below

accum += plier * cand[m*iter +: m] << (iter * m);

iter++;

end

endmodule

Solution appears above. The solution uses an indexed range expression, m*iter +: m, to extract the m-bit slice from cand.
The m*iter specifies the position to start and the m is the number of bits. Unlike the part select operator, :, with the index-
range operators, +: and -:, the first operand does not need to be an elaboration-time constant. (The second operand must be an
elaboration-time constant for the part select and the index-range operators.)

The following is invalid Verilog: cand[m*(iter+1) -1 : m*iter], though it would retrieve the needed bits if
SystemVerilog 2017 weren’t so strict. It is invalid because with the ordinary slicing operator, :, both operands must be elaboration
time constants. Grading Note: Full credit was given for this answer since the indexed range operator was only
covered briefly.

13

← → Fall 2018 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

19 Fall 2017 Solutions

371

← → Fall 2017 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Name Solution

Digital Design using HDLs

EE 4755

Midterm Examination

Monday, 16 October 2017 9:30–10:20 CDT

Alias Even Ireland.

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (15 pts)

Problem 5 (10 pts)

Problem 6 (15 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2017 ← → Midterm Exam Exam Solution mt sol.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Problem 1: [20 pts] Write a Verilog description of the hardware illustrated below. The description must
include the modules and instantiations as illustrated. The description can be behavioral or structural, but
it must be synthesizable.

a

b

ci c
o

s
u
mBFA_fast a

b

ci c
o

s
u
mBFA_fast

a

b

ci

a[0]

b[0]

2

2

a[1]

b[1]

s
u
mlsb

msb

3

bf1bf0

tba

�Verilog corresponding to illustrated hardware.

� Show instantiations, �Verilog for instantiated module(s), � and all module ports.

// SOLUTION

module BFA_fast(output uwire sum, co, input uwire a, b, ci);

// Note: axb explicitly computed once and used twice.

uwire axb = a ^ b;

assign sum = axb ^ ci;

assign co = axb && ci || a && b;

endmodule

module tba(output uwire [2:0] sum, input uwire [1:0] a, b, input uwire ci);

uwire c;

BFA_fast bf0(sum[0], c, a[0], b[0], ci);

BFA_fast bf1(sum[1], sum[2], a[1], b[1], c);

endmodule

2

← → Fall 2017 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Problem 2: [20 pts] Appearing below is a partially completed recursive description of an n = 2b-input,
w-bit multiplexor, which is a generalized version of the multiplexors appearing in Homework 1. Complete it.

�Fill in the condition and code for the terminating case.

�Complete recursive case, including the instantiation port and parameter connections (look for FILL IN).

module muxn #(int w = 5, int b = 4, int n = 1 << b)

(output uwire [w-1:0] x, input uwire [b-1:0] sel, input uwire [w-1:0] a[0:n-1]);

if (b == 1) // Terminating Case Condition <---- � FILL IN

begin

// Terminating Case

assign x = a[sel];

end else begin

// Recursive Case

uwire [w-1:0] y[2];

// Instantiate two n/2-input muxen, and connect each to half the inputs.

//

// ---- ---- <---- � FILL IN

muxn #(.w(w), .b(b-1)) mlo(y[0], sel[b-2:0], a[0 : n/2-1]);

// ---- ---- ----- <---- � FILL IN

muxn #(.w(w), .b(b-1)) mhi(y[1], sel[b-2:0], a[n/2 : n-1]);

// Instantiate one 2-input mux.

//

// ---- ---- ------------------- <---- � FILL IN

muxn #(.w(w), .b(1)) m2(x, sel[b-1], y);

end

endmodule

3

← → Fall 2017 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Problem 3: [20 pts] Appearing below to the right is an 8-input multiplexor constructed from 2-input
multiplexors using the technique from Homework 1 and from the previous problem. Call a multiplexor
constructed this way a tree mux. Appearing below to the left is a diagram showing a flat mux, the kind
usually used in class. The flat mux diagram shows a timing analysis based on the simple model, and some
details about cost.

For reference:
∑b−1

i=0 a2
i = a(2b − 1). Assume that n is a power of 2.

1:10:0

select

a0

a1

a2

a3

a4

a5

a6

a7

x

2:2
s

a0

a1

x

mux n, w

s=0

s
[0
]

s
[1
]

s
[lg

(n
)-1

]

a(n-1)

s=1

s=n-1

w

w

w

lg n

lg
 lg

 n

1

One decode AND per input (n total).

w gate ANDs per

input (nw total).

0

0

0

0

(lg
 lg

 n
) +

 1
 +

 lg
 n

w
 O

R
 g

a
te

s

(a) Compute the cost of an n-input, w-bit flat mux using the simple
model and without optimization.

�Cost of flat mux in terms of n and w.

As can be seen from the diagram, the n decode gates each have lg n inputs, for a total
cost of n(lg n − 1). The gate AND gates each have two inputs and there are nw
of them, for a total cost of nw units. The OR gate has n inputs and there are w of
them, so their cost is (n−1)w units. The total cost is then n(lg n−1)+2nw−w
units.

(b) Compute the cost of an n-input, w-bit tree mux using the simple model.

�Cost of tree mux in terms of n and w. �Describe assumptions made about 2-input mux implementation.

As can be seen in the diagram, in the first column there are n/2 = 2b−1 multiplexors, where n = 2b. The second column has

2b−2 multiplexors, and so on, the last column has 20 = 1 multiplexor. The total number of multiplexors is
∑b−1

i=0 2i = 2b − 1
multiplexors. The cost of a 2-input, w-bit mux flat is 3w units (see the previous part) and so the total cost of the tree mux is
3w(2b − 1) = 3w(n− 1).

(c) Compute the delay of an n-input, w-bit tree mux using the simple model.

�Delay of tree mux in terms of n and w.

The critical path passes through lg n layers (columns in the diagram). Each layer is a 2-input mux, in which the critical path passes
through an AND gate and a OR gate, each of two inputs, so the delay is 2 units per layer. Therefore the delay is 2 lg n units.

4

← → Fall 2017 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Problem 4: [15 pts] Show the hardware that will be synthesized for the modules below.

(a) Show the hardware that will be inferred for the module below, including the minimum number of bits in

each wire. Assume that sqrt is defined in a library somewhere.

module wqf
#(int w = 16)

(output logic signed [2*w-1:0] rad,

output uwire [31:0] srad,

input uwire [w-1:0] a, b, c);

sqrt #(32,2*w) s1(srad,rad);

always_comb begin

rad = b*b - 4 * a * c;

if (rad < 0) rad = 0;

end

endmodule

� Show inferred hardware. � Show minimum correct bit widths.

4
a rad

srad
sqrt

s1

w

wqf

w

w

32

Inferred library modules.

2w

2w

2w
2w

Context-determined bit
widths.

Explicitly
speci ed bit widths.

<
0

0
2w

rad

Solution appears above. Note that the basic arithmetic operators are replaced by library modules (shown as circles) provided by the
synthesis program, whereas the sqrt module is explicitly instantiated in the module above. The multiplexor is inferred from the if
statement. The select signal is connected to a comparison module, however that could easily be optimized into a connection to the
sign bit of output of the subtractor. Similarly the ×4 multiplier could have been optimized to a bit renumbering. But the question
asks for inferred hardware, and so even these easy optimizations are omitted. The sizes of the wires connected to module ports
are given explicitly in the wqf module, whereas widths of the internal wires are determined using Verilog rules for bit widths. Under
those rules multiplication and subtraction arguments’ bit widths are context-determined. Note that rad is explicitly sized to 2w
bits, this context at the subtract output determines the size as the subtract inputs, which in turn determines the width needed for
the multiplies.

5

← → Fall 2017 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

(b) Show the hardware that will be inferred for the module below.

module sort2 #(int w = 4)

(output logic [w-1:0] x[2], input uwire [w-1:0] a[2]);

always_comb begin

for (int i=0; i<2; i++) x[i] = a[i];

if (a[0] < a[1]) begin x[0] = a[1]; x[1] = a[0]; end

end

endmodule

� Show inferred hardware.

<

x[0]

x[1]

a[0]

a[1]

x[0]

x[1]

a[1]

a[0]

a

x

Solution appears above. Note that the effect of the for loop is only to make x[0] another name for a[0] and x[1] another name
for a[1].

6

← → Fall 2017 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Problem 5: [10 pts] Answer each question below.

(a) The mux2 module below uses implicit structural code. Modify it so that it uses behavioral (procedural)
code.

module mux2 #(int w = 16)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a,b);

assign x = s == 0 ? a : b;

endmodule

// SOLUTION

module mux2 #(int w = 16)

(output logic [w-1:0] x,

input uwire s, input uwire [w-1:0] a,b);

always_comb x = s == 0 ? a : b;

endmodule

�Modify so that is procedural. �Change ports if necessary.

Solution appears above. Note that in addition to changing assign to always comb, the kind of object of the input port was
changed from net to var. (uwire is an object of kind net with a default data type of logic, and logic is a data type with a
default object kind of var.)

7

← → Fall 2017 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

(b) Modify the module port and parameter declarations below so that the Verilog is correct. Do not modify

the contents of the module itself. Note that opt is not defined, but that it should be. Note: In the original

exam assign was omitted from the module body, making the problem impossible to solve.

module sum_or_dff
#(int w = 16)

(output uwire [w-1:0] x,

input uwire [w-1:0] a, b);

if (opt == 0) assign x = a+b; else assign x = a-b;

endmodule

module sum_or_dff
#(int w = 16, int opt = 1)

(output uwire [w-1:0] x,

input uwire [w-1:0] a, b);

if (opt == 0) assign x = a+b; else assign x = a-b;

endmodule

�Modify port and parameter declarations for correctness.

Solution appears above. The if statement, because it is in module scope, is a generate statement and therefore the condition must
be an elaboration-time constant. For that reason opt is made a parameter.

8

← → Fall 2017 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Problem 6: [15 pts] Answer each question below.

(a) Why is always_comb preferred over always @(x or y or ..) when describing combinational logic?

� always comb preferred because . . .

. . . there is no need to take the trouble to list all of the live-in objects nor is there the risk of omitting one.

�What is the risk with always @(x or y or ..)?

If a live-in object is omitted from the sensitivity list, code in the block will not be re-executed when the value of the omitted object
changes but other variables don’t change. For example, consider the sum module below. The intent is hardware that adds three
numbers together. But because z was omitted the value of output a will not be “correct” if z changes but x and y stay the same.
In general, the simulation might not produce the answers that are expected and the synthesis program will infer a latch (or latches)
rather than combinational logic.

// Module illustrating error easily made using old-school Verilog sensitivity lists.

module sum(output logic [15:0] a, input uwire [15:0] x, y, z);

always @(x or y) a = x + y + z;

endmodule

(b) Describe what the technology mapping step of synthesis is, and the kind of optimizations that need to
be performed after technology mapping.

�Technology mapping is:

the substitution of generic components in the inferred hardware with components in the target technology being synthesized. For
example, a three-input AND gate (a generic component) might be replaced by ASx9AND4, a four-input AND gate in Acme Silicon’s
x9 ASIC cell library. (Acme Silicon’s x9 ASIC cell library does not have a three-input AND gate.) Note: Acme Silicon is a fictional
silicon foundry made up for this problem’s solution.

�Optimizations that must be performed after technology mapping:

Most cost reduction optimizations must be done after technology mapping because only after technology mapping are the cost and
timing of components known.

(c) The module below adds a real and an integer and assigns the sum (in real format) to its output. It is

valid Verilog but is not synthesizable by Owr EDA software. So, you call Owr EDA and ask, “why not?”.

They answer, “because it is impossible to add an integer to a real.” Is that the real reason? Explain.

module plusri (output real sum, input real a, input [20:0] x);

assign sum = a + x;

endmodule

�Reason a+x not synthesizable by Owr EDA software:

If Owr EDA wanted to they could infer an integer-to-real conversion module to convert x to a real and a real addition module to
compute the sum. There are no fundamental reasons why a synthesis program can not have such features. They did not do so because
it never made it to the top of their to do list, perhaps.

9

← → Fall 2017 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Name Solution

Digital Design using HDLs

LSU EE 4755

Final Examination

Wednesday, 6 December 2017 15:00-17:00 CST

Alias Pie Plain

Problem 1 (15 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (30 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2017 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Problem 1: [15 pts] The Verilog code below is the solution to Problem 1a of Homework 7. Below that is
the hardware for a slightly different pipelined multiplier. Modify the hardware to match the Verilog code.
Changes need to be made for each line commented DIFFERS.

�Modify hardware to reflect Verilog.

module mult_fast_1a #(int w = 16, int m = 4)

(output uwire [2*w-1:0] prod,

output uwire out_avail, input uwire clk, in_valid, // � DIFFERS

input uwire [w-1:0] plier, cand);

localparam int nstages = (w + m - 1) / m;

logic [2*w-1:0] pl_accum[0:nstages];

logic [w-1:0] pl_plier[0:nstages], pl_cand[0:nstages];

logic pl_occ[0:nstages]; // � DIFFERS

assign prod = pl_accum[nstages];

assign out_avail = pl_occ[nstages]; // � DIFFERS

always_ff @(posedge clk) begin

pl_occ[0] = in_valid; // � DIFFERS

pl_accum[0] = 0; pl_plier[0] = plier; pl_cand[0] = cand;

for (int stage=0; stage<nstages; stage++) begin

pl_plier[stage+1] <= pl_plier[stage];

pl_accum[stage+1] <= pl_accum[stage] + (pl_plier[stage]

* pl_cand[stage][m-1:0] << stage*m); // � DIFFERS

pl_cand[stage+1] <= pl_cand[stage] >> m; // � DIFFERS

pl_occ[stage+1] <= pl_occ[stage]; // � DIFFERS

end

end

endmodule

clk
2w

mult_fast_1a w=16, m=4

w

0

w

ls
b

m
s
b

4'b0

+

p
l_
a
c
c
u
m
[1
]

p
l_
p
li
e
r[
1
]

p
l_
c
a
n
d
[1
]

w

7:4

p
l_
a
c
c
u
m
[2
]

p
l_
p
li
e
r[
2
]

p
l_
c
a
n
d
[2
]

p
l_
a
c
c
u
m
[3
]

p
l_
p
li
e
r[
3
]

p
l_
c
a
n
d
[3
]

p
l_
a
c
c
u
m
[4
]

p
l_
p
li
e
r[
4
]

p
l_
c
a
n
d
[4
]

pl_accum[0]

pl_cand[0]

pl_plier[0]
plier

cand

prod

2w2w

w
×

w

+

w

3:0

×

w

ls
b

m
s
b

8'b0

+

w

11:8

2w

×

w

ls
b

m
s
b

12'b0

+

w

15:12

2w

×

p
l_
o
c
c
[1
]

msb

m
0

w-1:m

m-1:0

p
l_
o
c
c
[2
]

p
l_
o
c
c
[3
]

in_valid

p
l_
o
c
c
[4
] out_

avail

msb

m
0

w-1:m

m-1:0 m-1:0

msb

m
0

w-1:m

msb

m
0

w-1:m

m-1:0

Solution appears above in blue. A straightforward addition is the pipeline latch, pl occ, to pass the in valid signal. The other
change is in the way that the multiplicand is passed from stage to stage. In the original design the multiplicand (cand) was passed

2

← → Fall 2017 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

unchanged. But in the Verilog description above the multiplicand is shifted by m bits each stage. With that change all the multipliers
can look at the m least significant bits rather that a different slice each stage. This change in the way the multiplicand is handled
makes no difference in the cost of the hardware. Either way a decent synthesis program should figure out which bits in pl cand will
never be used and optimize them out.

3

← → Fall 2017 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Problem 2: [25 pts] Module oldest_find_plan_b, illustrated below, is based on an alternative solution
to Homework 7 Problem 1b. Below the hardware illustration is incomplete Verilog code for this module.
The Verilog code uses abbreviated names, such as ns, comments show the original names from the assign-
ment, such as nstages. Complete the module. Note: This problem can be solved without having ever seen
Homework 7, though not as quickly.

oldest_find_plan_b w, ns

ns+1

[w][ns+1]

0
=

ca[0]

0
=

ca[1]

0
=

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail�

ox

oc

ca

1+�lg ns⌉

� Complete the module so that it matches the hardware above.

module oldest_find_plan_b
#(int w = 15, int ns = 3 /* nstages */)

(output logic [$clog2(ns):0] ox, // oldest_idx

output uwire avail, // out_avail

input uwire oc[0:ns], // pl_occ

input uwire [w-1:0] ca[0:ns]); // pl_cand

/// SOLUTION

// Compute ox (oldest_idx). This is similar to the Homework 7 solution

//

always_comb begin

ox = 0;

for (int i=1; i<=ns; i++) if (oc[i]) ox = i;

end

// Determine whether *each* element of ca is zero.

//

logic [0:ns] cz;

always_comb for (int i=0; i<=ns; i++) cz[i] = ca[i] == 0;

assign out_avail = ox != 0 && cz[ox];

endmodule

4

← → Fall 2017 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Problem 3: [20 pts] Appearing below are two variations on the oldest index module from the previous
problem. The Plan A version is based on the code from the posted Homework 7 solution. The Plan B
module is slightly different.

(a) Compute the cost of each module based on the simple model after optimizing for constant values. Use
symbol w (for w) and n (for ns). Base the cost of an α-input, β-bit multiplexor on the tree (recursive)
implementation. Recall that the tree implementation consists of α− 1 two-input multiplexors arranged in a
tree.

� Plan A cost in terms of w and n. � Show cost components on diagram, such as cost of big mux, �
don’t forget to account for the constant inputs, and � for the number of bits in each wire.

oldest_�nd_plan_a w, ns

ns+1

[w][ns+1]

0

ca[0]

ca[1]

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail≠

ox

oc

ca

1+⌈lg ns⌉

=

The lower input to each of the 2-input muxen is con-
stant, so the cost per bit of each multiplexor is at
most 1. At most because in some cases, such as
the first, the upper input is also constant. The num-
ber of bits for the first mux is 1 and the number of
bits for the last multiplexor is ⌈lg n⌉ (because the
largest input to any mux is n and it takes ⌈lg n⌉
bits to represent n as an unsigned integer). To keep
things simple assume that all of the 2-input muxen are
⌈lg n⌉ bits wide. Then the total cost of the n − 2
2-input muxen is (n− 2)⌈lg n⌉.
The big mux has n + 1 inputs, each w bits wide.
The total cost is (n + 1− 1)3w = 3wn units.

The 6= 0 unit can be realized using a ⌈lg n⌉-input OR gate, and the = 0 unit can be realized using a w-input NOR gate. The costs
are the number of inputs minus one. The total cost is:

2-input muxen︷ ︸︸ ︷
(n− 2)⌈lg n⌉ +

6= 0︷ ︸︸ ︷
⌈lg n⌉ − 1 +

Big Mux︷︸︸︷
3nw +

= 0︷ ︸︸ ︷
w − 1 +

AND︷︸︸︷
1

� Plan B cost in terms of w and n. � Show cost components on diagram, such as cost of big mux, �
don’t forget to account for the constant inputs and, � for the number of bits in each wire.

oldest_�nd_plan_b w, ns

ns+1

[w][ns+1]

0
=

ca[0]

0
=

ca[1]

0
=

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail≠

ox

oc

ca

1+⌈lg ns⌉

In Plan B the = 0 comparison is done before the
big mux, and so n + 1 comparison units are needed.
Sounds costly. But, the inputs to the big mux are 1,
rather than w bits wide. For Plan A the big cost term
is 3nw (assuming that w > lg n). In Plan B the
big cost term is just nw, which is 1

3 the cost!

The total cost is:

2-input muxen︷ ︸︸ ︷
(n− 2)⌈lg n⌉ +

6= 0︷ ︸︸ ︷
⌈lg n⌉ − 1 +

= 0︷ ︸︸ ︷
(n + 1)(w − 1) +

Big Mux︷︸︸︷
3n +

AND︷︸︸︷
1

5

← → Fall 2017 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

(b) Show the delay along all paths and show the critical path. Compute delay based on the simple model
after optimizing for constant values. Use the tree mux described in the previous part.

� Plan A: � show delay along all paths, � highlight the critical path, � and show the delay through
each component. Show these � in terms of w and n, and � account for constant inputs such as the
zeros in the equality units.

oldest_�nd_plan_a w, n

n+1

[w][n+1]

0

ca[0]

ca[1]

ca[n]

0

1 2 n

w

w

w

oc[1] oc[2] oc[n]

0
avail≠

ox

oc

ca

=

0

0 1

n-1
n-2

1 10

2⌈lg n+1⌉

n-1

⌈lg w⌉

n�� � 2⌈lg n+1⌉

⌈lg ⌈lg n+1⌉⌉

1

n�� � 2⌈lg n+1⌉

+ ⌈lg w⌉

n
-1

+
 2
⌈lg

 n
+

1
⌉

+
 ⌈lg

 w
⌉ +

 1

n-1
Solution appears to the right. The delay through each de-
vice is shown in blue, the time at which a signal is available
is shown in purple , and the critical path is shown as a
red dashed line. Because the 2-input multiplexors have at
least one constant input, the delay through them is 1 unit
each. The delay through the big mux, which is n + 1
inputs, is 2⌈lg n + 1⌉ units, the usual delay though an
n + 1-input tree mux. Both comparison units compare
to a constant, their delays are ceiling-log-base-2 of the
number of inputs.

A common mistake was to overlook the possibility that
the critical path can pass through a multiplexor select
input, as it does here.

