This document contains assignments given in LSU EE 4755 over many
semesters. It was automatically generated and so some solutions (and even
some assignments) are possibly missing. At the top of each page of each as-
signment is a link to the original assignment. Those who want to print an
assignment might follow that link. All assignments and public solutions are
available at https://www.ece.lsu.edu/eed4755/prev.html.

Contents
I Fall 2024 4
TT 00D« o o o e e e e e 5
T2 Topdl] . o o o o oo 16
2 Fall 2023] 27
DT 00T o o o o e e 28
32 To DAl « o o o 36
B Fall 2022 45
BT 00 DA o o o e e e e 46
B2 To DAl .« o o o 57
d_TFall 2021] 68
BT mepdl] . . oo 69
B2 Topdl . . o oo 80
F__Fall 2020 97
................................. 98
B2 To. DAl « o o o o 106
[6_Fall 2019 115
B mEpdl] . . oo 116
B2 Topdl . o oo 123
[T_Fall 2018] 132
................................. 133
T2 To DAl « o o oo 139
[8Fall 2017 150
................................. 151
B2 To. DAl « o o o o 158
[0 Fall 2016l 167
0.1 mt.pdl]l 168
0.2 Topdl] . o o e 177

https://www.ece.lsu.edu/ee4755/prev.html

186
187
194

206
207
217

227
228
236

245
246
254

[22 Fall 2016 Solutions
...............................
D32 16 SOLDAN - « o v e e e e e e

125 Spring 2001 Solutions|
...............................

— Fall 2024 Midterm Exam Exam mt . pdf

1 Fall 2024

https://www.ece.lsu.edu/ee4755/2024/mt.pdf

Staple This Side

Staple This Side

— Fall 2024 Midterm Exam Exam

Name Formatted For 2-Sided Printing

Digital Design Using HDLs
LLSU Bk 4755
Midterm Examination

Wednesday, 23 October 2024, 11:30-12:20 CDT

Problem 1
Problem 2
Problem 3
Problem 4

Problem 5

Alias Exam Total

Good Luck!

mt . pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2024/mt.pdf

— Fall 2024 Midterm Exam Exam mt . pdf

Problem 1: [22 pts] Below is the Homework 3 Problem 1 solution with some object names shortened.

typedef enum logic [3:0] {Char_Blank=0, Char_Dot=1, Char_Open=2, Char_Close=3} Char;
module pmatch_a #(int n = 5, wn = $clog2(n+l))
(output logic [wn-1:0] 1t_un_close, rt_un_open, input uwire [3:0] str[0:n-1]);
if (n ==1) begin
assign lt_un_close = str[0] == Char_Close 7 1 : 0;
assign rt_un_open = str[0] == Char_Open 1 0;
end else begin
localparam int n_left = n/2;
localparam int n_right = n - n_left;
localparam int wl = $clog2(n_left+l), wr
uwire [wl-1:0] 1t_close, lt_open;
uwire [wr-1:0] rt_close, rt_open;
pmatch_a #(n_left, wl) plt(lt_close, lt_open, str[0:n_left-1]);
pmatch_a #(n_right, wr) prt(rt_close, rt_open, strln_left:n-1]);

-~

g
s
&

$clog2(n_right+1);

uwire logic signed [wn-1:0] delta = lt_open - rt_close;
assign 1t_un_close = delta < 0 7 lt_close - delta : lt_close;
assign rt_un_open = delta >= 0 ? rt_open + delta : rt_open;

end
endmodule

(a) Show the hardware that will be inferred for the base case. Show hardware after optimization taking into
account constants.

D Show inferred hardware for base (n==1) case of the module above. D Show input and output ports.

D Optimize taking into account I:] constant values of all kinds. E] Don’t miss the Char definition above the
module. D Don’t show a comparison unit such as E], instead show the gates from which it was made

and D optimize them, D taking into account the number of bits on each output port.

Staple

https://www.ece.lsu.edu/ee4755/2024/mt.pdf

— Fall 2024 Midterm Exam Exam

Staple This Side

Staple This Side

pmatch_a
plt
o _ W
5| o W/l — 1
I_| 3 |t close — -
2| & w £
=l 5 |1t open |
I 7 o 0
4 o w-1 ® 3 O
- or 0
—E Q 0 I= o
n prt W 3
w-1 Io
© + ro]
3 3 | rt close 0
| o W =Y
D —
2 S w1 +
5 IQ) l/
o rt_open

Appearing above is hardware that will be inferred for the non-base case.

(b) Compute the cost of the hardware at this level (ignore what’s inside plt and prt) based on the simple
model using the bit widths from the diagram, such as w-1.

D Show the cost of each component except for hardware inside of plt and prt.

D Be sure to show the cost of the optimized comparison unit!

(¢) Compute the delay through the module starting from launch points 1t_close, 1t_open, rt_close, and
rt_open. The capture points are 1t_un_close and rt_un_open. Use the bit widths from the diagram, such

as w-1.
D Show the arrival time at each wire from launch to capture.

D Take into account cascaded ripple units and D and the optimized comparison unit.

mt . pdf

https://www.ece.lsu.edu/ee4755/2024/mt.pdf

— Fall 2024 Midterm Exam Exam mt . pdf

Problem 2: [18 pts] Appearing below is an alternative solution to Homework 3 Problem 1. The only
difference is the last few lines.

module pmatch_b #(int n = 5, wn = $clog2(n+1))
(output logic [wn-1:0] 1t_un_close, rt_un_open,
input uwire [3:0] str[0:n-1]);
if (n==1) begin
assign lt_un_close = str[0] == Char_Close 7 1 : 0;
assign rt_un_open = str[0] == Char_Open ?
end else begin
localparam int n_left = n/2;
localparam int n_right = n - n_left;
localparam int wl = $clog2(n_left+l), wr
uwire [wl-1:0] 1t_close, 1lt_open;
uwire [wr-1:0] rt_close, rt_open;
pmatch_b #(n_left, wl) plt(lt_close, lt_open, str[0:n_left-1]);
pmatch_b #(n_right, wr) prt(rt_close, rt_open, strln_left:n-1]);
uwire logic signed [wn-1:0] delta = lt_open - rt_close;
// Lines above are identical to pmatch_a.

—
o

Staple This Side

$clog2(n_right+1);

uwire [wn-1:0] delta_n = delta < 0 7 delta : 0;
uwire [wn-1:0] delta_p = delta >= 0 7 delta : 0;
assign 1lt_un_close = lt_close - delta_n;
assign rt_un_open = rt_open + delta_p;
end
endmodule

(a) Show the hardware that will be inferred for pmatch_b. For your convenience the hardware for pmatch_a
is shown in the upper right. Note: In the original exam the condition for delta_n was delta <= 0 and the
condition for delta_p was delta > 0. Though the hardware computed the correct result, the comparison
would have been more expensive since it would have had to check for a zero condition, not just negative.

[] Show inferred hardware on the facing page.

(b) Compute the simple-model cost of the hardware.

D Write next to components that cost the same as corresponding components in pmatch_a and I:] com-

pute the cost of other components D after optimization.

(¢) Compare the critical path lengths.

D Will the critical path in pmatch_a be much different than the one in pmatch_b? I:] Explain.

&

https://www.ece.lsu.edu/ee4755/2024/mt.pdf

— Fall 2024 Midterm Exam Exam mt . pdf

pmatch_a
plt
o -
R ity
I_| 3 [lticlose -
ol o - |
| & 5
| = | It open I
I o [}
g'r o w-1 o 3 <)
n Y T
+ c ®
n prt w)
I
w-1 o
K T
5| 3 |rt.close o
I__ E’r - s
o)
& Ig' w-1 ap
=1 8
o rt_open

Staple This Side

pmatch_b
It
o D w-1 w
S5l e e —
IE 3 | It close -
Q
#| & E
=l = |It open =
" I 2 Q I
~* = w-1 ® —
- — (o)
£ = g
n prt w
w-1
© +
s| 3 |rt close +
—_| @ I
ol & S
#l 5 w1 o
-] —/;
L2 1rt open -§
——0t

Staple This Side

https://www.ece.lsu.edu/ee4755/2024/mt.pdf

— Fall 2024 Midterm Exam Exam mt . pdf

Problem 3: [20 pts] Appearing below are some of the dot modules from the solution to Homework 1. On
the facing page is incomplete module dotn. Complete dotn so that it describes hardware that computes the
dot product of n-element vectors recursively, where n is the parameter. That is, dotn must instantiate dotn
and should instantiate mult and add where needed.

module mult #(int w = 5) (output uwire [w-1:0] p, input uwire [w-1:0] a, b);
assign p = a * b;
endmodule

module add #(int w = 5) (output uwire [w-1:0] s, input uwire [w-1:0] a, b);
assign s = a + b;
endmodule

module dot2 #(int w = 5)
(output uwire [w-1:0] dp, input uwire [w-1:0] a[1:0], b[1:0]);
// Computes dp = al[0] * b[0] + a[1] * b[1];
uwire [w-1:0] pO, pil;
mult #(w) m0(pO, al[0], b[0]);
mult #(w) mi(pl, al1l, bl[1]);
add #(w) ad(dp, pO, pl);
endmodule

module dot3 #(int w = 5)
(output uwire [w-1:0] dp, input uwire [w-1:0] a[2:0], b[2:0]);
// Computes dp = a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
uwire [w-1:0] pO, p2;
dot2 #(w) do(pO, al[1:0], b[1:0]);
mult #(w) m2(p2, al2], b[2]);
add #(w) a2(dp, pO, p2);
endmodule

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2024/mt.pdf

— Fall 2024 Midterm Exam Exam

D Complete dotn so that it describes tree-structured hardware computing an n-element dot product. The tree
depth should be [lgn].

D Instantiate mult for multiplication and add for addition, and of course dotn for a dot product of a smaller

vector.

D To keep things easy all wires are w bits.

module dotn
#(int w =5, n =4)
(output uwire [w-1:0] dp,
input uwire [w-1:0] a[n-1:0], b[n-1:0]);

Staple This Side

Staple This Side

endmodule

mt . pdf

https://www.ece.lsu.edu/ee4755/2024/mt.pdf

> Fall 2024

Midterm Exam Exam

Problem 4: [10 pts] Appearing below is the logarithmic shifter presented in class, followed by a version
that’s supposed to be better (but isn’t). The hoped-for improvement is due to instantiating the exact number
of multiplexors (muxw2) needed, rather than enough for the maximum shift amount.

module shift_right_logarithmic #(int w = 16, 1lgw = $clog2(w))

(output uwire [w-1:0] shifted,
input uwire [w-1:0] un, input uwire [lgw-1:0] amt);
// This module is correct.
uwire [w-1:0] s[lgw:-1];
assign s[-1] = un;
for (genvar i=0; i<lgw; i++)
muxw2 #(w) st(s[i], amt[i]l, s[i-1]1, s[i-1]1 >> (1 << i));
assign shifted = s[lgw-1];

endmodule

module shift_right_logarithmic_better_maybe #(int w = 16, lgw = $clog2(w))

(output uwire [w-1:0] shifted,

input uwire [w-1:0] un, input uwire [lgw-1:0] amt);
uwire [w-1:0] s[lgw:-1];
assign s[-1] = un;

// Use exactly the number of stages needed!!!
uwire [lgw-1:0] lg_amt; // LINE ADDED
my_clog2 #(lgw) mc(lg_amt, amt); // LINE ADDED. Set lg_amt = $clog2(amt) = [lgamt];

for (genvar i=0; i<lg_amt; i++) // LINE DIFFERS
muxw2 #(w) st(sl[i], amt[il, s[i-11, s[i-1] >»> (1 << i));
assign shifted = s[lg_amt-1]; // LINE DIFFERS

endmodule

D Why won’t the Verilog above compile?

