LSU EE 4755 Homework 3 Due: 24 October 2025
Formatted 16:22, 20 October 2025

Student Expectations
To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for Verilog programming and synthesis examples, and to seek out any
additional help and resources that might be needed. (Of course this doesn’t mean asking someone
else to solve it for you.) It is the students’ responsibility to resolve frustrations and roadblocks
quickly. (If you get stuck just ask for help!)

This assignment cannot be solved by blindly pasting together parts of past assignments. Solv-
ing the assignment is a multi-step learning process that takes effort, but one that also provides the
satisfaction of progress and of developing skills and understanding.

Collaboration Rules

Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problems start on next page.

https://www.ece.lsu.edu/koppel/v/

O Ooogo

I

Problem 1: Appearing on the next page is the solution to Homework 2 Problem 2.

(a) Show the inferred hardware as described below.
Show hardware that will be inferred for an arbitrary n > 3.
Show the recursive instantiations as boxes (don’t show what’s inside, other than a label).

Be sure to distinguish between synthesized hardware and elaboration time computation!

Show each trend object (trend, trlo, trhi) as two wires rather than a two-bit wire.

Use a box for the adder and a box for the inequality sidxlo != nlo.

Use basic gates (AND, OR, NAND, NOR, XOR, XNOR, NOT) and multiplexors for other logic,
especially the else if condition.

See 2024 Homework 4 for an example of showing inferred hardware for a recursively described
module.

(b) Compute the cost and critical path of the hardware at one level in terms of n and w, assuming
n > 3. For cost ignore the cost of the recursive instantiations themselves. Assume (unrealistically)
that the arrival time of the outputs of the recursive instantiations, sidxlo, eilo, trlo, sidxhi,
eihi, and trhi all arrive at ¢t = 0.

In terms of n and w compute the cost using the simple model D accounting for constants.

In terms of n and w compute the delay for each output, sidx, eidx, and trend D assuming that
the outputs of the recursive instantiations all arrive at t = 0 and | | accounting for constants.

Don’t forget to distinguish between synthesized hardware and elaboration-time computation.

See the 2024 midterm exam for a similar problem.

module is_sorted to_tree
#(int n = 12, int w = 32, int wi = $clog2(n), bit pot = 1)
(output logic [wi-1:0] sidx, eidx,
output logic [1:0] trend,
input uwire [w-1:0] a[n-1:0]);

if (n==1) begin // Base Case: One element.

assign sidx = 0; // "Entire" sequence sorted.
assign eidx = 0; // "Entire" sequence equal.
assign trend = 0; // All elements (just one) equal.

end else if (n == 2) begin

// Base Case: Two elements. Sorted (either ascending or descending).
assign sidx = 1; // Entire sequence sorted.

assign eidx = trend 7 0 : 1;

ist_compare #(w) 1lti(trend, a[0], a[1]);

end else begin

localparam int nlg = $clog2(n-1) - 1;
pot 7 1 << nlg : n / 2;
n - nlo;

localparam int nlo
localparam int nhi
localparam int wilo = $clog2(nlo+1), wihi = $clog2(nhi);

uwire [wilo-1:0] sidxlo, eilo;
uwire [wihi-1:0] sidxhi, eihi;
uwire [1:0] trlo, trhi;

is_sorted_to_tree #(nlo+l,w,wilo,pot) islo(sidxlo, eilo, trlo, al[nlo:0]);
is_sorted_to_tree #(nhi,w,wihi,pot) ishi(sidxhi, eihi, trhi, a[n-1:nlo]);

always_comb begin
if (sidxlo != nlo) begin
eidx = eilo;
sidx = sidxlo;
trend = trlo;
end else if ((trlo | trhi) == 2’bl1l) begin
eidx = eilo;
sidx = nlo + eihi;
trend = trlo;
end else begin
eidx = trlo 7 eilo : nlo + eihi;
sidx = nlo + sidxhi;
trend = trlo | trhi;
end
end
end
endmodule

Problem 2: Appearing below is a solution to Problem 1.

module is_sorted_to_iter #(int n = 12, int w = 32, int wi = $clog2(n))
(output logic [wi-1:0] sidx, eidx, output logic [1:0] trend,
input uwire [w-1:0] a[n-1:0]);

// Instantiate ist_compare.
uwire [1:0] cmpa[n];
for (genvar i=1; i<n; i++)
ist_compare #(w) 1ti(cmpalil, ali-1], al[il);

always_comb begin

eidx = 0;
sidx = n-1;
trend = O;

for (int i=1; i<n; i++) begin

// Check whether there was a non-zero trend and if it is now broken.
if (trend && cmpali] && cmpal[i] != trend)

begin
sidx = i - 1; // The length of the sorted prefix has been found, set sidx ..
break; // .. and exit the loop.
end
trend |= cmpalil;
if (trend == 0) eidx = i;
end
end
endmodule

(a) Show inferred hardware without optimization as described below.

D Show hardware that will be inferred for the hardware above for n=4 D but only the hardware
inferred for the first iteration of the i loop.

D Note that trend and comp[1] each have two bits. Show each as two wires and handle the bits
individually.

D Don’t optimize in this part.
(b) Show the hardware for the i=1 iteration after optimizing, especially for constants, including
initial values of trend, eidx, and sidx.

D Show the hardware for the i=1 iterration after optimizing.

[] Be sure to optimize for constants, including initial values of trend, eidx, and sidx.

	Problem 1
	Part char 97
	Part char 98

	Problem 2
	Part char 97
	Part char 98

