Formatted 18:24, 11 November 2025

Due: 18 Nov 2025

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete Verilog for this assignment without visiting the lab follow https://www.ece.lsu.edu/koppel/v/2025/hw04.v.html.

Student Expectations

To solve this assignment students are expected to avail themselves of references provided in class and on the Web site, such as for Verilog programming and synthesis examples, and to seek out any additional help and resources that might be needed. (Of course this doesn't mean asking someone else to solve it for you.) It is the students' responsibility to resolve frustrations and roadblocks quickly. (If you get stuck *just ask for help!*)

This assignment cannot be solved by blindly pasting together parts of past assignments. Solving the assignment is a multi-step learning process that takes effort, but one that also provides the satisfaction of progress and of developing skills and understanding.

Collaboration Rules

Each student is expected to complete his or her own assignment. It is okay to work with other students and to ask questions in order to get ideas on how to solve the problems or how to overcome some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to answer questions and generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same way one might treat legal advice given by a lawyer character in a movie: it may sound impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the assignment alone. Test questions will be based on homework questions and the assumed time needed to complete the question will be for a student who had solved the homework assignment on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up your class account (if somehow necessary at this point), copy the assignment, and run the Verilog simulator on the unmodified homework file, hw04.v. Do this early enough so that minor problems (e.g., password doesn't work) are minor problems.

Homework Overview

The module in this assignment is something like a sequential version of the sorted-sequence trend from Homework 2, except the goal here is to detect when the sequence switches from ascending to descending and vice versa.

The input to module trend2 consists of a sequence of samples. Samples are totally ordered and module ist_compare determines their ordering. In this discussion the samples are shown as unsigned integers, though your modules should never treat them as such (instead just have ist_compare determine ordering).

The *index* of a sample is the position within the sequence. A sequence starts in the cycle the **reset** input is asserted, and the sample has index zero. The sample arriving in the next cycle has index one, and so on.

The samples will at one point be ascending (not necessarily incrementing by one each time), will switch to descending, and switch again. The module is to find ascending segments and descending segments and report their start index and length.

An ascending segment consists of a sequence of increasing or equal (non-decreasing) samples, such as 1, 3, 7, 12, 12, 20. Every sample is in exactly one segment, ascending or descending. The first sample of a descending segment is strictly larger than the last sample of the ascending segment that precedes it. The first sample of an ascending segment is strictly smaller than the last sample of the descending segment that precedes it. Put another way, the sample at the start index (beginning) of an ascending segment is always smaller than both its neighbors (preceding and succeeding), and the sample at the start index (beginning) of an descending segment is always larger than its neighbors.

Consider the sequence 7_{100} , 3_{101} , 3_{102} , 5_{103} , 8_{104} , 10_{105} , 10_{106} , 9_{107} , 6_{108} , 11_{109} , ..., where the subscripts indicate the index of the sample. For example, sample 3 is at index 101. The sub-sequence 3, 3, 5, 8 is an ascending segment, and 10, 10, 9 is a descending segment. Notice that the 10s are at the beginning of the descending segment, they **are not** at the end of the ascending segment. The ascending segment has start index 101 and length four. The descending segment has start index 105 and length 3.

Module trend2 has two parameters wd and wi. Parameter wd indicates the number of bits in a sample and wi indicates the number of bits in an index or in a length. There are three inputs, wd-bit input samp, and one bit inputs reset and clk. At each cycle samp holds a new sample. If reset is 1, the sample arriving at that cycle is at index 0.

The module has five outputs, and each must be the outputs of registers. Their values at clock cycle t should be based on the state of the inputs and history at clock cycle t-1. At cycle t output last_2_trend is the ordering (output of ist_compare) of the samples that arrived at cycles t-2 and t-1, or tr_equal if reset was 1 at cycle t-1.

Outputs prev_trend and prev_length are the trend and length of the most recent completed segment, or 0 if no segment had been completed since the earliest reset. As with last_2_trend, prev_trend is based on the output of ist_compare, and follow the same rules as the comparisons used in Homework 2.

