LSU EE 4755 Homework 4 Due: 18 Nov 2025
""""""""""""""""""""""" Formatted 18:24, 11 November 2025

For instructions wvisit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2025/hw04.v.html.

Student Expectations
To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for Verilog programming and synthesis examples, and to seek out any
additional help and resources that might be needed. (Of course this doesn’t mean asking someone
else to solve it for you.) It is the students’ responsibility to resolve frustrations and roadblocks
quickly. (If you get stuck just ask for help!)

This assignment cannot be solved by blindly pasting together parts of past assignments. Solv-
ing the assignment is a multi-step learning process that takes effort, but one that also provides the
satisfaction of progress and of developing skills and understanding.

Collaboration Rules

Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of ATl LLM tools such as ChatGPT and Copilot
to answer questions and generate sample Verilog code. (Do not assume LLM output is correct.
Treat LLM output the same way one might treat legal advice given by a lawyer character in a
movie: it may sound impressive, but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if somehow necessary at this point), copy the assignment, and run the Verilog
simulator on the unmodified homework file, hw04.v. Do this early enough so that minor problems
(e.g., password doesn’t work) are minor problems.

Homework Overview

The module in this assignment is something like a sequential version of the sorted-sequence trend
from Homework 2, except the goal here is to detect when the sequence switches from ascending to
descending and vice versa.

The input to module trend2 consists of a sequence of samples. Samples are totally ordered
and module ist_compare determines their ordering. In this discussion the samples are shown
as unsigned integers, though your modules should never treat them as such (instead just have
ist_compare determine ordering).

The index of a sample is the position within the sequence. A sequence starts in the cycle the
reset input is asserted, and the sample has index zero. The sample arriving in the next cycle has
index one, and so on.

The samples will at one point be ascending (not necessarily incrementing by one each time), will
switch to descending, and switch again. The module is to find ascending segments and descending
segments and report their start index and length.

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2025/hw04.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

An ascending segment consists of a sequence of increasing or equal (non-decreasing) samples,
such as 1,3,7,12,12,20. Every sample is in exactly one segment, ascending or descending. The first
sample of a descending segment is strictly larger than the last sample of the ascending segment that
precedes it. The first sample of an ascending segment is strictly smaller than the last sample of the
descending segment that precedes it. Put another way, the sample at the start index (beginning) of
an ascending segment is always smaller than both its neighbors (preceding and succeeding), and the
sample at the start index (beginning) of an descending segment is always larger than its neighbors.

Consider the sequence 7100, 3101, 3102, 5103, 8104, 10105, 10106, 9107, 6108, 11109, ceey where the sub-
scripts indicate the index of the sample. For example, sample 3 is at index 101. The sub-sequence
3,3,5,8 is an ascending segment, and 10, 10,9 is a descending segment. Notice that the 10s are at
the beginning of the descending segment, they are not at the end of the ascending segment. The
ascending segment has start index 101 and length four. The descending segment has start index
105 and length 3.

Module trend2 has two parameters wd and wi. Parameter wd indicates the number of bits in
a sample and wi indicates the number of bits in an index or in a length. There are three inputs,
wd-bit input samp, and one bit inputs reset and clk. At each cycle samp holds a new sample. If
reset is 1, the sample arriving at that cycle is at index 0.

The module has five outputs, and each must be the outputs of registers. Their values at clock
cycle t should be based on the state of the inputs and history at clock cycle t — 1. At cycle t output
last_2_trend is the ordering (output of ist_compare) of the samples that arrived at cycles ¢ — 2
and ¢t — 1, or tr_equal if reset was 1 at cycle ¢t — 1.

Outputs prev_trend and prev_length are the trend and length of the most recent completed
segment, or 0 if no segment had been completed since the earliest reset. As with last_2_trend,
prev_trend is based on the output of ist_compare, and follow the same rules as the comparisons
used in Homework 2.

Output curr_idx_start is the start index of the most recently detected segment, and curr_trend
is its trend. After a reset output curr_idx_start should be set to 0 and curr_trend should be
set to tr_equal.

Note that it is only possible to detect the start of a segment at least one cycle after the first
sample of the segment arrived. For example, a descending segment can only be detected when the
current sample is smaller than the previous sample, but the previous sample and perhaps equal-
valued samples before it are part of the new descending segment. See the description of testbench
output, below, for examples of sequences and the outputs that are expected.

Testbench

To compile your code and run the testbench press |F9|in an Emacs buffer in a properly set up
account. The testbench will apply inputs to module trend2 and report on the results. Unlike other
assignments, only one module instantiation will be tested.