D Is it possible to fix the Verilog error in such a way that cost is lower with smaller shift amounts? D Explain.

D Is it possible to fix the Verilog error in such a way that the delay reported by a synthesis program is lower?
D Explain.

D Is it possible to fix the Verilog error in such a way that the delay actually is lower? I:] Explain.

mt . pdf

g
s
&

Staple

https://www.ece.lsu.edu/ee4755/2024/mt.pdf

— Fall 2024 Midterm Exam Exam

Problem 5: [30 pts] Answer the following Verilog questions.

(@) The module below uses multidimensional arrays.

module mda(input uwire [2:1] c¢ [5:1], input uwire [7:1]1[2:1] a [5:1]1[3:1]);

// D Add dimension(s) to the declaration of e so that the assignment is correct.

//

uwire e = c;

Staple This Side

//
uwire b = al1] [1]1[1];

logic g [7:0];
logic [7:0] hj;

initial begin
// D Which is correct,
O only the assignment to g, O only the assignment toh, or O both are correct.

D Explain.
gl1] = h[1];
h[1] = g[1];
end
endmodule

[] What is the size of c, in bits? [_] What is the size of a, in bits?

Staple This Side

// D Add dimension(s) to the declaration of b so that the assignment is correct.

mt.pdf

https://www.ece.lsu.edu/ee4755/2024/mt.pdf

— Fall 2024 Midterm Exam Exam

(b) In the module below indicate whether each code fragment is correct.

module kinds #(logic [31:0] pg = 123)

(output uwire [31:0] 00, input uwire [31:0] ik);

// |] Is the line below correct? (:) Yes

localparam logic [31:0] z02 = pg + 4755;

// [:] Is the line below correct? (:) Yes

localparam logic [31:0] z03 = ik;

// [:] Are the lines below correct? (:) Yes

localparam logic [31:0] z04;
assign z04 = pg;

// [:] Are the lines below correct? (:) Yes

uwire [31:0] z10 = pg;
assign z10 = ik;

// [:] Is the line below correct? (:) Yes

uwire [31:0] z13 = ik;

endmodule

10

(:)lVo

(:)lVo

(:)]VO

(:)PW)

[:]If not, explain.

[:]If not, explain.

[:}If not, explain.

[:}If not, explain.

[:]If not, explain.

mt.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2024/mt.pdf

— Fall 2024 Midterm Exam Exam

(¢) When we run a synthesis program we specify a delay target. In class we often synthesize twice, once with
a delay target of 100 ns and a second time with a target of 0.1ns. What is the harm in specifying a delay

target lower (faster) than one needs? Isn’t faster better?

D Harm in setting delay target too low is:

Staple This Side

(d) A 32-bit signed integer, say i, is converted into a 32-bit IEEE 754 floating-point format (8-bit exponent,
23-bit significand) and then back into a 32-bit integer, j.

[] Is it guaranteed that i = j for all —23! < < 2317 [| Explain based on the FP representation.

Staple This Side

11

mt . pdf

https://www.ece.lsu.edu/ee4755/2024/mt.pdf

— Fall 2024 — Final Exam Exam fe.pdf

Name Formatted For Two-Sided Printing

.
<
g
&

Digital Design using HDLs
LSU EE 4755
Final Examination

Thursday, 12 December 2024 15:00-17:00 CST

Problem 1 (20 pts)
Problem 2 (20 pts)
Problem3 (20 pts)
Problem 4 (20 pts)
Problem 5 (20 pts)
Alias Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2024/fe.pdf

— Fall 2024 — Final Exam Exam

[]

Problem 1: [20 pts] Module dot_seq_4 on the facing page is to compute the dot product of two vectors,
with four elements of each vector arriving at each cycle. Like dot_seq_2 from Homework 5, inputs first and
last mark the beginning and end of each vector. Unlike dot_seq_2 there are no ID ports. But, dot_seq_4
does has have a dim output. When dp is set to a dot product, dim should be set to the dimension (number
of elements) of the vectors used for that product. For example, vectors that arrive over two cycles will have
a dimension of 2 x 4 = 8.

The unsolved module lacks code related to in_id, but is otherwise similar to dot_seq_2, including the fact
that it only uses the two elements per cycle. Note: In the original exam dim was called len and was called
the length. The problem wording dealt with the number of elements and contained mothing to suggest that
len was to be set to the norm 2 of the vector.

Modify dot_seq_4 so that it computes the correct dot product using all four elements arriving each cycle.
As with dot_seq-2, the critical path should contain at most one arithmetic operation per cycle.

Modify dot_seq-4 so that output dim is set to the dimension (number of elements) of the vector whose dot
product appears on dp.

fe.pdf

S
2

https://www.ece.lsu.edu/ee4755/2024/fe.pdf

> Fall 2024

Staple This Side

Staple This Side

— Final Exam Exam

module dot seq 4 #(int w = 5, wi = 4)
(output logic [w-1:0] dp, output logic [wi-1:0] dim,

input

uwire [w-1:0] al[4], bl[4], input uwire reset, first, last, clk);

logic [w-1:0] pl_al1:1]1[4], pl_bl[1:11[4]; // Arriving vector elements.

logic [
logic [
logic [

w-1:0] pl_prod[2:2][2]; // Vector products.
w-1:0] pl_sum[3:3]; // Dot prod of 2-element segment.
1:0] pl_f1[1:3]; // The first and last signals.

logic [w-1:0] acc_sum;

always_ff @(posedge clk) begin

// Stage 0

pl_all] <= a; // This copies both elements of a.
pl_b[1] <= b;

pl_f1[1] <= reset ? 2°b0 : {last,first};

// Stage 1

for

//

(int i=0; i<2; i++) pl_prod[2][i] <= pl_a[1][i] * pl_b[1][il;

pl_f1[2] <= reset 7 2°d0 : pl_£f1[1];

// Stage 2
pl_sum[3] <= pl_prod[2][0] + pl_prod[2][1];

//

pl_f1[3] <= reset 7 2°h0 : pl_£f1[2];

// Stage 3
begin
automatic logic s3_first = pl_f1[3][0], =s3_last = pl_f1[3][1];
automatic logic [w-1:0] s3_sum = s3_first ? pl_sum[3] : pl_sum[3] + acc_sum;

end
end
endmodule

acc_sum <= s3_sum;

if (lreset && s3_last) dp <= s3_sum;

fe.pdf

https://www.ece.lsu.edu/ee4755/2024/fe.pdf

> Fall 2024

Problem 2: [20 pts] Appearing below is the solution to Homework 6, the dot_seq_2 module. For this
problem assume that the delay of a w-bit adder is 2w u; and that the delay of a multiplier with w-bit inputs

— Final Exam

and w-bit output is 4w uy.

D Show the arrival time at each wire, especially at the capture points. D Be sure to account for constant

inputs.

Exam

D Label the critical path. I:] Indicate the length of the critical path.

D Letting 1u; = 1 ns and based on the answers above, what is the maximum possible clock frequency in GHz?

Your answer should be in terms of w. D State any assumptions.

dot_seq_2
Stage 1 Stage 2 Stage 3
pl_a[1][0]
1 a pl_prod[2][0] \|S3_5um
=S B acc_sum
e pl_b[11(0] e)
—_ A A
0:0 s3_first
pl_al1][1]
M ! x dp m
T 2w pl_prod[2][1] 1:1 s3_last +
P- reset A
Lin_id pl_id[1] pl_id[2] pl_id[3] acc_id
Wi 0,0 []
7 p H en
A reset™
2 5
& 1sb E' \/
m o
e pl fl[1] pl_fi[2] 4
m et id T
|] % st & % A first_id
v A s3_las -
w 0 0 0 11 2
@
tH
reset . Y
N pl_id[3] e
C .
last_id
F— o- Al T

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2024/fe.pdf

> Fall 2024

Staple This Side

Staple This Side

— Final Exam Exam

D For 2-element vectors what is the D latency and I:] throughput of dot_seq_2 (from the previous page)?

State any assumptions.

State any assumptions.

Module dot_seq_2_merge, to the right, was con-
structed by merging stages 2 and 3.

What is the critical path length of dot_seq_2_merge?

For two-element vectors what are the [| latency
and D throughput of dot_seq_2 merge?

Module dot_seq_2_split was constructed by split-
ting each multiplier into two parts of delay 2w uy
each, and putting the two parts into separate stages.

What is the critical path length of dot_seq_2_split?

For two-element vectors what are the D latency
and [| throughput of dot_seq_2_split?

For 8-element vectors what is the D latency and D throughput of dot_seq-2 (from the previous page)?

Stage 1

pl_a[1][0]

fual
B

dot_seq_2_merge
Stage 2

pl_prod[2]{0]

Former Stage 3

pl_sum[3]
LA
0:0 s3_first —1
ot
2xw pl_prod[2][1] 1:1 s3_last on
I_b[1][1]
—A— - reset _A_
hin_id pl_id[1] pl_id[2] pl_id[3]
R B
= Dls
reset | A |

acc_sum

funl
H

[E
E]
4
e
a
fanl
jaa)

pl_id[3] }:[]
0 LA

)
)

i)
last_id

dot_seq_2_split

Stage la Stage 1b Stage 2

fral
H

funl
HH

pl_id[1

b
|b
b

pl_prod[2][0]]
acc_sum
pl_sum([3] N
LA
LA 0:0 s3_first —
dp m
pl_prod[2][1] 1:1 s3_last T
en
reset | A
pl_id[2] pl_id[3] acc_id
0,0
en
resetD_A_

o)

t g
22
i first_id

b
8

£
last_id

pl_id[3] }t[]
0 | A

fe.pdf

https://www.ece.lsu.edu/ee4755/2024/fe.pdf

— Fall 2024 — Final Exam Exam

Problem 3: [20 pts] Appearing on the facing page is a recursively described module that finds the minimum

of n items.

(a) Let to denote the delay of the min_2 module (not shown).

[] In terms of n and t, what is the delay of the unmodified (two recursive instances) min_t?

(b) Modify min_t so that in the recursive case it instantiates three (instead of two) recursive instances.
D Modify min_t so that it instantiates three recursive instances and other changes needed for the three instances.
D Use only min_2 to compare items. There is no min_3, don’t try to write one.

D Don’t assume that n is a power of 3.

(¢) Let to denote the delay of the min_2 module.

[] In terms of n and t, what is the delay of the modified (three recursive instances) min_t?