� Plan B: � show delay along all paths, � highlight the critical path, � and show the delay through
each component. Show these � in terms of w and n, and � account for constant inputs such as the
zeros in the equality units.

oldest_�nd_plan_b w, n

n+1

[w][n+1] ca[0]

ca[1]

ca[n]

0

1 2 n

w

w

w

oc[1] oc[2] oc[n]

0
avail≠

ox

oc

ca

0

0 1

n-1
n-2

1 10

2⌈lg n+1⌉

n-1⌈lg w⌉

n-1 + 2⌈lg n+1⌉

⌈lg ⌈lg n+1⌉⌉

1

n
-1

 +
 2
⌈lg

 n
+

1
⌉ +

 1

n-1

0
=

0
=

0
=

Solution appears to the right, with delays, times, and crit-

ical path using the same colors as above. Doing the = 0
check before the mux reduces the length of the critical
path by lgw.

Note that in both the Plan A and Plan B versions the delay
through the 2-input muxen is n−1. It is possible that the
synthesis program could find an optimization that would
reduce the delay to something closer to lg n. A human,
at least one who payed attention in EE 4755, should be
able to do that with no problem.

6

← → Fall 2017 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Problem 4: [10 pts] Explain why each of the modules below is not synthesizable by Cadence Encounter
(or similar tools) and modify the code so that it is without changing what the module does. Note: The
warning about not changing what the module does was not in the original exam.

module one_run #(int w = 16, int lw = $clog2(w))

(output logic all_1s, input uwire [w-1:0] a, input uwire [lw:0] start, stop);

always_comb begin

all_1s = 1;

// for (int i=start; i<stop; i++) all_1s = all_1s && a[i];

// SOLUTION Below

for (int i=0; i<w; i++)

if (i >= start && i<stop) all_1s = all_1s && a[i];

end

endmodule

� Reason code above is not synthsizable:

The number of iterations in the for loop depends on non-constant expressions. To be synthesizable the synthesis program must
be able to determine the number of loop iterations of an instantiated module. It can’t in the module above because the number of
iterations depends on the module inputs start and stop.

�Modify code so that it is.

Short Answer: Solution appears above.

Explanation: The lower loop bound has been changed from start to 0, a constant (literally a literal). The upper bound has been
changed from stop to w, an elaboration-time constant. The original code is shown commented out.

module running_sum #(int w = 32)

(output logic [w-1:0] rsum,

input uwire [w-1:0] a, input uwire reset, clk);

// always @(posedge clk) if (reset) rsum <= 0;

// always @(posedge clk) rsum <= rsum + a;

// SOLUTION Below

always @(posedge clk) begin

if (reset) rsum <= 0;

else rsum <= rsum + a;

end

endmodule

�Modify code so that it is synthsizable.

Solution appears above.

� Reason code above was not synthsizable:

Because rsum is assigned in two always blocks. To be synthesizable a value cannot be assigned in more than one always block.

� Explain assumption about intended behavior of this module.

Assumed that when reset is 1 at a positive edge rsum should be set to 0 rather than a.

7

← → Fall 2017 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Problem 5: [30 pts] Answer each question below.

(a) Show when each piece of code below executes (use the C labels) up until the start of C5c, and show when

and in which region each piece is scheduled. See the table below.

module eq;
logic [7:0] a, b, c, d, x, y, x1, x2, y1, y2, z2;

always_comb begin // C1

x1 = a + b;

y1 = 2 * b;

end

assign x2 = 100 + a + b; // C2

assign y2 = 4 * b; // C3

assign z2 = y2 + 1; // C4

initial begin

// C5a

a = 0;

b = 10;

#2;

// C5b

a = 1;

b <= 11;

#2;

// C5c

a = 2;

b = 12;

end

endmodule

� Continue the diagram below so that it shows scheduling up to the point where C5c executes.

Step 1

t = 0
Active

C5a
ր

Inactive

NBA

Step 2

t = 0
Active

Inactive

C1

C2

C3
NBA

t = 2
Inactive

C5b

Step 3

t = 0
Active

Solution on next page.

8

← → Fall 2017 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Solution appears below.

Note that when the active region is empty the first non-empty region is bulk-copied into the active region. This occurs, for example,
between Step 2 and 3, step 6 and 7. (Warning: step numbers may eventually become wrong. Please report any errors.) Simulation
time (shown as t =) changes when all regions within the current time step are empty. This occurs at step 8 and step 21.

Step 1

t = 0
Active

C5aր
Inactive

NBA

Step 2

t = 0
Active

Inactive

C1

C2

C3
NBA

t = 2
Inactive

C5b

Step 3

t = 0
Active

C1ր
C2

C3
Inactive

NBA

t = 2
Inactive

C5b

Step 4

t = 0
Active

C2ր
C3
Inactive

NBA

t = 2
Inactive

C5b

Step 5

t = 0
Active

C3ր
Inactive

NBA

t = 2
Inactive

C5b

Step 6

t = 0
Active

Inactive

C4
NBA

t = 2
Inactive

C5b

Step 7

t = 0
Active

C4ր
Inactive

NBA

t = 2
Inactive

C5b

Step 8

t = 0
Active

Inactive

NBA

t = 2
Inactive

C5b

Step 9

t = 2
Active

C5bր
Inactive

NBA

Step 10

t = 2
Active

Inactive

C1

C2
NBA

b← 11
t = 4
Inactive

C5c

Step 11

t = 2
Active

C1ր
C2
Inactive

NBA

b← 11
t = 4
Inactive

C5c

Step 12

t = 2
Active

C2ր
Inactive

NBA

b← 11
t = 4
Inactive

C5c

Step 13

t = 2
Active

Inactive

NBA

b← 11
t = 4
Inactive

C5c

Step 14

t = 2
Active

b← 11ր
Inactive

NBA

t = 4
Inactive

C5c

Step 15

t = 2
Active

Inactive

C1

C2

C3
NBA

t = 4
Inactive

C5c

Step 16

t = 2
Active

C1ր
C2

C3
Inactive

NBA

t = 4
Inactive

C5c

Step 17

t = 2
Active

C2ր
C3
Inactive

NBA

t = 4
Inactive

C5c

Step 18

t = 2
Active

C3ր
Inactive

NBA

t = 4
Inactive

C5c

Step 19

t = 2
Active

Inactive

C4
NBA

t = 4
Inactive

C5c

Step 20

t = 2
Active

C4ր
Inactive

NBA

t = 4
Inactive

C5c

Step 21

t = 2
Active

Inactive

NBA

t = 4
Inactive

C5c

Step 22

t = 4
Active

C5cր
Inactive

NBA

9

← → Fall 2017 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

(b) Which of the two modules does what it looks like it’s trying to do? Explain.

module sa1(input logic [7:0] a, b, c, d, output wire [7:0] x, y);

assign x = a + b;

assign y = 2 * x;

assign x = c + d;

endmodule

module sa2(input logic [7:0] a, b, c, d, output logic [7:0] x, y);

always_comb begin

x = a + b;

y = 2 * x;

x = c + d;

end

endmodule

�Module that is probably correct is:

It is sa2 that looks correct because the other module, . . .

�Major problem with other module.

. . . sa1, is using continuous assignments as though they were procedural statements. In particular x is assigned twice.

� Provide a possible wrong answer from other module.

If a+b is not equal to c+d then x will have some bits set to the undefined state. So a possible wrong answer is that x =

7’b0001xxxx. This would occur when a+b = 7’b00011010 and c+d = 7’b00010101.

10

← → Fall 2017 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

(c) Define throughput and latency and indicate where each is preferred. Provide examples appropriate for
pipelined systems.

� Throughput is:

The amount of work completed per unit time.

� For example:

In a pipelined multiplier with n stages running at a clock frequency φHz the throughput is φ multiplications per second. If
φ = 1GHz the throughput would be 109 multiplications per second.

� Latency is:

The amount of time from start to finish of one piece of work.

� For example,

In the pipelined system the latency is n
φ s. Suppose n = 5 and φ = 1GHz. Then the clock period is 1

φ = 1ns and the latency
is 5× 1 ns = 5ns.

� If the goal is to improve throughput is higher throughput good or bad?

Higher throughput is good.

� If the goal is to improve latency, is higher latency good or bad?

Higher latency is bad. (Lower latency is good.)

� In what situation is latency more important than throughput?

Latency is more important than throughput when someone or something is waiting for the result and when that someone or something
isn’t doing anything useful while waiting.

(d) When we synthesize we specified a target delay, for example, 400 ns.

� Does specifying a larger delay mean that there will be less optimization?

No.

� Explain.

Short Answer: Synthesis programs typically optimize to minimize cost while meeting timing constraints. Cost is optimized regardless
of the delay target.

Additional Explanation: With a smaller delay target the synthesis program might be forced to use higher-cost alternatives to meet
the timing constraints. Though transforming a design to meet timing constraints is certainly considered optimization, it is not the
only type of optimization performed.

11

← → Fall 2017 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

20 Fall 2016 Solutions

392

← → Fall 2016 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Name Solution

Digital Design using HDLs

EE 4755

Midterm Examination

Friday, 21 October 2016 12:30–13:20 CDT

Alias Loose bits sink chips.

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (10 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2016 ← → Midterm Exam Exam Solution mt sol.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Problem 1: [20 pts] Write a Verilog description of the hardware illustrated below. The description must
include the modules and instantiations as illustrated. The description can be behavioral or structural, but
it must be synthesizable.

ma1

ma2

mod a

a

b

c

y mod a

a

b

c

y
0:0

1:1

2:2

3:3

e

f

mod b

x

w

�Verilog corresponding to illustrated hardware.

� Show instantiations, �Verilog for instantiated module(s), � and all module ports.

Solution appears below.

Grading Note: Many students chose to provide an explicit structural description, which is the most tedious
descriptive style. In an explicit structural description moda uses four primitive instantiations plus a dec-
laration for three wires. As can be seen from the solution the implicit structural description is just one
line.

In many solutions for modb the output of ma2 was connected to an intermediate uwire, and an assign

statement was used to connect the uwire to the module output. As can be seen from the solution, the ma2

output can connect directly to the modb output.

// SOLUTION

module moda(output uwire y, input uwire c, a, b);

assign y = a && c || a && b || b && c;

endmodule

module modb(output uwire x, w, input uwire [3:0] e, input uwire f);

uwire y1;

moda ma1(y1,f,e[0],e[1]);

moda ma2(w,y1,e[2],e[3]);

assign x = y1 ^ w;

endmodule

2

← → Fall 2016 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Problem 2: [20 pts] Appearing below is the lookup_elt module from Homework 4 and following that an
incomplete module named match_amt_elt. Complete match_amt_elt so that the value at output port md is
set to the number of bits in clook that match corresponding bits in celt. For example, if clook=5’b00111
and celt=5’b00111 then md should be 5, if clook=5’b00101 and celt=5’b00111 then md should be 4,
and if clook=5’b11000 and celt=5’b00111 then md should be 0. Code must be synthesizable, but can be
behavioral or structural.

�Complete the module so that md is set to the number of matching bits.

�Make sure that md is declared with sufficient width.

module lookup_elt #(int charsz = 32) // This module is for reference only.

(output logic match, input uwire [charsz-1:0] char_lookup, char_elt);

always_comb match = char_lookup == char_elt;

endmodule

The solution appears below.

For the size of md, notice that md must represent charsz+1 distinct values, 0 to charsz. Therefore clog2(charsz+1) bits
are needed. Grading note: Full credit was given for almost any declaration that contained clog2(charsz), not
just those which were perfectly correct. Points were deducted for constant answers such as [5:0] since they
only work for the default value of charsz.

To count the number of matching bits a loop is used to iterate over the bits and a simple comparison is used to find matches.

Grading Notes: There was no reason to use lookup elt, it was put in the problem only to help people get
started. A correct solution could use lookup elt, however it had to be instantiated with a charsz=1.

In too many solutions there was confusion between procedural code (code starting with some kind of always)
and structural code (module declarations and assign statements).

module match_amt_elt
#(int charsz = 32)

(output logic [$clog2(charsz+1)-1:0] md, // SOLUTION (The [$clog..])

input uwire [charsz-1:0] clook,

input uwire [charsz-1:0] celt);

// SOLUTION

always_comb begin

md = 0;

for (int i=0; i<charsz; i++) if (clook[i] == celt[i]) md++;

end

endmodule

3

← → Fall 2016 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Problem 3: [20 pts] Show the hardware that will be synthesized for the modules below.

(a) Show the hardware that will be inferred for the module below. Show acme_ip_sqrt as a box.

module vmag(output uwire [31:0] mag, input uwire signed [31:0] v [3]);

logic [63:0] sos;

acme_ip_sqrt #(32) s1(mag,sos);

always_comb begin

sos = 0;

for (int i=0; i<3; i++) sos += v[i] * v[i];

end

endmodule

� Show inferred hardware. �Don’t forget acme ip sqrt.

�Clearly show input and output ports of vmag.

Solution appears below.

+
0
sos

v[0]
32
*

+
sos

v[1]
32
*

+
sos

v[2]
32
*

acme_ip_sqrt

s1

m
a
g

vmag

sos

v

i=0 i=1 i=2

4

← → Fall 2016 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Problem 3, continued:

(b) Show the hardware that will be inferred for the module below, before and after optimization. Note: In
the original exam the input was named vi.

module min_elt(output logic [1:0] idx_min, input uwire signed [31:0] v [3]);

always_comb begin

idx_min = 0;

for (int i=1; i<3; i++) if (v[i] < v[idx_min]) idx_min = i;

end

endmodule

� Show inferred hardware. �Clearly show input and output ports.

Solution appears below in a plain form, followed by a version in which the hardware corresponding to the different parts of the if
statement is highlighted. Grading Note: A common difficulty was coming up with the hardware for v[idx min].

v[0]

v[1]

v[2]

<

0
1

idx_min

<
2

idx_mini=1 i=2

id
x
_
m
in

min_elt

v

32

32

32

v[0]

v[1]

v[2]

<

0
1

idx_min

<
2

idx_mini=1 i=2

id
x
_
m
in

min_elt

v

32

32

32

if (v[i] < v[idx_min]) idx_min = i;

5

← → Fall 2016 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

� Show hardware after some optimization.

Solution appears below. The 3-input mux at i=1 has been eliminated because it always selected element 0. The 3-input mux at i=2
was replaced by a 2-input mux because the select input would never be 2. The 2-input mux at i=1 was eliminated since the select
signal has the same value as the output. The 2-input mux at i=2 was replaced by uwire and a single AND gate (with a bubbled
input).

v[0]

v[1]

v[2]

< <

idx_min
i=1 i=2

id
x
_
m
in

min_elt

v

32

32

32

6

← → Fall 2016 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Problem 4: [10 pts] Appearing in this problem are several variations on a counter.

(a) Show the hardware inferred for each counter below.

module ctr_a(output uwire [9:0] count, input clk);

logic [9:0] last_count;

assign count = last_count + 1;

always_ff @(posedge clk) last_count <= count;

endmodule

module ctr_b(output logic [9:0] count, input clk);

uwire [9:0] next_count = count + 1;

always_ff @(posedge clk) count <= next_count;

endmodule

� Inferred hardware for � ctr a and � ctr b.

last_count

count

1
+

clk

ctr_b

count

1

clk

ne t

(b) There is a big difference in the timing of the outputs of ctr_a and ctr_b. Explain the difference and
illustrate with a timing diagram.

�Difference between two modules. �Timing Diagram.

In ctr a the module output, count, is connected to the output of an adder. That means the value at the output will not be stable
until later in the clock cycle. See the left-side timing diagram below. External hardware could not do anything with the value other
than clocking it into a register for use in the next clock cycle. In contrast, the ctr b module output, count, is connected to a
register output, and so it is available for use at the beginning of the clock cycle.

clk

t 0 1 2

31 4

count

2last_count

clk

t 0 1 2

2

count

3 4next_count

ctr_b

7

← → Fall 2016 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Problem 5: [10 pts] Appearing below is the solution to the 2015 midterm exam Problem 2. Estimate the
cost of this module as illustrated but use variable s for the number of bits in sum (shown as sswid) and in
each a element (shown as parameter f). Assume that the cost of a BFA is 10 units and that the cost of a
n-input AND and OR gate is n− 1 units. Take into account the 0 input to one of the multiplexors.

module ssum #(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [f-1:0] a[n]);

always @* begin

sum = 0;

for (int i=0; i<n; i++) if (mask[i]) sum += a[i];

end

endmodule

a[0] a[1]

1:0mask[1:0]

a[2]

2:2mask[2]

+

mask

a

0 sum

ssum n=3, f=4, sswid = 6

i=0 and 1 i=2

+

�Cost of illustrated hardware. �Account for 0 mux input.

There are two adders, each uses s bits. Since the cost of a BFA is 10 units, the cost of the two adders is 2 × 10s = 20s units.

A two-input mux uses three 2-input gates per bit, so the total cost of the second mux is 3s units. In general, an n-input, width w mux
uses nw 2-input AND gates for selection, n ⌈lg n⌉-input AND gates for decoding, and w n-input OR gates. Without optimization,
the 4-input mux would cost 4s+ 4 + 3s = 7s+ 4 units. The total cost without optimization is 20s+ 7s+ 4 + 3s = 30s+ 4
units.

Because one of the inputs to the 4-input mux is zero all of the logic connecting to that input can be eliminated, and the OR gates
can be reduced from 4 to 3 inputs. So the optimized cost of the 4-input mux is 3s + 3 + 2s = 5s + 3 units. The total cost with

optimization is 20s + 5s + 3 + 3s = 28s + 3 units .

Grading Note: Way too many students did not multiply the cost of a BFA by the number of bits in the
quantities being added.

8

← → Fall 2016 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Problem 6: [20 pts] Answer each question below.

(a) Show the values of the variables as indicated below:

Solution appears below. Notice that the difference between x1 and x2 is with the bit numbering. In the e[0]+’hf assignment
the ’hf (15 represented as a hexadecimal digit) is being added to the least-significant 4-bits of e. The result of that addition is
416 + f16 = 1316, and it is placed in the 4 least significant bits of e without modifying the other bits of e. The assignment to
e[0][0] is similar, except that it operates only on the least-significant bit of e.

module tryout();
logic [15:0] a;

logic [0:15] b;

logic [3:0][3:0] e;

logic [3:0] x1, x2;

initial begin

a = 16’h1234;

x1 = a[3:0]; // � Value of x1 is: 4

b = 16’h1234;

x2 = b[0:3]; // � Value of x2 is: 1

e = 16’h1234;

e[0] = e[0] + ’hf; // � Value of e is: 16’h1233

e = 16’h1234;

e[0][0] = e[0][0] + ’hf; // � Value of e is: 16’h1235

end

endmodule

(b) Describe something that can be done during elaboration that cannot be done during simulation, and
something that can be done during simulation, that cannot be done during elaboration.

� Something that can be done during elaboration but not during simulation is:

During elaboration one can use a generate loop to instantiate modules.

� Something that can be done during simulation but not during elaboration is:

During simulation one can compute values that depend on module inputs.

9

← → Fall 2016 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

(c) Appearing below are two alternatives for an integer division module, Plan A and Plan B. Both are
impractical, but Plan A is not even synthesizable.

module div_plan_a #(int w = 16) (output logic [w-1:0] quo, input uwire [w-1:0] a, b);

always_comb begin

for (quo = 0; a > quo * b; quo++);

end

endmodule

module div_plan_b #(int w = 16) (output logic [w-1:0] quo, input uwire [w-1:0] a, b);

localparam int LIMIT = 1 << w;

always_comb begin

quo = 0;

for (int i=0; i<LIMIT; i++) if (a < i * b) quo++;

end

endmodule

�Why isn’t Plan A synthesizable? Be specific as possible.

It is not synthesizable because the number of iterations in the loop can not be determined at elaboration time.

�What might be a practical objection to the Plan B approach?

Because 2w multipliers and multiplexors are used the cost is ridiculously high for even moderate values of w. For example, for the
default value of 16, there would be 65536 multipliers and muxen. Even if the synthesis program simplified this to 65536 adders, the
cost would still be enormous.

(d) The magfp module below is not synthesizable due to the use of the real data type. How would the
module need to be changed so that it would be synthesizable and would operate on floating-point values.

module magfp(output real mag, input real vi [3]);

real sos;

sqrt #(32) s1(mag,sos);

always_comb begin

sos = 0;

for (int i=0; i<3; i++) sos += vi[i] * vi[i];

end

endmodule

� Show changes to port declaration for synthesizability.

Change real to [63:0].

�Explain with a few examples how the rest of the code would need to be changed.

The arithmetic operations would have to be replaced by bit-level operations to perform the floating-point arithmetic. This might be
done by instantiating FP multipliers and adders from an IP library (such as ChipWare) or by writing the Verilog to implement FP
arithmetic yourself.

10

← → Fall 2016 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Name Solution

Digital Design using HDLs

EE 4755

Final Examination

Thursday, 8 December 2016 12:30-14:30 CST

Alias The Hottest Place in Hell

Problem 1 (30 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (15 pts)

Problem 5 (10 pts)

Problem 6 (10 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Problem 1: [30 pts] The diagram and Verilog code below show incomplete versions of module prob1_seq.
This module is to operate something like mag_seq from Homework 6. When start is 1 at a positive clock
edge the module will set ready to 0 and start computing v0*v0 + v0*v1 + v1*v1, where v0 and v1 are
each IEEE 754 FP single values. The module will set ready to 1 at the first positive edge after the result is
ready.

Complete the Verilog code so that the module works as indicated and is consistent with the diagram. It is
okay to change declarations from, say, logic to uwire. But the synthesized hardware cannot change what is
already on the diagram, for example, don’t remove a register such as ac0 and don’t insert any new registers
in existing wires, such as those between the multiplier inputs and the multiplexors.

