Sequential Logic Introduction >> Topics

Synthesis of Sequential Logic from Behavioral Code

Topics in This Set
Sequential Logic Basics, Differences with Combinational Logic
Coding of Registers
Simple example: counters.

Sequential shifter example.



Sequential Logic Introduction >> Differences Between Sequential and Combinational Logic
Sequential v. Combinational Logic
It’s all about the flip-flop.

Storage devices are the distinguishing feature ...
... that differentiate combinational and sequential logic.

Combinational Logic
Outputs only depend on current inputs.

No flip-flops, registers, or other devices that have state.

Sequential Logic
Outputs depend on current and past input.
Has state. Typically state kept by flip-flops and/or registers.

State changes usually synchronized with a clock.



Sequential Logic Introduction > Sequential Logic is Harder
Why sequential logic is so much kaxder more interesting than combinational logic.

Inference: There isn’t an operator that synthesizes to a flip-flop ...

. as there is, say, with + for addition.

Logic Design: Designs are trickier ...

... it’s not just what will happen ...

... it’s not even just when it will happen ...

... but whether this happens before that or after that.

Verilog Subtleties: Those ignorant of Verilog timing may be tormented. ..
... with seemingly arbitrary errors or behavior.



Inference of Registers > Genus’ Generic Flip-Flop
Inference of Registers

Genus’ Generic Flip-Flop: flop.

flop features: apre Sr
Is positive edge triggered (clk).

clk flop

Has input d and output g.
Has asynchronous preset (apre) and clear (alcr). d

Has a sync. enable (sena) input.
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Inference of Registers > Genus’ Generic Flip-Flop

Inference and Technology Mapping apre Srl
During elaboration f1lop used for all inferred edge-triggered reg-

isters. clk f|0p
During technology mapping flop replaced with registers from

technology library. d
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Inference of Registers > Classroom Hardware Diagrams
Classroom Hardware Diagrams
The term register will be used for one or more flip-flops.

For inferred and optimized hardware. ..

... will use streamlined diagrams, omitting unused inputs:
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Inference of Registers > Edge-Triggered Flip-Flop Inference > Inference Review
Edge-Triggered Flip-Flop Inference

Inference

Selecting a hardware component corresponding to a piece of Verilog behavioral code.
Performed by a synthesis program.

Relationship between behavioral Verilog and inferred hardware . ..
. is determined by the synthesis program. ..
. not by the Verilog standard or any other standard document.



Inference of Registers > Edge-Triggered Flip-Flop Inference > Rules
Edge-Triggered Flip-Flop Inference Rules
These Inference Rules

Based on Cadence Genus

Reference: Genus HDL Modeling Guide Version 19.1, May 2019.

For inference of edge-triggered register R clocked by clk: :
module register

#( int w = 16 )
( output logic [w-1:0] R,
input uwire [w-1:0] d,
input uwire clk );

R must be a variable type.

R must be assigned in exactly one always block ...

... and must be either consistently blocking (R=d;) ...
... or consistently non-blocking (R<=d;). always_ff ©( posedge clk ) R <= d;

The always block must start with always or always_ff. endmodule

The always must be followed by an event control of the form @( posedge clk, ...).



Inference of Registers > Coding Common Edge-Triggered Registers > Simple

register
Simple Edge-Triggered Register always_ff @( posedge clk)
module register
#( int width = 16 ) - data val L
) ) | D Q |
( output logic [width-1:0] val,
input uwire [width-1:0] data,
input uwire clk ); /
always_ff Q@( posedge clk ) val <= data; []CW |
endmodule
t 0 1 2
: Positive
Edge

clk

w7 5 7 8x9

val O(X7 X9

Time during Whifch
bits change.