D Compared to two recursive instances, does having three recursive instances in min_t O reduce delay,
O increase delay, or Q makes little or no difference to delay? D Justify mathematically, in terms of n
or using a specific number.

fe.pdf

Staple This Side

https://www.ece.lsu.edu/ee4755/2024/fe.pdf

— Fall 2024 — Final Exam Exam fe.pdf

module min_t #(int w = 4, int n = 8)
(output uwire [w-1:0] elt_min, input uwire [w-1:0] elts [n-1:0]);

Staple This Side

if (n ==1) begin

assign elt_min = elts[0];

end else begin

n/ 2;

localparam int n_hi

localparam int n_lo = n - n_hi;

uwire [w-1:0] elt_lo, elt_hi;

min_t #(w,n_hi) mhi(elt_lo, elts[n-1 : n_lo 1]);

min_t #(w,n_lo) mlo(elt_hi, elts[n_lo-1 : 0 1);

min_2 #(w) m2(elt_min, elt_lo, elt_hi);

end
endmodule

Staple This Side

https://www.ece.lsu.edu/ee4755/2024/fe.pdf

— Fall 2024 — Final Exam Exam

Problem 4: [20 pts] Show the hardware that will be synthesized for the module below for wa=3, wb=2

(three iterations of the loop).
module rmatch #(int wa = 3, wb = 2, wm = $clog2(wa+l))
(output logic [wm-1:0] m, pos,
input uwire [wm-1:0] mO, input uwire [wa-1:0] a, input uwire [wb-1:0] b,
input uwire clk);
logic [wa-1:0] a_cpy, as;
logic [wm-1:0] mO_cpy;
logic [wb-1:0] b_cpy;
always_ff @(posedge clk) begin
a_cpy <= a;
b_cpy <= b;
mO_cpy <= mO;
as = a_cpy;
pos = O;
for (int i=0; i<wa; i++) begin
if (as[wb-1:0] == b_cpy) begin
if (m == mO_cpy) pos = i;
m++;
end
as = { as[wa-2:0], as[wa-1] };
end
end
endmodule
D Show synthesized hardware. I:] Show module ports. E] Do not confused elaboration-time computation

with hardware.

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2024/fe.pdf

> Fall 2024

Staple This Side

Staple This Side

— Final Exam Exam

Problem 5: [20 pts] Answer each question below.

(a) Show the values of the variables where indicated.

module short;
int a, b, ¢, d, e, f;
initial begin
a=1; b=2; ¢c=3; d=4; e =5;

f <= e + 100;
c =d;
d = a;
/7] a=] b= (] <
#1;
/7] a= (] b=] <
end
endmodule

(b) The module below computes x and y correctly, but one of them

two advantages in avoiding human coding errors.

module to_err_is_human(output logic [7:0] x, v,

always @(a or b or ¢) begin
x=a+b+c;
end

always_comb begin
y=a+b+c;
end
endmodule

input uwire [7:0] a, b, c);

D Which is computed in the preferred way O X or Q y?

D Describe two human coding errors that can be avoided using the preferred method.

is computed in a way that has at least

fe.pdf

https://www.ece.lsu.edu/ee4755/2024/fe.pdf

— Fall 2024 — Final Exam Exam

(¢) The first module below, dot_product_correct, is indeed correct. The other two won’t even compile.
All are supposed to compute a dot product of either floating-point or integer elements.

D Explain the major error on the on the three lines commented Explain compile error. D There should
be three different errors, if a line has more than one error pick one not shared with the other two.

D Assume that FP hardware has larger delay than integer arithmetic hardware. If a module is used with
use_fp set to 0 does that mean the module is faster? D Explain, including the interpretation of the word

“faster.”

[] Assume that FP hardware has higher cost than hardware computing integer arithmetic. If a module is used
with use_fp set to 0 does that mean the module cost less? I:] Explain.

10

fe.pdf

Staple This Side

https://www.ece.lsu.edu/ee4755/2024/fe.pdf

— Fall 2024 — Final Exam Exam

Staple This Side

Staple This Side

module dot_product_correct #(int n = 7, w_sig = 20, w_exp = 8, w = w_sig + w_exp + 1)

(output logic [w-1:0] dp,
input uwire [w-1:0] al[n], bln]l, input uwire use_fp, input uwire clk);
logic [w-1:0] acc;
uwire [w-1:0] akk[n:0];
assign akk[0] = O;
for (genvar i=0; i<n; i++)
fp_madd #(w_sig,w_exp) ma(akk[i+1], alil, b[il, akk[i]);

always_ff @(posedge clk) begin
acc = 0;
for (int i=0; i<m; i++) acc += al[i] * b[il;
dp <= use_fp 7 akk[n] : acc;
end
endmodule

module dot_product_b #(int n = 7, w_sig = 20, w_exp = 8, w = w_sig + w_exp + 1)
(output logic [w-1:0] dp,
input uwire [w-1:0] a[n], bln], input uwire use_fp, input uwire clk);
logic [w-1:0] acc;
uwire [w-1:0] akk;
assign akk = O;
for (genvar i=0; i<n; i++)
fp_madd #(w_sig,w_exp) ma(akk, al[il], b[i], akk); // [] Explain compile error.
always_ff @(posedge clk)
if (use_fp) begin

#1; [/ <=——mm [] Explain compile error.
dp <= akk;

end else begin
acc = 0;
for (int i=0; i<n; i++) acc += a[i] * b[i];
dp <= acc;

end

endmodule

module dot_product_c #(int n = 7, w_sig = 20, w_exp = 8, w = w_sig + w_exp + 1)

(output logic [w-1:0] dp,
input uwire [w-1:0] aln], b[n], input uwire use_fp, dinput uwire clk);

logic [w-1:0] acc;

always_ff @(posedge clk) begin
acc = 0;
for (int i=0; i<n; i++)
if (use_fp)
fp_madd #(w_sig,w_exp) ma(acc, ali], b[i], acc);
else
acc += al[i] * bl[il;
dp <= acc;
end
endmodule

11

// |] Explain compile error.

fe.pdf

https://www.ece.lsu.edu/ee4755/2024/fe.pdf

Fall 2023 Midterm Exam Exam mt . pdf

2 Fall 2023

27

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Staple This Side

Staple This Side

Fall 2023 Midterm Exam Exam

Name Formatted For 2-Sided Printing

Digital Design Using HDLs
LSU EE 4755
Midterm Examination

Friday, 27 October 2023, 11:30-12:20 CDT

Problem 1
Problem 2
Problem 3
Problem 4

Alias Exam Total

Good Luck!

30 pts
25 pts

30 pts

~—~ o~ o~
N N

15 pts

(100 pts)

mt . pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Fall 2023 Midterm Exam Exam mt . pdf

Problem 1: [30 pts] Appearing below is the permutation module from the solution to Homework 3.
Using the illustration of the ports show the inferred hardware for an instantiation with n=4. Show the n=4
instantiation but not what is inside the n=3 recursive instantiation.

module perm
#(int w = 8, n = 20, wd = $clog2(n))

(output uwire [w-1:0] pdata_out[n], output uwire [wd-1:0] pnum_out[n],
output uwire carry_out,
input uwire [w-1:0] pdata_in[n], input uwire [wd-1:0] pnum_in[n]);

if (n ==1) begin

Staple This Side

assign pdata_out[0] = pdata_in[O0];
assign carry_out = 1;
assign pnum_out[0] = 0O;

end else begin

uwire [wd-1:0] pos = n - 1 - pnum_in[n-1];
assign pdata_out[n-1] = pdata_in[pos];
uwire [w-1:0] prdata_in[n-1];

for (genvar i=0; i<n-1; i++)

assign prdata_in[i] = i < pos 7?7 pdata_in[i] : pdata_in[i+1]; :
uwire co;
perm #(w,n-1,wd) rp(pdata_out[0:n-2], pnum_out[0:n-2], co, odata, inf0]
prdata_in, pnum_in[0:n-2]); -
[1]
uwire [wd-1:0] dnext = pnum_in[n-1] + co; £
assign carry_out = dnext >= n; gl @
assign pnum_out[n-1] = carry_out ? O : dnext; Ig' -
Z
end
endmodule pnum_in[0]
[1]
—E%_ 2]
3
=
2l @
=}

&

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Fall 2023 Midterm Exam Exam

Staple This Side

Staple This Side

mt.pdf

D Show inferred hardware for n=4. Be sure to use I:] the illustrated module ports and to show D the

recursively instantiated module (but not its contents).

[[J Show hardware, [] do not confuse elaboration-time computation with computation hardware.

pdata_out[0]

[1]

dh
tH

[2]

N0 ejep

[3]

pnum_out[0

[1]

dh
58]

[2]

N0_wnu

[3]

carry_out

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Fall 2023 Midterm Exam Exam

O

O 0O 0OoQ

Problem 2: [25 pts] A ripple adder to compute a + b is to be used in situations where a is a constant.

(a) Find the cost and delay of a BFA with input a constant (for use in the ripple adder). A BFA is shown
for your convenience.

Show the BFA(s) optimized for input a constant.

Use a truth table to find optimizations not revealed by constant pushing: in a correct solution the delay
does not depend upon a.

Show simple-model cost of this(these) module(s) and [| show simple-model delay(s) of this(these) module(s).

BFA

IS —

7

fun Bl ul
RS gy EEy

co ;sum
=)

P2l

f
t

(b) On the facing page show the optimized hardware, cost, LSB delay, and MSB delay of a w-bit ripple adder
for computing a + b + ¢, where ¢, is a carry-in bit (cin in the diagram) and a is a constant. (D See the
check box items for details.) Use the illustration on the facing page as a starting point.

Show the hardware optimized for a constant a and a non-constant cin.

Compute the simple-model cost of this hardware in terms of w.

Compute the simple-model delay of the LSB of the sum.

Compute the simple-model delay of the MSB of the sum in terms of w and D show the critical path.

Don’t forget that a is a constant.

mt . pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Staple This Side

Staple This Side

Fall 2023

Midterm Exam

Exam

-
-t

cin | ci

o

-
-t

ci

£

2)
B b 7

o

v

-
-t

£

2)
B b vé

-]

v

ci

co sum

-
H-H

[o]e]e]

ci

&
H

ripple_adder w

ik =

b w
h
T a[1] al2] alw-1]

= b[1] b[2] blw-1

© b[0] Bit 0 -- LSB Bit 1 Bit 2 tw-1] Bit w-1 -- MSB

BFA BFA BFA BFA
a a a a

£

3

@
D_E}—

o

o

H

(¢) If cin were removed (or set to zero) the cost and delay of the optimized adder would depend on a.
Explain why, and illustrate with the example of a=2.

D How are cost and delay dependent on a when cin removed? D Explain using the example a=2.

mt.pdf

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Fall 2023 Midterm Exam Exam

Problem 3: [30 pts] Answer the following Verilog questions.

(@) The module below makes extensive use of multidimensional arrays.

module mda(input uwire [2:1] ¢ [5:1], input uwire [7:1]1[2:1] a [5:1]1[3:1]);

// D Add dimension(s) to the declaration of e so that the assignment is correct.

//

uwire e = c[1];

// D Add dimension(s) to the declaration of b so that the assignment is correct.
//

uwire b = a[1];

logic g [7:0];
logic [7:0] h;

initial begin
// D Which is correct, O the assignment to g or O the assignment to h. D Explain.
g =1
h=1;
end

endmodule

D What is the size of ¢, in bits? D What is the size of a, in bits?

(b) The module below does not compile.

module more_stuff #(int n = 20) (output uwire [31:0] sum, input uwire [31:0] a [n]);
logic [31:0] acc;
always_comb begin
acc = al0];
for (int i=1; i<m; i++)
my_fixed_adder al(acc, acc, alil);
end
assign sum = acc;
endmodule

D Describe the major problem. E] DO NOT try to fix the problem.

mt.pdf

Staple This Side

&

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Fall 2023 Midterm Exam Exam

(¢) The module below is supposed to set z = a? + b.

module wrong_way(output logic [31:0] x, input uwire [15:0] a, b);
logic [31:0] asq;
uwire [31:0] bsqg = b * b;

initial asq = a * a;
always_comb x = asq + bsq;

endmodule

Staple This Side

D Explain the problem. I:] Using sample inputs show the expected output and the actual output.