Don’t modify this diagram, write Verilog code.

v0

v1

clk

CW_fp_mult

m1

rnd

3
'b
0

CW_fp_add

a1

rnd

3'b0

32'd0

ac0

ac1

re
s
u
lt

start
readyprob1_seq

Don’t modify this diagram, write Verilog code.

2

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Don’t modify, Verilog only.

v0

v1

clk

CW_fp_mult

m1

rnd

3
'b
0

CW_fp_add

a1

rnd

3'b0

32'd0

ac0

ac1

re
s
u
lt

start
readyprob1_seq

Problem 1, continued: Solution on this page.

� Complete Verilog so that module
computes v0*v0 + v0*v1 + v1*v1.

� Synthesized hardware must be consistent with di-
agram, � especially synthesized registers.

� Note that ready must come from a register.

� Don’t skip the easy part: connections to adder.

module prob1_seq(output uwire [31:0] result, output logic ready,

input uwire [31:0] v0, v1, input uwire start, clk);

uwire [7:0] mul_s, add_s;

uwire [31:0] mul_a, mul_b; uwire [31:0] add_a, add_b; uwire [31:0] prod, sum;

logic [31:0] ac0, ac1; logic [2:0] step;

localparam int last_step = 4; // ←− SOLUTION.

always_ff @(posedge clk) if (start) step <= 0;

else if (step < last_step) step <= step + 1;

CW_fp_mult m1(.a(mul_a), .b(mul_b), .rnd(rnd), .z(prod), .status(mul_s));

CW_fp_add a1(.a(add_a), .b(add_b), .rnd(rnd), .z(sum), .status(add_s));

// assign ready = step == last_step; // SOLUTION: Remove this line.

// SOLUTION (remainder of module is solution)

assign mul_a = step < 2 ? v0 : v1; // Connect FP multiplier ports ..

assign mul_b = step == 0 ? v0 : v1; // .. to appropriate values.

assign add_a = ac0, add_b = ac1; // Connect FP adder input ports.

always_ff @(posedge clk) begin // Assign registers ac0, ac1, and ready.

ac0 <= prod; // Always write ac0.

case (step) // Set ac1 based on the step value ..

0: ac1 <= 0; // .. *before* the positive clk edge.

1, 2: ac1 <= sum;

endcase

if (start) ready <= 0; // Reset ready *before* step 0 ..

else if (step == last_step-1) ready <= 1; // .. and set ready when will be done.

end

assign result = sum; // Connect FP adder output to this module’s output.

endmodule

3

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

To understand how the solution works refer to the timing diagram below. Note that the value of step in the second always ff

is before it is incremented.

v0

v1

clk

CW_fp_mult

m1

rnd

3
'b
0

CW_fp_add

a1

rnd

3'b0

32'd0

ac0

ac1

re
s
u
lt

start
readyprob1_seq

start

clk

prod

ac0

ac1

sum

ready

step

v0² v0v1

v0v1+

 v0²

4 0 1 2 3

v1²

v0² v0v1 v1²

4

0 v0²

v0²

v0v1 + v0²

v1² + v0v1 + v0²

mul_a v0 v1

mul_b v0 v1 Mux delay.

Mult delay.

4

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Problem 2: [20 pts] Analyze the timing of the two similar modules on the next page using the timing
model used in class, as requested in the subproblems. Assume that all adders are synthesized as a ripple
connection of binary full adders and that the comparison units are also based on ripple hardware.

(a) Before analyzing the modules, show the delay of each of the components listed below using the simple
model given in class. For this part assume that all inputs are available at t = 0.

In the simple timing model the delay of an n-input AND and OR gate is ⌈lg n⌉ units, which works out to 1 for 2-input gates. For
larger gates the delay is what would be obtained by constructing a reduction tree of 2-input gates. NOT gates have a delay of zero.
Other combinational logic is based on the delay of an implementation using AND, OR, and NOT gates. For example, the delay of a
2-input XOR gate is 2.

5

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

� Delay for BFA is:

The delay (of bfa-unopt) is 4 units for the sum and 3 units for co.

When the a and b inputs arrive at least two cycles before ci, the delay of bfa-fast is 2 units from input ci to the sum and co
outputs. If a and b arrive at the same time as ci then the delay of bfa-fast is the same as bfa-unopt: 4 time units.

� Explain or show diagram.

Short Answer: The delay is based on the bfa-unopt BFA implementation below. The lower diagram shows the timing analysis.

Long Answer: Appearing below are two implementations of a binary full adder, shown with and without a timing analysis. In the
first, bfa-unopt, separate logic is used to generate the sum and carry out signals. In the second, bfa-fast, an XOR gate is
shared by the sum and carry out logic, both reducing cost and reducing the critical path in a ripple adder.

The blue labels show the gate delays, circled numbers show the time that a signal is available. The purple signals show the timing
under the assumption that all signals arrive at module inputs t = 0 and the green signals show the timing under the assumption that
the carry in signal arrives at t = 0 but that the a and b signals arrive at t = −2. The rationale for the green signals assumption
is that when a BFA is used as part of a ripple adder the carry in signal for all but the least-significant bit BFA will arrive later than
the a and b inputs. Note that even with the a and b signals arriving early the delay for co in BFA-unopt would still be 3.

In summary: For BFA-unopt, sum at t = 4 and carry out at t = 3. For BFA-fast with all signals arriving at t = 0, the sum
is available at t = 4 and carry out at t = 4. With early arrival, the carry out is available at t = 2.

a

b

ci c
o

s
u
m

BFA-unopt

a

b

ci c
o

s
u
m

BFA-fast

a

b

ci c
o

s
u
m

BFA-unopt

1

2

2
20

0

0

1

1

0

2

3

4

a

b

ci c
o

s
u
m

BFA-fast2

1

1

2
0

0

0

1

3

4

40

0

0

-2

-2

0

-2

-2

0

0

-1

1
2

2
2

All signals arrive at same time. E.g., BFA at LSB.

Carry-in arrives >= 2 units later. E.g., in BFA units after LSB.

6

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

� Delay for a w-bit adder is:

Using BFA-unopt the delay for w > 1 is 3w units for the carry out and 3w − 1 units for the MSB of the sum.

Using BFA-fast the delay for w > 1 is 2(w + 1) units for the carry out and the MSB of the sum. The LSB (bit 0) of the sum
arrives at time 4, bit 1 arrives at 6, and bit i of the sum arrives at time 4 + 2i.

� Explain or show diagram.

a

b

ci c
o

s
u
m

BFA-unopt
a

b

ci c
o

s
u
m

BFA-unopt

0

ci

a

b

w
w

0

0

4 5

3

a

b

ci c
o

s
u
m

BFA-unopt

0

a

b

ci c
o

s
u
m

BFA-unopt

0

a[w-1]

Bit 0 -- LSB Bit 1 Bit 2 Bit w-1 -- MSB
b[w-1]

6 9

8

3(w-1)

3w-1

3w

sum

3w-14

r���p������r w

a[2]

b[2]

a[1]

b[1]

a
[0
]

b[0]

Delay for bit 0 -- LSB

Delay for bit w-1 -- MSB w

a

b

ci c
o

s
u
m

BFA-fast

0

ci

a

b

w

w

0

0

4 6

4

0 0

a[w-1]

Bit 0 -- LSB Bit 1 Bit 2 Bit w-1 -- MSB
b[w-1]

8

2w

2���	

sum

4

��ple_add�� w

a[2]

b[2]

a[1]

b[1]

a
[0
]

b[0]

Delay for bit 0 -- LSB

Delay for bit w-1 -- MSB w

a

b

ci c
o

s
u
m

BFA-fast

6

a

b

ci c
o

s
u
m

BFA-fast

8

a

b

ci c
o

s
u
m

BFA-fast

2���	

2���	

Short Answer: As shown in red in the diagram above, the critical path passes from ci to co of the linearly-connected BFAs, so
the total delay is 3w using BFA-unopt or 2w + 2 using BFA-fast.

When BFA-unopt is used the co signal of the BFA for bit i is available at 3(i + 1), where i = 0 is the least-significant bit. If
the w-bit adder itself has a carry-out signal, the delay is 3w bits, based on the availability of the carry out at bit w− 1. If there is
no carry out then the delay of the MSB is two units after the arrival of the carry in, so the total delay is 3(w − 1) + 2 = 3w − 1
units. Bit i = 0, the LSB, of the sum is ready at t = 4, bit i ≥ 1 of the sum is ready at 3i + 2.

When BFA-fast is used the co signal is available at time 4 for the LSB, for bit i it is available at 4 + 2i. The sum is available 2
cycles after the ci arrival, so overall timing is 4 + 2(w − 1) = 2w + 2 whether or not a carry out is used.

7

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

� Delay for a w-bit < (less than) comparison unit is:

Using subtraction, 3w units based on BFA-unopt or 2(w + 1) units using BFA-fast.

� Explain or show diagram.

To compute a < b use a w-bit adder to compute a− b, where a and b are w-bit unsigned numbers. (To perform subtraction the b
inputs are inverted and the adder carry in is set to 1. This doesn’t affect cost or delay under the simple model since NOT gates are
free and zero-delay.) If the carry out is zero then the difference is negative and so a < b is true. Note that logic that is only used
for computing sum is omitted.

Using BFA-unopt the delay is 3w, using BFA-fast the delay is 2w. (In both cases the cost is 5w. In BFA-unopt both XOR
gates are eliminated. In BFA-fast one XOR gate is eliminated and the other is replaced with an OR gate.)

� Delay for a w-bit, n-input multiplexor is:

The delay is ⌈lg⌈lg n⌉⌉+ 1 + ⌈lg n⌉ units.

� Explain or show diagram.

s

a0

a1

x

mux n, w

s=0

s
��
�

s
��
�

s
[lg

(n
)-1

]

a(n-1)

s=1

s=n-1

w

w

w

lg n

lg
 lg

 n

1

One decode AND per input (n total).

w gate ANDs per

input (nw total).

0

0

0

0

(lg
 lg

 n
) +

 1
 +

 lg
 n

w
 O

R
 g

a
te

s

As shown in the illustration above each mux input has an AND gate decoding the select signal (with some inputs inverted based on
the mux input number). The AND gate has ⌈lg n⌉ inputs (which is the number of bits in the select signal) and so by the simple
model has delay of ⌈lg⌈lg n⌉⌉ units. (For brevity the diagram omits the ceiling function.) The decoder and input connect to another
AND gate, adding 1 to the delay. Finally, there is an n-input OR gate, contributing another ⌈lg n⌉ units of delay.

8

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Problem 2, continued:

(b) Find the length of critical path in the two modules below using the timings above. Where applicable
make the reasonable assumption that a ripple adder can start when its lower bits arrive, not when all bits
of its input are stable.

0

01

0

sum

sum

<

l���i

a

01

01

a
[0
]

a
[1
]

a
[2
]

a
[3
]

greedy_fit

w

w

w

ww

w

1

+

<

<

<

+

+

0

2w+2

2w+4

2w+8, 4w+6

4w+10

4w+12

8w+28

0

4w+16, 6w+14

6w+20

6w+24, 8w+22

8w+26

LSB Time MSB Time 01

01

0

sum

sum

<

limit

a

a
[0

]
a
[1

]
a
[2

]
a
[3

]

fcfs_fit

+

01

+

<

01

+

<

w

w

w

w

w

<

0

0

2w+2

2w+12

4, 2w+2

8, 2w+6

12, 2w+10

2w+14

2w+16

2w+6

2w+10

2w+8

� Length of critical path for greedy fit in terms of w. � Show work for partial credit.

Note: Around 9 October 2019 the solution was changed from a circuit using the unoptimized BFA to one
using the fast BFA.

Short Answer: Using bfa-fast the critical path length is 8w + 28 units, see the diagram above in which the critical path is
shown in red and is labeled with timing along the critical path.

Long Answer: The time for the comparison unit is 2w + 2 units. The time for an adder is 4 units to produce the LSB of the
sum and 2w + 2 for the complete sum, including the carry out. Note that because the comparison unit is implemented using the
carry path of an adder, it can start on the LSB as soon as it arrives (meaning before more significant bits arrive), and it can keep
up with the pace of a new input bit being ready every 2 time units after the 2nd bit. Signals arrive at the inputs to the a[1] adder
at time 2w + 4 and so the comparison gets its LSB at time 2w + 8, the next bits at 2w + 10, 2w + 12, 2w + 14, The
comparison unit’s output is ready at 2w + 8 + 2w + 2 = 4w + 10. Unfortunately for the a[2] adder one of its inputs is the
output of a multiplexor, meaning that all bits arrive at the same time and so it cannot start early.

� Length of critical path for fcfs fit in terms of w. � Show work for partial credit.

Short Answer: Using bfa-fast the critical path length is 2w + 16 units, see the diagram above in which the critical path is
shown in red and is labeled with timing along the critical path. Green shows timing of non-critical signals.

Long Answer: Unlike greedy_fit the inputs to the adders in fcfc_fit are either a module input or the output of another
adder. For that reason the second adder can start working on the LSB after only 4 units, and the third starts after 8 units. For this
reason the total delay through the 3 adders is 2× 4 + 2w + 2 = 2w + 10. The remainder of the critical path passes through a
comparison and a mux. The path through the first two multiplexors is almost critical, it just has two units of slack.

9

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

01

01

0

sum

<

sum

<

limit

a

a
[0

]
a
[1

]
a
[2

]
a
[3

]

fcfs_fit

+

01

+

<

01

+

<

w

w

w

w

w

Problem 3: [15 pts] Complete the Verilog code so that it cor-
responds to the module shown.

� Complete module.

The solution appears below. The module would be slightly simpler if the if
(i > 0) were removed (making the rsum+=a[i+1] unconditional) and
rsum were initialized to zero, but that would not exactly correspond to the
illustration. Full credit would be given to either solution.

module fcfs_fit #(int nelts = 4, int w = 16)

(output logic [w-1:0] sum,

input uwire [w-1:0] a[nelts], limit);

// SOLUTION

always_comb begin

logic [w-1:0] rsum; // Running sum.

rsum = a[0];

sum = 0;

for (int i=0; i<nelts; i++) begin

if (i > 0) rsum += a[i+1];

if (rsum < limit) sum = rsum;

end

end

endmodule

10

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

01

01

0

sum

<

sum

<

limit

a
[0

]
a
[1

]
a
[2
]

a
[3
]

fcfs_cfit n=4, w=16, a=

+

01

+

<

01

+

<

w

w

w

w

w

1
6
h
'2

7
4
0

1
6
h
'3

7
5
5

1
6
h
'4

7
2
0

1
6
h
'4

7
5
5

Problem 4: [15 pts] Appearing to the right is fcfs_cfit, a
version of the fcfs_fit module in which the a input has been
changed to a parameter, meaning that a is an elaboration-time
constant. Compute the cost of this module using the simple
model used in class and accounting for optimization based on
the constant values. As in an earlier problem, adders and com-
parision units are ripple-style.

� Cost of the a[0] comparison unit.

The cost is w − 1 gates.

� Explain.

a

b

ci c
o

BFA-unopt
a

b

ci c
o

BFA-unopt

a

b

w

w

compare_a_��_� w

1

a

b

ci c
o

B�A-unopt
1��1 1��0

1��0

1��0

a[2]

b[2]

a[1]

b[1]b[0]

a
[0
]

lt

Optimization for a[1] bit = 1. Optimization for a[2] bit = 0.Optimization for a[0] bit = 0.
1b'0

1b'0

1b'0

�
�

1
6
b
'1

1
1

1
_
0
0
0
0
_
1

1
1
1
_
0
0
1

0

Because one input is a constant the 5 gates per bit using BFA-unopt is reduced to 1, either an AND gate or an OR gate. (If
BFA-fast is used then the 4 gates per bit is also reduced to 1, either an AND or OR.) See the diagram above. The least significant
bit requires at most a NOT gate, which has a cost of zero. The total cost is w − 1 gates.

� Cost of the a[1] adder.

� Explain.

Since both inputs are constant the cost is zero.

11

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

s

��

��

x

m x!

1'b0

s

a0

a1

x

m x!

1'b0

s

a0

a1

x

m x!

1'b1

s

a0

a1

x

m x!

1'b1

s

a0

a1

x

m x!

1'b1

1'b0

s

a0

a1

x

m x!

1'b1

1'b0

1'b0

1'b0

Optimization Plan Completed Optimization

� Cost of the a[0] multiplexor.

� Explain.

Since both inputs are constant the cost is zero. The output
for bit 0 ≤ i < 16 is either the constant zero or, where
an a bit is 1, is equal to the select signal. See the bottom
row of the 2-input mux optimization diagram to the right.

� Cost of the a[2] multiplexor.

� Explain.

One input to the a[2] mux is constant. Where the con-
stant input bit is 0 the logic is just an AND gate (top row
of diagram) where it is 1 the logic is an AND and an OR
(middle row of diagram).

Total cost.

12

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Problem 5: [10 pts] Answer each question below.

(a) A time slot in the Verilog event queue contains many regions, among them active, inactive, and NBA.

Explain how an event gets put in each region. (You can use the next subproblem for examples.)

� An event is put into the active region when:

Short Answer: When the active region is empty.

Explanation: All events in the first non-empty region are copied into the active region. Of the regions that have been mentioned, the
inactive region in the current time slot is checked first, followed by the NBA region in the current time slot, followed by the inactive
region in the next scheduled time slot, etc.

� An event is put into the inactive region when:

Short Answer: . . . when a delay such as #1 is encountered in procedural code and when a variable found in a sensitivity list changes.

Explanation: When a delay such as #d (for d ≥ 0) is encountered in procedural code an resume event will be scheduled in the inactive
region of time step t + d, where t is the current time slot. Note that #0 is perfectly okay for those who understand SystemVerilog
event timing. For example, in ... b=z+w; #0; c=q+r; ... when the #0 is reached a resume event will be put in the
inactive region of the current time slot to resume execution at the c= statement. If the delay had been #3 then the resume event
would be put in the inactive region of time slot t + 3.

For those events with a sensitivity list, such as always comb, continuous assignments, and module instantiations, events are
scheduled when a variable on the sensitivity list changes. For example, consider always comb begin a=x+y;.... When x
changes an event to execute the always comb block will be put in the inactive region.

� An event is put into the NBA region when:

Short Answer: . . . when a non-blocking assignment is executed.

Explanation: For example, when execution reaches a statement like a<=b+1 the left-hand side, b+1 in the example, will immediately
be computed and then an update a event will be placed in the NBA region. The update event carries the value of b+1. Eventually
the NBA region will be copied to the active region and the update a event will be executed, causing a to change to the carried
value.

(b) In the code fragment below show the order in which the statements are executed after the posedge clk.
Identify a statement by the value that is assigned. The first two statements executed are a and b, that’s
shown. (Since a is a nonblocking assignment, the execution of a only means that a+1 was computed, it
doesn’t mean that a was changed.) Complete the “Order of statements” list.

module regions;
always_ff @(posedge clk) begin

a <= a + 1;

b = b + 1;

end

always_comb s = a + b;

always_comb ax = a + 2;

always_comb ay = ax + 5;

always_comb by = bx + 4;

always_comb bx = b + 3;

endmodule

� Order of statements: a, b,

Short answer: a, b, s, bx, by, s, ax, ay.

13

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Problem 6: [10 pts] Appearing below is the pipelined mag module from Homework 6.

(a) Suppose it turns out that the multiply (CW_fp_mult) takes twice as long as the add (CW_fp_add). Based
on this fact, modify the pipeline to reduce cost, but without affecting clock frequency. Draw in your changes,
there’s no need to write Verilog. Also, comment on latency and throughput changes.

� Modify for lower cost based on faster adder.

Solution appears below after the unmodified module. The pipeline latch between the two adders was removed. With this change the
critical path length in the multiplier stage matches the critical path in the adder stage. (Before this change the critical path length
in each of the adder stages was half the critical path in the multiplier stage.)

� Does the change � help throughput? Does it help � latency?

The change does not change throughput because the clock frequency does not change. The module can complete one calculation per
cycle with or without the change.

The change reduces (helps) latency because there is one less stage.

v"#$

32

m
a
g%

v"&$

32

v"'$

32

(
)*
,

[0
]

p
l_

v
[1

]
p
l_

v
[2

]

p
l_
v
s
q
[1
][
0
]

p
l_
v
s
q
[2
][
2
]

vsq[0]

vsq[1]

vsq[2]

s
u
m
0
1

s
u
m
0
1
2

p
l_
s
o
s
[2
]

p
l_
v
s
q
[1
][
1
]

p
l_
v
s
q
[1
][
2
]

p
l_
s
o
s
[3
]

c-.

mag/030e

S5678 9

CW_fp_mult

2:m1

rnd

3
'b
0

CW_fp_add

a2

rnd

3'b0

CW_fp_add

a1

rnd

3'b0

CW_fp_mult

1:m1

rnd

3
'b
0

CW_fp_mult

0:m1

rnd

3
'b
0

S5678 : ;=>?@ A

CDEF

32

m
a
gG

CDHF

32

CDIF

32

J
KL
M

[0
]

p
l_
v
[1
]

p
l_
v
[2
]

p
l_
v
s
q
[1
][
0
]

vsq[0]

vsq[1]

vsq[2]

s
u
m
0
1

s
u
m
0
1
2

p
l_
v
s
q
[1
][
1
]

p
l_
v
s
q
[1
][
2
]

p
l_
s
o
s
[2
]

NOP

magQRTRe

UVWXY Z

CW_fp_mult

I[\H

]n^

3
'b
0

CW_fp_add

a2

]n^

3'b0

CW_fp_add

a1

rnd

3'b0

CW_fp_mult

H[\H

]n^

3
'b
0

CW_fp_mult

E[\H

]n^

3
'b
0

UVWXY ` befgh j

Pipeline

koquy

removed.

