
LSU EE 4755 Homework 2 Due: 15 Oct 2025
Formatted 14:54, 10 October 2025

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete Verilog
for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2025/hw02.v.html.

Student Expectations
To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for Verilog programming and synthesis examples, and to seek out any
additional help and resources that might be needed. (Of course this doesn’t mean asking someone
else to solve it for you.) It is each student’s duty to himself or herself to resolve frustrations and
roadblocks quickly. (If you get stuck just ask for help!)

This assignment cannot be solved by blindly pasting together parts of past assignments. Solv-
ing the assignment is a multi-step learning process that takes effort, but one that also provides the
satisfaction of progress and of developing skills and understanding.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if necessary), copy the assignment, and run the Verilog simulator on the un-
modified homework file, hw02.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Overview
The modules in this assignment have an array input, a, and three outputs, trend, sidx, and eidx,
such as is_sorted_to_proc:

module is_sorted_to_proc
#(int n = 12, int w = 32, int wi = $clog2(n))

(output logic [wi-1:0] sidx, eidx,

output logic [1:0] trend,

input uwire [w-1:0] a[n-1:0]);

The array input carries an n-element array of w-bit unsigned integers. The modules are to determine
how much of the array is sorted, and whether the direction (trend) is increasing, decreasing, or if
all elements are identical. Two-bit output trend indicates the direction of the sorted part: 2’b10

for increasing, 2’b01 for decreasing, and 2’b00 when all elements are equal. Output sidx indicates
the array index of the last sorted element. That is, elements at index 0, 1, . . . , sidx should be
sorted in direction trend and the element at sidx+1 should ruin the trend. If the entire array is

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2025/hw02.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

sorted sidx=n-1. The smallest possible value is sidx=1. The smallest value is 1 and not 0 because
any two values will either form an increasing sequence, a decreasing sequence, or be equal. Output
eidx indicates the index of the last repeated value (starting from index 0). The smallest value is
eidx=0 (the first and second elements differ) and the largest value is eidx=n-1. For examples of
what trend, sidx, and eidx should be see the description of the testbench output.

There are three modules that compute these outputs, is_sorted_proc, is_sorted_iter, and
is_sorted_tree. Module is_sorted_proc is complete and works. It is there for your reference.
The other two modules are to be solved. In both cases the comparisons in those modules are to be
made by instantiation(s) of ist_compare. Module is_sorted_iter is to be completed for Problem
1, using iterative generate statements. Module is_sorted_proc is to be completed for Problem 2,
using recursive instantiations.

Remember that is_sorted_to_proc is correct, and it can be used to help with the other
modules:

localparam logic [1:0] incr = 2, decr = 1;

module is_sorted_to_proc
#(int n = 12, int w = 32, int wi = $clog2(n))

(output logic [wi-1:0] sidx, eidx, output logic [1:0] trend,

input uwire [w-1:0] a[n-1:0]);

always_comb begin

sidx = n-1;

eidx = 0;

trend = 0;

for (int i=1; i<n; i++) begin

if (a[i] > a[i-1]) begin

if (trend == decr) begin sidx = i - 1; break; end

trend = incr;

end

if (a[i] < a[i-1]) begin

if (trend == incr) begin sidx = i - 1; break; end

trend = decr;

end

if (trend == 0) eidx = i;

end

end

endmodule

The modules for both problems should use module ist_compare to perform the comparisons:

module ist_compare
#(int w = 15)

(output uwire [1:0] gl, input uwire [w-1:0] a, b);

assign gl = { a < b, a > b };

endmodule

The goal of Problem 1 is to exercise understanding of the difference between Verilog structural
descriptions and behavioral descriptions, and to work with generate statements. Its solution is
straightforward. (If it’s not straightforward to you please ask for help.) The goal of Problem 2 is
to exercise skill in writing recursive descriptions of tree-structured hardware.

2

Testbench
To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up ac-
count. The testbench will instantiate modules is_sorted_proc, is_sorted_iter, and is_sorted_tree

for several different array sizes (n) and widths (w). Each module will be tested with 10,000 arrays
(as of this writing). If there are errors the first few errors will be reported in detail. To help with
your understanding two outputs of each trend for each module is shown in detail. The testbench
finishes up by showing a tally of the total number of errors.

Appearing below is are excerpts from the testbench output for a correctly solved solution.

Compilation started at Tue Oct 7 13:11:36

xrun -sv -batch -exit hw02.v

TOOL: xrun(64) 25.03-s001: Started on Oct 07, 2025 at 13:11:37 CDT

[snip]

Starting tests for is_sorted_to_proc n=4, w=8.

Output below is correct, it shows trend 01 -- decreasing.

0 1e 2 3s

198 198 138 101

Output below is correct, it shows trend 10 -- increasing.

0e 1s 2 3

16 58 57 211

A sample output starts with the text Output below. That’s followed by two lines, the first
line shows the indices, numbered 0 to n-1, and second line shows the corresponding elements of a.
The correct value of eidx is indicated by an index followed by the letter e, such as 1e and 0e in
the two samples above. The correct value of output sidx is indicated by an index followed by the
letter s, such as 3s and 1s in the samples above.

Some additional sample outputs are shown below:

Starting tests for is_sorted_to_tree n=10, w=9.

Output below is correct, it shows trend 10 -- increasing.

0 1 2 3 4e 5 6 7s 8 9

203 203 203 203 203 273 273 273 272 493

Output below is correct, it shows trend 01 -- decreasing.

0 1e 2 3 4 5 6 7 8s 9

483 483 472 472 303 282 282 199 38 39

Output below is correct, it shows trend 01 -- decreasing.