D Fix the problem.

(d) The module below does not compile.

module my_adder(output uwire [31:0] s, input uwire [31:0] a, b);
always_comb s = a + b;
endmodule

[] Why won’t module above compile? | | Fix problem by changing declarations.

(e) The module below compiles but does not provide the expected outputs, p, = a2, p, = b%, and p = a® +b>.

module incorrect_way(output logic [31:0] pa,pb,p, input uwire [15:0] a, b);
wire [31:0] =q;
assign sq = a * a;
always_comb pa = sq;
assign sq = b * b;
always_comb pb = sq;
always_comb p = pa + pb;
endmodule

D What will be the values of outputs pa, pb, and p?

Staple This Side

[] Describe the problem. [| Fix it.

mt . pdf

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Fall 2023 Midterm Exam Exam mt . pdf

Problem 4: [15 pts] Answer each question below.

(a) A company has two teams, A (very good) and C' (slackers) working on modules and a testbench for an
important product. Describe the following consequences:

D The A team works on the modules and the C' team works on the testbench. A possible bad outcome is:

D The A team works on the testbench and the C' team works on the modules. A possible bad outcome is:

(b) In typical use when running simulation a testbench generates inputs for a module-under-test and the
outputs are checked by the testbench to see whether they are correct. After running synthesis we learn how
fast the module is. If simulation is computing the module outputs why can’t it tell us how fast the module

is?

D Synthesis can provide timing information and simulation can’t because:

(¢) A gadget can be built using an ASIC or an FPGA. Describe which is more appropriate for each situation
below.

D The gadget must be working within a month. O ASIC or O FPGA. D Explain.

D Per-gadget cost must be under $1000. Only ten will be made. O ASIC or O FPGA. D Explain.

D Per-gadget cost must be under $100. Ten thousand will be made. O ASIC or O FPGA. I:] Explain.

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2023/mt.pdf

Fall 2023 Final Exam Exam fe.pdf

Name Formatted For Two-Sided Printing

.
<
g
&

Digital Design using HDLs
LSU EE 4755
Final Examination

Thursday, 7 December 2023 15:00-17:00 CST

Problem 1 (28 pts)
Problem 2 (25 pts)
Problem 3 (27 pts)
Problem 4 (20 pts)
Alias Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Fall 2023

Final Exam Exam

Problem 1: [28 pts] Appearing below is the solution to Homework 5.

(a) On the facing page show the inferred hardware for an instantiation with n=4.

(b) Explain why the cost of the hardware corresponding to the line n_match += match is much lower than
one would expect for hardware performing wc-bit addition.

[:] The n_match += match is much less expensive because:

module Uniq_vector_seq
#(int we = 10, n = 4, wc = $clog2(n+l))
(output logic [n-1:0] uniqg_bvec, output logic [wc-1:0] n_match,
input uwire [we-1:0] element, input uwire start, clk);

logic [we-1:0] elements [n-1:0];
logic [n-1:0] occ_bvec;
logic [wc-1:0] uniq_at [n-1:0];

always_ff @(posedge clk) begin

automatic logic [wc-1:0] match_pos = n;
n_match = 1;

for (int i=n-1; i>=1; i--) begin

automatic logic next_occ_bvec = !start && occ_bvec[i-1];
automatic logic match = next_occ_bvec && element == elements[i-1];

n_match += match;
if (match) match_pos = i;

elements[i] <= elements[i-1];
occ_bvec[i] <= next_occ_bvec;

uniq_at[i] <= match ? n : uniq_at[i-1];
uniq_bvec[i] <= !next_occ_bvec || !'match &% i >= uniq_at[i-1];

end

elements[0] <= element;

occ_bvec[0] <= 1;

unig_at[0] <= n - match_pos;
uniq_bvec[0] <= match_pos == n;

end

endmodule

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Fall 2023 Final Exam Exam

D Show inferred hardware for n=4.

D Do not confuse ports with parameters. E] Do not confuse elaboration-time computation with computation

hardware.

Staple This Side

Staple This Side

fe.pdf

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Fall 2023 Final Exam Exam

Problem 2: [25 pts] Illustrated on the facing page is a diagram showing inferred hardware similar to the
word_count module from last year’s final exam. An important difference is that it is shown for n_avg_of=n,

not the specific value of 4. Assume that n is a power of 2.

D In terms of n, wl, wn, and v show simple-model arrival times at each wire and D show a critical path.

[CJ Account for cascaded ripple units [] constant inputs, and [_] remember that n can be any power of 2, not

neccesarily 4.

D In terms of n, wl, wn, and v compute the simple-model cost of the Plan B hardware, assuming n is a power
of 2. [] Account for constant inputs.

fe.pdf

Staple This Side

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Fall 2023 Final Exam Exam fe.pdf

WC word count (n avg of=n, v=Ig(n
_ (n_avg_ 9(n_avg_of)) word start |
g ||
a word_part L
| (|
(@)
oy word_ended L
n ()
28
< s
Q
o
lword
5 7
1 char = D 1 Ve
]__] I/ -o A
;] P A
= reset -
2 [sum lav g
clk g @—4@7 , i
T en wi+v-1:v
5
= A
(@]
n (n_avg_of)
EPIan B e E
§Hardware CD— en Ire¢[0] %
ol P
i g zn 2
: Ire¢[1] :
: ocoo A % :
: 2 =
:>_ en Ire¢[n-1]
: g WA
— en ‘\2
1:(+;L G R
A tail
... - : s
nwd A A
5

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Fall 2023 Final Exam Exam

Problem 3: [27 pts] The two modules below look for a match of input target in an n-element array elts
but only check elements 0 to i_limit-1. Output n_match is the number of matching elements and match_i
is the lowest i for which elts[i]==target and i<i_limit, or n if there is no match. (These modules could
be used in the uniq_vector module.) Module fmatch_comb is complete and works correctly.

(@) Module fmatch_rec has some code for a recursive implementation. Complete it so that it performs the
same calculation as fmatch_comb.

D Complete fmatch_rec so that it computes the same values as fmatch_comb.

D Don’t forget to show the bit ranges of elts in the connections to the recursive instantiations.

module fmatch_comb
#(int n = 22, w = 12, wn = $clog2(n+l))
(output logic [wn-1:0] n_match, match_i,
input uwire [w-1:0] elts[n-1:0], target, input uwire [wn-1:0] i_limit);

// Do not modify this module. It is correct.
always_comb begin

n_match 0;
match_i n;

for (int i=n-1; i>=0; i--) if (i < i_limit && elts[i] == target) begin
n_match++;
match_i = i;

end

end

endmodule

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Fall 2023 Final Exam Exam

Staple This Side

Staple This Side

module fmatch rec
#(int n = 22, w = 12, wn = $clog2(n+l))
(output uwire [wn-1:0] n_match, match_i,
input uwire [w-1:0] elts[n-1:0], target, input uwire [wn-1:0] i_limit);

if (n ==1) begin
// Do not modify the n==1 code, it works.
uwire match = i_limit != O && elts[0] == target;
assign n_match = match;

assign match_i = match 7 0 : 1;

end else begin

localparam int nlo

localparam int nhi

localparam int wnr = $clog2(nhi);
uwire [wnr-1:0] nm_lo, nm_hi, mi_lo, mi_hi;

uwire [wnr-1:0] il_Jlo

uwire [wnr-1:0] il_hi

fmatch_rec #(nlo,w,wnr) ilo(nm_lo, mi_lo, elts[1, target, il_lo);
// [] Show elts’ bit ranges 111}
fmatch_rec #(nhi,w,wnr) ihi(nm_hi, mi_hi, elts[], target, il_hi)

assign n_match

assign match_i

end

endmodule

fe.pdf

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Fall 2023 Final Exam Exam

Problem 4: [20 pts] Answer each question below.

(a) Consider two technology targets, FabFab A1000, an ASIC, and LUTeq FXL9000, an FPGA. Floating-
point multipliers are available on the A1000 and the FXL9000 targets.

D On one of these targets a design can have as many multipliers as will fit on the chip. Which target is it?
I:] Explain.

[] On the other target there is a fixed number of FP multipliers, say 5. Does that mean a design that needs 7
FP multipliers can’t use the target? I:] Explain. E] The number of needed multipliers can’t be reduced.

(b) The output of the module below will be 1t=1 for inputs a=100, b=40, amt=20, indicating that 100440 <
20, which is wrong of course. It works correctly for a=100, b=40, amt=5, meaning the output is 1t=0.

module less_than(output uwire 1t, input uwire [6:0] a, b, amt);
assign 1t = a + b < amt;
endmodule

D Why is the output wrong?

D What is the largest value of amt for which the module output is correct when the other inputs are a=100,
b=407

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Fall 2023 Final Exam Exam

(¢) The hw output of the module below is supposed to be set to the number of 1s in input vec at the positive
edge of the clock. Due to a beginner’s Verilog error it does not work.

module pop #(int n = 5, wn = $clog2(n+l))
(output logic [wn-1:0] hw, input uwire [n-1:0] vec, input uwire clk);

Staple This Side

always_ff Q@(posedge clk) begin

hw <= 0;
for (int i=0; i<m; i++) hw <= hw + vecl[i];

end
endmodule

D Describe the problem. D Describe how it’s possible that hw can be greater than n with this error. D Fix
the problem.

(d) Consider the population module below.

module pop_comb #(int n = 5, wn = $clog2(n+l))
(output logic [wn-1:0] hw, dinput uwire [n-1:0] vec);
always_comb begin

hw = 0;
for (int i=0; i<n; i++) hw = hw + vecl[i];

end
endmodule

D The loop above is procedural. Re-write the module below so that it is a generate loop. The array s should

come in handy.
module pop_comb #(int n = 5, wn = $clog2(n+l))
(output uwire [wn-1:0] hw, input uwire [n-1:0] vec);

uwire [wn-1:0] s [n-1:0];

endmodule

Staple This Side

fe.pdf

https://www.ece.lsu.edu/ee4755/2023/fe.pdf

Fall 2022 Midterm Exam Exam mt . pdf

3 Fall 2022

45

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Staple This Side

Staple This Side

Fall 2022 Midterm Exam Exam

Name Formatted For 2-Sided Printing

Digital Design Using HDLs
LLSU Bk 4755
Midterm Examination

Wednesday, 19 October 2022, 11:30-12:20 CDT

Problem 1
Problem 2
Problem 3
Problem 4

Problem 5

Alias Exam Total

Good Luck!

mt . pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Fall 2022 Midterm Exam Exam mt . pdf

Problem 1: [25 pts] Answer the following multiplexor questions.

(a) Complete module mux4 so that it implements a 4-input multiplexor using instantiations of the 2-input
multiplexor shown below. Do not use procedural code.

[] Complete mux4 so that it implements a 4-input multiplexor | | using mux2 instantiations.

D Do not use procedural code. E] Do not change the ports or default parameters of mux4 or mux2.

D Don’t forget to declare any objects that are used.