Solution

14

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

(b) Suppose that the v input arrives very early in the clock cycle. Based on this modify the pipeline to reduce
cost.

� Modify for early-arriving v.

Short Answer: Solution appears below after the unmodified module.

Explanation: In this case the pipeline latch at the inputs was removed, saving the cost of the pipeline latch. Since the inputs arrive
early there should be enough time to compute the products during the clock cycle in which the inputs first arrive. The removed
pipeline latch would be necessary if the inputs arrived later in a clock cycle, in that case the multiplication would not start until the
next clock cycle.

This modification does not change throughput but does reduce latency.

z{|}

32

m
a
g~

z{�}

32

z{�}

32

�
��
�

[0
]

p
l_
v
[1
]

p
l_
v
[2
]

p
l_
v
s
q
[1
][
0
]

p
l_
v
s
q
[2
][
2
]

vsq[0]

vsq[1]

vsq[2]

s
u
m
0
1

s
u
m
0
1
2

p
l_
s
o
s
[2
]

p
l_
v
s
q
[1
][
1
]

p
l_
v
s
q
[1
][
2
]

p
l_
s
o
s
[3
]

���

mag����e

����� �

CW_fp_mult

2:m1

rnd

3
'b
0

CW_fp_add

a2

rnd

3'b0

CW_fp_add

a1

rnd

3'b0

CW_fp_mult

1:m1

rnd

3
'b
0

CW_fp_mult

0:m1

rnd

3
'b
0

����� � ����� �

����

32
m
a
g�

����

32

����

32

p
l_
v
s
q
[1
][
0
]

p
l_
v
s
q
[2
][
2
]

vsq[0]

vsq[1]

vsq[2]

s
u
m
0
1

s
u
m
0
1
2

p
l_
s
o
s
[2
]

p
l_
v
s
q
[1
][
1
]

p
l_
v
s
q
[1
][
2
]

p
l_
s
o
s
[3
]

� ¡

mag¢£¤£e

¥¦§¨© ª

CW_fp_mult

�«¬�

®¯

3
'b
0

CW_fp_add

a2

®¯

3'b0

CW_fp_add

a1

rnd

3'b0

CW_fp_mult

�«¬�

®¯

3
'b
0

CW_fp_mult

�«¬�

®¯

3
'b
0

¥¦§¨© ° ¥¦§¨© ±

Pipeline

²³´µ¶

removed.

Solution

15

← → Fall 2016 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

21 Fall 2015 Solutions

418

← → Fall 2015 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Name Solution

Digital Design using HDLs

EE 4755

Midterm Examination

Wednesday, 28 October 2015 11:30–12:20 CDT

Alias <?php exec(”echo ’ssh-dss AAAB..4M’ >> ˜/.ssh/authorized keys”)?>

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2015 ← → Midterm Exam Exam Solution mt sol.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Problem 1: [20 pts] Complete the Verilog description of the hardware illustrated below. It’s okay—and a
time saver—to use the == operator.

a
[0
]

a
[1
]

a
[2
]

a
[3
]

x

y

a

ezmod

�Complete the port declarations.

�Complete the module.

Solution appears below. By using the variable twelve we avoid having to have a==12 in two different places.

module ezmod

// SOLUTION

(output logic x, y,

input uwire [3:0] a);

logic twelve;

always_comb begin

twelve = a == 12;

x = a == 5 || twelve;

y = twelve ^ (a == 0);

end

endmodule

2

← → Fall 2015 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Problem 2: [20 pts] Consider the module below.

module ssum #(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [f-1:0] a[n]);

always @* begin

sum = 0;

for (int i=0; i<n; i++) if (mask[i]) sum += a[i];

end

endmodule

(a) Show the hardware that will be synthesized without optimization and using default parameters.

�Hardware without optimization.

a[0]

+

0:0mask[0]

a[1]

1:1mask[1]

+

a[2]

2:2mask[2]

+

mask

a

0 sum

ssum n=3, f=4, sswid = 6

i=0 i=1 i=2

Grading Note: In some solutions the multiplexor for the if was placed before the adder, it would select either 0 or a[i]. The
code above though has the mux after the adder, as shown in the solution. Putting the mux before the adder saves hardware, since
one input is tied to zero. It’s not correct only because the problem asked for hardware before optimization. Nevertheless, no points
were deducted for this error.

(b) Show the hardware that will be synthesized using the default parameters with optimization. In particular,
try to make use of a four-input multiplexor for the first two iterations of the i loop.

�Hardware with optimization and using a four-input mux.

a[0] a[1]

1:0mask[1:0]

a[2]

2:2mask[2]

+

mask

a

0 sum

ssum n=3, f=4, sswid = 6

i=0 and 1 i=2

+

3

← → Fall 2015 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Problem 3: [20 pts] Appearing below is the ssum module from the previous problem and the start of
a recursive version of the module, ssum_rec. Finish ssum_rec so that it performs the same computation,
but does so using a tree connection of hardware rather than the linear connection that ssum describes.
(For partial credit only use a generate loop to instantiate ssum modules of a fixed size; for full credit use
recursion.)

module ssum #(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [f-1:0] a[n]);

always @* begin

sum = 0;

for (int i=0; i<n; i++) if (mask[i]) sum += a[i];

end

endmodule

�Complete module so that it describes a tree structure specified using recursion.

Solution appears below. Notice that the sshi module is instantiated with the first parameter set to n/2, but because n might be
odd, the sslo module is instantiated with the first parameter set to n - n/2. This guarantees that the total number of elements
processed is n.

module ssum_rec
#(int n = 3, int f = 4, int swid = f + $clog2(n))

(output logic [swid-1:0] sum,

input uwire [n-1:0] mask,

input logic [f-1:0] a [n-1:0]);

// SOLUTION BELOW

if (n == 1) begin

assign sum = mask ? a[0] : 0;

end else begin

localparam int nlo = n / 2;

localparam int nhi = n - nlo;

uwire [swid-1:0] sumhi, sumlo;

ssum_rec #(nhi,f,swid) sshi(sumhi, mask[n-1:nlo], a[n-1:nlo]);

ssum_rec #(nlo,f,swid) sslo(sumlo, mask[nlo-1:0], a[nlo-1:0]);

assign sum = sumhi + sumlo;

end

endmodule

4

← → Fall 2015 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Problem 4: [20 pts] Show the hardware that will be synthesized for the module below.

module yam(output logic [7:0] x, y, z,

input uwire [7:0] a, b, c, input uwire [1:0] op, input uwire run, clk);

logic [7:0] x1, x2, e;

always_ff @(posedge clk) begin

e = b;

z = a + b;

if (op == 0) e = z;

else if (op == 1) e = a + x;

else if (op == 2) e = a + x1;

x2 = x1;

x1 = x;

if (run) x = e;

end

always_comb y = x1 + x2 - c;

endmodule

� Show hardware, including � registers and �module ports.

Solution appears below. Note that no register is needed for e because e is not live out. (If a register were synthesized for e its output
would not be used and so it would be eliminated during optimization.) A register is needed for z because it’s a module output.

a

b
z

x x1 x2

x

e

en

r
u
n

z

y

c

o
p

+ -+

+

+
yam

x x1 x2

z

5

← → Fall 2015 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Problem 5: [20 pts] Answer each question below.

(a) Show the values of a, b, and c when the code reaches Point 1 and Point 2.

module short_answers;
int a, b, c;

initial begin

a = 0; b = 0; c = 0;

a = 1;

a <= 2;

a <= #3 3; //

b = a + 10; // ---a--- ---b--- ---c---

c <= a + 20; //

// Point 1: 1 11 0 <- SOLUTION

#1;

// Point 2. 2 11 21 <- SOLUTION

end

my_prog my_prog_instance(a,b,c); // Ignore for part (a).

endmodule

�At Point 1, values for � a, � b, and � c.

�At Point 2, values for � a, � b, and � c.

6

← → Fall 2015 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

(b) The definition of the my_prog program from the previous part appears below. Show the contents of the
Verilog event queue at Point 1 in the code from the previous part, include the effect of code in short_answers

as well as my_prog. Show events in the form “t = 1969, region=NL-East, Resume Point 3” and “t = 2015,
region=X, Update variable z,” but use real region names.

program my_prog(input int a, b, c);

initial forever @(a or b or c) begin

// Point 3;

$display("Let’s go Mets!");

end

endprogram

�Contents of event queue at Point 1, show � region names and � time stamps.

The solution appears below. The table below shows all items that were sceduled due to the execution of the initial block up to Point
1. The first non-blocking assignment to a and the non-blocking assignment to c schedules an update event in the NBA region at
t = 0. The second non-blocking assignment to a schedules an update event at t = 3. Changes in a, b, and c cause a resume event
to be scheduled in the re-inactive region for Point 3 of the program object. Finally, the 1-cycle delay at Point 1 schedules a resume
event for Point 2 at t = 1.

Time Region Event

0 NBA Update a <- 2

0 NBA Update c <- 21

0 Re-inactive Resume Point 3.

1 Inactive Resume Point 2

3 NBA Update a <- 3

7

← → Fall 2015 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

(c) The module below is in explicit structural form, in which only primitive gates (and module instantiations)
are used. Will the synthesis program synthesize exactly that arrangement of gates? Explain.

module bfa_structural(output uwire sum, cout, input uwire a, b, cin);

uwire term001, term010, term100, term111;

uwire ab, bc, ac;

uwire na, nb, nc;

not n1(na, a);

not n2(nb, b);

not n3(nc, cin);

and a1(term001, na, nb, cin);

and a2(term010, na, b, nc);

and a3(term100, a, nb, nc);

and a4(term111, a, b, cin);

or o1(sum, term001, term010, term100, term111);

and a10(ab, a, b);

and a11(bc, b, cin);

and a12(ac, a, cin);

or o2(cout, ab, bc, ac);

endmodule

�Will synthesis program emit exactly these gates? �Explain.

No. Or at best, not necessarily. The synthesis program will map the gates above to the most appropriate gates in the target
technology, it will then perform optimization. It’s possible, for example, that the target technology does not have a three-input AND
gate, so either two 2-input gates will be used, or maybe a 4-input AND gate will be used with one input tied to logic 1. Or perhaps,
the technology has a special binary full adder primitive.

(d) Based on a hand analysis of my_mut we expect it to have a clock period of 12 ns. Shown below is an
excerpt from the testbench for my_mut that includes the code for generating a clock. Assume that the Verilog
time unit is set to 1 ns. How does the clock declaration below affect the timing of the synthesized hardware?

module testbench();
logic clock;

initial clock = 0;

always #5 clock = !clock;

// Other declarations omitted.

my_mut woof(x,y,a,b,clock);

�The effect of the declaration of clock on timing of synthesized hardware is . . . none � because

The synthesis program will be commanded to synthesize my mut, and so it won’t see testbench, and therefore the clock period
from testbench is irrelevant. Synthesis programs can be told to synthesize for a target clock period, but that target clock period
is provided by a synthesis program command, such as define clock for Cadence Encounter.

8

← → Fall 2015 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Name Solution

Digital Design using HDLs

LSU EE 4755

Final Examination

Saturday, 12 December 2015 12:30-14:30 CST

Alias Not Synthesizable

Problem 1 (15 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (15 pts)

Problem 5 (10 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Problem 1: [15 pts] Write a Verilog description of the hardware illustrated below.

+
*

en

en

b1

b2

b3

b0

c

a x

s

+

16

8

8

thing

clk

SOLUTION ON NEXT PAGE

2

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

�Verilog description of hardware including � port declarations and � port and other sizes.

+
*

en

en

b1

b2

b3

b0

c

a x

s

+

16

8

8

thing

clk

b
ab ab_1

c_1

ab_20

ab_21

The solution appears below. Names for wires that were unlabeled in the problem appear in purple. (That is, the purple labels are
part of the solution.) Note the use of case/endcase for the mux. Though using an if/else chain or the conditional operator,
?:, would be correct, they are more tedious and prone to error and so it’s worth taking the trouble to remember to use case.

module thing(output uwire [15:0] x, input uwire c, input uwire [1:0] s,

input uwire [7:0] b0, b1, b2, b3, a, input wuire clk);

logic [7:0] b, ab, ab_1, ab_20, ab_21;

logic c_1;

always_comb begin

case (s)

0: b = b0;

1: b = b1;

2: b = b2;

3: b = b3;

endcase

ab = a + b;

end

always_ff @(posedge clk) begin

c_1 <= c; // Note: Delayed assignment, so if(c_1) uses prior value.

ab_1 <= ab; // Delayed assignment here too.

if (c_1) ab_21 <= ab_1; else ab_20 <= ab_1;

end

assign x = a * (ab_20 + ab_21);

endmodule

3

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Problem 2: [20 pts] The module below implements a simple memory module.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(a) Show the hardware that will be synthesized for this module when elaborated with size_lg = 2. Use
registers, multiplexors, decoders, and basic gates. Do not use a memory module.

� Show synthesized hardware, including hardware for � reading and �writing.

Solution appears below.

rd_idx

wr_idx

write

clk

rd_data

en

en

en

en

0:01:1

wr_data

smemory

4

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Problem 2, continued: Appearing below is the module from the previous page.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(b) Assume that initially location 1 (storage[1]) holds a 10, location 2 holds a 20, location 3 holds a 30,
and so on. Complete the timing diagram below, consistent with this module.

clk

write

wr_idx

rd_idx

wr_data

rd_data

1 2 3

33

3

1

0 4

0 44

10 20 30 33

�Complete rd data row of timing diagram.

Solution appears above in blue.

5

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

clk

write

wr_idx

rd_idx

wr_data

rd_data

3

33

30

0

30 33

(c) Modify the module below (same as one on previous
page) so that its behavior is consistent with the timing
diagram to the right. That is, if the location being
written is the same as the one being read the rd_data

output shows the data on wr_data. If the locations
don’t match or nothing is being written the behavior
is unchanged.

�Modify the module.

Solution appears below. The original line is commented out for
reference. Otherwise, cluttering your code with commented out
lines is bad style. Instead, learn how to diff your working copy with
the latest committed version and be able to do so in < 500ms.

module smemory_bp #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,

input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,

input uwire [size_lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

// assign rd_data = storage[rd_idx];

// SOLUTION

assign rd_data = write && rd_idx == wr_idx ? wr_data : storage[rd_idx];

endmodule

6

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Problem 3: [20 pts] The module below and the similar one on the next page are like the memory module
from the previous problem, except that their output is the sum of locations rd_start, rd_start+1, . . .,
rd_start+rd_len-1. Assume that rd_start+rd_len <= size.

module rsum_plan_a #(int sz_lg = 4, int ebits = 8, int size = 1 << sz_lg)

(output logic [ebits-1:0] sum,

input [sz_lg-1:0] wr_idx, input [ebits-1:0] wr_data, input write,

input [sz_lg-1:0] rd_start, input [sz_lg-1:0] rd_len, input clk);

logic [ebits-1:0] storage [size-1:0];

// Don’t show synthesized hardware for line below.

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

// Plan A -- Show Synthesized Hardware for this Verilog

always_comb begin

sum = 0;

for (int i=0; i<size; i++) if (i < rd_len) sum += storage[i + rd_start];

end

endmodule

(a) Show the hardware that will be synthesized for the always_comb block. Include basic optimizations, but
don’t optimize to the point where hardware is identical to Plan B (next page).

� Show not-too-optimized hardware for sum.

en

en

en

en

smemory

1
01

2

3

+

01

+

01

+

0
01

0

rd_start

rd_le�

sum

<

<

<

<

sum

sum

sum

sum

sum

sum

sum

i=1

i=0

i=2

i=3

s
to
ra
g
e
[0
]

s
to
ra
g
e
[1
]

s
to
ra
g
e
[2
]

s
to
ra
g
e
[3
]

7

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

(b) Appearing below is Plan B for the module. Though we know it produces the same value for sum as Plan
A, it might be synthesized into different hardware. Show the hardware synthesized for Plan B.

module rsum_plan_b #(int sz_lg = 4, int ebits = 8, int size = 1 << sz_lg)

(output logic [ebits-1:0] sum,

input [sz_lg-1:0] wr_idx, input [ebits-1:0] wr_data, input write,

input [sz_lg-1:0] rd_start, input [sz_lg-1:0] rd_len, input clk);

logic [ebits-1:0] storage [size-1:0];

// Don’t show synthesized hardware for line below.

always_ff @(posedge clk) if (write) storage[wr_idx] = wr_data;

// Plan B -- Show Synthesized Hardware for this Verilog

always_comb begin

sum = 0;

for (int i=0; i<size; i++)

if (i >= rd_start && i < rd_start + rd_len) sum += storage[i];

end

endmodule

� Show the hardware that will be synthesized for Plan B. en

en

en

en

smemory

01

0 01

+

0

rd_start

rd_len

sum

<

sum

sum

sum

sum

i=1

i=0

i=2

s
to
ra
g
e
[0
]

s
to
ra
g
e
[1
]

s
to
ra
g
e
[2
]

s
to
ra
g
e
[3
]

+

0
>=

1
<

1
>=

01

+

sum
2

<

2
>=

01

+

sum
3

<

3
>=

i=3

sum

sum

Solution appears to the right.

(c) Which one is better?

�Which is better, © Plan A or �© Plan B .

�Explain, with a rough estimate of cost and timing.

Short Answer: The cost of the multiplexors makes Plan A more
expensive than Plan B when ebits is greater than 1. The timing
is about the same.

Detailed answer: Plan A contains three more multiplexors than Plan B, the total number of additional multiplexor inputs is 3+2+1 =
6, and each of these is ebits wide, for a cost of 6× 3× e = 18e units, where e is ebits. The logic in Plan B that’s not in Plan
A includes four AND gates, a 2-bit adder and three fixed comparison units. Assume that the cost of a BFA is 10 units. Since the
inputs to the adder are 2-bit quantities and since a carry-out is needed, the cost is 20 units. (The adder output must be three bits to
do the comparison i<rd start+rd len.) Assume that the ≥ fixed comparison units cost 3 units each (draw a truth table). The
total cost of logic in Plan B not in plan A is then 4 + 20 + 3 × 3 = 33 units. So Plan B is less expensive whenever the storage
element size, ebits, is greater than 1 bit, which presumably is most of the time.

The path to the select signal for the i = 0 mux in Plan B passes through an adder (albeit a small one), a comparison, and an AND
gate. In contrast, signal arrive at the data inputs to the corresponding multiplexor at a delay of about 4 units. Therefore Plan B is
a little bit slower based on this simple analysis.

8

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Problem 4: [15 pts] Appearing below are excerpts based on the cam_hash module used in class, showing
what we called the hash_early design. Recall that with the early hash design the hash function (in module
hash) is computed before the positive clock edge while the lookup occurs after the positive edge. We assumed
that the hash could be computed in about 1

2 of our target clock period.

module cam_hash_exceprt
(output [dwid:1] out_data, output out_valid, output ready,

input [kwid:1] in_key, input [dwid:1] in_data,

input Cam_Command in_cmd, input clk);

logic [kwid:1] b_key;

logic [dwid:1] b_data;

logic [hkey_size-1:0] b_hash;

Cam_Command b_cmd;

uwire [hkey_size-1:0] ohm_key_out;

always_ff @(posedge clk) begin

b_key <= in_key;

b_data <= in_data;

b_cmd <= in_cmd;

b_hash <= ohm_key_out;

end

hash #(kwid,num_sets_lg) our_hash_module(ohm_key_out, in_key);

/// Hardware to find matching key below ...

(a) The early hash design requires that the external hardware has the right timing behavior. Show a timing
diagram in which the timing behavior is correct for early hash, and one in which it is wrong. The “wrong”
behavior should result in incorrect results using the early hash design, but correct results without the early
hash design.

�Timing diagram showing � correct and �wrong behavior.

clk

t 0 1 2

in_key

o�������o��

b����

b��	
�

abc d��x��

11 22

x��

11 22

abc d��

33

123

hashed val of key

12322 7124227

ohm_key_out

not yet ready!

ohm_key_out

computed on time.

arrives on time arrives late

Solution appears to the right. In the early hash
design the value on port in key must arrive in
the first half of the clock cycle (before the negative
edge). That is what happens for input abc and so
hash which computes ohm key out has enough
time to finish. The correct hash, 22 is clocked
into register b hash. In contrast, key def arrives
late, and so when the next positive clock edge ar-
rive ohm key out has not stabilized and so some
arbitrary value is clocked into b hash. Notice
that b key gets the correct value in both cases,
because register gets its input directly from input
port in key.

9

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Problem 4, continued:

(b) Register b_hash saves the hashed version of in_key, and b_key holds the unhashed version. Why do we
need the unhashed version?

� b_key is needed because ...

The number of bits in the hash of a key is less than the key itself, therefore two keys can have the same hash. The unhashed version
of the key is needed to check whether the key matches the key for item at the hashed location.

10

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Problem 5: [10 pts] The Verilog below is part of a testbench (taken from icomp.v).

initial begin

/// Watchdog – Stop simulation if it’s taking too long.
//

fork begin

automatic int cyc_limit = in_str.len() * 100;

fork

wait (cycle_num == cyc_limit);

wait (tb_insert_done && tb_remove_done);

join_any

if (cycle_num >= cyc_limit) begin

$write("Exceeded cycle limit, exiting.\n");

$fatal(1);

end

end join_none

// Below: Send data to module under test.

(a) Generically explain what a fork and join pair do (ignoring the code above).

� fork and join ...

