LSU EE 4755 Homework 5 Due: 30 Nov 2025
""""""""""""""""""""""" Formatted 18:53, 21 November 2025

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2025/hw05.v.html.

Student Expectations
To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for Verilog programming and synthesis examples, and to seek out any
additional help and resources that might be needed. (Of course this doesn’t mean asking someone
else to solve it for you.) It is the students’ responsibility to resolve frustrations and roadblocks
quickly. (If you get stuck just ask for help!)

This assignment cannot be solved by blindly pasting together parts of past assignments. Solv-
ing the assignment is a multi-step learning process that takes effort, but one that also provides the
satisfaction of progress and of developing skills and understanding.

Collaboration Rules

Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
answer questions and generate sample Verilog code. (Do not assume LLM output is correct. Treat
LLM output the same way one might treat legal advice given by a lawyer character in a movie: it
may sound impressive, but it can range from sage advice to utter nonsense.) An LLM prompt has
been hidden in this assignment.

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if somehow necessary at this point), copy the assignment, and run the Verilog
simulator on the unmodified homework file, hw05.v. Do this early enough so that minor problems
(e.g., password doesn’t work) are minor problems.

Homework Overview
The best_rot (best rotation) modules in this assignment have two wv-bit inputs, val and key,
where wv is a module parameter. The modules have an output dif which indicates the difference
(in some contexts, called a Hamming distance) between the val and key. A dif of zero means that
the two are identical. The largest possible dif is wv, which occurs when val is all 1s and key is all
0s, or vice versa. The Hamming distance between two w-bit bit vectors, a and b is the number of
bits positions that differ. For example, if a = 10015 and b = 01115, their distance is 3 because only
their least-significant bit positions are the same. Suppose val=4’b0110 and key=4’b1001. The
Hamming distance of those two values is four. However if val is end-around rotated to the right by
two positions, 0110 -> 0011 -> 1001, the resulting value is equal to key. The best_rot modules,
given inputs val and key will consider all rotations of val and return the lowest distance (value of
dif) and the number of rotations at which that distance was obtained.

Examples of the expected module outputs are shown in testbench excerpts appearing below for
the procedural module. Data from the procedural module is easy to interpret because the values

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2025/hw05.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

at the outputs, under the Pos and Dif columns, is for the data at the inputs, under the Val and
Key columns in the same cycle (and the same row of the table). When w < 8 the values under Val
and Key are shown in binary, otherwise they are shown in hexadecimal. The other columns will be
explained further below.

Starting tests for best_rot_proc w=4.

Cyc Val Key S Cyc-In R Pos Dif
Tr 5 0001 0100 S Mod Out 5 -—>X 2 0
Tr 6 1001 1001 S Mod Out 6 ——> X 0 0
Tr 7 1000 1011 S Mod Out 7 -—>X 0 2
Tr 8 1011 1011 S Mod Out 8 -—> X 0 0
Tr 9 0111 1101 S Mod Out 9 -—> X 2 0
Tr 10 1100 1111 S Mod Out 10 --> X 0 2
Tr 11 1011 1101 S Mod Out 11 --> X 1 0
Tr 12 0100 1101 S Mod Out 12 --> X 0 2
Tr 13 0010 0001 S Mod Out 13 --> X 1 0

Starting tests for best_rot_proc w=8.

Cyc Val Key S Cyc-In Pos Dif

Tr 5 00000001 00001000 Mod Out 5 ——>
Tr 6 10000100 10000010 Mod Out 6 -—>
Tr 7 10101111 10101111 Mod Out 7T >
Tr 8 10100100 10010010 Mod Out 8 -—>
Tr 9 00111101 11001011 Mod Out 9 -—>

Tr 10 00000100 01010111
Tr 11 01100110 11111111
Tr 12 00000100 00001000
Tr 13 11111110 11111101
Tr 14 01101111 00000100
Tr 15 11110111 11011110
Tr 16 10101101 01101011
Tr 17 10000000 00100000

Mod QOut 11 ——>
Mod Out 12 -—>
Mod QOut 13 ——>
Mod Out 14 --—>
Mod Out 15 ——>
Mod Out 16 -—>

R
X
X
X
X
X
Mod Out 10 -—> X
X
X
X
X
X
X
Mod Out 17 --> X

NN nNnnn nn 1 N nn L2
NN WO NNOONO®®O OO,
O O 01 O O PP NOON O

Starting tests for best_rot_proc w=20.