Output curr_idx_start is the start index of the most recently detected segment, and curr_trend is its trend. After a reset output curr_idx_start should be set to 0 and curr_trend should be set to tr_equal.

Note that it is only possible to detect the start of a segment at least one cycle **after** the first sample of the segment arrived. For example, a descending segment can only be detected when the current sample is smaller than the previous sample, but the previous sample and perhaps equal-valued samples before it are part of the new descending segment. See the description of testbench output, below, for examples of sequences and the outputs that are expected.

Testbench

To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up account. The testbench will apply inputs to module trend2 and report on the results. Unlike other assignments, only one module instantiation will be tested.

The testbench will show a trace for at least the first 10 cycles, with additional trace output shown before errors. (To change the number of trace lines edit trace_lines_n_wanted, located near the top of the testbench.) The trace is intended to both help you debug your module and also to understand what outputs are expected. The trace lines from a correctly solved assignment appear below, though more than 10 trace lines are shown.

	Сус с	Idx	Samp	TrLst2	${\tt TrCurr}$	IdxSt	TrPrev l	LenP	Debug
Tr	3 R	0	662	00-Eq1	00-Eq1	0	00-Eql	0 <- Correct	0
Tr	4	1	666	10-Inc	10-Inc	0	00-Eql	0 <- Correct	1
Tr	5	2	696	10-Inc	10-Inc	0	00-Eq1	0 <- Correct	2
Tr	6	3	709	10-Inc	10-Inc	0	00-Eq1	0 <- Correct	3
Tr	7	4	723	10-Inc	10-Inc	0	00-Eq1	0 <- Correct	4

```
8
                    730
                         10-Inc
                                  10-Inc
                                               0
                                                   00-Eq1
                                                               0 <- Correct
                                                                                   5
Tr
               5
Tr
       9
               6
                    730
                         00-Eq1
                                  10-Inc
                                               0
                                                   00-Eq1
                                                               0 <- Correct
                                                                                   6
      10
               7
                    730
                         00-Eq1
                                  10-Inc
                                               0
                                                   00-Eq1
                                                               0 <- Correct
                                                                                   7
Tr
               8
                   730
                         00-Eq1
                                  10-Inc
                                               0
                                                   00-Eq1
                                                               0 <- Correct
                                                                                   8
Tr
      11
               9
                    718
                         01-Dec
                                  01-Dec
                                               5
                                                   10-Inc
                                                               9 <- Correct
                                                                                   9
Tr
      12
Tr
      13
              10
                    727
                         10-Inc
                                  10-Inc
                                               9
                                                   01-Dec
                                                               5 <- Correct
                                                                                  10
      14
                         00-Eq1
                                               9
                                                   01-Dec
                                                               5 <- Correct
Tr
              11
                    727
                                  10-Inc
                                                                                  11
                         10-Inc
                                  10-Inc
                                                   01-Dec
                                                               5 <- Correct
Tr
      15
              12
                                                                                  12
```

Errors last-2-trend: 0

Errors current trend, idx start: 0, 0

Errors previ trend, length: 0, 0

Done. Summary: 10 resets, 6706 changes, errs: (pt,pl,ct,is,lt) 0,0,0,0,0

The last four lines shown above, those starting with Errors and Done, show the number of errors detected by the testbench. The output above is correct, and so has zero errors.

The lines starting with Tr are trace lines, which show the state of the sequence, expected module outputs, and the value of the debug_val object in module trend2. Column headings for the trace lines are shown about every sixteen lines. If there had been errors then an Er line would appear after the trace line.

The Cyc column shows the current cycle. Unlike the index (Idx), cycle numbers never repeat. The value under column c shows an R when the reset input is set to 1. In the sample above this occurs in cycle 3. The Idx column shows the index of the sequence. Recall that it is zero when reset is 1, and then is incremented in subsequent cycles. The Samp column shows the value of the samp input to the module (which is the sequence sample).