The testbench will show a trace for at least the first 10 cycles, with additional trace output
shown before errors. (To change the number of trace lines edit trace_lines_n_wanted, located
near the top of the testbench.) The trace is intended to both help you debug your module and
also to understand what outputs are expected. The trace lines from a correctly solved assignment
appear below, though more than 10 trace lines are shown.

Cyc ¢ Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug
Tr 3R 0 662 00-Eql 00-Eql 0 00-Eql 0 <- Correct 0
Tr 4 1 666 10-Inc 10-Inc 0 00-Eql 0 <- Correct 1
Tr 5 2 696 10-Inc 10-Inc 0 00-Eql 0 <- Correct 2
Tr 6 3 709 10-Inc 10-Inc 0 00-Eql 0 <- Correct 3
Tr 7 4 723 10-Inc 10-Inc 0 00-Eql 0 <- Correct 4

Tr 8 5 730 10-Inc 10-Inc 0 00-Eql 0 <- Correct 5
Tr 9 6 730 00-Eql 10-Inc 0 00-Eql 0 <- Correct 6
Tr 10 7 730 00-Eql 10-Inc 0 00-Eql 0 <- Correct 7
Tr 11 8 730 00-Eql 10-Inc 0 00-Eql 0 <- Correct 8
Tr 12 9 718 01-Dec 01-Dec 5 10-Inc 9 <- Correct 9
Tr 13 10 727 10-Inc 10-Inc 9 01-Dec 5 <- Correct 10
Tr 14 11 727 00-Eql 10-Inc 9 01-Dec 5 <- Correct 11
Tr 15 12 737 10-Inc 10-Inc 9 01-Dec 5 <- Correct 12

Errors last-2-trend: O

Errors current trend, idx start: 0, O

Errors previ trend, length: 0, O

Done. Summary: 10 resets, 6706 changes, errs: (pt,pl,ct,is,1lt) 0,0,0,0,0

The last four lines shown above, those starting with Errors and Done, show the number of
errors detected by the testbench. The output above is correct, and so has zero errors.

The lines starting with Tr are trace lines, which show the state of the sequence, expected
module outputs, and the value of the debug_val object in module trend2. Column headings for
the trace lines are shown about every sixteen lines. If there had been errors then an Er line would
appear after the trace line.

The Cyc column shows the current cycle. Unlike the index (Idx), cycle numbers never repeat.
The value under column ¢ shows an R when the reset input is set to 1. In the sample above this
occurs in cycle 3. The Idx column shows the index of the sequence. Recall that it is zero when
reset is 1, and then is incremented in subsequent cycles. The Samp column shows the value of the
samp input to the module (which is the sequence sample).

The TrLst2 column shows the correct value of the last_2_trend output, which should be set
to the trend of the last two samples. As with all trends, the value is shown in binary and using
descriptive text. On Er lines the actual module output is shown, but only if it is incorrect.

For trace lines the TrCurr column shows the correct value of the curr_trend output, and
IdxSt shows the correct value of the curr_idx_start output. For error lines those columns show
actual module output (but only when it is incorrect).

Column TrPrev and LenP show the correct value of the prev_trend and prev_Len outputs.
For error lines those columns show actual module output (but only when it is incorrect).

The Debug line shows the actual value of trend2.debug_val. This value is shown but not
checked. It is intended for debugging and can be set to whatever you like. In the output above
debug_val is set to the module’s value of idx.

The except below are the trace lines from an unmodified assignment:

Cyc ¢ Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug
Tr 3R 0 662 00-Eql O00-Eql 0 00-Eql 0 <- Correct 662
Er xx-Unk xx-Unk X xx-Unk X <- Mod Errors
Tr 4 1 666 10-Inc 10-Inc 0 00-Eql 0 <- Correct 666
Er xx-Unk xx-Unk X xx-Unk X <- Mod Errors
Tr 5 2 696 10-Inc 10-Inc 0 00-Eql 0 <- Correct 696
Er xx-Unk xx-Unk X xx-Unk X <- Mod Errors

In an unmodified assignments the module outputs are not connected, and so their values are
x (because they are var objects, had they been net objects their values would have been z). The
debug_val object is set to the samp input.

