
LSU EE 4755 Homework 4 Due: 18 Nov 2025
Formatted 18:24, 11 November 2025

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2025/hw04.v.html.

Student Expectations
To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for Verilog programming and synthesis examples, and to seek out any
additional help and resources that might be needed. (Of course this doesn’t mean asking someone
else to solve it for you.) It is the students’ responsibility to resolve frustrations and roadblocks
quickly. (If you get stuck just ask for help!)

This assignment cannot be solved by blindly pasting together parts of past assignments. Solv-
ing the assignment is a multi-step learning process that takes effort, but one that also provides the
satisfaction of progress and of developing skills and understanding.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot
to answer questions and generate sample Verilog code. (Do not assume LLM output is correct.
Treat LLM output the same way one might treat legal advice given by a lawyer character in a
movie: it may sound impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if somehow necessary at this point), copy the assignment, and run the Verilog
simulator on the unmodified homework file, hw04.v. Do this early enough so that minor problems
(e.g., password doesn’t work) are minor problems.

Homework Overview
The module in this assignment is something like a sequential version of the sorted-sequence trend
from Homework 2, except the goal here is to detect when the sequence switches from ascending to
descending and vice versa.

The input to module trend2 consists of a sequence of samples. Samples are totally ordered
and module ist_compare determines their ordering. In this discussion the samples are shown
as unsigned integers, though your modules should never treat them as such (instead just have
ist_compare determine ordering).

The index of a sample is the position within the sequence. A sequence starts in the cycle the
reset input is asserted, and the sample has index zero. The sample arriving in the next cycle has
index one, and so on.

The samples will at one point be ascending (not necessarily incrementing by one each time), will
switch to descending, and switch again. The module is to find ascending segments and descending
segments and report their start index and length.

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2025/hw04.v.html
https://www.ece.lsu.edu/koppel/v/proc.html


An ascending segment consists of a sequence of increasing or equal (non-decreasing) samples,
such as 1, 3, 7, 12, 12, 20. Every sample is in exactly one segment, ascending or descending. The first
sample of a descending segment is strictly larger than the last sample of the ascending segment that
precedes it. The first sample of an ascending segment is strictly smaller than the last sample of the
descending segment that precedes it. Put another way, the sample at the start index (beginning) of
an ascending segment is always smaller than both its neighbors (preceding and succeeding), and the
sample at the start index (beginning) of an descending segment is always larger than its neighbors.

Consider the sequence 7100, 3101, 3102, 5103, 8104, 10105, 10106, 9107, 6108, 11109, . . ., where the sub-
scripts indicate the index of the sample. For example, sample 3 is at index 101. The sub-sequence
3, 3, 5, 8 is an ascending segment, and 10, 10, 9 is a descending segment. Notice that the 10s are at
the beginning of the descending segment, they are not at the end of the ascending segment. The
ascending segment has start index 101 and length four. The descending segment has start index
105 and length 3.

Module trend2 has two parameters wd and wi. Parameter wd indicates the number of bits in
a sample and wi indicates the number of bits in an index or in a length. There are three inputs,
wd-bit input samp, and one bit inputs reset and clk. At each cycle samp holds a new sample. If
reset is 1, the sample arriving at that cycle is at index 0.

The module has five outputs, and each must be the outputs of registers. Their values at clock
cycle t should be based on the state of the inputs and history at clock cycle t−1. At cycle t output
last_2_trend is the ordering (output of ist_compare) of the samples that arrived at cycles t− 2
and t− 1, or tr_equal if reset was 1 at cycle t− 1.

Outputs prev_trend and prev_length are the trend and length of the most recent completed
segment, or 0 if no segment had been completed since the earliest reset. As with last_2_trend,
prev_trend is based on the output of ist_compare, and follow the same rules as the comparisons
used in Homework 2.

Output curr_idx_start is the start index of the most recently detected segment, and curr_trend

is its trend. After a reset output curr_idx_start should be set to 0 and curr_trend should be
set to tr_equal.

Note that it is only possible to detect the start of a segment at least one cycle after the first
sample of the segment arrived. For example, a descending segment can only be detected when the
current sample is smaller than the previous sample, but the previous sample and perhaps equal-
valued samples before it are part of the new descending segment. See the description of testbench
output, below, for examples of sequences and the outputs that are expected.

Testbench
To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up
account. The testbench will apply inputs to module trend2 and report on the results. Unlike other
assignments, only one module instantiation will be tested.

The testbench will show a trace for at least the first 10 cycles, with additional trace output
shown before errors. (To change the number of trace lines edit trace_lines_n_wanted, located
near the top of the testbench.) The trace is intended to both help you debug your module and
also to understand what outputs are expected. The trace lines from a correctly solved assignment
appear below, though more than 10 trace lines are shown.