The TrLst2 column shows the correct value of the last_2_trend output, which should be set to the trend of the last two samples. As with all trends, the value is shown in binary and using descriptive text. On Er lines the actual module output is shown, but only if it is incorrect.

For trace lines the TrCurr column shows the correct value of the curr_trend output, and IdxSt shows the correct value of the curr_idx_start output. For error lines those columns show actual module output (but only when it is incorrect).

Column TrPrev and LenP show the correct value of the prev_trend and prev_Len outputs. For error lines those columns show actual module output (but only when it is incorrect).

The Debug line shows the actual value of trend2.debug_val. This value is shown but not checked. It is intended for debugging and can be set to whatever you like. In the output above debug_val is set to the module's value of idx.

The except below are the trace lines from an unmodified assignment:

	Сус с	Idx	\mathtt{Samp}	TrLst2	${\tt TrCurr}$	IdxSt	TrPrev	${\tt LenP}$		Debug
Tr	3 R	0	662	00-Eql	00-Eql	0	00-Eql	0	<- Correct	662
Er				xx-Unk	xx-Unk	X	xx-Unk	Х	<- Mod Error	s
Tr	4	1	666	10-Inc	10-Inc	0	00-Eql	0	<- Correct	666
Er				xx-Unk	xx-Unk	X	xx-Unk	X	<- Mod Error	s
Tr	5	2	696	10-Inc	10-Inc	0	00-Eql	0	<- Correct	696
Er				xx-Unk	xx-Unk	Х	xx-Unk	Х	<- Mod Error	s

In an unmodified assignments the module outputs are not connected, and so their values are **x** (because they are **var** objects, had they been **net** objects their values would have been **z**). The **debug_val** object is set to the **samp** input.

The output below is excerpted from a correct assignment. The sequences show what outputs are expected. To start, consider the outputs following a reset (which will always occur at the start,

and at other times during testing):

	Сус с	Idx	\mathtt{Samp}	TrLst2	TrCurr	IdxSt	TrPrev	LenP		Debug
Tr	3 R	0	662	00-Eql	00-Eql	0	00-Eql	0	<- Correct	0
Tr	4	1	666	10-Inc	10-Inc	0	00-Eq1	0	<- Correct	1
Tr	5	2	696	10-Inc	10-Inc	0	00-Eq1	0	<- Correct	2
Tr	6	3	709	10-Inc	10-Inc	0	00-Eq1	0	<- Correct	3
Tr	7	4	723	10-Inc	10-Inc	0	00-Eq1	0	<- Correct	4
Tr	8	5	730	10-Inc	10-Inc	0	00-Eq1	0	<- Correct	5
Tr	9	6	730	00-Eql	10-Inc	0	00-Eq1	0	<- Correct	6
Tr	10	7	730	00-Eql	10-Inc	0	00-Eq1	0	<- Correct	7
Tr	11	8	730	00-Eql	10-Inc	0	00-Eq1	0	<- Correct	8
Tr	12	9	718	01-Dec	01-Dec	5	10-Inc	5	<- Correct	9
Tr	13	10	727	10-Inc	10-Inc	9	01-Dec	4	<- Correct	10
Tr	14	11	727	00-Eql	10-Inc	9	01-Dec	4	<- Correct	11
Tr	15	12	737	10-Inc	10-Inc	9	01-Dec	4	<- Correct	12
Tr	16	13	759	10-Inc	10-Inc	9	01-Dec	4	<- Correct	13
Tr	17	14	772	10-Inc	10-Inc	9	01-Dec	4	<- Correct	14

After a reset the last-2 trend, previous trend, and length outputs are all set to zero. In cycle 4 the last-2 output indicates an increasing sequence, so the current trend is set to increasing (a value of 10_2) and the start index is set to zero (which it was initialized at anyway).

Up until cycle 12 the samples had been increasing, but at cycle 12 the sample is smaller than the sample at cycle 11. By the definition of a descending segment, the first sample must be larger than the one before it, so the descending segment detected at cycle 12 (index 9) actually started on cycle 8 (index 5), and so the start index is 5. That's the value shown under IdxSt. This descending sequence ends quickly, in cycle 13 by the arrival of sample 727. The new ascending sequence starts at cycle 12 (index 9), and continues through cycle 17.

