
LSU EE 4755 Homework 1 Due: 17 September 2025
Solution Formatted 15:44, 18 October 2025

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete Verilog
for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2025/hw01.v.html.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the assign-
ment alone. Test questions will be based on homework questions and the assumed time needed to
complete the question will be for a student who had solved the homework assignment on which it
was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator on the unmodified homework
file, hw01.v. Do this early enough so that minor problems (e.g., password doesn’t work) are minor
problems.

Homework Introduction
This assignment is a straightforward Verilog coding task. Those familiar with Verilog should be
able to solve it in a few minutes. Most of the time will be spent on tasks such as finding the lab,
logging in, and familiarizing yourself with the software.

Testbench
To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up

account. (Of course the testbench won’t run until any compilation errors are fixed.) The testbench
will test module for Problem 1 in this assignment. The beginning of the testbench output, which
may quickly scroll by, will look something like this:
Compilation started at Tue Sep 9 17:17:20

xrun -sv -batch -exit hw01.v

TOOL: xrun(64) 25.03-s001: Started on Sep 09, 2025 at 17:17:20 CDT

xrun(64): 25.03-s001: (c) Copyright 1995-2025 Cadence Design Systems, Inc.

Recompiling... reason: file ’./hw01.v’ is newer than expected.

expected: Tue Sep 9 16:09:19 2025

actual: Tue Sep 9 16:10:01 2025

file: hw01.v

At the end of the testbench output is a tally of the number of errors in each module. For a correctly
solved assignment the output will be:

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2025/hw01.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

After 128 tests, 0 errors.

xmsim: *W,RNQUIE: Simulation is complete.

xcelium> exit

TOOL: xrun(64) 25.03-s001: Exiting on Sep 09, 2025 at 17:17:22 CDT (total: 00:00:02)

Further up in the output the testbench shows the details for any modules that produced incorrect
output (which is not the case above). The testbench will only show details of the first few errors
in each module.

An unmodified assignment file will show errors. Here is an except from of the output:

For a=0, b=0, c=0, d=0, e=0, f=0, g=1 error x=0 != 1 (correct)

For a=0, b=0, c=0, d=0, e=0, f=1, g=1 error x=0 != 1 (correct)

For a=0, b=0, c=0, d=0, e=1, f=0, g=1 error x=0 != 1 (correct)

For a=0, b=0, c=0, d=0, e=1, f=1, g=0 error x=0 != 1 (correct)

For a=0, b=0, c=0, d=0, e=1, f=1, g=1 error x=0 != 1 (correct)

For a=0, b=0, c=0, d=1, e=0, f=0, g=1 error x=0 != 1 (correct)

For a=0, b=0, c=0, d=1, e=0, f=1, g=1 error x=0 != 1 (correct)

For a=0, b=0, c=0, d=1, e=1, f=0, g=1 error x=0 != 1 (correct)

For a=0, b=0, c=0, d=1, e=1, f=1, g=0 error x=0 != 1 (correct)

After 128 tests, 64 errors.

Common Problems
Here are some common errors messages, which will be encountered when the code is compiled (for

example, by pressing F9).

file: hw01.v

mult mym(p, a[0], b[0]);

!

xmvlog: *E,NODFNT (hw01.v,105!13): Implicit net declaration (p) is NOT allowed, since

‘default_nettype is declared as NONE [19.2(IEEE 2001)].

The problem above is that p was never declared. “Implicit net declaration” refers to a Verilog
feature in which an object is assumed to be a wire if it had not been declared. That feature has
been turned off since it can hide typos. The solution is to declare something like uwire [um-1:0]

p;.

Helpful Examples
A good past assignment to look at is 2024 Homework 1. Like this assignment, a module, say dot4,
is completed by instantiating other modules. But in this assignment the (minor) challenge is to
figure out what those other modules are.

2

Problem 1: Appearing below is a logic diagram of what we’ll call CC1 (combinational circuit 1).
Notice that pieces of logic in the diagram seem to repeat, such as around the exclusive or gate.
Write a Verilog description of CC1 using two Verilog modules, mCC1, which should compute CC1
output x, and mP1 (module part 1) which should implement those pieces of logic that seem to
repeat. Starter code for module mCC1 is in hw01.v, including the module ports. You’ll have to be
able to (meaning you, not just a classmate or some large language model) write module mP1 from
scratch.

a

b

c
d

x

e

f
g

� Complete mCC1 so it implements CC1.

� The testbench should show zero errors.

�Module mCC1 should instantiate module mP1 several times.

�Module mP1 should have at least two gates � and one of those should connect to the other.

� Both modules can also contain primitive instantiations. Yes, this is one of those rare times you are
told to use primitives.

� The modules cannot contain explicit structural code (that is, no assign statements) or behavioral
code (which we haven’t covered yet anyway), and so primitives are the only way to solve it.

�Avoid logically correct but overly complex solutions. Also, don’t try to optimize.

Solution appears on the next page.