Cyc c Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug

Tr 3 R 0 662 00-Eql 00-Eql 0 00-Eql 0 <- Correct 0

Tr 4 1 666 10-Inc 10-Inc 0 00-Eql 0 <- Correct 1

Tr 5 2 696 10-Inc 10-Inc 0 00-Eql 0 <- Correct 2

Tr 6 3 709 10-Inc 10-Inc 0 00-Eql 0 <- Correct 3

Tr 7 4 723 10-Inc 10-Inc 0 00-Eql 0 <- Correct 4

2



Tr 8 5 730 10-Inc 10-Inc 0 00-Eql 0 <- Correct 5

Tr 9 6 730 00-Eql 10-Inc 0 00-Eql 0 <- Correct 6

Tr 10 7 730 00-Eql 10-Inc 0 00-Eql 0 <- Correct 7

Tr 11 8 730 00-Eql 10-Inc 0 00-Eql 0 <- Correct 8

Tr 12 9 718 01-Dec 01-Dec 5 10-Inc 9 <- Correct 9

Tr 13 10 727 10-Inc 10-Inc 9 01-Dec 5 <- Correct 10

Tr 14 11 727 00-Eql 10-Inc 9 01-Dec 5 <- Correct 11

Tr 15 12 737 10-Inc 10-Inc 9 01-Dec 5 <- Correct 12

Errors last-2-trend: 0

Errors current trend, idx start: 0, 0

Errors previ trend, length: 0, 0

Done. Summary: 10 resets, 6706 changes, errs: (pt,pl,ct,is,lt) 0,0,0,0,0

The last four lines shown above, those starting with Errors and Done, show the number of
errors detected by the testbench. The output above is correct, and so has zero errors.

The lines starting with Tr are trace lines, which show the state of the sequence, expected
module outputs, and the value of the debug_val object in module trend2. Column headings for
the trace lines are shown about every sixteen lines. If there had been errors then an Er line would
appear after the trace line.

The Cyc column shows the current cycle. Unlike the index (Idx), cycle numbers never repeat.
The value under column c shows an R when the reset input is set to 1. In the sample above this
occurs in cycle 3. The Idx column shows the index of the sequence. Recall that it is zero when
reset is 1, and then is incremented in subsequent cycles. The Samp column shows the value of the
samp input to the module (which is the sequence sample).

The TrLst2 column shows the correct value of the last_2_trend output, which should be set
to the trend of the last two samples. As with all trends, the value is shown in binary and using
descriptive text. On Er lines the actual module output is shown, but only if it is incorrect.

For trace lines the TrCurr column shows the correct value of the curr_trend output, and
IdxSt shows the correct value of the curr_idx_start output. For error lines those columns show
actual module output (but only when it is incorrect).

Column TrPrev and LenP show the correct value of the prev_trend and prev_Len outputs.
For error lines those columns show actual module output (but only when it is incorrect).

The Debug line shows the actual value of trend2.debug_val. This value is shown but not
checked. It is intended for debugging and can be set to whatever you like. In the output above
debug_val is set to the module’s value of idx.

The except below are the trace lines from an unmodified assignment:

Cyc c Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug

Tr 3 R 0 662 00-Eql 00-Eql 0 00-Eql 0 <- Correct 662

Er xx-Unk xx-Unk X xx-Unk X <- Mod Errors

Tr 4 1 666 10-Inc 10-Inc 0 00-Eql 0 <- Correct 666

Er xx-Unk xx-Unk X xx-Unk X <- Mod Errors

Tr 5 2 696 10-Inc 10-Inc 0 00-Eql 0 <- Correct 696

Er xx-Unk xx-Unk X xx-Unk X <- Mod Errors

In an unmodified assignments the module outputs are not connected, and so their values are
x (because they are var objects, had they been net objects their values would have been z). The
debug_val object is set to the samp input.