Staple This Side

module mux4
#(int w = 3)
(output uwire [w-1:0] x,
input uwire [1:0] s, input uwire [w-1:0] a0, al, a2, a3);

endmodule

module Mux2
#(int w = 6)
(output uwire [w-1:0] x,
input uwire s, input uwire [w-1:0] a0, al);
assign x = s 7 al : a0;
endmodule

Staple

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Fall 2022 Midterm Exam Exam mt . pdf

(b) Module mux2_bad only works for w=1. Describe the problem and show the correct mux output and the
output of mux2_bad for w=4, s=0, a0=2, and al1=4.

module mux2_bad
#(int w = 4)
(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, al);
assign x = !s & a0 || s && al;
endmodule

Staple This Side

[] Inmux2 (a correct mux) when w=4, s=0, a0=2, and a1=4, [| output x=
[] In mux2 bad when w=4, s=0, a0=2, and al=4, [| output x=

D Explain the problem when w is not 1.

(¢) Complete module mux2_1r below so that it recursively implements a 2-input w-bit mux. All that remains
to be done is completing the connections to the two recursive instances, m1 and mr.

module mux2_1r
#(int w = 5)
(output uwire [w-1:0] x,
input uwire s, input uwire [w-1:0] a0, al);

if (w==1) begin

assign x = !s & a0 || s && ail;
end else begin

mux2_1r #(1) m1 (

Staple This Side

mux2_1r #(w-1) mr(

end

endmodule

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Fall 2022

Problem 2: [31 pts] The val output of atoi_it_m_to_1 is the value of the radix-r ASCII-represented
number appearing at its input, str, and output nd is the number of digits. Unlike the Homework 2 Problem
2 module, this module starts at the most-significant digit rather than the least-significant digit.

Midterm Exam Exam

module atoi_it m_to_|

#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+l))
(output logic [wv-1:0] val,

output logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] valil[n:0];
uwire is_digit[n:0];
uwire [wd-1:0] ndi[n:0];
assign is_digit[n] = 0;
assign ndi[n] = 0;

assign valil[n] = O;
assign nd = ndi[0];
assign val = valil[0];

localparam int wcv = $clog2(r);

for (genvar i=n-1; i>=0; i--) begin

// Find Value of Digit i
uwire [wcv-1:0] vald;
atoil #(r,wcv) a(vald, is_digit([i], str[i]);

// Multiply (scale) the accumulated sum.
uwire [wv-1:0] valns;
mult_by_c #(.w_in(wv), .c(r), .w_out(wv)) me(valns, valil[i+1]);

// Update accumulated value.

assign vali[i] = is_digit[i] ? valns + vald : O;

// Update number of digits.

assign ndil[i] = !is_digit[i] ? O : is_digit[i+1] ? ndil[i+1] : i + 1;

end

endmodule

(a) Describe how the behavior of the module would change if the loop direction were changed as shown

below, but no other changes were made.

for (genvar i=0; i<n; i++) begin

D Change in behavior with ascending loop:

(b) On the next (facing) page show the hardware that will be inferred for an instantiation of atoi_it_m_to_1
(descending loop version) with n=3 and r=10. Show each instantiation of atoil and mult_by_c as a box,

do not show their contents. The inferred hardware for atoi_it is shown for reference.

mt . pdf

Staple This Side

&

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Fall 2022

Staple This Side

Staple This Side

Midterm Exam

For reference, part of Homework 8 Problem 2 solution shown below.

Exam

atoi_it .r(14), .n(3)

0— =0 add | | Sl add | 2 add | val|
vali[-1] H o
m_b_c s m_b_c s m_b_c|
’7 (1) % ’7 .c(14) = .¢(196) | vals
str
O
T str[0] 0
atoi valdr vald atoi aldr vald || atoi vald
o r(14) r(14) .r(14) o
is_valid[-1] e I o is_valid[2]
7 —/R is_valid[0] —l—D is_valid[1] —l—D
0 - IS N h1 nd L
ndif-1] 1-Lindif0] 2-JJndil1] s Urnam i

For reference, part of Homework 3 Problem 2 solution shown above.

D Show inferred hardware for atoi_it_m_to_1 for n=3 and r=10.

D Show the hardware inferred for the operators, such as && and 7:.

D Do not confuse parameters and ports and omit hardware that does not belong, such as “hardware” to
compute values needed at elaboration time.

mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Fall 2022 Midterm Exam Exam mt . pdf

(¢) Module atoi_m_to_1 will only show the value of numbers that are right-aligned in str, otherwise the
value will be shown as zero. For example, for input str="__123" the output would be val=123 and nd=3,
but for input str="_123_" the output would be val=0 (because the rightmost character is not a digit).
Modify the module so the val output is the value of the number regardless of its location. If there is more
than one number, say str="__12_345_" show the value of the rightmost number, 345 in this case.

D Modify so that val and nd are for numbers whether or not they are right-aligned.

D Do not use procedural code.

Staple This Side

D Avoid costly or slow solutions.

[] A correct solution only requires a few changes.

&

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Fall 2022 Midterm Exam Exam

Staple This Side

Staple This Side

module atoi_ it m to |
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+l))
(output logic [wv-1:0] val,
output logic [wd-1:0] nd,
input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n:0];
uwire is_digit[n:0];
uwire [wd-1:0] ndi[n:0];
assign is_digit[n] = 0;
assign ndi[n] = 0;
assign vali[n] = O;
assign nd = ndi[0];
assign val = vali[0];

localparam int wcv = $clog2(r);
for (genvar i=n-1; i>=0; i--) begin
// Find Value of Digit i

uwire [wcv-1:0] vald;
atoil #(r,wcv) a(vald, is_digit[i], strl[i]);

// Multiply (scale) the accumulated sum.
uwire [wv-1:0] valns;

mult_by_c #(.w_in(wv), .c(r), .w_out(wv)) me(valns, valili+1]);

// Update accumulated value.
assign vali[i] = is_digit[i] ? valns + vald : O;

// Update number of digits.
assign ndil[i] = !is_digit([i] ? O : is_digit[i+1] ? ndil[i+1]

end
endmodule

mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Fall 2022 Midterm Exam Exam mt . pdf

Problem 3: [20 pts] Tllustrated below is the hardware for one of the atoi modules from Homework 3.
The delays for the add, atoil, and mult_by_c modules are shown in blue. For atoi the delay of the value
(valdr) output is zero and the delay of the is_digit (lower) output is 3.

(a) Based on the illustrated delays and using the simple model find the delay at each output, val and nd,
and show the critical path to each.

D Use the simple model and indicated delays to find the delay at outputs val and nd.
D Show the critical path to both val and nd.

D Take into account constant values.

atoi_it .r(70), .n(3)
<16~ <16~
add | | add | val|
< m_b_c < H
S i S m_b_c in
= ” C(10) [Nals = .c(100) [vals
E]str — ~—20— — —20—
strf0]1| < 0 0 - str[1]] < O 0 str[2]| <« 0 0
atol 29| Jaid atol L2 vald atol L2 vald
.r(10) .r(10) “|.r(70) .
=3 j_ is_valid[0] T‘—D_lis_vandm P—D_l's-"a"dlzl
0 R ~ 3 — ! ~ 3 — nd
ndil-1] JJndi[O]]Jndi[u 1 =
= 2 3-Undi[2]

(b) Modify the design to reduce the delay at val by moving multiplexors. The modification is simple though
will increase cost. Show your modification either on the diagram or in the Verilog code below.

D Modify to reduce the delay at val by moving multiplexors.
D Do not change what the module does.

8

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Fall 2022 Midterm Exam Exam

module atoi_it
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+l))
(output logic [wv-1:0] val, output logic [wd-1:0] nd,
input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n-1:-1];
uwire is_valid[n-1:-1];
uwire [wd-1:0] ndi[n-1:-1];

g assign is_valid[-1] = 1;
& assign ndi[-1] = O;
E assign vali[-1] = 0;
- assign nd = ndil[n-1];
assign val = vali[n-1];
localparam int wcv = $clog2(r);
for (genvar i=0; i<n; i++) begin
uwire [wcv-1:0] valdr;
uwire is_digit;
atoil #(r,wcv) a(valdr, is_digit, str[i]); // Find Value of Digit i
// Determine if this digit continues a sequence of valid digits.
//
assign is_valid[i] = is_digit && is_valid[i-1];
// Replace value with zero if str[i] is not a digit, or if the
// string of valid digits has already ended.
//
uwire [wecv-1:0] vald = is_valid[i] ? valdr : O;
// Multiply (scale) the digit value based on its position in the number.
//
uwire [wv-1:0] vals;
mult_by_c #(.w_in(wcv), .c(r**i), .w_out(wv)) mec(vals, vald);
// Add the scaled digit to the value accumulated so far.
//
add #(wv) al1(valil[i], wvalili-1], vals);
;
e // Update the number of digits so far.

//

assign ndil[i] = is_valid[i] ? i+1 : ndi[i-1];

end
endmodule

mt.pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

mt . pdf

Fall 2022 Midterm Exam Exam

Problem 4: [12 pts] Answer each question below.

(a) The module below will not compile because of the way the module connections are declared. Fix the
problem by changing the declarations.

[] Change declaration to fix problem.

module yucx2
#(int w = 5)
(output uwire [w-1:0] x,
input uwire [1:0] s,
input uwire [w-1:0] 20, al);

Staple This Side

always_comb begin

x = a0;

if (s !'=0) x = al;
end
endmodule

(b) The mv output of findmax is supposed to be set to the value of the largest of the three inputs. Assuming
it compiles and simulates, it still won’t work. Identify the problem.

[] Why won’t mv be set to the maximum of a0, a1, a2?

D Provide an example that illustrates the incorrect behavior.

module findmax
#(int w = 5)
(output logic [w-1:0] mv,
input uwire [w-1:0] 20, al, a2);

initial mv = O;

always_comb if (mv < a0) mv al;
always_comb if (mv < al) mv al;
always_comb if (mv < a2) mv = a2;

endmodule

&

10

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Fall 2022 Midterm Exam Exam

Problem 5: [12 pts] Answer each question below.
(a) Type logic is an example of a four-state type. Name those four states and describe what the non-numeric

ones are used for.
[] Name the four logic states.

[] Describe what the non-numeric ones signify.

Staple This Side

(b) Most synthesis programs will not synthesize a module that includes a delay, such as the one below. Why
not?
module madd
#(int w)
(output logic [w-1:0] w,
input uwire [w-1:0] a, b, c);
always_comb begin
W =a * b;
#5; // Allow enough time for multiplication to finish.
w=w+ aj;
end
endmodule

[] Why isn’t a delay synthesizeable?

Staple This Side

11

mt . pdf

https://www.ece.lsu.edu/ee4755/2022/mt.pdf

Fall 2022 Final Exam Exam fe.pdf

Name Formatted For Two-Sided Printing

.
<
g
&

Digital Design using HDLs
LSU EE 4755
Final Examination

Friday, 9 December 2022 15:00-17:00 CST

Problem 1 (20 pts)
Problem 2 (20 pts)
Problem3 (15 pts)
Problem 4 (20 pts)
Problem 5 (25 pts)
Alias Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Fall 2022 Final Exam

Exam

Problem 1: [20 pts] Module norm_comb, below, computes the normal of a vector using floating-point
arithmetic units from a library. The delay through each unit in nanoseconds is shown in the diagram.

L x norm_comb
Ty fo_mul[X
& —
z
jma| ~— _——
tH 10—~ 20 oy
fp_sq || fp_mu| []
10~ | /=~ <5 - 40— —20— -
f f I
fp_sq p_add fp_add fp_rsqrt p_mu H
By ~—20—
L_|fp_sq

(a) Compute the latency and throughput norm_comb given the timings shown in the diagram.