Inference of Registers > Coding Common Edge-Triggered Registers > With Enable

Register with Enable

module register_en
#( int width = 16 )
( output logic [width-1:0] val,
input uwire enable,
input uwire [width-1:0] data,
input uwire clk );

always_ff @( posedge clk )
if ( enable ) val <= data;

endmodule
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Simple Example Circuits: Clocks > Clock with Reset

Clock with Reset

Note multiple ¢ values.

count_reset

module count_reset _ reset

C
16'd1

16'd0

C
Do

A

|

m
#( int bits = 16 )

( output logic [bits-1:0] c,
input uwire reset, clk
-

[

input uwire clk ); u

|

L

always_ff Q@( posedge clk ) if ( reset ) c <= 0; else c <= ¢ + 1;

endmodule



Simple Example Circuits: Clocks > Clock with Threshold >> Version One

count_thd
Threshold Output

(mm|
L

module count_thd
#( int bits = 16 )
( output logic [bits-1:0] c,

tH
ploysaiya
>
Q
~
+
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over_th!
) \_ o
>
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imm|
L

K=
output logic over_th, clk _]/\ E'
input uwire [bits-1:0] threshold, £ 8
input uwire clk );
always_ff @( posedge clk ) t 0 1 2
begin [+ clk
c =c+ 1; T -
over_th = ¢ > threshold; cF 1 Xz
end
endmodule
Cl
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Simple Example Circuits: Clocks > Clock with Threshold >> Version One’s Problems

Two Issues:
Critical path through adder/comparison unit.

Do we really want a flip-flop for over_th?

count_thd
Cl cr—l
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Simple Example Circuits: Clocks > Clock with Threshold >> Faster Version

Fix critical path issue.

module count_thd_alt2
#( int bits = 16 )
( output logic [bits-1:0] c,
output logic over_th,
input uwire [bits-1:0] threshold,
input uwire clk );

always_ff @( posedge clk )
begin

T Ploysaays

[

count_thd_alt2

0

16'dl

over th

O

over_th = ¢ > threshold;
c =c+ 1; clk
end

g
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endmodule



Simple Example Circuits: Clocks > Clock with Threshold > Alternative Threshold Behavior

React any time to threshold, not just at positive edge.

module count_thd_alt
#( int bits = 16 )
( output logic [bits-1:0] c,
output logic over_th,

count_thd_alt

16'd1 JAN

|
L

H

input uwire [bits-1:0] threshold, 5
input uwire clk ); é
3
always_ff ©@( posedge clk ) c <= c + 1; Y
e
T

always_comb over_th = ¢ > threshold;

clk

endmodule

O

g
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Simple Example Circuits: Clocks > Clock with Threshold > Comparison
Comparison

module count thd #( int bits = 16 )
( output logic [bits-1:0] c, output logic over_th,
input uwire [bits-1:0] threshold, input uwire clk );
always_ff ©( posedge clk ) begin

c=c+1;
over_th = ¢ > threshold;
end
endmodule

module count_thd alt2 #( int bits = 16 )
( output logic [bits-1:0] c, output logic over_th,
input uwire [bits-1:0] threshold, input uwire clk );
always_ff ©@( posedge clk ) begin
over_th = ¢ > threshold;
c=c+ 1;
end
endmodule

module count thd alt #( int bits = 16 )
( output logic [bits-1:0] c, output logic over_th,
input uwire [bits-1:0] threshold, input uwire clk );

always_ff ©@( posedge clk ) c <= c + 1;
always_comb over_th = c¢ > threshold;
endmodule
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Inference Examples > 2018 Final Exam Problem 3
Show inferred logic for the following:
module MisC #( int n = 8 )
( output logic [n-1:0] a, g, e,
input uwire [n-1:0] b, ¢, j, f,
input uwire clk );

logic [n-1:0] z;

always_ff Q@( posedge clk ) begin

a<=b+c; // Note: nonblocking assignment.
z=a+ j;
g = z;

end

always_comb begin
e = a *x £f;
end

endmodule



Inference Examples > 2018 Final Exam Problem 3

Show inferred logic for the following: (solution)

misc
module MIisC #( int n = 8 )
( output logic [n-1:0] a, g, e, always T ..
input uwire [n-1:0] b, ¢, j, f, _

input uwire clk );