3

The original logic drawn as a module, and showing three instantiations of mP1 appears below.

a

b

c
d

x

e

f
g

mCC1

mP1

mP1

mP1

i1

i2

i3

The Verilog for mP1 and mCC1 appear below.

a

b
c

x

mP1
module mP1(output uwire x, input uwire a, b, c);

uwire ab;

and a1(ab, a, b);

xor x1(x, ab, c);

endmodule

module mCC1(output uwire x,

input uwire a, b, c, d, e, f, g);

uwire y1, y2, y3, y5, y6;

mP1 i1(y1, c, d, e);

and a2(y2, y1, f);

mP1 i2(y3, b, f, y1);

and a1(y5, y3, y2);

mP1 i3(y6, a, f, y5);

or o1(x, y6, g);

endmodule

There’s another problem on the next page.

4

Problem 2: Run synthesis on your solution to Problem 1. Synthesis can be run using the command
genus -files syn.tcl in the assignment directory. After a slow and wordy start (it admits to
taking 17 seconds before even getting around to actually looking at your code), if all goes well it
will write:

Module Name Area Delay Delay Synth

Actual Target Time

mCC1 1854 0.71 100.0 ns 5 s

mCC1_1 4604 0.38 0.1 ns 5 s

And then finish gracelessly with:

Normal exit.

Segmentation Fault accessing address 0.

Fatal internal error, code 11 (Segmentation fault)

Encountered a problem while exiting.

If the last line reads @genus:root: 15> then type exit and enter to exit.

The table above was actually produced by script syn.tcl, which is in the assignment directory
alongside hw01.v. In this case the script synthesized mCC1 twice, once with a delay target of 100 ns,
and again with a delay target of 0.1 ns. Each row of the table corresponds to a synthesis. The
column Delay Actual shows the actual delay achieved. Notice that for the 100 ns target the result
was much faster than the target, but for the 0.1 ns target the actual module was slower. The Area

column indicates the chip are of the two syntheses. Finally Synth Time shows how long it took to
synthesize, it does not indicate anything about the synthesized module, just how much of our time
synthesis took.

The results of the syntheses can be found in the fv directory, with one subdirectory for each synthe-
sis. The directory names match the text under Module Name. A Verilog version of the synthesized
module can be found in file fv_map.v.gz. (If you open the file in Emacs it will automatically
decompress the file.) The file contains the mCC1 module, but with instantiations of the Oklahoma
State University ASIC modules. Descriptions of the modules can be found at
file:///apps/linux/cadence/standard_cell/osu_soc_v2.7/cadence/lib/ami035/html/indexframe.html

Draw a circuit diagram of the design using fewer modules. That is, look at one of the fv_map.v.gz

files, and the Web page describing the Oklahoma modules, and draw a circuit diagram of the simpler
module. Your circuit diagram should consist of AND, OR, XOR, and NOT gates, not boxes labeled
with the Oklahoma AMI035 module names.

� Draw a circuit diagram of the simpler module. � The diagram should use AND, NAND, OR,
NOR, XOR, XNOR, and NOT gates.

� Did the synthesis program ×© actually optimize your design, or did it ©merely replace

primitives with closely matching Oklahoma AMI035 cells? � Explain.

Solution on next page.

5

The synthesis output followed by a diagram of this logic appears below.

// Generated by Cadence Genus(TM) Synthesis Solution 25.10-p002_1

// Generated on: Oct 17 2025 16:48:32 CDT (Oct 17 2025 21:48:32 UTC)

module mCC1(x, a, b, c, d, e, f, g);

input a, b, c, d, e, f, g;

output x;

wire a, b, c, d, e, f, g;

wire x;

wire n_0, n_1, n_2, n_3, n_4;

INVX1 g199(.A (n_4), .Y (x));

AOI21X1 g200(.A (f), .B (n_3), .C (g), .Y (n_4));

XOR2X1 g201(.A (n_2), .B (a), .Y (n_3));

NOR2X1 g202(.A (b), .B (n_1), .Y (n_2));

XOR2X1 g203(.A (n_0), .B (e), .Y (n_1));

NAND2X1 g204(.A (d), .B (c), .Y (n_0));

endmodule

x

NAND2X1
XOR2X1

XOR2X1

NOR2X1

AOI2X1
INVX1

a

b

c
d

e

f
g

mCC1

Notice that input f just connects to one gate, in contrast to the original diagram, where f connected to three gates. So

it looks like the synthesis program actually optimized the design.

Grading note: In many solutions students commented on how what looked like unnecessary inversions, such as the AOI

followed by a NOT gate near the output. The reason for that is that in many logic families it is less costly and faster to

make a gate that inverts, such as NAND and a NOR. Though in the logic above it might seem wasteful to put in that

final NOT gate, the savings by using inverting gates (NAND and NOR) are greater than the cost of the NOT.

Note: In the original assignment NOR, NAND, and XNOR were not in the list of gates that could
be used. That was an oversite. Full credit would be given both for a NAND and for an AND followed
by a NOT. Points were deducted, on the other hand if, say, the final NOT was omitted.

6

	Problem 0
	Problem 1
	Problem 2