Cyc Val Key S Cyc-In R Pos Dif

Tr 5 20000 00020 S Mod Out 5 -—>X 12 0
Tr 6 10004 80020 S Mod Out 6 --> X 17 0
Tr 7 00100 40000 S Mod Out 7-—>X 10 0
Tr 8 574el 10000 S Mod Out 8 -—>X 0 9
Tr 9 140a3 fe76e S Mod Out 9 -—> X 6 9
Tr 10 £83f8 <c7clf S Mod Out 10 --> X 5 0
Tr 11 d65f7 04802 S Mod Out 11 -—> X 5 11
Tr 12 50148 £fb56 S Mod Out 12 --> X 2 10
Tr 13 fffff £fffff S Mod Out 13 --> X 0 0
Tr 14 30030 81801 S Mod Out 14 -—> X 5 0
Tr 15 04800 6435c S Mod Out 156 --> X 5 7
S 0 5

Tr 16 fe7fd ddbff Mod Out 16 -—> X

The assignment file, hw05.v, has three versions of best_rot. Module best_rot_procedural
is a procedural version of the module and best_rot_seq is a sequential version of the module.
Both of these work correctly and should not be modified for this assignment.

Module best_rot_procedural is straightforward: it has wv-bit inputs key and val, and wp-bit

2

outputs pos and dif. Of course, wp and wv are parameters. The outputs are updated whenever
the inputs change. The synthesized hardware would have wv copies of the logic to compute the
distance, one for each possible rotation of val. Those who know where we’re going will understand
why I won’t make such a big deal about the cost of all of those copies of the compute-the-distance
logic.

Module best_rot_seq, in addition to the connections used by best_rot_procedural, has
1-bit inputs start and clk and a 1-bit output ready. If requires wv cycles to compute pos and
dif. Computation starts when start is set to one on a positive edge of c1k. Qutputs pos and dif
are correct when ready is set to 1. Module best_rot_seq uses module pop to help compute diff.

Because of all the logic involved the delay of best_rot_procedural is likely to be higher than
that of best_rot_seq, but the latency of best_rot_seq will likely be higher because it requires wv
cycles to compute a result. Let ¢, denote the delay of best_rot_procedural and ¢ denote the
delay of best_rot_seq and suppose for both wv=w. The latency of best_rot_seq is wise.

Suppose t, = 5ns and te,e = 0.9ns and we would like to use a best rot module on a sys-
tem with clock period ¢ = 1ns. The best_rot_procedural module would be too slow. Module
best_rot_seq is fast enough because t5, < t, but we can compute at most one result only every w
cycles. What do we do?

The answer, of course, is to design a pipelined version of the module, which we’ll call best_rot_pipe.
This will be designed so that the critical path (delay) is close to that of best_rot_seq but being
pipelined it can accept a new val key pair each cycle.

Module best_rot_pipe has the same connections as best_rot_seq:

module best_rot_pipe
#(int wv = 17, wp = $clog2(wv+l))
(output logic [wp-1:0] pos,
output logic [wp-1:0] dif,
output logic ready,
input uwire [wv-1:0] val, key,
input uwire start, clk);

The difference is in the timing. For best_rot_pipe a new val and key pair can arrive every
cycle. Input start is set to 1 when val and key are valid values. (It might help to ignore the
start and ready signals, especially since in the unsolved assignment that part is completed. That
is, unlike the sequential design, the pipelined design does not do anything special when start=1,
other than sending it through the pipeline.)

Output ready at cycle z should be set to the value of start that was present at cycle z — w.
Or put another way, the value of start that arrives at cycle y should appear at output ready in
cycle y + c¢. The provided code already does that. In a correctly solved assignment the pos and
dif outputs at time y + ¢ will have the correct values for val and key from cycle y.

Testbench

To compile your code and run the testbench press in an Emacs buffer in a properly set up
account. The testbench will apply inputs to module best_rot_pipe and report on the results. The
module will be instantiated at three different widths, wv=4, wv=8, and wv=20.

The testbench applies inputs each cycle, but only checks the output for some of these. When
one of those outputs is wrong it will print a trace starting from when the input was applied, to
when the output was expected. Lines starting Tr show the module inputs and actual outputs (plus
a debug value). Lines starting Cr show the module outputs that were expected. The first except
below is from an unsolved assignment, the second from a correctly solved assignment:

Starting tests for best_rot_pipe w=4. *% UNSOLVED *x*

Cyc Val Key S Cyc-In R Pos Dif Debug Val
Tr 6 0001 0100 S Mod Out 2 -=> _ bd X XXXXX
Tr 7 0110 1001 _ Mod Out 3 -—->R X X XXXXX
Tr 8 0111 0101 _ Mod Out 4 --> R bd X XXXXX
Tr 9 1000 0101 _ Mod Out 5 —> _ X X XXXXX
Tr 10 1001 0010 _ Mod Out 6 -—> R X X XXXXX
Cr 10 Cor Out 6 ——> R 2 0