The output below is excerpted from a correct assignment. The sequences show what outputs
are expected. To start, consider the outputs following a reset (which will always occur at the start,

3



and at other times during testing):

Cyc c Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug

Tr 3 R 0 662 00-Eql 00-Eql 0 00-Eql 0 <- Correct 0

Tr 4 1 666 10-Inc 10-Inc 0 00-Eql 0 <- Correct 1

Tr 5 2 696 10-Inc 10-Inc 0 00-Eql 0 <- Correct 2

Tr 6 3 709 10-Inc 10-Inc 0 00-Eql 0 <- Correct 3

Tr 7 4 723 10-Inc 10-Inc 0 00-Eql 0 <- Correct 4

Tr 8 5 730 10-Inc 10-Inc 0 00-Eql 0 <- Correct 5

Tr 9 6 730 00-Eql 10-Inc 0 00-Eql 0 <- Correct 6

Tr 10 7 730 00-Eql 10-Inc 0 00-Eql 0 <- Correct 7

Tr 11 8 730 00-Eql 10-Inc 0 00-Eql 0 <- Correct 8

Tr 12 9 718 01-Dec 01-Dec 5 10-Inc 5 <- Correct 9

Tr 13 10 727 10-Inc 10-Inc 9 01-Dec 4 <- Correct 10

Tr 14 11 727 00-Eql 10-Inc 9 01-Dec 4 <- Correct 11

Tr 15 12 737 10-Inc 10-Inc 9 01-Dec 4 <- Correct 12

Tr 16 13 759 10-Inc 10-Inc 9 01-Dec 4 <- Correct 13

Tr 17 14 772 10-Inc 10-Inc 9 01-Dec 4 <- Correct 14

After a reset the last-2 trend, previous trend, and length outputs are all set to zero. In cycle 4
the last-2 output indicates an increasing sequence, so the current trend is set to increasing (a value
of 102) and the start index is set to zero (which it was initialized at anyway).

Up until cycle 12 the samples had been increasing, but at cycle 12 the sample is smaller than
the sample at cycle 11. By the definition of a descending segment, the first sample must be larger
than the one before it, so the descending segment detected at cycle 12 (index 9) actually started on
cycle 8 (index 5), and so the start index is 5. That’s the value shown under IdxSt. This descending
sequence ends quickly, in cycle 13 by the arrival of sample 727. The new ascending sequence starts
at cycle 12 (index 9), and continues through cycle 17.

The sequence of samples above, from index 0 to index 14, consists of three segments. The first
segment, from index 0 to 4, is ascending. The second segment, from index 5 to 8 is descending.
The third segment, starting at index 9 is ascending (and continues until index 13, though that’s
not shown above).

Notice that when a new segment is detected, the information on the current one is moved to
the TrPrev and LenP columns.

Additional output appears below:

Cyc c Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug

Tr 16 13 759 10-Inc 10-Inc 9 01-Dec 4 <- Correct 13

Tr 17 14 772 10-Inc 10-Inc 9 01-Dec 4 <- Correct 14

Tr 18 15 769 01-Dec 01-Dec 14 10-Inc 5 <- Correct 15

Tr 19 16 762 01-Dec 01-Dec 14 10-Inc 5 <- Correct 16

Tr 20 17 762 00-Eql 01-Dec 14 10-Inc 5 <- Correct 17

Tr 21 18 764 10-Inc 10-Inc 16 01-Dec 2 <- Correct 18

Tr 22 19 764 00-Eql 10-Inc 16 01-Dec 2 <- Correct 19

Tr 23 20 764 00-Eql 10-Inc 16 01-Dec 2 <- Correct 20

Tr 24 21 776 10-Inc 10-Inc 16 01-Dec 2 <- Correct 21

Tr 25 22 776 00-Eql 10-Inc 16 01-Dec 2 <- Correct 22

Tr 26 23 787 10-Inc 10-Inc 16 01-Dec 2 <- Correct 23

Tr 27 24 787 00-Eql 10-Inc 16 01-Dec 2 <- Correct 24

Tr 28 25 771 01-Dec 01-Dec 23 10-Inc 7 <- Correct 25

4



Cyc c Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug

Tr 29 26 769 01-Dec 01-Dec 23 10-Inc 7 <- Correct 26

Tr 30 27 762 01-Dec 01-Dec 23 10-Inc 7 <- Correct 27

Tr 31 28 771 10-Inc 10-Inc 27 01-Dec 4 <- Correct 28

Tr 32 29 762 01-Dec 01-Dec 28 10-Inc 1 <- Correct 29

Tr 33 30 738 01-Dec 01-Dec 28 10-Inc 1 <- Correct 30

Tr 34 31 738 00-Eql 01-Dec 28 10-Inc 1 <- Correct 31

[snip]