The sequence of samples above, from index 0 to index 14, consists of three segments. The first segment, from index 0 to 4, is ascending. The second segment, from index 5 to 8 is descending. The third segment, starting at index 9 is ascending (and continues until index 13, though that's not shown above).

Notice that when a new segment is detected, the information on the current one is moved to the TrPrev and LenP columns.

Additional output appears below:

	Сус с	Idx	\mathtt{Samp}	TrLst2	TrCurr	IdxSt	TrPrev I	LenP	Debug
Tr	16	13	759	10-Inc	10-Inc	9	01-Dec	4 <- Correct	13
Tr	17	14	772	10-Inc	10-Inc	9	01-Dec	4 <- Correct	14
Tr	18	15	769	01-Dec	01-Dec	14	10-Inc	5 <- Correct	15
Tr	19	16	762	01-Dec	01-Dec	14	10-Inc	5 <- Correct	16
Tr	20	17	762	00-Eql	01-Dec	14	10-Inc	5 <- Correct	17
Tr	21	18	764	10-Inc	10-Inc	16	01-Dec	2 <- Correct	18
Tr	22	19	764	00-Eql	10-Inc	16	01-Dec	2 <- Correct	19
Tr	23	20	764	00-Eql	10-Inc	16	01-Dec	2 <- Correct	20
Tr	24	21	776	10-Inc	10-Inc	16	01-Dec	2 <- Correct	21
Tr	25	22	776	00-Eql	10-Inc	16	01-Dec	2 <- Correct	22
Tr	26	23	787	10-Inc	10-Inc	16	01-Dec	2 <- Correct	23
Tr	27	24	787	00-Eql	10-Inc	16	01-Dec	2 <- Correct	24
Tr	28	25	771	01-Dec	01-Dec	23	10-Inc	7 <- Correct	25