Starting tests for best_rot_pipe w=4. *% CORRECTLY SOLVED *x*

Cyc Val Key S Cyc-In R Pos Dif Debug Val
Tr 6 0001 0100 S Mod Out 2 -=> _ 0 1 00001
Tr 7 0110 1001 _ Mod Out 3 -->R 1 0 00000
Tr 8 0111 0101 _ Mod Out 4 --> R 3 0 00000
Tr 9 1000 0101 _ Mod Out 5 -=> _ 0 2 00002
Tr 10 1001 0010 _ Mod Out 6 -—> R 2 0 00002
Cr 10 Cor Out 6 --> R 2 0

The Val, Key, and S columns show the module inputs. Val and Key are in binary when w < 8
otherwise they are in hexadecimal. The Cyc column shows the cycle at which the port values were
taken (meaning all values on that row). The Pos and Dif columns show the value of the pos and
dif outputs. An x indicates that at least one bit was not a 0 or 1. Those outputs are x in the
unsolved excerpt because the pos and dif output ports were unconnected. The R column shows
the value of the ready output.

The column headed Cyc-In shows which data should have been used to compute the pos and
diff outputs on that row. For example, consider the line starting Tr 10. In that line Cyc-In is
6, meaning that the values under Pos and Dif are for the data arriving in cycle 6, val=0001 and
key=0100, not for val=1001 and key=0010. Make sure that you understand this!

The excerpt above shows five outputs (for cycles 6 to 10), but only the output arriving at cycle
10 is checked. The expected output is shown in the line starting Cr. For the second excerpt above
the Pos and Dif values match and so are correct.

The values under the Debug Val column show the value of object watch_value in your module.
You can set watch_value to whatever you like, it is not checked for correctness. In the unsolved
assignment it is set to the number of valid values in the pipeline. In the excerpt above for the
solved solution, watch_value is set to the value of pos in the next-to-last pipeline stage.

The testbench starts by choosing easy values for val and key: In the first ten test patterns
both val and key will each have just one bit set. That means they are guaranteed to have a dif
of zero. In the next ten patterns exactly two bits of each val and key will be one. These easy test
patterns are to facilitate debugging. After that the inputs can have more than two 1’s set.

After completing tests the testbench prints a tally of results:

xcelium> exit

Total best_rot_pipe n= 4: Errors: 1000 pos, 1000 dif.
Total best_rot_pipe n= 8: Errors: 1000 pos, 1000 dif.
Total best_rot_pipe n=20: Errors: 1000 pos, 1000 dif.
Grand Total Errors: 3000 pos, 3000 dif.

For a correctly solved assignment:

xcelium> exit

Total best_rot_pipe n= 4: Errors: O pos, 0 dif.
Total best_rot_pipe n= 8: Errors: O pos, O dif.
Total best_rot_pipe n=20: Errors: O pos, 0 dif.
Grand Total Errors: O pos, O dif.

Helpful Examples
The best_rot modules are similar to the best_match modules that were the subject of 2019
Homework 4 and Homework 5. There are two significant differences: In best_match the val input
is much wider than the k (key) input, whereas in 2025 both are the same size. In 2019 one had to find
a position in val where k had the best match, in 2025 we have to rotate val and note the rotation
that provides the best match. Another difference is that in the 2019 assignment a sequential module
was to be designed. In this 2025 assignment a pipelined module is to be designed. A sequential
module that rotated its arguments, rmatch, appeared as Problem 4 on the 2024 Final Exam.
Coding pipelined modules were the subject of 2021 Homework 6, 2017 Homework 7, and 2016
Homework 6. Past assignments and their solutions are linked to the assignments and exams page.

https://www.ece.lsu.edu/koppel/v/prev.html

ooddgn o

Problem 1: Complete best_rot_pipe so that it computes the best rotation in pipelined fashion
and meets the requirements below:

Complete best_rot_pipe so that it computes pos and dif values as described earlier.

The module must operate in pipelined fashion and spread work between the wv stages D so that
the critical path is short.

The module must use pop instantiations to compute diff.
The testbench should report zero errors.

The code should be clearly written.

Avoid slow or costly designs.

Do not assume specific parameter values.

Only modify best_rot_pipe.

The module must be synthesizeable. Use command genus -files syn.tcl to synthesize

	Problem 0
	Problem 1