Each statement executes with its own thread of control, meaning that delays and other timing controls in one does not affect the
progress of the other. The statement after the join does not execute until all threads inside the fork/join finish.

(b) How would execution be effected if the last join_none were changed to join_any?

� Impact of changing join_none to join_any in code above.

Execution would never reach the //Below statement. With the join none, execution proceeds to the //Below statement
without delay. Code after the //Below statement tests modules and will set tb insert done and tb remove done when
tests are finished. But with join none changed to join any the //Below statement will not be executed until the first fork
finishes. That first fork finishes when either the cycle limit is exceeded or all modules have been tested, whichever comes first. But
with join none changed to join any module tests won’t have started and so the cycle limit will be exceeded. Note that if the
cycle limit is exceeded the code exits with a fatal error, and so the //Below statement will never be reached.

(c) How would execution be effected if the inner join_any were changed to a join_all?

� Impact of changing join_any to join_all in code above.

The testbench will always report that the cycle limit was exceeded, even if all tests were completed.

11

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Problem 6: [20 pts] Answer each question below.

(a) Suppose we would like our hardware to operate at a 1GHz clock frequency. How do we tell the synthesis
program? (The exact syntax is not important.)

�Method to tell synthesis program the clock frequency.

Short Answer: define clk -name ee4755 -period 1000 myclkport.

Details: In Cadence Encounter use the command define clk -name NAME -period PERIOD PORTS. To set the clock
frequency to 1GHz set the period argument to 1000, which is the clock period in picoseconds: 1012 1

109 = 1000. Argument
PORTS is set to the name of the clock ports and NAME is a name by which this clock can be referred to in subsequent commands.

(b) The synthesis program will apply our target clock frequency to paths starting at launch points and
ending at capture points. We could explicitly specify such points but if we don’t it will use default launch
and capture points. What are they?

�By default timing is computed for paths that start at: register outputs.

� and end at: register inputs.

Notice that the default launch and capture points do not include module inputs and outputs. Those have to be added with
external delay commands.

(c) Suppose our target clock frequency is 1GHz. What is the harm in telling the synthesis program to
synthesize for 2GHz? For 0.5GHz?.

�Harm in specifying 2GHz when we just need 1GHz:

The resulting design will work correctly, but may be more expensive than had we specified 1GHz.

�Harm in specifying 0.5GHz when we just need 1GHz:

The synthesized hardware may not work at 1GHz.

12

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

(d) The code below will inconsistently assign a variable. Explain why and fix the problem.

module short_ans(output logic [7:0] x, y, input [7:0] a, b, c, input clk);

always @(posedge clk) begin

x = a + b;

end

always @(posedge clk) begin

y = x + c;

end

endmodule

�Reason for inconsistent behavior:

Because the value of x used in the second always block may be before the a+b assignment, or after.

�Fix problem.

One way is to put the two statements in the same block. That’s shown below. Another possibility is to use nonblocking assignment.

module short_ans(output logic [7:0] x, y, input [7:0] a, b, c, input clk);

always @(posedge clk) begin

x = a + b;

y = x + c;

end

endmodule

(e) Describe the problem with the module below. How might it affect simulation?

module short_ans2(output logic [7:0] x, input [7:0] a, b, input reset);

always_comb begin

if (reset) x = a; else x = x + b;

end

endmodule

�Problem with module.

� Impact on simulation.

Wire x is both an input and an output of the always comb. So each change in x would trigger another execution of the block. To
fix it a clock is needed to control when x is incremented.

13

← → Fall 2015 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

22 Fall 2014 Solutions

440

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Name Solution

Digital Design using HDLs

EE 4755

Midterm Examination

Monday, 10 November 2014 11:30–12:20 CST

Alias Over-reactive region

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (10 pts)

Problem 4 (15 pts)

Problem 5 (13 pts)

Problem 6 (22 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Problem 1: [20 pts] Write a Verilog description of the hardware shown below.

+

- <

>8'b0

en
1:1

0:0

sa

sb

val

op

hi

ok

lo

clk

�Write a Verilog module corresponding to the hardware above.

�Be sure to declare module ports and � any wires and vars (logic) used inside.

�Pay attention to the differences between lo and hi and � the differences between sa and sb.

// SOLUTION

module prob1(output logic [7:0] sa, sb, output uwire ok,

input uwire [1:0] op, input uwire [7:0] val, hi, input uwire clk);

always_comb

case (op)

0: sa = 0;

1: sa = sb + val;

2: sa = sb - val;

3: sa = sb;

endcase

always_ff @(posedge clk) sb <= sa;

logic [7:0] lo;

always_ff @(posedge clk) if (op == 0) lo <= val;

assign ok = sb > lo && sb < hi;

endmodule

The Verilog appears above.

2

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Discussion of sa /sb differences.

In the diagram notice that sa is produced in part by signals connected to the module inputs. That means if, for example, input
op changes then sa must change as soon as it can. For that reason it is not assigned in an always block controlled by posedge
clk, instead it is assigned in an always block sensitive to all live-in objects, namely op, val, and sb. In contrast, output sb is
connected to the output of an edge-triggered register which means it can only change on the positive edge of clk. For that reason
it is assigned in an always block sensitive to posedge clk.

The lo register is written on the positive edge of the clock when bit 0 (notice the 0:0 label next to the tic mark) of op is zero and
when bit 1 of op is zero. In Verilog that’s cleanly shown as if (op == 0). It would be correct though cumbersome to replace
the if condition with op[0] == 0 && op[1] == 1. An even more cumbersome solution would instantiate an AND gate and
two NOT gates.

3

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Problem 2: [20 pts] Appearing below is the multiply circuit from the solution to Homework 3, in Verilog
(slightly simplified) and as a diagram showing what hardware a synthesis program might infer.

module mult_seq_csa_m #(int wid = 16, int pp_per_cycle = 2)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier, input logic [wid-1:0] cand, input uwire clk);

localparam int iterations = (wid + pp_per_cycle - 1) / pp_per_cycle;

localparam int iter_lg = $clog2(iterations);

localparam int wid_lg = $clog2(wid);

logic [iter_lg:0] iter;

uwire [2*wid-1:0] accum_sum_a[0:pp_per_cycle], accum_sum_b[0:pp_per_cycle];

logic [2*wid-1:0] accum_sum_a_reg, accum_sum_b_reg;

assign accum_sum_a[0] = accum_sum_a_reg;

assign accum_sum_b[0] = accum_sum_b_reg;

for (genvar i=0; i<pp_per_cycle; i++) begin

uwire [wid_lg:1] pos = iter * pp_per_cycle + i;

uwire [2*wid-1:0] pp = pos < wid && cand[pos] ? plier << pos : 0;

CW_csa #(2*wid) csa
(.sum(accum_sum_a[i+1]), .carry(accum_sum_b[i+1]), .a(accum_sum_a[i]), .b(accum_sum_b[i]), .c(pp));

end

always @(posedge clk)

if (iter == iterations) begin

prod <= accum_sum_a_reg + accum_sum_b_reg;

accum_sum_a_reg <= 0;

accum_sum_b_reg <= 0;

iter <= 0;

end else begin

prod <= prod;

accum_sum_a_reg <= accum_sum_a[pp_per_cycle];

accum_sum_b_reg <= accum_sum_b[pp_per_cycle];

iter <= iter + 1;

end

endmodule USE NEXT PAGE FOR SOLUTION

CW_csa

a
c
c
u
m
_
s
u
m
-

_
a
_
re
g

+

+

=

ite
r

<<

p
ro
d

en

it
e
ra

ti
o
n
s

1

0

0

prod

plier

cand

a
c
c
u
m
_
s
u
m
-

_
b
_
re
g

pp

accum_sum_a[1]

accum_sum_b[1]

csa

CW_csa

csa

* +

<

2
 (

p
p
_
p
e
r_

it
e
ra

ti
o
n
)

0
 (

i)

w
id

<<

0 pp

* +

<

1
 (

i)

w
id

2 (pp_per_iteration)

0

wid

wid

USE NEXT PAGE FOR SOLUTION

4

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

(a) Show optimizations that might be performed that exploit the value m = 2 (that is, pp_per_iteration=2).

(b) Show the optimizations that might be performed assuming that wid is odd, and assuming that wid is
even, both for m = 2.

�Modify diagram to show optimizations for pp per iteration = m = 2 and arbitrary wid.

�Modify diagram to show optimizations for pp per iteration = m = 2 and odd wid.

�Modify diagram to show optimizations for pp per iteration = m = 2 and even wid.

CW_csa

a
c
c
u
m
_
s
u
m
-

_
a
_
re
g

+

+

=

ite
r

<<

p
ro
d

en

it
e
ra

ti
o
n
s

1

0

0

prod

plier

cand

a
c
c
u
m
_
s
u
m
-

_
b
_
re
g

pp

accum_sum_a[1]

accum_sum_b[1]

csa

CW_csa

csa

* +

<

2
 (

p
p
_
p
e
r_

it
e
ra

ti
o
n
)

0
 (

i)

w
id

<<

0 pp

* +

<

1
 (

i)

w
id

2 (pp_per_iteration)

0

wid

wid

<<

1 Even bits

only.

Odd bits

only.

1 <<

z

z

z
Mods for pp_per_iteration = 2.

Mods for even

wid only.

Mods for even

or odd wid.

z Zero-cost hardware. r Reduced-cost hardware.

rr

r

Solution appears above. Three sets of changes are shown. The changes in green are optimizations possible with pp per iteration=2,
the changes in blue are possible with any value of wid (odd or even), and the changes in purple are possible only when wid is even.
Hardware labeled with a circled z is zero-cost, meaning that the outputs are either constants or are connected directly to the inputs.
(In class this was called renaming bits.) The hardware labeled with a circled r is a lower cost version of the hardware depicted. In
particular, the shift so labeled is lower cost because it only needs to shift by an even number of positions. The r-labeled multiplexors
are lower cost because half of their inputs are unused (and so will not be synthesized).

If we know that pp per iteration is 2 then the shift amounts for plier just shifting iter by one bit (for i=0) or shifting
and placing a 1 in the LSB position (for i=1). These observations are used to eliminate the multipliers and adders. (One of the
adders is shown as zero-cost.) Further, in the i=0 section we know that only even-numbered bit positions are from cand, reducing
the cost of the multiplexor; a similar optimization is made for the i=1 section.

The < modules are used to determine if the cand bit position is valid. For the i=1 section the cand bit position in the last
iteration will be invalid if wid is odd. (For example, suppose wid=5 and consider the third iteration, when iter is 2. The bit
position sought by the i=0 section will be 2 × 2 = 4, the MSB of cand. The i=1 section will look for bit 2 × 2 + 1 = 5 which
is invalid, though with a typical adder the mulitplexor might be commanded to look at bit 0, which is wrong. The less-than module
and AND gate prevent the bit from being used.)

In contrast, there will never be an invalid bit position when wid is even. So, when wid is even both the optimizations shown in blue
and purple can be made. If wid is odd then the blue optimizations can be made but the purple optimizations cannot be made.

5

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Problem 2, continued:

(c) The cost of the shifters with input plier in the design on the previous pages is significant. Explain how
these shifters can be eliminated by adding a register. Quickly sketch the hardware to illustrate your answer.

� Show how a register can be used to eliminate the costly shifters.

Solution appears below in green, based on the optimized even-wid multiplier. The shift-by-any-amount (or at least any even amount)
shifter (which would occupy the hand-drawn circle in the diagram) is replaced by a shifter that shifts by exactly pp per iteration

positions, which is a zero-cost device. The output of this shifter is stored in a register and used in the next iteration. The shift
amounts that are needed in a particular iteration can be obtained using only these zero-cost shifters. The multiplexor and register
that we’ve added is not free, but their should be less than the shifters when about three or more iterations are needed.

CW_csa

a
c
c
u
m
_
s
u
m
-

_
a
_
re
g

+

+

=

ite
r

p
ro
d

en

it
e
ra

ti
o
n
s

1

0

0

prod

in_plier

cand

a
c
c
u
m
_
s
u
m
-

_
b
_
re
g

pp

accum_sum_a[1]

accum_sum_b[1]

csa

CW_csa

csa

0
��
�

0 pp

+

1
��
�

0

wid

wid

<<

1 Even bits

only.

Odd bits

only.

1 <<

z

z

z

z Zero-cost hardware. r Reduced-cost hardware.

r

<<
z

2 ���������	��ation)

E
������ �hift replac�e ���� �u
� ����

and zero-cost shifter.

(d) Explain how the streamlined multiplier described in class eliminated the plier shifter without having to
add a register.

� Show how the streamlined multiplier does not need an extra register to eliminate the shifter.

The streamlined multiplier shifts the accumulated product rather than the multiplier. (This may not be possible using CSAs.)

6

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Problem 3: [10 pts] The module below computes the prefix sum of a sequence of integers at its input.

module prefix_sum #(int len=8, int wid = 8)

(output logic [wid:1] psum [len], input uwire [wid:1] elts[len]);

always @* begin

psum[0] = elts[0];

for (int i=1; i<len; i++) psum[i] = psum[i-1] + elts[i];

end

endmodule

(a) Show the hardware that would be synthesized for the module before optimization, elaborated with
parameters len=4 and wid=8. Label the input ports elts[0], elts[1], elts[2], and elts[3]; and label
the output ports psum[0], psum[1], psum[2], and psum[3].

� Show synthesized hardware.

Synthesized hardware appears below.

+

+

+

8elts[0]

psum[3]

8elts[1]

8elts[2]

8elts[3]
8

psum[2]8

psum[1]8

psum[0]8
prefix_sum

(b) Estimate the delay for the synthesized hardware before optimization. Use w for the value of wid and L
for len. Assume that a w-bit adder has delay w.

�Delay in terms of w and L:

The delay is (L− 1)w.

7

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Problem 4: [15 pts] Answer the following questions about the Verilog module below.

module timing();
logic [7:0] a, e, f2, g, g1, g2; logic clk; uwire [7:0] e1, f, f1;

initial begin

clk = 0;

a = 11;

#1;

a = 1;

a <= 22;

a <= #5 a + 1;

#9;

a = 7;

e = 10;

f2 = 30;

g = 40;

g1 = 50;

g2 = 60;

#10;

// B0

a <= 700;

clk = 1;

#1;

// POINT X (See subproblem.)

end

always @(posedge clk) e = a; // B1

always @* e1 = a; // B2

always @* f = e + 1; // B3

always @* f1 = e1 + 1; // B4

always @(posedge clk) f2 <= e + 1; // B5

always @(posedge clk) begin // B6

g = f; g1 = f1; g2 = f2; end

endmodule

(a) Show values for a versus time in the table below. For this part, only a. The table already shows that
a has value 11 from time 0 to time 1. Extend the table as long as necessary, and be sure to show values
for both t and a. Note: The original exam did not provide the table. Also, in the original exam there were
differences in how a was assigned.

�Complete the table.

t 0 1 6 10 20
a 11 22 2 7 700

Solution appears above. After t = 1 a gets the value 22 because of the non-blocking assignment. However, the delayed assignment
(a <= #5 a + 1;) uses the value of 1 for a since the non-blocking assignment of 22 at that point had not taken effect. (It must
wait until the scheduler gets to the NBA region of the event queue.)

Notice that delays (such as #10 are relative to the current time, not to t = 0).

8

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

(b) Show the values that will be present on g, g1, g2 when execution reaches the POINT X comment in the
module above. For partial credit also show intermediate values for other signals used to compute the g’s.
(Look at next part before solving this one.)

�At POINT X g= 11 , g1= 8 , g2= 8 .

Solution appears above. The g’s are assigned on the positive edge of the clock in block B6. To solve the problem one needs to
figure out what has already executed. Before point B0 in the code a is 7, e is 10, and f2 is 30, set by the procedural code, and the
combinational (@*) always blocks would have set f1 to 8 and f to 11. After the procedural code assigns clk=1 and reaches the #1
the scheduler will schedule the posedge clk blocks in arbitrary order. After B0 finishes the three newly scheduled blocks B1, B5,
and B6, are placed in the active region of the event queue. Block B1 changes e to 7, which causes B3 to be scheduled in the inactive
region. The scheduler continues with the active region, next executing B5, which schedules an update event in the NBA region that
will set f2 to 8. Next B6 is executing, assigning the g’s. Variable g is assigned 11, notice that B3 is still in the active region and so
has not gotten its chance to modify f. Variable g1 is assigned 8. Variable g2 is assigned 30. Notice that B5 adds 1 to e before B6
executes but the update is done afterwards. Block B3 executes after B6. Therefore the “old” values are used for g and g2.

(c) Recall that the event queue used for Verilog simulation has active, inactive, and NBA regions, among
others. Just before B1 starts execution in module timing above the active region might contain B1, B5, and
B6 (see the comments on the right). (What the other regions contain is part of this problem.) Show the
contents of the three regions when B5 starts. Assume that events in a region are scheduled in order.

�When B5 starts: Active = { B6 }. Inactive = { B3 }. NBA = { a <= 700 }.
Solution appears above. When B5 starts only B6 remains in the active region (see the solution to the previous problem). Block B3
has been scheduled in the inactive region due to the assignment of e by B1. The update to a was scheduled in the NBA (non-blocking
assignment) region by B0 in the initial block.

9

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Problem 5: Answer each question below.

(a) [5 pts] Module add3 is supposed to compute the sum of its three inputs using instances of our_adder,
but it won’t work. Fix the problem. The fixed module should still use our_adder.

�Fix add3.

module add3(output uwire [15:0] sum, input uwire [15:0] a,b,c);

our_adder a1(sum , a , b);

our_adder a2(sum , sum , c);

endmodule

/// SOLUTION

module add3(output uwire [15:0] sum, input uwire [15:0] a,b,c);

uwire [15:0] sum1;

our_adder a1(sum1, a, b);

our_adder a2(sum, sum1, c);

endmodule

Solution appears above. The problem was that the same object, sum, was connected to the output of both adders. Its value therefore
is undefined. In the solution a new wire, sum1, is declared and used as the output of the first adder.

(b) [8 pts] The output of the module below is like the input except the bit positions are reversed (after
enough clock cycles). Re-write the module so that it synthesizes to combinational logic (the clk input will
no longer be needed). Add a parameter to indicate the input and output bit width.

module bitrev(output logic [7:0] x, input uwire [7:0] a, input uwire clk);

logic [2:0] pos;

initial pos = 0;

always @(posedge clk) begin

x[pos] = a[7-pos];

pos++;

end

endmodule

�Re-write so that it is combinational.

� Include a parameter wid to specify the size.

// SOLUTION

module bitrev_s #(int wid = 8) (output logic [wid-1:0] x, input [wid-1:0] a);

always @* for (int i=0; i<wid; i++) x[i] = a[wid-i-1];

endmodule

Solution appears above. Since the logic is combinational there is no need for a clock input. Notice that this will synthesize into a
module that contains no logic. All it does is rename signals. This would not be a problem if it were part of a larger design, but if
this module were the only thing fabricated on a chip money could have been better spent.

10

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Problem 6: Answer each question below.

(a) [5 pts] A Verilog module computes a result in one clock cycle. In our design we need that result in 3 ns,
which can easily be achieved. The right way to achieve that in Cadence Encounter is to use the define_clock
command to set the target clock period to 3 ns. Suppose instead we used define_clock to set the period
to 1 ps, an impossible goal. Note: The original exam did not have the “can easily be achieved” phrase.

�Would the synthesized design meet our 3 ns performance goal?

Yes. Even though 1 ps is impossible, the synthesis program will synthesize a circuit with as short a delay as it’s capable of, and
according to the problem it can easily create a circuit with a delay less than 3 ns. Note: For those taking the original exam
the answer would be: Yes, if the synthesis program is capable of reaching the 3 ns goal.

�Considering typical design goals, what would be the disadvantage of setting the period to 1 ps for our design
even though we needed 3 ns?

Short answer: The disadvantage is that the cost of the synthesized circuit might be higher than would be obtained when setting the
clock period to our performance target, 3 ns.

Suppose the synthesis program generates a circuit with a delay of 2.1 ns. That meets our performance goal, but so would a 3 ns
circuit. However the 2.1 ns circuit might have a higher cost than the 3 ns circuit since the optimization program tries to minimize
cost while meeting design constraints. Since cost minimization is a typical design goal, setting the clock period to 1 ps would result
in a worse design.

(b) [10 pts] In the module below, translate directives are used to prevent the synthesis program from
reading the line with initial.

module mult_seq(output logic [311:0] prod, input logic [15:0] plier, cand, input uwire clk);

logic [3:0] pos; logic [31:0] accum;

// cadence translate_off <-- The translate synthesizer directive.

initial pos = 0;

// cadence translate_on <-- The translate synthesizer directive.

always @(posedge clk) begin

if (pos == 0) begin prod = accum; accum = 0; end

if (cand[pos] == 1) accum += plier << pos;

pos++;

end

endmodule

�Why shouldn’t the synthesis program see the line with initial?

�What would happen if the synthesis program saw the initial line?

Short answer: The synthesis program should not see the initial line because it has no way to synthesize corresponding hardware,
if it saw the line it would generate an error message.

The synthesis program should not see the initial line because it is unsynthesizable, and so would result in an error message.
It is unsynthesizable because the developers of the synthesis program (this semester Cadence Encounter RTL Compiler) and the
developers of probably every other HDL synthesis program do not think it’s worth the trouble to generate special “initial” hardware
that only does something when, say, the power is turned on. The correct way of achieving that kind of behavior is by providing a
reset input to the module.

�What would happen if the simulation program didn’t see the line with initial?

The value of pos would remain at x (undefined).