The output below is excerpted from a correct assignment. The sequences show what outputs
are expected. To start, consider the outputs following a reset (which will always occur at the start,

3

and at other times during testing):

Cyc ¢ Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug
Tr 3 R 0 662 00-Eql 00-Eql 0 00-Eql 0 <- Correct 0
Tr 4 1 666 10-Inc 10-Inc 0 00-Eql 0 <- Correct 1
Tr 5 2 696 10-Inc 10-Inc 0 00-Eql 0 <- Correct 2
Tr 6 3 709 10-Inc 10-Inc 0 00-Eql 0 <- Correct 3
Tr 7 4 723 10-Inc 10-Inc 0 00-Eql 0 <- Correct 4
Tr 8 5 730 10-Inc 10-Inc 0 00-Eql 0 <- Correct 5
Tr 9 6 730 00-Eql 10-Inc 0 00-Eql 0 <- Correct 6
Tr 10 7 730 00-Eql 10-Inc 0 00-Eql 0 <- Correct 7
Tr 11 8 730 00-Eql 10-Inc 0 00-Eql 0 <- Correct 8
Tr 12 9 718 01-Dec 01-Dec 5 10-Inc 5 <- Correct 9
Tr 13 10 727 10-Inc 10-Inc 9 01-Dec 4 <- Correct 10
Tr 14 11 727 O00-Eql 10-Inc 9 01-Dec 4 <- Correct 11
Tr 15 12 737 10-Inc 10-Inc 9 01-Dec 4 <- Correct 12
Tr 16 13 759 10-Inc 10-Inc 9 01-Dec 4 <- Correct 13
Tr 17 14 772 10-Inc 10-Inc 9 01-Dec 4 <- Correct 14

After a reset the last-2 trend, previous trend, and length outputs are all set to zero. In cycle 4
the last-2 output indicates an increasing sequence, so the current trend is set to increasing (a value
of 102) and the start index is set to zero (which it was initialized at anyway).

Up until cycle 12 the samples had been increasing, but at cycle 12 the sample is smaller than
the sample at cycle 11. By the definition of a descending segment, the first sample must be larger
than the one before it, so the descending segment detected at cycle 12 (index 9) actually started on
cycle 8 (index 5), and so the start index is 5. That’s the value shown under IdxSt. This descending
sequence ends quickly, in cycle 13 by the arrival of sample 727. The new ascending sequence starts
at cycle 12 (index 9), and continues through cycle 17.

The sequence of samples above, from index 0 to index 14, consists of three segments. The first
segment, from index 0 to 4, is ascending. The second segment, from index 5 to 8 is descending.
The third segment, starting at index 9 is ascending (and continues until index 13, though that’s
not shown above).

Notice that when a new segment is detected, the information on the current one is moved to
the TrPrev and LenP columns.

Additional output appears below:

Cyc ¢ Idx Samp TrLst2 TrCurr IdxSt TrPrev LenP Debug
Tr 16 13 759 10-Inc 10-Inc 9 01-Dec 4 <- Correct 13
Tr 17 14 772 10-Inc 10-Inc 9 01-Dec 4 <- Correct 14
Tr 18 15 769 01-Dec 01-Dec 14 10-Inc 5 <- Correct 15
Tr 19 16 762 01-Dec 01-Dec 14 10-Inc 5 <- Correct 16
Tr 20 17 762 00-Eql 01-Dec 14 10-Inc 5 <- Correct 17
Tr 21 18 764 10-Inc 10-Inc 16 01-Dec 2 <- Correct 18
Tr 22 19 764 O00-Eql 10-Inc 16 01-Dec 2 <- Correct 19
Tr 23 20 764 00-Eql 10-Inc 16 01-Dec 2 <- Correct 20
Tr 24 21 776 10-Inc 10-Inc 16 01-Dec 2 <- Correct 21
Tr 25 22 776 O00-Eql 10-Inc 16 01-Dec 2 <- Correct 22
Tr 26 23 787 10-Inc 10-Inc 16 01-Dec 2 <- Correct 23
Tr 27 24 787 00-Eql 10-Inc 16 01-Dec 2 <- Correct 24
Tr 28 25 771 01-Dec 01-Dec 23 10-Inc 7 <- Correct 25

4

Cyc
Tr 29
Tr 30
Tr 31
Tr 32
Tr 33
Tr 34
[snip]
Cyc
Tr 55
Tr 56
Tr 57
Tr 58
Tr 59
Tr 60
Tr 61
Tr 62
Tr 63
Tr 64
Tr 65
Tr 66
Tr 67
Cyc
Tr 68
Tr 69
Tr 70
Tr 71
Tr 72
Tr 73
Tr 74
Tr 75
Tr 76
Tr 7
Tr 78
Tr 79
Tr 80
Cyc
Tr 81
Tr 82
Tr 83
Tr 84
Tr 85
Tr 86
Tr 87
Tr 88
Tr 89

c Idx
26
27
28
29
30
31

c Idx
52
53
54
55
56
57
58
59
60
61
62
63
64

c Idx
65
66
67
68
69
70
71
72
73
74
75
76
7

c Idx
78
79
80
81
82
83
84
85
86

Samp
769
762
771
762
738
738

Samp
615
622
611
618
638
633
612
598
589
609
597
607
599

Samp
599
606
609
611
625
631
618
629
629
613
620
627
629

Samp
614
609
597
609
609
617
611
601
586

TrLst2
01-Dec
01-Dec
10-Inc
01-Dec
01-Dec
00-Eql

TrLst2
10-Inc
10-Inc
01-Dec
10-Inc
10-Inc
01-Dec
01-Dec
01-Dec
01-Dec
10-Inc
01-Dec
10-Inc
01-Dec