	Сусс	Idx	Samp	TrLst2	TrCurr	TdxSt	TrPrev	I.enP			Debug
Tr	29	26	769	01-Dec	01-Dec	23	10-Inc	_	<-	Correct	26
Tr	30	27	762	01-Dec	01-Dec	23	10-Inc			Correct	27
Tr	31	28	771	10-Inc	10-Inc	27	01-Dec			Correct	28
Tr	32	29	762	01-Dec	01-Dec	28	10-Inc			Correct	29
Tr	33	30	738	01-Dec	01-Dec	28	10-Inc			Correct	30
Tr	34	31	738	00-Eq1	01-Dec	28	10-Inc			Correct	31
[sni				•							
	Сус с	Idx	\mathtt{Samp}	TrLst2	TrCurr	IdxSt	TrPrev	LenP			Debug
Tr	55	52	615	10-Inc	10-Inc	48	01-Dec	20	<-	Correct	52
Tr	56	53	622	10-Inc	10-Inc	48	01-Dec	20	<-	Correct	53
Tr	57	54	611	01-Dec	01-Dec	53	10-Inc	5	<-	Correct	54
Tr	58	55	618	10-Inc	10-Inc	54	01-Dec	1	<-	Correct	55
Tr	59	56	638	10-Inc	10-Inc	54	01-Dec	1	<-	Correct	56
Tr	60	57	633	01-Dec	01-Dec	56	10-Inc	2	<-	Correct	57
Tr	61	58	612	01-Dec	01-Dec	56	10-Inc	2	<-	Correct	58
Tr	62	59	598	01-Dec	01-Dec	56	10-Inc	2	<-	Correct	59
Tr	63	60	589	01-Dec	01-Dec	56	10-Inc	2	<-	Correct	60
Tr	64	61	609	10-Inc	10-Inc	60	01-Dec	4	<-	Correct	61
Tr	65	62	597	01-Dec	01-Dec	61	10-Inc	1	<-	Correct	62
Tr	66	63	607	10-Inc	10-Inc	62	01-Dec	1	<-	Correct	63
Tr	67	64	599	01-Dec	01-Dec	63	10-Inc	1	<-	Correct	64
	Сус с	Idx	\mathtt{Samp}	TrLst2	TrCurr		TrPrev				Debug
Tr	68	65	599	00-Eql	01-Dec	63	10-Inc			Correct	65
Tr	69	66	606	10-Inc	10-Inc	64	01-Dec			Correct	66
Tr	70	67	609	10-Inc	10-Inc	64	01-Dec	1	<-	Correct	67
Tr	71	68	611	10-Inc	10-Inc	64	01-Dec	1		Correct	68
Tr	72	69	625	10-Inc	10-Inc	64	01-Dec	1		Correct	69
Tr	73	70	631	10-Inc	10-Inc	64	01-Dec	1	<-	Correct	70
Tr	74	71	618	01-Dec	01-Dec	70	10-Inc	6	<-	Correct	71
Tr	75	72	629	10-Inc	10-Inc	71	01-Dec			Correct	72
Tr	76	73	629	00-Eq1	10-Inc	71	01-Dec			Correct	73
Tr	77	74	613	01-Dec	01-Dec	72	10-Inc	1	<-	Correct	74
Tr	78	75	620	10-Inc	10-Inc	74	01-Dec			Correct	75
Tr	79	76	627	10-Inc	10-Inc	74	01-Dec			Correct	76
Tr	80	77	629	10-Inc	10-Inc	74	01-Dec	2	<-	Correct	77
	~		~			T.1. G.					
_	Сусс	Idx	Samp	TrLst2	TrCurr		TrPrev			~ .	Debug
Tr	81	78	614	01-Dec	01-Dec	77	10-Inc			Correct	78 70
Tr	82	79	609	01-Dec	01-Dec	77	10-Inc			Correct	79
Tr	83	80	597	01-Dec	01-Dec	77	10-Inc			Correct	80
Tr	84	81	609	10-Inc	10-Inc	80	01-Dec			Correct	81
Tr	85	82	609	00-Eql	10-Inc	80	01-Dec			Correct	82
Tr	86	83	617	10-Inc	10-Inc	80	01-Dec			Correct	83
Tr	87	84	611	01-Dec	01-Dec	83	10-Inc			Correct	84
Tr	88	85	601	01-Dec	01-Dec	83	10-Inc			Correct	85
Tr	89	86	586	01-Dec	01-Dec	83	10-Inc	3	<-	Correct	86

Tr	90	87	575	01-Dec	01-Dec	83	10-Inc	3 <- Correct	87
Tr	91	88	557	01-Dec	01-Dec	83	10-Inc	3 <- Correct	88
Tr	92	89	549	01-Dec	01-Dec	83	10-Inc	3 <- Correct	89
Tr	93	90	561	10-Inc	10-Inc	89	01-Dec	6 <- Correct	90
	Сус с	Idx	\mathtt{Samp}	TrLst2	TrCurr	IdxSt	TrPrev 1	LenP	Debug
Tr	94	91	556	01-Dec	01-Dec	90	10-Inc	1 <- Correct	91
Tr	95	92	552	01-Dec	01-Dec	90	10-Inc	1 <- Correct	92
Tr	96	93	560	10-Inc	10-Inc	92	01-Dec	2 <- Correct	93
Tr	97	94	555	01-Dec	01-Dec	93	10-Inc	1 <- Correct	94
Tr	98	95	555	00-Eql	01-Dec	93	10-Inc	1 <- Correct	95
Tr	99	96	530	01-Dec	01-Dec	93	10-Inc	1 <- Correct	96

Helpful Examples

Past assignments and their solutions are linked to the assignments and exams page.

Problem 1: In the unsolved assignment trend2 does not set any of its outputs.
Complete trend2 so that it identifies the current and previous sequence segments as defined above.
Use instantiation(s) of ist_compare to determine the order of samples.
The module must be synthesizable. Use genus -files syn.tcl to synthesize your module.
Do not assume specific parameter values.
Code clearly.
Avoid overly costly or slow solutions.