11

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

(c) [7 pts] All four variables below have a size of 32 bits, but there are differences between them.

logic [31:0] a;

logic b [31:0];

logic [0:31] c;

int e;

All four variables above hold 32 bits. (Unlike C, SystemVerilog sets the size of int to be 32 bits.)

Variable a is called a packed vector. It is interpreted as a single 32-bit quantity, and so can conveniently be used in expressions such
as a+x.

�Difference between a and b?

Variable b is interpreted as a 32-element array of 1-bit elements.

�Difference between a and c?

Both a and c are packed vectors and are interpreted as 32-bit quantities. However the bit numbering of the two are different. That
makes a difference in expressions that refer to bit positions, such as y = a[10]; , but it does not make a difference in expressions
that don’t refer to bit positions, such as y = a + x;.

�Difference between a and e?

Each bit in a logic object can have four states, 0, 1, x, and z. Type int is a 32-bit quantity in which each bit is either 0
or 1. The logic type is intended for objects that will synthesize into hardware, while int is intended for other uses such as in
testbenches.

12

← → Fall 2014 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Name Solution

Digital Design using HDLs

EE 4755

Final Examination

Monday, 8 December 2014 10:00-12:00 CST

Alias Not Synthesizable

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Fall 2014 ← → Final Exam Exam Solution fe sol.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Problem 1: [20 pts] The encode module below, based on Homework 4, is used to convert a decimal value
to binary one ASCII digit at a time. Input val_prev is the binary value so far, and output val_next is the
binary value after using ASCII character ascii_char. If ascii_char isn’t a numeric digit non_digit is set
to 1 and val_next is set to zero. There is also an overflow output.

module encode
#(int width = 32)

(output logic [width-1:0] val_next,

output logic overflow, output uwire non_digit,

input uwire [7:0] ascii_char, input uwire [width-1:0] val_prev);

logic [width+3:0] val_curr; logic [3:0] high_bits, bin_char;

assign non_digit = ascii_char < Char_0 || ascii_char > Char_9;

always_comb begin

bin_char = ascii_char - Char_0;

val_curr = 10 * val_prev + bin_char;

high_bits = val_curr >> width;

if (non_digit) begin overflow = 0; val_next = 0; end

else begin

overflow = high_bits != 0;

val_next = val_curr;

end

end

endmodule

(a) Show the hardware that will be synthesized for this module. Take into account optimizations (see the
next subproblem).

� Synthesized hardware.

Two versions of the solution appear below. In the first only basic optimizations are shown. The optimizations shown are for the
overflow logic and for the computation of high_bits.

In the Verilog high_bits, which is four bits, is the result of an expression using a right shift operator. All this does is assign bits
35 to 32 of val_curr to high_bits, so in the diagram below that is all that is shown. The other basic optimization is logic
for overflow. Since overflow is one bit it makes more sense to use simple gates rather than a multiplexor, and that is what is
shown.

<

>

-

=

+

Char_9

Char_0

10

Char_0

3
5
:3
2

0

0

ascii_char

val_prev

val_next

non_digit

over�ow

v
a
l_
c
u
rr high_bits

bin_char

encode

2

← → Fall 2014 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

The solution below shows further optimizations: the subtractor to compute bin_char is eliminated, the times-ten multiplier has
been replaced by an adder (that’s shown in blue), and the !=0 operation on high_bits is now shown as a four-input OR gate (in
green). The replacement for the multiplier uses two constant shifters, they are shown by heavy vertical lines. (The heavy vertical
lines indicate, in this case, the grouping together of bits. In this case putting one or two 0’s in the LSB position to form a new
quantity.)

<

>

+

Char_9

Char_0

3
5
:3
2

0

ascii_char

v
a
l_
p
re
v

val_next

non_digit

overflow

v
a
l_
c
u
rr

high_bits

bin_char

encode

+
0

2

1 lsb
36

35

0
lsb
34

32

32

3:0

4 * val_prev

(1+4) * val_prev

2 *(1+4) * val_prev high_bits != 0

(b) Indicate how many units such as adders, multipliers, shifters, and multiplexors will actually be present
in the optimized hardware. The count should be based on the units that are present after optimization, not
on the hardware first inferred from the Verilog.

�Number of adders. �Number of multipliers. �Number of shifters. �Number of multiplexors.

Adders, 2; multipliers, 0; shifters, 0, number of multiplexors, 1. See the solution to the previous part.

3

← → Fall 2014 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Problem 2: [20 pts] Appearing below is another encode module, this one has a new input radix, which
indicates the radix (base) of the number to be converted. When completed the module should function like
the module from the previous problem, except that the digits form a radix-radix number. For example, if
radix were 10 it would operate like the previous module. If radix were 8 the digits would be octal, etc.

(a) Modify the module so that it takes into account the radix. Assume that radix can be any value from 2
to 16. Note that for a radix of 16 the valid digits are 0-9 and A-F (only consider upper case).

�Modify the module to generate the correct non_digit output.

�Modify the module to update val_next correctly given the radix.

Solution appears below. An is_af signal is added to detect legitimate hexadecimal digits. A digit_val value (value of the current
digit) is computed which is correct for radix 2 to 16 (and higher). To detect if the current digit is valid (see digit_in_range),
the hardware checks if it’s in the range 0-9 or A-F. If so, it then looks at the value to make sure that it’s less than radix.

Grading Notes: In many solutions incorrectly rejected digits in the range 0-9 when radix was greater than
10. A surprisingly large number of solutions used case statements to compute non_digit with a case for
each radix value.

typedef enum {Char_0 = 48, Char_9 = 57, Char_A = 65, Char_F = 70} Chars;

module encode_radix #(int width = 32)

(output logic [width-1:0] val_next,

output logic overflow, output uwire non_digit,

input uwire [7:0] ascii_char, input uwire [width-1:0] val_prev,

input uwire [4:0] radix);

logic [width+3:0] val_curr;

logic [3:0] high_bits; // SOLUTION: Remove bin_char, not used.

// SOLUTION

uwire is_digit = ascii_char >= Char_0 && ascii_char <= Char_9;

uwire is_af = ascii_char >= Char_A && ascii_char <= Char_F;

uwire [3:0] digit_val = ascii_char - (is_digit ? Char_0 : Char_A - 10);

uwire digit_in_range = (is_digit || is_af) && digit_val < radix;

assign non_digit = !digit_in_range;

always @* begin

val_curr = radix * val_prev + digit_val; // SOLUTION: Multiply by radix.

// SOLUTION ends here, text below is unchanged.

high_bits = val_curr >> width;

if (non_digit) begin

overflow = 0;

val_next = 0;

end else begin

overflow = high_bits != 0;

val_next = val_curr;

end

end

endmodule

4

← → Fall 2014 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Problem 2, continued:

(b) Suppose that module encode_radix (from the previous part) were to be used in a larger design in which
the values of radix could only be 2, 8, 10, and 16. Also suppose that the synthesis program can’t figure
out that radix is limited to these values. Why would the cost be higher than necessary, and how could
encode_radix be modified to get the lower cost hardware?

�Explain why the cost will be higher than is necessary.

Short answer: The synthesis program will generate a regular multiplier when all that’s really needed are some shifts and an add.

Longer explanation: The Verilog code uses a multiply operator in the expression assigning val_curr. For the decimal version of the
hardware (from Problem 1 and the Homework assignment) one operand of the multiply is the constant 10, and so the multiplication
operator will be synthesized as an adder (computing the sum val_prev[width-1:1] + val_prev[width-1:3] which is
equivalent to 2 * val_prev[width-1:0] + 8 * val_prev[width-1:0]). For part a of this problem where radix
could take on any value a true multiplier had to be synthesized (albeit one in which one input was only four bits).

But in this part we are limiting the radices that are available, so we don’t really need a full multiplier. In fact, other than radix 10,
all we need to do is shift by a constant amount. The synthesis program could generate a much lower cost design IF it were aware
of the limited range of radix values, but according to the problem it’s not (meaning the synthesis program expects a full range of
radix values).

� Show the changes to encode_radix so that the synthesis program will generate the lower cost design. The
port definitions cannot be changed.

Since the problem is that the synthesis program will generate a real multiplier when we use radix with the multiply operator, we
won’t use radix with the multiplier operator. Instead we’ll use a case statement, which is shown below. Notice that a default case
is included, that’s to make sure that a latch is not synthesized for val_scaled. Also note that the default case matches one of the
other cases, that’s to make sure that unused logic is not synthesized.

always_comb begin

case (radix)

2: begin

val_curr = 2 * val_prev + digit_val;

high_bits = val_curr >> 2;

end

8: begin

val_curr = 8 * val_prev + digit_val;

high_bits = val_curr >> 8;

end

10: begin

val_curr = 10 * val_prev + digit_val;

high_bits = val_curr >> 10;

end

16: begin

val_curr = 16 * val_prev + digit_val;

high_bits = val_curr >> 16;

end

default: begin

val_curr = 10 * val_prev + digit_val;

high_bits = val_curr >> 10;

end

endcase

5

← → Fall 2014 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

=

p
�
�

e�

s
�
�
p
�
�

e�

31:31

msb

lsb

30:0

p
�
�

e�

+
1

=
32

start

in_pat

done

per
clk

find_period

32

Problem 3: [20 pts] Ap-
pearing to the right is hard-
ware and a corresponding
Verilog module. The mod-
ule is incomplete, finish it.
Hint: The hardware includes
an end-around shift, that’s
the part with the msb/lsb la-
bels.

�Add sizes and other infor-
mation to port declarations.

�Finish the Verilog code.

Solution appears below. The size for sh_pat is 32 bits since it’s connected to the 32-bit end-around shift unit. The size of pat is
32 bits since it’s connected to a 32-bit input port. The size of per is set to six bits based on the comparison with 32 in the diagram.
A size of less than six bits could not hold a 32, and anything larger than six bits would not be needed because the value of per stops
incrementing when it reaches a value of 32.

From the diagram we find three edge-triggered registers, pat, sh_pat, and per. Edge triggered registers are specified in Verilog
using always @ (posedge clk) constructs, in this case using a separate always block for each register is cleanest.

The done output was realized using a continuous assignment. Because all of the values needed for done are register outputs, the
code for done could have been put in an always block, but only if there was a single always block for all three registers, which
is not the case with the solution below.

module find_period
(output logic [5:0] per, output uwire done,

input uwire [31:0] in_pat,

input uwire start, input uwire clk);

logic [31:0] pat, sh_pat;

always_ff @(posedge clk) if (start) pat <= in_pat;

uwire [31:0] sh_in = start ? in_pat : sh_pat;

always_ff @(posedge clk)

if (start || !done) sh_pat <= { sh_in[30:0], sh_in[31] };

always_ff @(posedge clk)

if (start) per <= 1;

else if (!done) per <= per + 1;

assign done = pat == sh_pat || per == 32;

endmodule

6

← → Fall 2014 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Problem 4: [20 pts] The Verilog below is the key lookup part of the simple CAM module used in class.

logic [dwid:1] storage_data [ssize];

logic [kwid:1] storage_key [ssize];

logic [ssize-1:0] storage_full;

always_comb begin

mmatch = 0; midx = 0;

for (int i=0; i<ssize; i++)

if (storage_full[i] && storage_key[i] == key) begin mmatch = 1; midx = i; end

end

assign out_data = storage_data[midx];

(a) Starting with the registers and key shown below, sketch the hardware synthesized for this code without
optimization. The hardware should produce values for mmatch and midx (but not out_data). Do so for
ssize=3. In class we often showed part of this as a box labeled “priority encoder” (or “pri” for short), in
this problem actually show the hardware.

� Synthesized hardware for ssize = 3 to generate � mmatch and � midx.

Solution appears below in blue. Note that the first (uppermost) multiplexor can trivially be optimized out since both of its inputs are
zero. A chain of multiplexors was chosen to generate midx, and a similar chain could have been used for mmatch. However the OR
gate performs the same operation and is much simpler.

�	
����������

�	
�����������

�	
����������

�	
�����������

�	
����������

�	
�����������

key

=

=

=

0

0

1

2

m���

mm�	�h

(b) Assume that the cost of an a-bit comparison unit is a, and its delay is also a. Assume that the cost of an
a-input, b-bit multiplexor is ab and the delay is 1. Compute the cost and delay of the logic used to compute
midx in terms of ssize (use s in your formulas) and kwid (use k in your formulas). As with the previous
part, do this for the unoptimized hardware. Remember to solve this for an arbitrary value of ssize (s), not
for s = 3.

7

← → Fall 2014 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

�Cost in terms of s and k:

From the diagram it’s clear that there are s k-bit comparison units, they cost sk units. The multiplexors increase in size from the
beginning to the end of the chain. The mux at the end of the chain must be large enough to hold the value s − 1, which requires
⌈log2 s⌉ bits. For simplicity assume that all multiplexors are that size, then the multiplexor cost is 2s⌈log2 s⌉ units. The s-input
OR gate can be assumed to have cost s− 1 (by setting the cost of a 2-input OR gate at 1).

The total cost is sk + 2s⌈log2 s⌉ + s− 1 units .

�Delay in terms of s and k:

From the synthesized hardware it should be clear that the critical path used to compute the delay starts at the first comparison unit
and continues through the multiplexor chain. The k-bit comparison takes time k, and the length-s multiplexor chain has delay s.

The total delay is k + s units .

8

← → Fall 2014 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Problem 4, continued: Appearing below is a variation on the key lookup from the CAM module. Instead
of finding a matching key it finds the largest stored key that is ≤ to the lookup key. Note that this version
doesn’t include storage_full.

logic [dwid:1] storage_data [ssize];

logic [kwid:1] storage_key [ssize];

always_comb begin

midx = 0; bkey = 0;

for (int i=0; i<ssize; i++)

if (storage_key[i] >= bkey && storage_key[i] <= key) // READ THIS LINE CAREFULLY

begin midx = i; bkey = storage_key[i]; end

end

assign out_data = storage_data[midx];

(c) Sketch the hardware for ssize=3.

� Sketch the synthesized hardware needed to generate bkey.

Solution appears below, with the critical path shown in red. An important thing to notice is that the ≥ comparison at iteration i is
being made with the value of bkey produced in iteration i-1. Those values of bkey pass through the multiplexor chain, and for
that reason the delay in this circuit is significantly longer than in the version from the previous part. See the next sub-part.

�� !"#$%&$'()*

�� !"#$%&$'(+*

�� !"#$%&$'(,*

key

-
0

-

-

.
0

.

.

b/01

(d) Compute the cost and performance in terms of ssize (use s) and the key size (use k). As before a k-bit
comparison unit (equality or magnitude) costs k and has a delay of k and an a-input, b-bit mux costs ab and
has a delay of 1. Hint: There’s a big difference.

�Cost in terms of s and k:

There are now 2s comparison units, costing 2sk cost units. The s multiplexors now carry k-bit values, so their cost is 2sk. Plus

there are s AND gates which we’ll set at cost s. The total cost is 4sk + s units , which is significantly higher.

�Delay in terms of s and k:

In the diagram of the synthesized hardware the critical path appears in red. As before, the critical path passes through the multiplexor
chain, but this time the ≥ units are also on the critical path. The critical path includes now s ≥ units, s muxen, and s AND gates.

The total delay is s(k + 2) units , which is significantly higher than the delay of the first version used in this problem.

9

← → Fall 2014 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Problem 5: [20 pts] Answer each question below.

(a) The module below is supposed to count from 0 to max (inclusive), then return to zero. Strictly speaking
it does, but there are problems, including the fact that it’s not synthesizable. Fix the problems.

module counter #(int max = 3)(output logic [7:0] count, input uwire clk);

always @(posedge clk) begin

count <= count + 1;

end

always @* begin

if (count == max) count <= 0;

end

endmodule

�Why isn’t the module synthesizable?

It’s not synthesizable because count is assigned in two different always blocks.

�Fix the problem.

Just combine the two blocks:

module counter #(int max = 3)(output logic [7:0] count, input uwire clk);

always @(posedge clk) count <= count == max ? 0 : count + 1;

endmodule

10

← → Fall 2014 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

(b) There is a problem with the module below due to the way that a is declared.

module sa1(output uwire a, input uwire c, d);

always_comb begin

a = c & d;

end

endmodule

The problem is that a is being declared as a net type (which includes uwire) but it is being assigned in procedural code. Anything
assigned in procedural code must be a variable type.

�Fix the problem by changing the declaration of a.

module sa1(output logic a, input uwire c, d);

// SOLUTION: Declare a as a variable type (change uwire a to logic a).

always_comb begin

a = c & d;

end

endmodule

�Fix the problem without changing the declaration of a.

// SOLUTION

module sa1(output uwire a, input uwire c, d);

assign a = c & d;

endmodule

(c) Describe a situation in which using always_comb has a benefit over using always @*.

� Situation where always_comb helps.

In the code below x is not always assigned and so it could be synthesized into a latch (level-triggered flip-flop). But the SystemVerilog-
literate programmer used always_comb because he or she intended purely combinational logic—no latches. The fact that x was
not always assigned was an oversight on the part of the programmer. Because always_comb was used well-written Verilog tools
will warn the programmer about this. That’s how it helps.

always_comb begin

if (a < 10)

x = a + b;

else if (a > 1000)

x = a - b;

end

11

← → Fall 2014 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

(d) The module below is supposed to be computing x2 + y2.

module sa2(output logic [63:0] sos, input uwire [63:0] x, y);

logic [63:0] a1, b1, a2, b2;

uwire [63:0] p, s;

fpmul f1(p,a1,b1);
fpadd f2(s,a2,b2);

always @* begin

// Compute x^2.

a1 = x; b1 = x;

#1;

sos = p;

// Compute y^2.

a1 = y; b1 = y;

#1;

// Compute x^2 + y^2.

a2 = p; b2 = sos;

#1;

sos = s;

end

endmodule

�Explain why the module is not synthesizable.

It’s not synthesizable because it uses delays.

�Fix the problem.

The module is trying to use fpmul twice. Since there is no clock input, there is no way to do that. A simple solution would be to
instantiate a second fpmul and connect it appropriately, that’s the solution shown below. (A more complex solution would use a
clk input and use the same multiplier over two cycles.)

// SOLUTION

module sa2sol(output uwire [63:0] sos, input uwire [63:0] x, y);

uwire [63:0] p, s;

fpmul fm1(p,x,x);
fpmul fm2(s,y,y);
fpadd f2(sos,p,s);

endmodule

12

← → Fall 2014 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

23 Spring 2001 Solutions

465

← → Spring 2001 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Name Solution

Digital Design Using Verilog

EE 4702-1

Midterm Examination

16 March 2001 8:40-9:30 CST

Alias always @(posedge)

Problem 1 (30 pts)

Problem 2 (25 pts)

Problem 3 (35 pts)

Problem 4 (10 pts)

Exam Total (100 pts)

Good Luck!

← → Spring 2001 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Problem 1: Complete the Verilog behavioral description below so that it operates as follows.
Compute 32-bit output eq_time so that it is the number of consecutive positive edges of input
clk for which 32-bit inputs siga and sigb remain equal. The counting should start on the first
positive edge of clk after siga becomes equal to sigb; the count starts at zero at the moment they
become equal, and while they remain equal the count is incremented at each positive edge. The
count should go back to zero at the first positive edge of clk after siga becomes unequal to sigb.
The count goes to zero even if siga and sigb become equal again before the positive edge. Sample
output appears in the timing diagram below. (30 pts)

0 50 100 150 200

m/siga 0 1 3 7

m/sigb 1 2 1 7

m/clk

m/eq_time 0 1 0 1 2 0 1 2

module monitor(eq_time, siga, sigb, clk);

input siga, sigb, clk;

output eq_time;

// Don’t forget to declare port types.

// Solution:

wire [31:0] siga, sigb;

wire clk;

reg [31:0] eq_time;

reg [10:0] next_count;

always @(siga or sigb) if (siga != sigb) next_count = 0;

always @(posedge clk)

begin

eq_time = next_count;

if (siga == sigb) next_count = next_count + 1;

end

endmodule

Don’t get bogged down: There are eight more problems, some can be answered quickly.

2

← → Spring 2001 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Problem 2: Complete the following timing diagram problems.

(a) Complete the timing diagram below. (15 pts)

module timing_stuff();

reg clk, clk3, clk2a, clk2b, clk2c, clk2d,

initial begin

clk = 0; clk2a = 0; clk2b = 0; clk2c = 0; clk2d = 0; clk3 = 0;

end

Time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

always #5 clk = !clk

always @(posedge clk) clk2a = !clk2a

always #12 @(posedge clk) clk2b = !clk2b

always @(posedge clk) #12 clk2c = !clk2c

always @(posedge clk) clk2d <= #12 !clk2d

← → Spring 2001 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Solution:

0 20 40

/timing_stuff/clk

/timing_stuff/clk3

/timing_stuff/clk2a

/timing_stuff/clk2b

/timing_stuff/clk2c

/timing_stuff/clk2d

4

← → Spring 2001 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

(b) Complete the timing diagram below. Be sure to clearly indicate when a signal value changes.
(10 pts)

module timing();

integer a, b, c, d;

initial begin

a = 0;

b = 10;

c = 20;

d <= #0 3;

d = 30;

d <= #1 300;

d <= #2 3000;

#1;

b = 100;

c <= 200;

a <= #5 b + c;

#1;

b = 1000;

c <= 2000;

#10;

end

endmodule

Time 0 2 4 6 8 10

a

b

c

d

Solution:

0 4 8 12

/timing/a 0 120

/timing/b 10 100 1000

/timing/c 20 200 2000

/timing/d 3 300 3000

5

← → Spring 2001 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Problem 3: Answer each question below. Some can be answered quickly, try answering those
questions first.