. . g 9
logic [n-1:0] z; []j 5 | H
always_ff Q@( posedge clk ) begin Ik _A_

a<=b+ c; // Note: nonblocking assignment. F C.“ g f

z=a+ j; ]

5T H b__ a | |a a
end : :

m (37 7 T
always_comb begin c :

e = a * f; f '13"

g g

§
.

endmodule



Inference Examples > 2018 Midterm Exam Problem 2
Show inferred logic for the following:

module regs

#( int w = 10, int k1 = 20, int k2 = 30 )

( output logic [w-1:0] v,
input logic [w-1:0] b, c,
input uwire clk );

logic [w-1:0] a, x, z;

always_ff Q@( posedge clk ) begin
a=>b + c;
if (a>kl ) x=D>b+ 10;

if (a>k2 ) z
y =X + z;

b + x; else z =

end

endmodule

cC - X;



Inference Examples > 2018 Midterm Exam Problem 2

Show inferred logic for the following: (solution)

regs, w, k1, k2

module regs always ff @ ( posedge clk )

LI

#( int w = 10, int k1 = 20, int k2 = 30 ) X
( output logic [w-1:0] v, 10 hE
input logic [w-1:0] b, c, b _;KEE)
input uwire clk ); -
w
logic [w-1:0] a, x, z; 1w
L_lc/
always_ff Q@( posedge clk ) begin
a=>b + C; —EHC_"(
if (a>kl ) x=D>b+ 10;

if (a>k2 ) z
y =X + 2z;

b + x; else z = ¢c - x;

end

endmodule



Pipelined Computation >> Illustrative Example

Consider the following similar multiply /accumulate modules:

module macl #( int wa = 32, wh = 16 )
( output logic [wa-1:0] ao,
input uwire [wh-1:0] h, input uwire [wa-1:0] ai,
input uwire clk );

always_ff Q@( posedge clk ) ao <= h * ai + ao;
endmodule

module mac2 #( int wh = 4, wa = 3 )
( output logic [wa-1:0] ao,
input uwire [wh-1:0] h, input uwire [wa-1:0] ai,
input uwire clk );

logic [wa-1:0] p;

always_ff Q@( posedge clk ) begin
p <= h * ai;
ao <= p + ao;
end
endmodule



Pipelined Computation >> Illustrative Example

Consider the following similar multiply /accumulate modules:

module macl #( int wa = 32, wh = 16 )
( output logic [wa-1:0] ao,

input uwire [wh-1:0] h, input uwire [wa-1:0] ai,

input uwire clk );

always_ff Q@( posedge clk ) ao <= h * ai + ao;
endmodule

module mac2 #( int wh = 4, wa = 3 )
( output logic [wa-1:0] ao,

input uwire [wh-1:0] h, input uwire [wa-1:0] ai,

input uwire clk );

logic [wa-1:0] p;
always_ff Q@( posedge clk ) begin

p <= h * ai;
ao <= p + ao;
end

endmodule

macl
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Sequential Shifter Design

shift_right_logarithmic

Example: Sequential Shifter

Remember: We can build a w-bit logarithmic shifter using ...

... [lgw] 2%-bit fixed-amount shifters and 2-input muxen ... 23

fOI' ’L c {20 21 22 Qflguﬂ—l} Shift by 0 or1  Shift by 0 or 2 Shift by 0 or 4 Shift by 0 or 8
shift_It_seq
Why not use one fixed shifter and use it up to w — 1 times?
sf amt trips
Why not use fewer than [lgw] shifters and muxen ... shift_fixed | \{ru shifter
... but use them multiple times? Lnehifted > 3
Q 2
£ £
We'll start with one fixed shifter. shifted N % |
(.|
Tunshifted J
JAN
Idea sketch for sequential shifter. ctart —
BEE
Pass value through shifter amt times. amt
B
Telk g
g
o




Sequential Shifter Design

Idea sketch for sequential shifter.