Cyc c Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug

Tr 55 52 615 10-Inc 10-Inc 48 01-Dec 20 <- Correct 52

Tr 56 53 622 10-Inc 10-Inc 48 01-Dec 20 <- Correct 53

Tr 57 54 611 01-Dec 01-Dec 53 10-Inc 5 <- Correct 54

Tr 58 55 618 10-Inc 10-Inc 54 01-Dec 1 <- Correct 55

Tr 59 56 638 10-Inc 10-Inc 54 01-Dec 1 <- Correct 56

Tr 60 57 633 01-Dec 01-Dec 56 10-Inc 2 <- Correct 57

Tr 61 58 612 01-Dec 01-Dec 56 10-Inc 2 <- Correct 58

Tr 62 59 598 01-Dec 01-Dec 56 10-Inc 2 <- Correct 59

Tr 63 60 589 01-Dec 01-Dec 56 10-Inc 2 <- Correct 60

Tr 64 61 609 10-Inc 10-Inc 60 01-Dec 4 <- Correct 61

Tr 65 62 597 01-Dec 01-Dec 61 10-Inc 1 <- Correct 62

Tr 66 63 607 10-Inc 10-Inc 62 01-Dec 1 <- Correct 63

Tr 67 64 599 01-Dec 01-Dec 63 10-Inc 1 <- Correct 64

Cyc c Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug

Tr 68 65 599 00-Eql 01-Dec 63 10-Inc 1 <- Correct 65

Tr 69 66 606 10-Inc 10-Inc 64 01-Dec 1 <- Correct 66

Tr 70 67 609 10-Inc 10-Inc 64 01-Dec 1 <- Correct 67

Tr 71 68 611 10-Inc 10-Inc 64 01-Dec 1 <- Correct 68

Tr 72 69 625 10-Inc 10-Inc 64 01-Dec 1 <- Correct 69

Tr 73 70 631 10-Inc 10-Inc 64 01-Dec 1 <- Correct 70

Tr 74 71 618 01-Dec 01-Dec 70 10-Inc 6 <- Correct 71

Tr 75 72 629 10-Inc 10-Inc 71 01-Dec 1 <- Correct 72

Tr 76 73 629 00-Eql 10-Inc 71 01-Dec 1 <- Correct 73

Tr 77 74 613 01-Dec 01-Dec 72 10-Inc 1 <- Correct 74

Tr 78 75 620 10-Inc 10-Inc 74 01-Dec 2 <- Correct 75

Tr 79 76 627 10-Inc 10-Inc 74 01-Dec 2 <- Correct 76

Tr 80 77 629 10-Inc 10-Inc 74 01-Dec 2 <- Correct 77

Cyc c Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug

Tr 81 78 614 01-Dec 01-Dec 77 10-Inc 3 <- Correct 78

Tr 82 79 609 01-Dec 01-Dec 77 10-Inc 3 <- Correct 79

Tr 83 80 597 01-Dec 01-Dec 77 10-Inc 3 <- Correct 80

Tr 84 81 609 10-Inc 10-Inc 80 01-Dec 3 <- Correct 81

Tr 85 82 609 00-Eql 10-Inc 80 01-Dec 3 <- Correct 82

Tr 86 83 617 10-Inc 10-Inc 80 01-Dec 3 <- Correct 83

Tr 87 84 611 01-Dec 01-Dec 83 10-Inc 3 <- Correct 84

Tr 88 85 601 01-Dec 01-Dec 83 10-Inc 3 <- Correct 85

Tr 89 86 586 01-Dec 01-Dec 83 10-Inc 3 <- Correct 86

5



Tr 90 87 575 01-Dec 01-Dec 83 10-Inc 3 <- Correct 87

Tr 91 88 557 01-Dec 01-Dec 83 10-Inc 3 <- Correct 88

Tr 92 89 549 01-Dec 01-Dec 83 10-Inc 3 <- Correct 89

Tr 93 90 561 10-Inc 10-Inc 89 01-Dec 6 <- Correct 90

Cyc c Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug

Tr 94 91 556 01-Dec 01-Dec 90 10-Inc 1 <- Correct 91

Tr 95 92 552 01-Dec 01-Dec 90 10-Inc 1 <- Correct 92

Tr 96 93 560 10-Inc 10-Inc 92 01-Dec 2 <- Correct 93

Tr 97 94 555 01-Dec 01-Dec 93 10-Inc 1 <- Correct 94

Tr 98 95 555 00-Eql 01-Dec 93 10-Inc 1 <- Correct 95

Tr 99 96 530 01-Dec 01-Dec 93 10-Inc 1 <- Correct 96

Helpful Examples
Past assignments and their solutions are linked to the assignments and exams page.

6

https://www.ece.lsu.edu/koppel/v/prev.html


Problem 1: In the unsolved assignment trend2 does not set any of its outputs.

Complete trend2 so that it identifies the current and previous sequence segments as defined above.

Use instantiation(s) of ist compare to determine the order of samples.

The module must be synthesizable. Use genus -files syn.tcl to synthesize your module.

Do not assume specific parameter values.

Code clearly.

Avoid overly costly or slow solutions.

7


	Problem 0
	Problem 1