D Compute the arrival time (delay) at each module output.

D Show the critical path.

D The latency of this module is:

D The throughput of this module is:

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Fall 2022 Final Exam Exam

Staple This Side

Staple This Side

(b) Draw a diagram of a pipelined implementation of the norm module. The goal is to maximize throughput
first then minimize latency given the delays shown in the diagram from part a. Give some thought as to
what arithmetic units go in what stage. Show the latency and throughput of your pipelined implementation.

[] Draw a diagram (not Verilog) of a pipelined version of this norm module. E] Be sure to show pipeline

latches.

D For the given delays: Maximize throughput. E] Avoid a hasty solution that has a higher latency than is

necessary.

D The latency of this pipelined implementation is:

D The throughput of this pipelined implementation is:

fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Fall 2022 Final Exam Exam

Problem 2: [20 pts] Incomplete module norm_comb_n is a version of the norm module from the previous

1
problem, now written for vectors of any length, not just 3. (Output u; = n; (Z;l;ol ’UJQ) ’ .) It makes use

of module norm_sos to compute the sum Z;:& ’U]2-. (That is, v3 +v? + -+ +v2_;.) Complete the modules
so that they compute their output combinationally. Use a recursive implementation for norm_sos and use
generate loops for the needed code in norm_comb_n.

Complete norm_comb_n so that it computes u in part by using norm_sos. D Use a generate loop. D Use
fp_mul, D don’t use arithmetic operators.

module norm_comb n #(int w = 32, int n = 8)
(output uwire [w-1:0] ul[n], dinput uwire [w-1:0] v[n]);

uwire [w-1:0] sos; // Sum 0f Squares
norm_sos #(w,n) ns(sos, v); // This part is correct, don’t modify it.

uwire [w-1:0] rmag, rs_in;

fp_rsqrt r(rmag, rs_in); // [] Rename rs_in, or connect it to something.

// [] Compute ul[0] = v[0] * rmag; ull] = v[1] * rmag;

endmodule

D Complete norm_sos so that it computes Z;L;Ol 0]2-. D Describe the module recursively. D Use fp-sq

and fp_add, D do not use arithmetic operators.

module norm_sos #(int w = 32, int n = 4)
(output uwire [w-1:0] sos, dinput uwire [w-1:0] v[n-1:0]);

// [] Recursively compute: sos = v[0]"2 + v[1]"2 + ...

endmodule

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Fall 2022 Final Exam Exam

Staple This Side

Problem 3: [15 pts] Appearing below is the inferred hardware from the pipelined add accumulate module
covered in class. Based on the simple model, show the timing, including the critical path, and compute the
cost. The BFA module is, of course, a binary full adder. If you don’t remember its cost and delay, just work

it out.
add_accum
sum
w N
1 /
| — 1
ai e ! add_p0 i
X A add_pipe sout w
& il
ai_v ™ al | | @ sum
|| A A
re
A
aout_v
A A A sum_valid L
’ L
saa e
co D—
ip 4 O—
BFA s —
ci e) /\ —I
reset I .
4 sum_occupied
L
=
clk

D Show the timing (signal arrival time at each component output) and I:] the critical path. E] Note that

aout arrives at t = 0.

[] Compute the cost using the simple model. Do not include the cost of add_pipe but [] include the cost of

the BFA. [] Pay attention to bit widths.

Staple This Side

fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Fall 2022 Final Exam Exam

Problem 4: [20 pts] Appearing below are simplified solutions to Homework 4.

(a) Below is a simplified version of the “official” solution. (Reset hardware is not shown, ignore its absence.
Some object names shortened.) Show the hardware that will be inferred for this module when instantiated
with n_avg_of=4. (Some of the hardware will be similar to the r_avg2 module from the 2021 final exam.)

module word_count
#(int wl = 5, wn = 6, n_avg_of = 10)
(output logic word_start, word_part, word_ended,
output logic [wl-1:0] lword, lavg, output logic [wn-1:0] nwords,
input uwire [7:0] char, input uwire reset, clk);

uwire nws, nwp, nwd;
word_classify we(word_start, word_part, word_ended,
nws, nwp, nwd, char, clk, reset);

logic [wl-1:0] lrecent[n_avg_of]; // len_recent
logic [wl+$clog2(n_avg_of):0] lsum; // len_sum

assign lavg = nwords >= n_avg_of 7 lsum / n_avg_of : O;

always_ff @ (posedge clk) begin
lword <= nws 7 1 : nwp ? lword+l : lword;
nwords <= nwd 7 nwords + 1 : nwords;

end

// Plan A Code (Referred to in next subproblem.)
always_ff @ (posedge clk) if (nwd) begin

lsum += lword - lrecent[n_avg_of-1];
for (int i=n_avg_of-1; i>0; i--) lrecent[i] = lrecent[i-1];

lrecent[0] = lword;

end
endmodule

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Fall 2022 Final Exam Exam

D Show inferred hardware for n_avg_of=4.

D Show word_classify as a box, don’t attempt to show its contents.

Staple This Side

Staple This Side

fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Fall 2022

(b) The word_count_plan_b module below uses a different approach to keeping track of 1sum. The only
difference is the hardware under the Plan B Code comment. This version avoids a loop! That’s great, right?
Show the hardware that will be inferred for the Plan B Code for n_avg_of = 4 and indicate impact on cost

Final Exam Exam

and performance.

module word_count plan_b

#(int wl = 5, wn = 6, n_avg_of = 10)

(output logic word_start, word_part, word_ended,

output logic [wl-1:0] lword, lavg,
input uwire [7:0] char,

uwire nws, nwp, nwd;
word_classify we(word_start, word_part, word_ended,
nws, nwp, nwd, char, clk, reset);

logic [wl-1:0] lrecent[n_avg_of];
logic [wl+$clog2(n_avg_of):0] Ilsum;
logic [$clog2(n_avg_of):0] tail;

assign lavg = nwords >= n_avg_of 7 lsum / n_avg_of : O;

always_ff @ (posedge clk) begin
lword <= nws 7 1 : nwp 7 lword+l : lword;
nwords <= nwd 7 nwords + 1 : nwords;

end

// Plan B Code
always_ff @ (posedge clk) if (nwd) begin

lsum += lword - lrecent[taill;
lrecent[tail] = lword;

tail = tail == n_avg_of - 1 7 0 : tail + 1;

end

endmodule

D Describe impact on cost of Plan B compared to Plan A.

D Describe impact on performance of Plan B compared to Plan A.

output logic [wn-1:0] nwords,
input uwire reset, clk);

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Fall 2022 Final Exam Exam

D Show inferred hardware for Plan B Code. (No need to show hardware for code above the Plan B Code

comment.)

[] Consider using an enable (en) signal on the registers to simplify the hardware.

Staple This Side

Staple This Side

fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Fall 2022 Final Exam Exam

Problem 5: [25 pts] Answer each question below.

(a) Show a sketch of the hardware for an 8-bit left shift module, using the logarithmic approach presented
in class.

D Show hardware for 8-bit left shift module. Include the D 3-bit shift amount input, D the 8-bit data D
input and 8-bit data output.

(b) Provide the following delays based on the simple model.

D What is the delay for a w-bit ripple adder for D the LSB and D the MSB.

D What is the delay for the sum of three w-bit values, say a + b + ¢, when computed using two ripple adders
and accounting for cascading. Delay of the sum’s I:] LSB and D MSB.

10

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Fall 2022 Final Exam Exam

Staple This Side

Staple This Side

(¢) In the code fragment below there is an error in one of the last two lines.

module examples(input uwire [31:0] a, b);

localparam logic [31:0] la = a + b;
uwire logic [31:0] ua = a + b;

[] Which line above is incorrect? | | Why?

(d) The code fragment below lacks declarations.
D Declare objects aa, ca, and fa so that the code below is correct.

module examples(input uwire [31:0] a, b, input uwire clk);

assign aa = a + b;
always_comb ca = a + b;
always_ff @(posedge clk) fa = a + b;

(e) Again consider the code above that assigns aa, ca, and fa. Draw a timing diagram that includes values
of a, b, and clk for which at least one of the values aa, ca, and fa will at times differ from the others.

D Draw a timing diagram showing how aa, ca, and fa won’t all be the same all the time.

11

fe.pdf

https://www.ece.lsu.edu/ee4755/2022/fe.pdf

Fall 2021 Midterm Exam Exam mt . pdf

4 Fall 2021

68

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Staple This Side

Staple This Side

Fall 2021

Name

Alias

a

Midterm Exam Exam

Digital Design Using HDLs
LSU EE 4755
Midterm Examination

Wednesday, 27 October 2021, 11:30-12:20 CDT

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6

Exam Total

V(mRNA)

= R.<1 Good Luck!

Formatted For 2-Sided Printing

25 pts
30 pts
10 pts
10 pts

15 pts

e e e e T e
N N N i

10 pts

(100 pts)

mt . pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Fall 2021 Midterm Exam Exam mt . pdf

Problem 1: [25 pts] Appearing in this problem are two variations on hardware that selects one of four
inputs, i, based on the position of the least-significant 1 in a 4-bit quantity, fmt. This is similar to the
hardware needed in the solution to Homework 2, except that here i [3] can be selected.

module nn_sparse #(int w = 20)
(output logic [w-1:0] o, input uwire [w-1:0] i[4], input uwire [3:0] fmt);

(a) Show the hardware that will be inferred for is0 and show that hardware after optimization.
uwire [w-1:0] is0 = fmt[0] ? i[0] : fmt[1] 7 i[1] : fmt[2] 7 i[2] : i[3];
[] Show inferred hardware.
D Show optimized hardware. Hardware can be re-arranged to reduce delay.

D Use only basic logic gates and multiplexors.

(b) Compute the cost and delay of the optimized hardware for is0 in terms of w. (That’s w, not its default
value.)

D In terms of w cost is:

[] In terms of w delay is:

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Fall 2021 Midterm Exam Exam

Staple This Side

Staple This Side

(c) Appearing below is an alternative design. Net isOb will have the same value as 1s0. Show the hardware
below before and after optimization. For isiO do not show multiplexors after optimization. For isOb use

two-input multiplexors (as many as needed).

uwire [1:0] isi0O = fmt[0] ? O : fmt[1] 7 1 : fmt[2] 7 2 : 3;
uwire [w-1:0] isOb = i[isiO];

[] Show inferred hardware.
D Show optimized hardware, optimize to reduce delay.

[] Use basic logic gates and [| no muxen for isi0 and [| two-input muxen (plus other logic) for isOb.

(d) Compute the cost and delay of the optimized hardware (from the previous part) in terms of w. (That’s

w, not its default value.)
[] In terms of w cost is:

[] In terms of w delay is:

mt . pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Fall 2021 Midterm Exam Exam

Problem 2: [30 pts] The next_dist4 hardware illustrated below consists of several duplicated pieces of
hardware, one of which is circled. Call the circled hardware an ami unit (for add-minimum).

DL L[0] next_dist4 (w)
w
LI1]
w
LI2]
“o ar <
us | el
i g

(a) Compute the cost and delay of the module using the simple model, and show the critical path on the
illustration. Assume that the adder and comparison units are based on ripple adders.

D Cost in terms of w:

[] Show critical path. [| Delay in terms of w:

[] Account for any cascading ripple units.

mt . pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Fall 2021 Midterm Exam Exam

(b) Appearing below are two incomplete modules, one is an ami module the other is the next_dist4 module.
Complete these modules to match the diagram using as many ami modules as needed. The ami module can
use procedural or implicit structural code. The next_dist4 module must instantiate and use ami modules

but can contain procedural or implicit structural code.