=

(mm|

“unshifted

(mm|
LH

clk

shift_It_seq
sf
shift_fixed
unshifted 8 3
& &
shifted \I < <
1]
J | ]
]
J_J J
C
O
cnt
>
T
©
1]
|
1]
| ]

Use register cnt to count number of times.



Sequential Shifter Design

Timing.

1: External device provides inputs.

Inputs assumed to be available. ..
... early in clock cycle.

[+ clk

. Cycle i Cycle :

0

1

Cycle :

2

3

[4 start

M-

Cycle :

[4 amt

unsh-

[+ ifted

=

shift_It_seq

sf

shift_fixed

unshifted

shifted \I

shifted

shifted

cnt

ready ]

i

Junshifted

cnt

|
[

shifted £1

384 Xg

clk

cnt

ready

il
[




Sequential Shifter Design

Timing.

2: At positive edge:
cnt initialized to amt.

shifted initialized to unshifted.

[+ clk

. Cycle i Cycle :

0

1

Cycle :

2

3

[4 start

M

Cycle :

[4 amt

unsh-

[+ ifted

=

shift_It_seq

sf

shift_fixed

unshifted

shifted \I

shifted

shifted

cnt

ready ]

i

Junshifted

cnt

|
[

shifted £1

384 Xg

clk

cnt

ready

il
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Sequential Shifter Design

Timing.

3: Early in Cycle 1:

ready goes to zero.

[+ clk

. Cycle i Cycle :

0

1

Cycle :

2

3
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]
—_——

2
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unsh-
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=
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shifted
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|
[
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Sequential Shifter Design

Timing.

4: During cycles 1 and 2:

New value of count is com-
puted, “shift” performed.

[+ clk

. Cycle i Cycle :

0

1

Cycle :

2

3

[4 start

]
—_——

2

Cycle :

[4 amt

unsh-
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=
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|
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Sequential Shifter Design

Timing.

5: Beginning of cycle 3:

Ready signal set to 1.

[+ clk

. Cycle i Cycle :

0

1

Cycle :

2

3
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]
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2
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[4 amt
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=
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i
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|
[
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Sequential Shifter Design

Notes about behavior.
Start signal must be stable at
positive edge.

Inputs required to be avail-
able early in clock cycle.

Result available at beginning
of clock cycle.

Ready signal available early
in clock cycle.

[+ clk

. Cycle i Cycle :

0

1
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2

3
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M
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=
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Sequential Shifter Design

Sequential Shifter Verilog

. hift_It
module shift It seq #( int ¢ = 4, int w = 1 << ¢ ) st _sed
( output logic [w-1:0] shifted, output uwire ready,
input uwire [w-1:0] unshifted, input uwire [c-1:0] amt, sf
input uwire start, clk ); shift_fixed
uwire [w-1:0] sf_out; unshifted 3 E
shift_fixed #(c,1) s£( sf_out, shifted, 1’bl ); // Fixed Shifter hifted % =
|—"’ —
logic [c-1:0] cnt; H
unshifted
A
always_ff ©@( posedge clk ) —
if ( start == 1 ) begin
€
shifted = unshifted; // Load a new item to shift ot
cnt <= amt; // .. and initialize amount. A
m |
W] %\
end else if ( cnt > 0 ) begin clk ©
e ]
]
shifted = sf_out; // Shift by one more bit
cnt <= cnt - 1; // .. and update count.
end
assign ready = cnt == 0; // Set ready to 1 when count is zero.

endmodule



Sequential Shifter Design
Inferred Hardware, No Optimization

module shift It seq #( int ¢ = 4, int w = 1 << ¢ )