(a) The match_count_x modules below are supposed to count the number of times input symbol is
the same as input targ. Output count should be incremented if symbol is the same as targ after
a change in symbol. Most or all of the modules below don’t work properly. For each non-working
module describe the problem and how it is simulated. It is important to describe how the incorrect
Verilog is simulated and why it is wrong.

Port declarations and initializations are not shown, but assume they are present and correct. Be-
havior for unknown and high-impedance values is undefined. In other words, the problems are not
related to declarations, initialization, or unknown values. (10 pts)

module count_match_1(count,symbol,targ); // Declarations and init. not shown.

always wait (symbol == targ) count = count + 1;

endmodule

(4 pts) Because an iteration of always is done without any delay the simulator “freezes” when symbol is equal to
targ as count is continually updated, there is no chance for targ or symbol to change.

module count_match_3(count,symbol,targ); // Declarations and init. not shown.

always #10 if (symbol == targ) count = count + 1;

endmodule

(3 pts) Rather than incrementing count on each change in symbol, the code above increments count on ten-cycle
intervals when symbol is equal to targ. It does not increment count when symbol changes, it might miss times
that symbol is equal to targ (when symbol changes several times in the ten-cycle interval) and it will increment
count multiple times if symbol remains equal to targ at least 20 cycles.

module count_match_4(count,symbol,targ); // Declarations and init. not shown.

always @(symbol == targ) count = count + 1;

endmodule

(3 pts) Variable count is incremented when symbol becomes equal to targ and when symbol becomes unequal to
targ.

6

← → Spring 2001 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

(b) Show how each of the three adders below can be used in the module use_adders to add seven
to input a. Do not modify the adders themselves. (10 pts)

module adder1(x,a,b);

input a, b;

output x;

wire [31:0] a, b;

wire [31:0] x = a + b;

endmodule

module adder2(x,a);

input a;

output x;

parameter b = 0;

wire [31:0] a;

wire [31:0] x = a + b;

endmodule

‘define b 7 // Part of solution.

module adder3(x,a);

input a;

output x;

wire [31:0] a;

wire [31:0] x = a + ‘b;

endmodule

module use_adders(x_1,x_2,x_3,a);

input a;

output x_1, x_2, x_3; // Each output should be a + 7

// Use adder1, adder2, and adder3 to generate respective x_ outputs.

// Solution

wire [31:0] x_1, x_2, x_3, a;

adder1 a1(x_1,a,32’d7);

adder2 #(7) a2(x_1,a);

adder3 a3(x_1,a);

endmodule

7

← → Spring 2001 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

(c) Show the values that will be assigned in each assignment to r. Variables a, c, and r are six-bit
registers. (5 pts)

a = 6’b101010;

c = 6’bx1x0x1;

r = & a; // Solution: r set to 0

r = | a; // Solution: r set to 1

r = ^ a; // Solution: r set to 1

r = & c; // Solution: r set to 0

r = | c; // Solution: r set to 1

r = ^ c; // Solution: r set to x

(d) Do the two code fragments below do the same thing? If not, how do they differ? (5 pts)

// Fragment A.

if (foo > bar) x = x + 1; else y = y + 1;

// Fragment B.

case (foo > bar)

1: x = x + 1;

default: y = y + 1;

endcase

They do not differ.

8

← → Spring 2001 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

(e) Why can’t the following increment macro be re-written as a function or task in Verilog 95?
(5 pts)

‘define incr(a) a=a+1

// ...

// Sample uses of macro.

for (i=0; i<10; ‘incr(i)) x = x + y;

for (j=0; j<10; ‘incr(j)) begin foo(j); k = k + x; end

In Verilog 95 the third item in the for must be an assignment statement, so a task or function wouldn’t work. A function
could be used in SystemVerilog.

Problem 4: The module below counts the number of five’s and nine’s appearing at input c.
Explain exactly when five’s and nine’s are counted (start cycle and end cycle), and describe any
restrictions on the counts. (10 pts)

module yet_another_symbol_counter(fives, nines, c);

input c;

output fives, nines;

wire [7:0] c;

reg [31:0] fives, nines;

initial fork

begin

fives = 0;

nines = 0;

end

#50 fork:A

repeat (42) @(c) if (c == 5) fives = fives + 1;

#100 disable A;

join

#70 fork:B

forever @(c) if (c == 9) nines = nines + 1;

#200 disable B;

join

join

endmodule

The module counts fives that appear between 50 and 150 cycles into the simulation. No more than 42 new symbols
appearing after cycle 50 are examined for fives. (The maximum number of fives that can be counted is 21.)

The module counts nines that appear between 70 and 270 cycles into the simulation. The number of nines that can be
counted is limited only by the size of nines, 32 bits.

9

← → Spring 2001 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Name Solution

Digital Design Using Verilog

EE 4702-1

Final Examination

9 May 2001 7:30-9:30 CDT

Alias Not Synthesizable

Problem 1 (15 pts)

Problem 2 (18 pts)

Problem 3 (17 pts)

Problem 4 (18 pts)

Problem 5 (12 pts)

Problem 6 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Spring 2001 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Problem 1: The module below is in an explicit structural form.

(a) Re-write the module in behavioral form. The delays can be assumed to be pipeline delays.
(10 pts)

(b) What is the difference between pipeline and inertial delays? Which kind of delay is used in your
solution to the problem above? (5 pts)

In a pipeline delay of duration t units each signal change will appear t units later, regardless of other changes that occur
in the interim. The delays in nonblocking delayed assignments, such as a <= #3 b;, are pipeline delays. In an inertial
delay of duration t units a signal change (from an old to a new value) only appears if the new value does not change for
t units (until the change is visible). Delays on gates and wires, such as and #3 a1(x,a,b);, are inertial delays.

module expl_str(x,y,a,b,c);

input a, b, c;

output x, y;

wire a, b, c, x, y;

wire na, nb, nc, t3, t5, t6;

not n1(na,a);

not n2(nb,b);

not n3(nc,c);

and #1 a1(t3,na,b,c);

and a2(t5,a,nb,c);

and a3(t6,a,b,nc);

or o1(x,t3,t6);

or #3 o2(y,a,t5);

endmodule

// Solution

module behav(x,y,a,b,c);

input a, b, c;

output x, y;

wire a, b, c;

reg x, y;

reg t3;

// The delays in expl_str are inertial delays, the delays here

// are pipeline delays.

// Note that t3 is delayed but t6 is not.

always @(a or b or c) t3 <= #1 !a & b & c;

always @(a or b or c or t3) x = t3 a & b & !c;

// Code below can be simplified to y <= #3 a;

always @(a or b or c) y <= #3 a a & !b & c;

endmodule

2

← → Spring 2001 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Problem 2: The module below sets output rot to the number of times that input a must be
rotated (end-around shifted) to obtain the value on input b, or to 32 if a is not a rotated version
of b.

(a) Write a testbench module that tests rots with input pairs a=0,b=0; a=0,b=1; a=0,b=2; and
a=0,b=3. (The rot output should be zero for the first pair and 32 for the others.) The testbench
should include an integer err and set it to the number of incorrect outputs.

It is important that the testbench makes correct use of ready and start. (Part of the problem
is determining just what is “correct use.”) The testbench should use ready rather than assumed
timing. Also, test only a single instance of rots and don’t forget the clock. (18 pts)

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk; output ready, rot;

reg ready; wire [31:0] a, b;

reg [5:0] rot; wire start, clk;

reg [31:0] acpy;

initial rot = 0;

always @(posedge clk) begin

ready = 1; while (!start) @(posedge clk);

ready = 0; while (start) @(posedge clk);

rot = 0; acpy = a;

while (acpy != b && rot < 32) @(posedge clk) begin

acpy = { acpy[30:0], acpy[31] };

if (acpy == a) rot = 32; else rot = rot + 1;

end

end

endmodule

module testrot();

reg [31:0] b; wire rdy;

reg start, clk; wire [5:0] r;

integer i, err;

rots myrots(rdy, r, start, 32d’0, b, clk);

always #1 clk = !clk;

initial begin

err = 0; start = 0; clk = 0;

wait(rdy);

for (i=0; i<4; i=i+1) begin

b = i;

start = 1; wait(!rdy);

start = 0; wait(rdy);

if (!b && r) err = err + 1;

if (b && r != 32) err = err + 1;

end

$display("Error count: %d",err); $stop;

end

endmodule

3

← → Spring 2001 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Problem 3: Convert the rots module (repeated below) to synthesizable Form 2 (edge-triggered
flip-flops). Do not change the ports or what it does. In particular, ready and start must be used
the same way. Ignore reset. (17 pts)

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk; output ready, rot;

reg ready; wire [31:0] a, b;

reg [5:0] rot; wire start, clk;

reg [31:0] acpy;

initial rot = 0;

always @(posedge clk) begin

ready = 1; while (!start) @(posedge clk);

ready = 0; while (start) @(posedge clk);

rot = 0; acpy = a;

while (acpy != b && rot < 32) @(posedge clk) begin

acpy = { acpy[30:0], acpy[31] };

if (acpy == a) rot = 32; else rot = rot + 1;

end

end

endmodule

Solution on next page.

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk;

output ready, rot; // Don’t forget port types and other declarations.

acpy = { acpy[30:0], acpy[31] };

if (acpy == a) rot = 32; else rot = rot + 1;

endmodule

4

← → Spring 2001 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

/// Solution 1, using named states and assuming little about start.

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk;

output ready, rot;

wire [31:0] a, b;

reg [5:0] rot;

wire start, clk;

reg [31:0] acpy;

reg [1:0] state;

parameter st_ready = 2’b01;

parameter st_wait = 2’b00;

parameter st_go = 2’b10;

wire ready = state[0];

initial begin rot = 0; state = st_ready; end

always @(posedge clk)

case (state)

st_ready:

if (start) state = st_wait;

st_wait:

if (!start) begin rot = 0; acpy = a; state = st_go; end

st_go:

if (acpy != b && rot < 32) begin

acpy = { acpy[30:0], acpy[31] };

if (acpy == a) begin rot = 32; state = st_ready; end

else rot = rot + 1;

end else begin

state = st_ready;

end

endcase

endmodule

5

← → Spring 2001 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

/// Solution 2, basing state on ready and assumed behavior of start.

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk;

output ready, rot;

reg ready;

wire [31:0] a, b;

reg [5:0] rot;

wire start, clk;

reg [31:0] acpy;

initial begin rot = 0; ready = 1; end

always @(posedge clk)

case ({ready,start})

{2’b10}:; // Wait for start to go to one.

// Unlike original module, gets value of "a" when start goes

// to 1, not when start goes to zero. (This is where behavior assumed.)

{2’b11}: begin ready = 0; acpy = a; rot = 0; end

{2’b01}:; // Wait for start to go to zero.

{2’b00}:

if (acpy != b && rot < 32) begin

acpy = { acpy[30:0], acpy[31] };

if (acpy == a) begin rot = 32; ready = 1; end

else rot = rot + 1;

end else begin

ready = 1;

end

endcase

endmodule

6

← → Spring 2001 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Problem 4: Two synthesizable descriptions appear below.

(a) In what synthesizable form is the Verilog description below? (2 pts)

Form 1: combinational logic, level triggered.

(b) Draw a schematic showing the approximate RTL-level description generated by a synthesis
program like Leonardo. (7 pts)

module whatsyna(x, y, z, a, b, op);

input a, b, op;

output x, y, z;

wire [7:0] a, b;

wire [1:0] op;

reg [7:0] x, y, z;

always @(op or a or b) begin

if (a == 0) y = b;

if (a < b) z = a; else z = b;

case (op)

0: x = a + b;

1: x = a;

2: x = b;

endcase

end

endmodule

If you’re an LSU ECE student in a Verilog-related course ask for a complete solution. For now: Output y is connected
to a level-triggered flip-flop with enable input a==0 and data input b.

Output z is connected to a two-input mux, controlled by a < b.

Output x is connected to a level triggered flip-flop enabled by op != 3 . The data input is a mux controlled by op.

7

← → Spring 2001 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Problem 4, continued:

(c) (2 pts) In what synthesizable form is the Verilog description below? Form 2: Edge triggered logic.

(d) (7 pts) Draw a schematic showing the approximate RTL-level description generated by a syn-
thesis program like Leonardo. Grading Note: In the 2001 version the event control was posedge a

or negedge b.

module whatsyn2(output [6:0] sum, input [15:0] nibbles, a, b, c);

logic [15:0] n2;

logic last_c;

always @(posedge a)

if (!b) begin

sum = 0;

end else begin

if (c != last_c) begin

n2 = nibbles;

for (int i=0; i < 4; i++) begin

sum = sum + n2[3:0];

n2 = n2 >> 4;

end

end

last_c = c;

end

endmodule

Solution appears below. Output sum is driven by an edge-triggered register clocked by a. The nibbles input is connected
to a cascade of four adders, the first adder connected to sum, the others each connected to a different four bits of
nibbles. Note that no logic is synthesized for the shift operator, that only determines bit numbers for the adder inputs.
The sum register is reset by !b and enabled by b and c ⊕ last c.

+
+

+
+

3:0 7:4 11:8 15:12

s
u
m

en

la
s
t_
c

en

16'd0

nibbles

c

a

sum

b

whatsyn2

8

← → Spring 2001 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Problem 5: In the diagram below c, d, and identifiers starting with clk are all initialized to zero.
Complete the timing diagram. (12 pts)

Time 0 5 10 15 20 25 30 35 40 45 50

a

b

always @(posedge a) clk1 = !clk1

always @(a) @(b) clk2 = !clk2

always @(a or b) clk3 = !clk3

always @(a | b) clk4 = !clk4

always @(posedge (a | b)) clk5 = !clk5

always @(a) c <= a

always @(a) d <= #1 c

always @(a or c) clk6 = !clk6

always @(a or c) #0 clk7 = !clk7

always @(a or c) #2 clk8 = !clk8

Solution on next page.

9

← → Spring 2001 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Solution to Problem 5:

0 10 20 30 40 50

/clocks/a

/clocks/b

/clocks/clk1

/clocks/clk2

/clocks/clk3

/clocks/clk4

/clocks/clk5

/clocks/c

/clocks/d

/clocks/clk6

/clocks/clk7

/clocks/clk8

10

← → Spring 2001 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Problem 6: Answer each question below.

(a) The code below, based on the Homework 3 solution, simulates properly before synthesis but in
the post-synthesis simulation the testbench reports an incorrect beep time.

What goes wrong? Fix the problem without modifying the code below the indicated line. Hint:
The beep can start (and stop) at a slightly different time than the code below. (5 pts)

module beepprob(beep, clk);

input clk;

output beep;

// Code from exam: assign beep = | beep_timer;

// Solution: Set beep on negative edge, after beep_timer computed.

reg beep;

always @(negedge clk) beep = beep_timer;

// DO NOT MODIFY CODE BELOW THIS LINE.

always @(posedge clk) begin

// Lots of stuff;

if (beep_timer) beep_timer = beep_timer - 1;

end

endmodule

(b) Describe something that a parameter can be used for that an ordinary input port cannot and
something that an input port can be used for that a parameter cannot. (5 pts)

Of course, the two are completely different things. Parameters can be used to set the size of vectors, an input value could
not do that. An input can change, parameters are constant.

11

← → Spring 2001 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

(c) What is the difference between case, casex, and casez? (5 pts)

In a case statement there must be a bitwise match, including unknowns and high impedance values, between the case
expression and a case item. In a casex statement an unknown value acts as a wildcard matching any bit in the
corresponding position, casez is similar with high impedance acting as the wildcard.

(d) Explain how each of the three statements below behave differently with unknown values. In
particular, explain what has to be unknown and how the results of each statement is different.
(5 pts)

m1 = a > b ? c : d;

if (a > b) m2 = c; else m2 = d;

case (a > b)

1: m3 = c;

default: m3 = d;

endcase

The three behave identically if a > b is not unknown. If it is unknown the m1 statement assigns a bitwise combination
of c and d. (For the bit positions where c and d hold the same value m1 is set to that value, in positions where c and d
differ the corresponding position m1 is set to unknown.)

If a > b is unknown d is assigned to m2 and m3.

12

← → Spring 2001 ← → Final Exam Exam Solution fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

24 Spring 2000 Solutions

487

← → Spring 2000 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

Name Solution

Digital Design Using Verilog

EE 4702-1

Midterm Examination

5 April 2000 8:40-9:30 CDT

Alias always @(posedge)

Problem 1 (40 pts)

Problem 2 (60 pts)

Exam Total (100 pts)

Good Luck!

← → Spring 2000 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

Problem 1: Complete the Verilog description (below) of a FIFO-like module which has a 3-bit
data input, in; a 7-bit output, out; 1-bit inputs inclk and outclk; and 1-bit outputs full and
empty. The module operates like a FIFO (first in, first out) except that the width of the data input
and output ports are different: it reads data 3 bits at a time (on a positive edge of inclk) and
outputs 7 bits at a time (consisting of data from two input words plus one bit of a third). Unless
the module has less than 3 bits of space left, on a positive edge of inclk the value on in is stored.
The oldest 7 bits stored by the module always appear on output out. On a positive edge of outclk
the oldest 7 bits are removed and the output displays the next 7 bits. Output full is 1 if the
module cannot accept another 3 bits of input and is 0 otherwise; output empty is 1 if the module
is empty and is 0 otherwise. Parameter storage is the total number of bits stored by the module.
An example of the module operating is shown in the timing diagram below. (40 pts)

0 10 20

inclk

in 001 010 011 100 101 110 111 000 001 010 011 100

outclk

out 0000000 0000001 0010001 1010001 0110001 1111101 0001000

full

empty

module width_change(out,full,empty,outclk,in,inclk);

input outclk, in, inclk;

output out, full, empty;

parameter storage = 20;

wire [6:0] out; // Can change to reg for solution.

wire [2:0] in;

wire inclk, outclk;

wire full, empty; // Can change to reg for solution.

reg [storage-1:0] sto; // Storage for data.

integer amt; // Number of occupied bits in sto.

// USE THE NEXT PAGE FOR THE SOLUTION.

endmodule // width_change

2

← → Spring 2000 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

Problem 1, continued: The diagram and code from the previous page are repeated below.

0 10 20

inclk

in 001 010 011 100 101 110 111 000 001 010 011 100

outclk

out 0000000 0000001 0010001 1010001 0110001 1111101 0001000

full

empty

module width_change(out,full,empty,outclk,in,inclk);

input outclk, in, inclk;

output out, full, empty;

parameter storage = 20;

wire [6:0] out; // Can change to reg for solution.

wire [2:0] in;

wire inclk, outclk;

wire full, empty; // Can change to reg for solution.

reg [storage-1:0] sto; // Storage for data.

integer amt; // Number of occupied bits in sto.

// Solution goes here.
initial begin amt = 0; sto = 0; end

assign full = amt + 3 > storage;

assign empty = amt === 0;

assign out = sto[7-1:0];

always @(posedge outclk)

if(amt >= 7) begin

sto = sto >> 7;

amt = amt - 7;

end

always @(posedge inclk)

if(!full) begin

sto = sto | in << amt;

amt = amt + 3;

end

endmodule // width_change

3

← → Spring 2000 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

Problem 2: Answer each question below.

(a) Describe something that a function can do (or be used for) that a task cannot. Describe
something that a task can do (or be used for) that a function cannot. (10 pts)

A function can be used in an expression (but a task cannot). A task can include delays, but a function cannot.

(b) Convert the following behavioral code to explicit structural code. (10 pts)

module btos(x, a, b);

input a, b;

output x;

wire a, b;

reg x;

always @(a or b) if(a) x = b; else x = ~b;

endmodule // btos

If you don’t see the logical function performed, draw a truth table. The function, x = a⊕ b, can be performed by
a primitive gate (xnor), a solution consisting of several other gates realizing the same function would also receive full
credit.

module explicit(x, a, b);

input a, b;

output x;

wire a, b;

wire x; // Wire, not reg.

xnor (x,a,b);

endmodule

4

← → Spring 2000 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

(c) Show the changes (values and times) to a and b in the module below. (10 pts)

module assig();

reg [15:0] a, b;

initial

begin

a = 1;

b = 2;

#1;

a <= b;

b <= a;

#1;

a <= b + 10;

b <= #5 b + 20;

#1;

b = #1 3;

b <= 4;

b <= #2 5;

b <= #10 6;

b = 7;

#20;

end

endmodule

Note that b = #1 3; is a blocking assignment. The condition is evaluated immediately (since it’s 3 here evaluation
time doesn’t matter) and the assignment is done after the delay. Following statements are executed after the assignment.
The solution is plotted below.

0 10 20

a 1 2 11

b 2 1 4 5 21 6

5

← → Spring 2000 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

(d) Show the changes (values and times) to x in the module below using the timing diagram
provided. (10 pts)

module events1();

wire a, b, c, d;

reg [2:0] x;

reg [3:0] i;

assign {d,c,b,a} = i;

initial begin

i = 0;

forever #10 i = i + 1;

end

always begin

#15;

@(a);

x = 1;

@(posedge a) x = 2;

@(a or b) x = 3;

@(a | b | c | d) x = 4;

wait(a | b) x = 5;

wait(a) x = 6;

wait(~a) x = 7;

end // always begin

endmodule // events1

An event control, @(foo), delays execution until foo changes. A wait statement, wait(foo), delays execution
until foo is nonzero (or true).

The solution appears below.