TrLst2
00-Eql
10-Inc
10-Inc
10-Inc
10-Inc
10-Inc
01-Dec
10-Inc
00-Eql
01-Dec
10-Inc
10-Inc
10-Inc

TrLst2
01-Dec
01-Dec
01-Dec
10-Inc
00-Eql
10-Inc
01-Dec
01-Dec
01-Dec

TrCurr IdxSt

01-Dec
01-Dec
10-Inc
01-Dec
01-Dec
01-Dec

23
23
27
28
28
28

TrCurr IdxSt

10-Inc
10-Inc
01-Dec
10-Inc
10-Inc
01-Dec
01-Dec
01-Dec
01-Dec
10-Inc
01-Dec
10-Inc
01-Dec

48
48
53
54
54
56
56
56
56
60
61
62
63

TrCurr IdxSt

01-Dec
10-Inc
10-Inc
10-Inc
10-Inc
10-Inc
01-Dec
10-Inc
10-Inc
01-Dec
10-Inc
10-Inc
10-Inc

63
64
64
64
64
64
70
71
71
72
74
74
74

TrCurr IdxSt

01-Dec
01-Dec
01-Dec
10-Inc
10-Inc
10-Inc
01-Dec
01-Dec
01-Dec

7
77
7
80
80
80
83
83
83

TrPrev LenP

10-Inc
10-Inc
01-Dec
10-Inc
10-Inc
10-Inc

e

TrPrev LenP

01-Dec
01-Dec
10-Inc
01-Dec
01-Dec
10-Inc
10-Inc
10-Inc
10-Inc
01-Dec
10-Inc
01-Dec
10-Inc

20

N
o

[U N O SIS SRS, |

TrPrev LenP

10-Inc
01-Dec
01-Dec
01-Dec
01-Dec
01-Dec
10-Inc
01-Dec
01-Dec
10-Inc
01-Dec
01-Dec
01-Dec

NNMNNRFR, PR, PR P PP

TrPrev LenP

10-Inc
10-Inc
10-Inc
01-Dec
01-Dec
01-Dec
10-Inc
10-Inc
10-Inc

W W wWwwwwwww

Correct
Correct
Correct
Correct
Correct
Correct

Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct

Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct

Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct
Correct

Debug
26
27
28
29
30
31

Debug
52
53
54
55
56
57
58
59
60
61
62
63
64

Debug
65
66
67
68
69
70
71
72
73
T4
75
76
7

Debug
78
79
80
81
82
83
84
85
86

Tr
Tr
Tr
Tr

Tr
Tr
Tr
Tr
Tr
Tr

Helpful Examples

90
91
92
93

Cyc
94
95
96
97
98
99

87
88
89
90

c Idx
91
92
93
94
95
96

575
557
549
561

Samp
556
5562
560
5565
555
530

01-Dec
01-Dec
01-Dec
10-Inc

TrLst2
01-Dec
01-Dec
10-Inc
01-Dec
00-Eql
01-Dec

01-Dec
01-Dec
01-Dec
10-Inc

83
83
83
89

TrCurr IdxSt

01-Dec
01-Dec
10-Inc
01-Dec
01-Dec
01-Dec

90
90
92
93
93
93

10-Inc
10-Inc
10-Inc
01-Dec

DWW w

TrPrev LenP

10-Inc
10-Inc
01-Dec
10-Inc
10-Inc
10-Inc

Correct
Correct
Correct
Correct

Correct
Correct
Correct
Correct
Correct
Correct

87
88
89
90

Debug
91
92
93
94
95
96

https://www.ece.lsu.edu/koppel/v/prev.html

IR

Problem 1: In the unsolved assignment trend2 does not set any of its outputs.

Complete trend?2 so that it identifies the current and previous sequence segments as defined above.
Use instantiation(s) of ist_compare to determine the order of samples.

The module must be synthesizable. Use genus -files syn.tcl to synthesize your module.

Do not assume specific parameter values.

Code clearly.

Avoid overly costly or slow solutions.

	Problem 0
	Problem 1