( output logic [w-1:0] shifted,

input uwire [w-1:0] unshifted,
input uwire start, clk );

output uwire ready,
input uwire [c-1:0] amt,

uwire [w-1:0] sf_out;
shift_fixed #(c,1) sf( sf_out, shifted, 1); // Fixed Shifter
logic [c-1:0] cnt;

always_ff ©( posedge clk )
if ( start == 1 ) begin

shifted = unshifted; // Load a new item to shift ...
cnt <= amt; // .. and initialize amount.
end else if ( cnt > 0 ) begin

shifted = sf_out; // Shift by one more bit ..
cnt <= cnt - 1; // .. and update count.

end
assign ready = cnt == 0;

endmodule

// Set ready to 1 when count is zero.

shift_It_seq
sf
shift_fixed
wid_Ig=4
amt=1
| unshifted sf_out
shifted [
1'd1 shift
cnt >0
, >
r_Istart 4'd0 start
L]
shifted | Y |8 5 0
N |5 & £
\l c =
2 tss
& 3
unshifted
/\
]
cnt ru
ey
+J
t :@ﬂ] JEE:
am 7 —
a 4dl /J cnt
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H | >
clk g
:(_) ready o 1
4'd0 — T




Sequential Shifter Design

Inferred Hardware, No Optimization

(mm|
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=
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Sequential Shifter Design

Pay Attention To

Setup delay: in-
puts to registers.

Operation delay:
register to regis-
ter.

Output delay: gen-
eration of the ready
signal.

imm
LH
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1'd1T

shift_fixed
wid_lg=4

amt=1
unshifted

sf out
shifted [
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shift_It_seq
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shifted
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imm
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clk
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. Cycle :

0
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Cycle :

2

o

—_— 1

3
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2
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Sequential Shifter Design > Streamlining and Optimization
Streamlining and Optimization
Streamline hardware illustration to make it readable.

Include optimizations we hope synthesis program will make.

Optimization Opportunities
Use an enable for registers.
Shifter is just a bit renaming plus one zero.

The three operations on cnt, ¢ > 0, c — 1, and ¢ ==
... can all be done by the same logic.



Sequential Shifter Design > Streamlining and Optimization

shift_It_seq

sf
shift_fixed
wid Ig=4
amt=1
|| unshifted sf out
shifted [~
1'dl shift
cnt >0
>
start 4'd0
0 TJstart 'c
shifted | Y g¢ o g
'j o = 'c
JJ i 25
tH J
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A
]
cnt r“ r
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a sf out £
= £
1'd0 — \l w g
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Sequential Shifter Design > Cost Analysis
Cost Analysis
Cost of Optimized Hardware
Shifted and Cnt Registers (with enable): 10(w + lg w) ue.

Shifted and Cnt Muxen: 3(w + lgw) uc.

Decrement (cost of BHAs): 31gw ue. 120((;0__St
The OR: 1u.. 1000 — Log Shifter
Total: [13w + 161gw + 1] ue. 800 :

600 -

Cost of Logarithmic Shifter

400 .
] . Seq Shift
The lg w multiplexors: 3w lgw u. p 2€q Shiter

200

Log shifter becomes more expensive at w = 35.

10 20 30 40 50



Sequential Shifter Design > Cost Analysis
Find w for which sequential and log shifter have equal cost.

Using simple-model costs:

13w+ 16lgw + 1 =3wlgw

No easy solution to the equation above.

Simplifying:
13w = 3wlgw

lgw =13/3
w = 213/3 ~ 920.159

Note: This approximation is off by a lot, the numerical solution is w = 35.



Combinational v. Sequential v. Pipelined Implementation
Combinational v. Sequential v. Pipelined Implementation
Tradeoffs
Combinational
Lowest latency.

Cost between that of sequential and pipelined implementations.

Sequential
Lowest cost.

Higher latency.

Pipelined
Highest throughput.

Highest cost.
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