D Complete the ami module so that it matches the circled hardware.

D Complete the next_dist4 module using as many ami modules as needed.

D Don’t forget to E] declare any intermediate objects that are used.

Staple This Side

D Noting that there are four adders and the width of each wire is w, D declare and use parameters appro-

priately.

module ami

endmodule

module next dist4 #(int w = 12)
(output uwire [w-1:0] e,
input uwire [w-1:0] L[4], d[4]);

Staple This Side

endmodule

mt . pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Fall 2021 Midterm Exam Exam mt . pdf

(¢) Incomplete module next_dist is a generalization of next_dist4 to n elements per input. The module
includes a generate loop. Use that loop to instantiate ami modules so that it performs the correct calculation.

Keep the loop simple, don’t try to fix the delay problem.
D Complete module, taking advantage of the generate loop.

D Be sure to instantiate ami modules, D connect the first ami correctly, D and don’t leave e unconnected.

module next_dist #(int n = 20, w = 12)
(output uwire [w-1:0] e,
input uwire [w-1:0] L[n], input uwire [w-1:0] d[n]);

Staple This Side

localparam logic [w-1:0] mv = "w’(0); // Can use as input to first ami.

uwire [w-1:0]

for (genvar i=0; i<n; i++) begin

end

endmodule

Staple

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Fall 2021 Midterm Exam Exam

Staple This Side

Staple This Side

Problem 3: [10 pts] Consider the with_assign module below.

module with_assign #(int w = 10)
(output uwire [w-1:0] g, input uwire [w-1:0] b, c);

uwire [w-1:0] a, f;

assign g =f | ¢; // Line 1
assign f = a * ¢c; // Line 2
assign a = b + ¢; // Line 3

endmodule

(a) Why might the module confuse or annoy humans?

[] with_assign could be confusing because:

(b) The module makes extra work for simulators too. Suppose that the input values to with_assign, b and
c, change at t = 10. About how many times will each line below execute in a worst-case scenario? The
following sentence was not in the original exam: Use sensitivity lists to justify your answer.

[] About how many times does each line execute? [| Explain with sensitivity lists.

(c) Complete the sans_assign routine below so that it does the same thing as with_assign but is less
confusing and less work for simulators.

D Complete routine below. (Yes, it’s easy but not trivial.)
module sans_assign #(int w = 10)
(output uwire [w-1:0] g, input uwire [w-1:0] b, c);

uwire [w-1:0] a, f;

always_comb begin

end
endmodule

D Why does sans_assign make less work for the simulator than with_assign? Explain using sensitivity lists.

mt . pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Fall 2021 Midterm Exam Exam

Problem 4: [10 pts] Appearing below is an ordinary multiplier, followed by a multiplier that is naively
designed to take advantage of special cases (first operand is 0 or 1), followed by a module that instantiates
both.

module mult #(int w = 32)
(output logic [w-1:0] p, input uwire [w-1:0] a, b);
always_comb p = a * b;
endmodule

module mult_1a #(int w = 32)
(output logic [w-1:0] p, input uwire [w-1:0] a, b);

always_comb begin
if (a==0)p=0;
else if (a==1) p = b;
else p = a * b;

end

endmodule

module nm #(int w = 32, logic [w-1:0] c = 12)
(output uwire [w-1:0] prods[4], input uwire [w-1:0] a[4], b[4]);

mult #(w) ml (prods[0], a[0], b[0]);

mult #(w) m2 (prods[1], c, bl[1]);

mult_1la #(w) mal(prods[2], a[0], b[0]);

mult_la #(w) ma2(prods[3], c, b[1]);
endmodule

Explain why m1 will be faster (lower delay) than mal, even when possible values of a[0] include 0, 1, and
other values. Assume good synthesis programs.

D How will the cost and performance of m2 and ma2 compare (to each other) using good synthesis programs?

That is, E] which should be chosen when delay is the only concern and, E] which of the two should be
chosen when cost is the only concern. The answer should not depend on any particular value of c.

mt . pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Fall 2021 Midterm Exam Exam

Staple This Side

Staple This Side

Problem 5: [15 pts] Answer the following questions about Verilog syntax and semantics.

(a) Appearing below are four variations on a multiplier with a constant input. Most have errors that would
prevent them from compiling. For each indicate whether there is an error, and if so, what the error is and a

minimal fix.

D Module is O correct or O has the following error and fix:

module mult_2a #(int w = 32, logic [w-1:0] a = 12)
(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (a==20) p = 0;

else if (a==1) p = b;

else P =a* b;
endmodule

[] Module is O correct or Q has the following error and fix:

module mult_2b #(int w = 32, logic [w-1:0] a = 12)
(output uwire [w-1:0] p, input uwire [w-1:0] b);

always_comb begin

if (a==0) p = 0;
else if (a==1) p = b;
else P =a*b;
end
endmodule

D Module is O correct or O has the following error and fix:
module mult_2c #(int w = 32, logic [w-1:0] a = 12)
(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (b==20) p = 0;
else if (b ==1) p = a;
p:

else a *x b;

endmodule

D Module is O correct or O has the following error and fix:

module mult_2d #(int w = 32, logic [w-1:0] a = 12)
(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (a==0) assign p = 0;
else if (a ==1) assign p = b;
else assign p = a * b;

endmodule

mt . pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Fall 2021 Midterm Exam Exam

(b) Show the values of b and ¢ where requested below.

module assortment;
logic [15:0] a;
logic [0:15] b;
logic [16:1] c;

initial begin

a = 167h1234;
b = a;
c = a;

// [:] Show value of b and c after line above executes:

#1; // Not really needed.
for (int i=0; i<16; i++) b[i] = alil;
// [:] Show value of b after line above executes:

end
endmodule

10

mt.pdf

Staple This Side

&

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Fall 2021 Midterm Exam Exam

Problem 6: [10 pts] Answer the following synthesis questions.

(a) Cadence Genus defines the following three synthesis steps: syn_gen (generic), syn_map (mapped, or
technology mapping), and syn_opt (optimized). Answer the following questions about technology mapping.

D Explain what happens during technology mapping.

Staple This Side

D Even if optimization were done before technology mapping why is it important optimize after technology

mapping?

(b) What is the big disadvantage of setting the delay target too low when performing synthesis? (The small
disadvantage is that it takes a longer time to run.)

D Disadvantage of setting delay target too low during synthesis:

Staple This Side

11

mt . pdf

https://www.ece.lsu.edu/ee4755/2021/mt.pdf

Fall 2021 Final Exam Exam fe.pdf

Name Formatted For Two-Sided Printing

.
<
g
&

Digital Design using HDLs
LSU EE 4755
Final Examination

Wednesday, 8 December 2021 7:30 CST

Problem 1 (30 pts)
Problem 2 (35 pts)
Problem 3 (15 pts)
Problem 4 (20 pts)
Alias Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam

Problem 1: [30 pts] For the modules in this problem input sample holds a new value each cycle, and
output r_avg holds the average of the last n_samples inputs. (Ignore the fact that the module needs but

lacks a reset.)
(@) For the module below show the hardware that will be inferred when instantiated with default parameters.
Be sure to optimize for the default value of n_samples.

module ravg2 #(int w = 8, n_samples = 4)
(output logic [w-1:0] r_avg,
input uwire [w-1:0] sample, input uwire clk);
logic [w-1:0] samples[n_samples];
parameter int wm = $clog2(n_samples);
parameter int ws = w + wm;
logic [ws-1:0] tot;
always_ff @(posedge clk) begin
samples[0] <= sample;
for (int i=1; i<n_samples; i++) samples[i] <= samples[i-1];
tot <= tot - samples[n_samples-1] + samples[0];
end

always_comb r_avg = tot / n_samples;

endmodule

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam

D Show hardware for the module above using default parameter values.

D Optimize for these parameter values.

Staple This Side

Staple This Side

fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam

(b) The module to the right is similar to ravg2 except that it has three arithmetic unit instantiations: an
adder, a subtractor, and a divide-by-constant unit. Modify ravg3 so that it uses these modules. For full
credit connect them so that the critical path passes through at most one module per cycle. In a correct
solution r_avg will arrive at the output of ravg3 later than it would in module ravg?2.

[] Modify ravg3 so that it uses the three arithmetic units.

D For full credit, the critical path can go through at most one arithmetic unit per cycle.

D The connections to the arithmetic units can be changed (say from aal to something else).

D Do not add unnecessary cost or delay.

fe.pdf

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021

Staple This Side

Staple This Side

Final Exam Exam

module ravg3 #(int w = 8, n_samples = 4)
(output logic [w-1:0] r_avg,

input uwire
input uwire

logic [w-1:0]

parameter int
parameter int

[w-1:0] sample,
clk);

samples [n_samples];

wm = $clog2(n_samples);
ws = W + wm;

logic [ws-1:0] tot;

always_ff Q@(posedge clk) begin

samples[0]

<= sample;

for (int i=1; i<n_samples; i++) samples[i] <= samples[i-1];

tot <= tot - samples[n_samples-1] + samples[0]; // Modify or eliminate this line.

end

always_comb r_avg = tot / n_samples;

uwire [ws-1:0] sum, diff;

uwire [ws-1:0] aal, aa2, dal;

uwire [w-1:0] quot;

uwire [w-1:0] sal, sa2;

our_adder #(ws,ws) addl(sum, aal,
our_sub #(ws,w) sub2(diff, sal,
our_div_by #(w,ws,n_samples) div3(quot, dal);

endmodule

// Modify or eliminate this line.

aa2);

sa2);

fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam fe.pdf

Problem 2: [35 pts] Appearing below is a Verilog description of a lower-cost version of the bit_keeper
module from Homework 4 and a diagram of the hardware.
typedef enum { Cmd_Reset=0, Cmd_Rot_To=1, Cmd_Write=2, Cmd_Nop=3, Cmd_SIZE } Command;
module rot left #(int w = 10, amt = 1)

(output uwire [w-1:0] r, input uwire [w-1:0] a);

assign r = { alw-amt-1:0], alw-1:w-amt] };

endmodule
module bit_keeper_lite #(int wb = 64, wi = 8, ws = $clog2(wb))
(output logic [wb-1:0] bits, output uwire ready,
input uwire [1:0] cmd, input uwire [wi-1:0] din,
input uwire [ws-1:0] pos, input uwire clk);
localparam int ramt_a = 1; // Specify Rotation Amounts

localparam int ramt_b = 1 << (ws >> 1);

uwire [wb-1:0] ra, rb;

rot_left #(wb,ramt_a) rli(ra,bits);

rot_left #(wb,ramt_b) rl8(rb,bits);

logic [ws-1:0] rot_to_do; // Remaining amount of rotation to do.

assign ready = rot_to_do == 0;

always_ff @(posedge clk) case (cmd)
Cmd_Reset: ©begin bits = 0; rot_to_do = 0; end
Cmd_Rot_To: rot_to_do = pos; // Initialize rotation. Rotate during Nop.
Cmd_Write: bits[wi-1:0] = din;

Cmd_Nop: // Continue Executing a Cmd_Rot_To

if (rot_to_do >= ramt_b) begin
bits = rb; // Use output of larger rot module.
rot_to_do -= ramt_b; // Decrement remaining rot amt.

end else if (rot_to_do >= ramt_a) begin
bits = ra; // Use output of smaller rot module.
rot_to_do -= ramt_a; // Decrement remaining rot amt.

end

endcase
endmodule

(a) Find the cost and delay of the illustrated hardware using the simple model. Take into account the
presence of constants. For the addition and comparison units assume a ripple implementation. Show any
assumptions made. (See the next part before solving this one.)