0 1 2e 3 4 5 6 7 8s 9

466 466 466 113 56 52 52 52 52 53

Output below is correct, it shows trend 10 -- increasing.

0 1e 2 3 4 5s 6 7 8 9

36 36 439 439 439 439 438 476 445 30

Output below is correct, it shows trend 00 -- equal.

0 1 2 3 4 5 6 7 8 9es

443 443 443 443 443 443 443 443 443 443

Output below is correct, it shows trend 00 -- equal.

0 1 2 3 4 5 6 7 8 9es

246 246 246 246 246 246 246 246 246 246

[snip]

The testbench finishes by showing a tally of errors:

3

Total is_sorted_to_proc n= 4: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_proc n= 5: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_proc n= 6: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_proc n= 7: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_proc n= 8: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_proc n= 9: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_proc n=10: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_iter n= 4: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_iter n= 5: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_iter n= 6: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_iter n= 7: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_iter n= 8: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_iter n= 9: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_iter n=10: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_tree n= 4: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_tree n= 5: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_tree n= 6: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_tree n= 7: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_tree n= 8: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_tree n= 9: Errors: 0 trend, 0 sidx, 0 eidx.

Total is_sorted_to_tree n=10: Errors: 0 trend, 0 sidx, 0 eidx.

Grand Total Errors: 0 trend, 0 sidx, 0 eidx.

The testbench excerpts above are for a correct solution. When there are errors the testbench
will show the incorrect and correct value for each incorrect output, followed by a sample. For
example, on an unmodified assignment the testbench (after startup spew) output will start with:

Starting tests for is_sorted_to_iter n=4, w=7.

Error trend xx != 01 (correct)

Error sidx x != 3 (correct)

Error eidx x != 1 (correct)

0 1e 2 3s

99 99 69 50

Error trend xx != 10 (correct)

Error sidx x != 1 (correct)

Error eidx x != 0 (correct)

0e 1s 2 3

8 29 28 105

[snip]

In the unmodified assignment none of the outputs of is_sorted_to_iter are connected and
so the output values are x, that’s shown above. Appearing below is sample output of a partially
solved but still incorrect is_sorted_to_tree. The output shows correct and incorrect outputs:

Starting tests for is_sorted_to_tree n=4, w=7.

Output below is correct, it shows trend 01 -- decreasing.

0 1e 2 3s

99 99 69 50

Error sidx 0 != 1 (correct)

0e 1s 2 3

8 29 28 105

Output below is correct, it shows trend 10 -- increasing.

4

0 1e 2 3s

49 49 70 70

Output below is correct, it shows trend 01 -- decreasing.

0 1e 2 3s

109 109 75 14

Error sidx 0 != 1 (correct)

0e 1s 2 3

23 3 4 118

[snip]

Did 10000 tests of tree n=4, w=7. Errors 0 trend, 6740 sidx, 0 eidx.

[snip]

To help you debug it is okay to modify the testbench so that it applies tests that help you
discover flaws. The best thing to do is to add additional tests, or move a test so that it is first. If
you eliminate tests, be sure to put them back. Note that the TA-bot will use a fresh testbench,
not the version in your file.

References and Helpful Examples
The modules in this assignment must be recursively defined, so that they describe a tree-like
structure. See the clz module from 2019 Homework 2. The assignment and its solution are part of
the 2025 assignment directory, look for the file names starting 2019.

A more complex recursive module was the subject of 2024 Homework 3, in which the goal was
to count and manipulate bracketing characters.

5

Problem 1: Complete module is_sorted_to_iter so that it categorizes its input array as de-
scribed in the overview above, and does so using instantiations of module ist_compare for array
element comparisons. The module should make use of a generate loop to instantiate ist_compare,
but it can use procedural code to compute trend, sidx, and eidx in terms of ist_compare out-
puts. The module must pass the testbench and be synthesizable. Synthesis can be run with the
command genus -files syn.tcl.

A good place to start is by looking at module is_sorted_to_proc. It computes the correct
outputs, but it does not use ist_compare.

See the check boxes in the assignment code for additional requirements and tips.

Problem 2: Complete module is_sorted_to_tree so that it categorizes its input array as de-
scribed in the overview above, the module must be recursive and describe tree-shaped hardware, it
must use instantiations of module ist_compare for array element comparisons, and so that recur-
sive instantiation sizes simplify arithmetic expressions like nlo + valhi (see below). The module
must pass the testbench and be synthesizable.

Completing this module is more difficult than other modules describing tree-shaped hardware
such as simple_tree and min_t from the lectures. Make sure you understand those before at-
tempting this problem. One difficulty is that there are three outputs to combine, trend, sidx,
eidx, not just one as in the min_t and clz modules. Another difficulty is how to compare the last
element in the “lo” module and the first element in the “hi” module. Be creative. Note that the
place where ist_compare is instantiated depends upon the way in which the problem is solved.

Choose recursive instance sizes to optimize addition of constants to output values. For example,
if elaboration-time constant nlo is related to the size of one of the recursive instances and valhi

is some output of the other instance, and you need to compute nlo + valhi, choose nlo so that it
is a power of 2. Unlike 2019 Homework 2, there is no need to rewrite expressions like nlo + valhi

as { 2’b1 + valhi[um], valhi[um-1:0] }.
In a correct solution the time to compute the outputs will be closer to O(logn) then O(n).

(The time for is_sorted_to_iter is closer to O(n).)
The synthesis script just tries out two sizes, so it’s difficult to see the trend.

6

	Problem 0
	Problem 1
	Problem 2