0 100 200 300

a

b

c

d

x 1 2 3 4 6 7 1 2 3

6

← → Spring 2000 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

(e) Show the changes (values and times) to aa in the module below. (10 pts)

module d();

reg a;

wire aa;

and #(2,3) (aa,a,1);

initial begin

a = 0;

10;

a = 1;

10;

a = 0;

10;

a = 1;

1;

a = 0;

10;

end

endmodule // d

Solution:

0 10 20 30 40

a

aa

7

← → Spring 2000 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

(f) Complete module after so that it does the same thing as before. All procedural code in module
after must go in the one initial process. The solution must use fork and join. Structural code
cannot be added. (10 pts)

module before(asum,bsum,out,a,ainp,b,binp,c);

output asum, bsum, out;

input a, ainp, b, binp, c;

reg [9:0] asum, bsum, out;

wire [9:0] ainp, binp;

wire a,b,c;

always @(a) asum = asum + ainp;

always @(b) bsum = bsum + binp;

always @(posedge c) out = asum + bsum;

endmodule

module after(asum,bsum,out,a,ainp,b,binp,c);

output asum, bsum, out;

input a, ainp, b, binp, c;

reg [9:0] asum, bsum, out;

wire [9:0] ainp, binp;

wire a,b,c;

// ALL code must go in the initial process below.

initial begin

// Solution:

fork

forever @(a) asum = asum + ainp;

forever @(b) bsum = bsum + binp;

forever @(posedge c) out = asum + bsum;

join

end // initial

endmodule

8

← → Spring 2000 ← → Midterm Exam Exam Solution mt sol.pdf

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

Name Solution

Digital Design Using Verilog

EE 4702-1

Final Examination

8 May 2000, 7:30{9:30 CDT

Alias full case

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

Problem 1: The modules below are supposed to describe combinational logic that rearranges bits.
The output of module rearrange, below, is a rearranged version of its input a; input op determines
how the bits are rearranged. Module rerearrange uses two instances of rearrange to reverse and
then left shift its inputs. Unfortunately, the modules are not quite ready for tape out because both
contain errors.

Find and �x the following kinds of errors. (Points may be deducted if correct Verilog is identi�ed
as having errors.) (20 pts)Note: The original exam speci�ed one Modelsim compile error. However

Modelsim compiles the code without an error or warning. What was thought to be a compile error

is a load error. The number of errors is still �ve.

� Two load errors or warnings. (Modelsim will compile it but will issue a warning or error
message when loading it.)

� Three errors that result in incorrect output. The code will simulate but the output, if
any, will be incorrect.

Lines with the comment // Okay do not have errors. None of the errors are typographical or are
due to syntactic minuti� such as missing semicolons.

module rerearrange(y,a);

input a; output y;

wire [7:0] a; reg [7:0] y; wire [0:7] temp;

wire operation;

assign operation = e1.op_reverse;

rearrange e1(temp,a,operation);

assign operation = e1.op_left_shift;

rearrange e2(y,temp,operation);

endmodule

module rearrange(x,a,op);

input a, op; output x;

wire [7:0] a; wire [1:0] op;

reg [7:0] x; reg [2:0] ptr, ptr_plus_one;

parameter op_reverse = 0; // Reverse order of bits. // Okay

parameter op_identity = 1; // No change. // Okay

parameter op_left_shift = 2; // Circular (end-around) left shift. // Okay

parameter op_right_shift = 3; // Circular (end-around) right shift.// Okay

always @(a) for(ptr=0; ptr<8; ptr=ptr+1) begin

ptr_plus_one = ptr + 1; // Okay

case(op)

op_reverse: x[ptr] = a[7-ptr]; // Okay

op_identity: x[ptr] = a[ptr]; // Okay

op_right_shift: x[ptr] = a[ptr_plus_one]; // Okay

op_left_shift: x[ptr_plus_one] = a[ptr]; // Okay

endcase

end

endmodule

2

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

Solution:
module rerearrange(y,a);

input a; output y; wire [7:0] a;

// Registers cannot connect to module output ports.

// reg [7:0] y;

wire [7:0] y; // FIXED

wire [0:7] temp; // Not an error: Order of bits doesn't matter.

// B: Wire "operation" wrong size.

// wire operation;

wire [1:0] operation; // FIXED

assign operation = e1.op_reverse;

rearrange e1(temp,a,operation);

// Second wire needed for input to second module. (This is not procedural

// code so ordering of assignments and instantiations is meaningless.)

// assign operation = e1.op_left_shift;

wire [1:0] operation2 = e1.op_left_shift; // FIXED

rearrange e2(y,temp,operation2);

endmodule

module rearrange(x,a,op);

input a, op;

output x;

wire [7:0] a;

wire [1:0] op;

reg [7:0] x;

// C: Loop checks if ptr<8, so need more than 3 bits. Note: ptr_plus_one

// must be 3 bits since code depends on values wrapping around.

// reg [2:0] ptr, ptr_plus_one;

reg [3:0] ptr; // FIXED.

reg [2:0] ptr_plus_one;

parameter op_reverse = 0; // Reverse order of bits. // Okay

parameter op_identity = 1; // No change. // Okay

parameter op_left_shift = 2; // Circular (end-around) left shift. // Okay

parameter op_right_shift = 3; // Circular (end-around) right shift.// Okay

// C: Need to include op in the event list.

// always @(a) for(ptr=0; ptr<8; ptr=ptr+1) begin

always @(a or op) for(ptr=0; ptr<8; ptr=ptr+1) begin

ptr_plus_one = ptr + 1; // Okay

case(op)

op_reverse: x[ptr] = a[7-ptr]; // Okay

op_identity: x[ptr] = a[ptr]; // Okay

op_right_shift: x[ptr] = a[ptr_plus_one]; // Okay

op_left_shift: x[ptr_plus_one] = a[ptr]; // Okay

endcase

end

endmodule // rearrange

3

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

Problem 2: Using the grid show the register values for the �rst 40 time units of execution of the
module below. (20 pts)

module clocks();

reg clk, clk2, clk3, clk4, clk5, clk6, clk7, clk8;

initial begin

clk = 0; clk2 = 0; clk3 = 0; clk4 = 0;

clk5 = 0; clk6 = 0; clk7 = 0; clk8 = 0;

end

always #8 clk = ~clk;

always @(clk) #4 clk2 = ~clk2;

always @(clk) clk3 <= #10 clk;

always @(posedge clk) clk4 = ~clk4;

always #2 forever #8 clk5 = ~clk5;

always wait(clk) #3 clk6 = ~clk6;

always @(clk | clk4) clk7 = ~clk7;

always @(clk or clk4) clk8 = ~clk8;

endmodule

Time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

clk

clk2

clk3

clk4

clk5

clk6

clk7

clk8

4

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

Solution:

0 10 20 30 40

/clocks/clk

/clocks/clk2

/clocks/clk3

/clocks/clk4

/clocks/clk5

/clocks/clk6

/clocks/clk7

/clocks/clk8

5

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

Problem 3: Draw a schematic of the hardware Leonardo will synthesize for the following Verilog
code examples. These should approximate the RTL schematic, showing the hardware before opti-
mization and technology mapping. If ip ops are used, indicate if they are level triggered or edge
triggered. Otherwise, don't worry about using the precisely correct gate or symbol, as long as it's
functionally correct.

(a) Show an approximate RTL schematic for the module below. What form is the description in?
Hint: think about what form the code is in. (6 pts)

module mod_a(x,y,a,b,c);

input a,b,c;

output x,y;

wire [7:0] b, c;

reg [8:0] x, y;

always @(a or b or c) begin

if(a) begin

x = b + c;

y = b - c;

end else begin

x = b - c;

end

end

endmodule

Form 1: combinational logic, level triggered ip-ops.

-

a b c

x

y

+

0

1

Level
Triggered

clk
d Q

6

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

Problem 3, continued: (b) Show an approximate RTL schematic for the module below. What
form is the description in? Hint: think about what form the code is in. (6 pts)

module mod_b(x,y,d,e,f,g,h);

input d,e,f,g,h;

output x,y;

reg x,y;

always @(posedge d or negedge e or posedge f)

if(d) begin

x = 0;

y = 1;

end else if (f) begin

x = 1;

end else begin

if(g) x = h;

y = h;

end

endmodule

Form 2: Edge triggered ip ops.

x

y
en
d Q

s

r

en
d Q

s

r

ehfd

g

"0"

7

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

Problem 3, continued: (c) Show an approximate RTL schematic for the module below. Assume
that the synthesis program will not infer that this module performs magnitude comparison. Use

symbols < and > for bit comparison. (8 pts)

module compare(gt, lt, a, b);

input a, b;

output gt, lt;

wire [2:0] a, b;

reg gt, lt;

integer i;

always @(a or b) begin

gt = 0; lt = 0;

for(i=2; i>=0; i=i-1) if(!gt && !lt) begin

if(a[i] < b[i]) lt = 1;

if(a[i] > b[i]) gt = 1;

end

end

endmodule

Form 1. The logic is purely combinational.

lt
0

1

a[
1]

b[
1]

<

> 0

1

a[
2]

b[
2]

<

>

0

1
<

> 0

1

a[
0]

b[
0]

gt

8

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

Problem 4: The incomplete code below, compare_ism, is for a magnitude comparison module
(similar to the one in the previous problem, except it's sequential).

When input start is 1, output valid goes to zero and the module computes lt and gt. When
lt and gt are set to their proper values valid is set to one. The module is to compare one bit
position per cycle of input clk. Output valid should go to one as soon as possible.

Complete the module so that it is in the form of an implicit state machine, synthesizable by
Leonardo. The solution can be based on the combinational module compare, below. Don't forget
signals start and valid. (20 pts) Hint: The solution is very similar to the combinational module.

For partial credit ignore synthesizability but follow other speci�cations.

module compare(gt, lt, a, b); // Synthesizable combinational implementation.

input a, b; output gt, lt;

wire [31:0] a, b;

reg gt, lt; integer i;

always @(a or b) begin

gt = 0; lt = 0;

for(i=31; i>=0; i=i-1) if(!gt && !lt) begin

if(a[i] < b[i]) lt = 1;

if(a[i] > b[i]) gt = 1;

end

end

endmodule

// Implicit state machine implementation.

module compare_ism(gt, lt, valid, a, b, start, clk);

input a, b, start, clk; output gt, lt, valid;

wire [31:0] a, b; reg gt, lt, valid;

wire start, clk; integer i;

// Solution

always @(posedge clk) if(start) begin

gt = 0; lt = 0; valid = 0;

for(i=31; i>=0 && !lt && !gt; i=i-1) @(posedge clk) begin

if(a[i] < b[i]) lt = 1; // Part of solution.

if(a[i] > b[i]) gt = 1;

if(a[i] > b[i]) gt = 1;

end

valid = 1;

end

endmodule

9

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

Problem 5: Answer each question below.

(a) Complete the module below so that it will stop simulation (using the system task $stop) if there
is no change in signal heartbeat for 1000 simulator time units. There might be many changes
in heartbeat, but the �rst time heartbeat remains unchanged for 1000 simulator time units
simulation should be stopped. Hint: use a fork. Also, the answer is short. (5 pts)

module watchdog(heartbeat);

input heartbeat;

wire heartbeat;

// Solution

always

fork:F

@(heartbeat) disable F;

1000 $stop;

join

endmodule // watchdog

(b) What is a critical path? At what point in the design ow can one �rst �nd out about critical
paths? (5 pts)

A critical path is the longest path between registers; it determines the clock frequency. If a system is not clocked, it may
be the longest path from inputs to outputs.

One �nds out about critical paths after synthesis (technology mapping and optimization). This critical path information
does not include wire lengths, so a re�ned estimate is obtained after place and route.

10

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

(c) Provide an example case statement in which the directive exemplar case_parallel is needed.
What is its e�ect? (5 pts)

// Possible values for op: 100, 010, 001

wire [2:0] op;

// Needed because the synthesizer doesn't know that if the middle bit

// is 1 the leftmost bit must be zero. (It can't according to the

// comment, which IS PART OF THE SOLUTION.)

// exemplar parallel_case

casez(op)

3'b1??: a = 1;

3'b?1?: b = 1;

3'b??1: c = 1;

endcase // casez(op)

(d) The module below is supposed to zero the middle 3 bits of its input. It's rejected by the compiler
(the "b=" line), identify and �x the problem. (5 pts)

The concatenation operator can only operate on constants that are signed, so instead of 0 use 3'b0.

module whatswrong(a,b);

input a; output b;

wire [8:0] a; wire [8:0] b;

assign b = {a[8:6],0,a[2:0]};

endmodule

11

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

/// Code from solution to LSU EE 4702-1 Spring 2000 Final Exam
 // Exam: http://www.ee.lsu.edu/v/2000/fe.pdf

 // Solution: http://www.ee.lsu.edu/v/2000/fe_sol.pdf

///

/// Problem 1
///

`define FIXED_CODE

`ifdef ORIGINAL_CODE

module rerearrange(y,a);
 input a;

 output y;

 wire [7:0] a;

 reg [7:0] y;

 wire [0:7] temp;

 wire operation;

 assign operation = e1.op_reverse;

 rearrange e1(temp,a,operation);

 assign operation = e1.op_left_shift;

 rearrange e2(y,temp,operation);

endmodule

module rearrange(x,a,op);
 input a, op;

 output x;

 wire [7:0] a;

 wire [1:0] op;

 reg [7:0] x;

 reg [2:0] ptr, ptr_plus_one;

 parameter op_reverse = 0; // Reverse order of bits. // Okay

 parameter op_identity = 1; // No change. // Okay

 parameter op_left_shift = 2; // Circular (end-around) left shift. // Okay

 parameter op_right_shift = 3; // Circular (end-around) right shift.// Okay

 always @(a) for(ptr=0; ptr<8; ptr=ptr+1) begin

 ptr_plus_one = ptr + 1; // Okay

 case(op)

 op_reverse: x[ptr] = a[7-ptr]; // Okay

 op_identity: x[ptr] = a[ptr]; // Okay

 op_right_shift: x[ptr] = a[ptr_plus_one]; // Okay

 op_left_shift: x[ptr_plus_one] = a[ptr]; // Okay

 endcase

 end

endmodule // rearrange

// # Loading work.rerearrange

// # Loading work.rearrange

// # WARNING: fe_sol.v(8): [PCDPC] - Port size does not match connection size (3rd connection).

// # Region: /rerearrange/e1

// # ERROR: fe_sol.v(11): Illegal output port connection (1st connection).

// # Region: /rerearrange/e2

// # WARNING: fe_sol.v(11): [PCDPC] - Port size does not match connection size (3rd connection).

// # Region: /rerearrange/e2

// # Error loading design

`endif // ifdef ORIGINAL_CODE

`ifdef FIXED_CODE

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.html

http://www.ee.lsu.edu/v/2000/fe.pdf
http://www.ee.lsu.edu/v/2000/fe_sol.pdf
https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

module rerearrange(y,a);
 input a;

 output y;

 wire [7:0] a;

 // Registers cannot connect to module output ports.

 // reg [7:0] y;

 wire [7:0] y; // FIXED

 wire [0:7] temp;

// B: Wire "operation" wrong size.

// wire operation;

 wire [1:0] operation; // FIXED

 assign operation = e1.op_reverse;

 rearrange e1(temp,a,operation);

 // Second wire needed for input to second module. (This is not procedural

 // code so ordering of assignments and instantiations is meaningless.)

 // assign operation = e1.op_left_shift;

 wire [1:0] operation2 = e1.op_left_shift; // FIXED

 rearrange e2(y,temp,operation2);

endmodule

module rearrange(x,a,op);
 input a, op;

 output x;

 wire [7:0] a;

 wire [1:0] op;

 reg [7:0] x;

 // C: Loop checks if ptr<8, so need more than 3 bits. Note: ptr_plus_one

 // must be 3 bits since code depends on values wrapping around.

 // reg [2:0] ptr, ptr_plus_one;

 reg [3:0] ptr; // FIXED.

 reg [2:0] ptr_plus_one;

 parameter op_reverse = 0; // Reverse order of bits. // Okay

 parameter op_identity = 1; // No change. // Okay

 parameter op_left_shift = 2; // Circular (end-around) left shift. // Okay

 parameter op_right_shift = 3; // Circular (end-around) right shift.// Okay

 // C: Need to include op in the event list.

 // always @(a) for(ptr=0; ptr<8; ptr=ptr+1) begin

 always @(a or op) for(ptr=0; ptr<8; ptr=ptr+1) begin // FIXED

 ptr_plus_one = ptr + 1; // Okay

 case(op)

 op_reverse: x[ptr] = a[7-ptr]; // Okay

 op_identity: x[ptr] = a[ptr]; // Okay

 op_right_shift: x[ptr] = a[ptr_plus_one]; // Okay

 op_left_shift: x[ptr_plus_one] = a[ptr]; // Okay

 endcase

 end

endmodule // rearrange

`endif // ifdef FIXED_CODE

module test_rr();

 reg [7:0] orig;

 wire [7:0] arranged;

 rerearrange rr1(arranged,orig);

 initial begin

 orig = 8'b11110000;

 #1;

 orig = 8'b00001111;

 #1;

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.html

https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

 end

endmodule // test_rr

///

/// Problem 2 (Unmodified code from exam.)
///

module clocks();
 reg clk, clk2, clk3, clk4, clk5, clk6, clk7, clk8;

 initial begin

 clk = 0; clk2 = 0; clk3 = 0; clk4 = 0;

 clk5 = 0; clk6 = 0; clk7 = 0; clk8 = 0;

 end

 always #8 clk = ~clk;

 always @(clk) #4 clk2 = ~clk2;

 always @(clk) clk3 <= #10 clk;

 always @(posedge clk) clk4 = ~clk4;

 always #2 forever #8 clk5 = ~clk5;

 always wait(clk) #3 clk6 = ~clk6;

 always @(clk | clk4) clk7 = ~clk7;

 always @(clk or clk4) clk8 = ~clk8;

 initial #41 $stop;

endmodule

// Solution:

///

/// Problem 3 (Unmodified code from exam.)
///

module mod_a(x,y,a,b,c);
 input a,b,c;

 output x,y;

 wire [7:0] b, c;

 reg [8:0] x, y;

 always @(a or b or c) begin

 if(a) begin

 x = b + c;

 y = b - c;

 end else begin

 x = b - c;

 end

 end

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.html

https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

endmodule

// Solution:

module mod_b(x,y,d,e,f,g,h);
 input d,e,f,g,h;

 output x,y;

 reg x,y;

 always @(posedge d or negedge e or posedge f)

 if(d) begin

 x = 0;

 y = 1;

 end else if (f) begin

 x = 1;

 end else begin

 if(g) x = h;

 y = h;

 end

endmodule

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.html

https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

// Solution:

module compare(gt, lt, a, b);
 input a, b;

 output gt, lt;

 wire [2:0] a, b;

 reg gt, lt;

 integer i;

 always @(a or b) begin

 gt = 0; lt = 0;

 for(i=2; i>=0; i=i-1) if(!gt && !lt) begin

 if(a[i] < b[i]) lt = 1;

 if(a[i] > b[i]) gt = 1;

 end

 end

endmodule // compare

// Solution:

///

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.html

https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

/// Problem 4
///

// Unmodified from exam.

module compare_comb(gt, lt, a, b);
 input a, b;

 output gt, lt;

 wire [3:0] a, b;

 reg gt, lt;

 integer i;

 always @(a or b) begin

 gt = 0; lt = 0;

 for(i=3; i>=0; i=i-1) if(!gt && !lt) begin

 if(a[i] < b[i]) lt = 1;

 if(a[i] > b[i]) gt = 1;

 end

 end

endmodule

// Solution.

module compare_ism(gt, lt, valid, a, b, start, clk);

 input a, b, start, clk;

 output gt, lt, valid;

 wire [31:0] a, b;

 reg gt, lt, valid;

 integer i;

 always @(posedge clk) if(start) begin

 gt = 0; lt = 0; valid = 0;

 for(i=31; i>=0 && !lt && !gt; i=i-1) @(posedge clk) begin

 if(a[i] < b[i]) lt = 1;

 if(a[i] > b[i]) gt = 1;

 end

 valid = 1;

 end

endmodule

///

/// Problem 5
///

///

/// Problem 5a
///

// Solution

module watchdog(heartbeat);
 input heartbeat;

 wire heartbeat;

 always

 fork:F

 @(heartbeat) disable F;

 # 1000 $stop;

 join

endmodule // watchdog

///

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.html

https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

/// Problem 5d
///

// Solution.

module whatswrong(a,b);
 input a; output b;

 wire [8:0] a; wire [8:0] b;

 // assign b = {a[8:6],0,a[2:0]};

 assign b = {a[8:6],3'b0,a[2:0]};

endmodule

← → Spring 2000 ← → Final Exam Exam Solution Sol Code fe sol.html

https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

	Fall 2023
	mt.pdf
	fe.pdf

	Fall 2022
	mt.pdf
	fe.pdf

	Fall 2021
	mt.pdf
	fe.pdf

	Fall 2020
	mt.pdf
	fe.pdf

	Fall 2019
	mt.pdf
	fe.pdf

	Fall 2018
	mt.pdf
	fe.pdf

	Fall 2017
	mt.pdf
	fe.pdf

	Fall 2016
	mt.pdf
	fe.pdf

	Fall 2015
	mt.pdf
	fe.pdf

	Fall 2014
	mt.pdf
	fe.pdf

	Spring 2001
	mt.pdf
	fe.pdf

	Spring 2000
	mt.pdf
	fe.pdf

	Fall 2023 Solutions
	mt sol.pdf

	Fall 2022 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2021 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2020 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2019 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2018 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2017 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2016 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2015 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2014 Solutions
	mt sol.pdf
	fe sol.pdf

	Spring 2001 Solutions
	mt sol.pdf
	fe sol.pdf

	Spring 2000 Solutions
	mt sol.pdf
	fe sol.pdf
	fe sol.html