D Show cost in terms of wy, w;, and w;. E] Take into account constants.

D Show delays and arrival times on the diagram, and I:] highlight the critical path. These should be in terms
of wy, w;, and ws.

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam fe.pdf

bit_keeper lite
1 12/
L_Is
Q. |wb-1:wi bitS
/ wb
m ;/ 7
L—IQ_ wi Isb
=
rot_left rot_left
(amt=ramt _a) ~ |(amt=ramt _b) 0 — wo L
711
’ N J bits
bits J IJ
A
t to d A
rot to do
=20 A
= (>
1)k
: v - v
N Y 0 — "
S
I
o
A |
° 2, S
€ €
ooe (o] (o]
‘EH_Q = T
~
M1 /
TS e
o
n

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam

(b) In class we assume that a four-input mux is implemented using a reduction tree of 3 two-input muxen.
For the illustrated hardware that would result in a longer critical path than is necessary. Modify the diagram
on the right to show a better way of implementing the four-input multiplexors.

D Replace four-input multiplexors with two-input muxen connected to reduce critical path.

(¢) Notice that care was taken to ensure that ramt_b is a power of 2. Explain how the fact that ramt_b is
a power of two reduces the cost of the adder and comparison unit operating on ramb_b. Also explain how a
power-of-2 ramb_b can reduce the cost of the other adder and comparison unit, if the synthesis program is

clever enough. Hint: Consider the binary representation of rot_to_do.

D Since ramt_b is a power of 2 the adder and comparison unit connected to ramt_b are lower cost because:

[] Since ramt_b is a power of 2 the adder and comparison unit connected to ramt_a (ves, a) are lower cost

because:

fe.pdf

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam fe.pdf

bit_keeper lite
1 12/
L_Is
Q. |wb-1:wi bitS
/ wb
m ;/ 7
L—IQ_ wi Isb
=
rot_left rot_left
(amt=ramt _a) ~ |(amt=ramt _b) 0 — wo L
711
’ N J bits
bits J IJ
A
t to d A
rot to do
=20 A
= (>
1)k
: v - v
N Y 0 — "
S
I
o
A |
° 2, S
€ €
ooe (o] (o]
‘EH_Q = T
~
M1 /
TS e
o
n

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam

(d) Appearing below is a version of bit_keeper_lite with four ready outputs, r1, r2, r3, and r4. On the
diagram add hardware that will be synthesized for each.

module bit_keeper_lite #(int wb = 64, wi = 8, ws = $clog2(wb))

(output logic [wb-1:0] bits, output uwire rl, output logic r2, r3, r4,
input uwire [1:0] cmd, input uwire [wi-1:0] din,
input uwire [ws-1:0] pos, input uwire clk);

localparam int ramt_a = 1;
localparam int ramt_b = 1 << (ws >> 1);

uwire [wb-1:0] ra, rb;
rot_left #(wb,ramt_a) rli(ra,bits);
rot_left #(wb,ramt_b) rl8(rb,bits);

logic [ws-1:0] rot_to_do;
assign rl = rot_to_do == 0; // [] Show hardware for ril.

always_ff @(posedge clk) begin
r2 = rot_to_do == 0; // [] Show hardware for r2.

case (cmd)
Cmd_Reset: begin bits = 0; rot_to_do = 0; end
Cmd_Rot_To: rot_to_do = pos;
Cmd_Write: bits[wi-1:0] = din;
Cmd_Nop: begin
if (rot_to_do >= ramt_b) begin
bits = rb;
rot_to_do -= ramt_b;
end else if (rot_to_do >= ramt_a) begin
bits = ra;

rot_to_do -= ramt_a;
end
r3 = rot_to_do == 0; // [] Show hardware for r3.
end
endcase
rd = rot_to_do == 0; // [] Show hardware for r4.
end
endmodule

D Show hardware that will be synthesized for r1, r2, r3, and r4.

10

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam fe.pdf

bit_keeper lite
1 12/
L_Is
Q. |wb-1:wi bitS
/ wb
m ;/ 7
L—IQ_ wi Isb
=
rot_left rot_left
(amt=ramt _a) ~ |(amt=ramt _b) 0 — wo L
711
’ N J bits
bits J IJ
A
t to d A
rot to do
=20 A
= (>
1)k
: v - v
N Y 0 — "
S
I
o
A |
° 2, S
€ €
ooe (o] (o]
‘EH_Q = T
~
M1 /
TS e
o
n

Staple This Side

11

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021

Final Exam

Exam

Problem 3: [15 pts] Consider the modules below.

module ba

(output logic [15:0] next_x, next_y, x, ¥,

input uwire [15:0] a, c,

always_ff @(posedge clk)

assign next_x = a;

assign next_y = x + C;
always_ff @(posedge clk)

endmodule

module test ba;

uwire [15:0] x, y, next_x,
logic [15:0] a, c;

logic clk;

ba bal(next_x, next_y, X,

initial begin

// t =20
clk = 0;
a = 0;

#1; // t
clk = 1;
#1; // t
clk = 0;
#1; // t
clk = 1;
#1; // t
clk = 0;
#1; // t
clk = 1;
#1; // t
clk = 0;
#1; // t
clk = 1;
#1; // t
clk = 0;

end

endmodule

12

I
=

Il
N

I
w

]
S

I
[e)}

]
~

c <=

c <=

input uwire clk);

X = next_x;
y = next_y;
next_y;

y, a, ¢, clk);

10;

20;

// Line t4

// Line t7

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam fe.pdf

O 1 2 3 4 5 6 7 8

X
o o O -

(a) Complete the timing diagram so that it shows the values of next_x, next_y, x, and y that would be
produced with the modules above. Note: In the original exam test_ba did not use non-blocking assignments
to a and c.

D Complete timing diagram from ¢t = 4 to t = 8.1. D Note that there is a negative clock edge at t = 4.

(b) At t = 5 we can be sure that y=next_y will execute before next_y=x+c. Explain how this ordering is
assured by the rules for the event queue.

D Explain how event queue regions assure y=next_y executes before next_y=x+c at t = 5.

(¢) Notice that a and c are assigned using non-blocking assignments on Lines t4 and t7. Explain why the
order of execution would be ambiguous at ¢t = 7 if line t7 used blocking assignments: a=1; c=10;. Note:
This question was not in the original exam.

D Describe ambiguity (more than one possible execution order) if blocking assignments were used.

D Would non-blocking assignments x <= next_x and y <= next_y remove the ambiguity? D Explain.

Staple This Side

13

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam

Problem 4: [20 pts] Answer each question below.
(a) The foolish sqrt module below has several issues.

module sqgrt #(int w = 16)
(output logic [w-1:0] r, input uwire [w-1:0] a);

always_comb begin

r = 0;
while (r * r < a) r++;

end

endmodule

D Explain why, due to the Verilog rules for bit widths, the expression r * r < a won’t compute the intended

result.

[] Why is the sqrt module likely not synthesizeable?

[] What would be the problem with the hardware if it were synthesizable?

14

fe.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam

Staple This Side

Staple This Side

(b) Consider the two division modules below. In the first a2 is a parameter, in the second it is a module

port. Use the div_demo module for your answers to the questions below.

module our_div_by
#(int wq = 5, wd = 10, logic [wd-1:0] a2 = 4)
(output uwire [wgq-1:0] quot, input uwire [wd-1:0] al);
assign quot = al/a2;
endmodule

module our_div
#(int wq = 5, wd = 10)
(output uwire [wgq-1:0] quot, input uwire [wd-1:0] al, a2);
// cadence inline
assign quot = al/a2;
endmodule
module div_demo
#(int w = 21)
(output uwire [w-1:0] di, 42,

input uwire [w-1:0] x1, %2, x3, x4);

localparam logic [w-1:0] y1 = 4755;

endmodule

[] Show an instantiation of our_div for which our_div_by could work.
[| Show an instantiation of our_div for which our_div_by could not work.

D Explain how the use of the cadence inline pragma in our_div makes it possible to instantiate our_div in

places that otherwise might need our_div_by.

fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021 Final Exam Exam fe.pdf

(¢) Answer the following questions about latency and throughput.

D Define latency.

[] Define throughput.

Consider a sequential circuit (such as mult_step from Homework 6) and a pipelined version of the sequential
circuit (such as multi_step_pipe). Assume that both have the same clock frequency.

D Remembering that the clock frequencies are the same, compared to the sequential version, does the pipelined

version typically have
O lower latency, O the same latency, or O higher latency. I:] Explain.

D Compared to the sequential version, does the pipelined version typically have
Q lower throughput, O the same throughput, or O higher throughput. I:] Explain.

D Ignoring the cost of registers, compared to the sequential version, does the pipelined version typically have
Q lower cost, O the same cost, or O higher cost. I:] Explain.

16

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2021

Staple This Side

Staple This Side

Final Exam

Exam

17

fe.pdf

https://www.ece.lsu.edu/ee4755/2021/fe.pdf

Fall 2020 Midterm Exam Exam mt . pdf

5 Fall 2020

97

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Fall 2020

Name

&

Midterm Exam Exam

Digital Design Using HDLs
LSU EE 4755
Solve-Home Midterm Examination

Friday, 6 Nov 2020 to early Monday, 9 Nov 2020 05:00 CST)

Work on this exam alone. Regular class resources, such as notes, pa-
pers, documentation, and code, can be used to find solutions. Outside
material that covers the same topics, such as Verilog tutorials, digital
logic design guides can also be used. Do not try to directly seek out
solutions to any question here. That is, don’t Web-search the text of
a problem. Do not discuss this exam with classmates or anyone else,
except questions or concerns about problems should be directed to Dr.

Koppelman.

Warning: Unlike homework assignments collaboration is not allowed
on exams. Suspected copying will be reported to the dean of students.
The kind of copying on a homework assignment that would result in a
comment like “See eed755xx for grading comments” will be reported if
it occurs on an exam. Please do not take advantage of pandemic-forced

test conditions to cheat!

Problem 1
Problem 2
Problem 3
Problem 4

Problem 5

r>2m = R.<l1 Exam Total

Good Luck!

mt . pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Fall 2020 Midterm Exam Exam

Problem 1: [20 pts] Appearing below are some variations on a multiply accumulate module.

(a) Complete the Verilog code below so that it matches the illustration.

macl

h wh
ai (X ao

wa Al [wa
Ik
I==ioLL. O

M1
NN

[
L

[] Complete the Verilog.
D Use parameters for the bit widths wh and wa.

D The registers inferred from the Verilog must match the diagram.

module maci

endmodule

mt . pdf

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Fall 2020 Midterm Exam Exam mt . pdf

(b) Complete the Verilog code below so that it matches the illustration, similar to the one on the previous

page.
mac2
S wh 20
11 al / (x /11
T A wa
A

ek

[] Complete the Verilog.
D Use parameters for the bit widths wh and wa.

D The registers inferred from the Verilog must match the diagram.

module mac2

endmodule

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Fall 2020 Midterm Exam Exam

[]

Problem 2: [20 pts] The mac (multiply-accumulate) modules compute a running sum of products. The
alert student might have noticed that there is no way to reset the sum. In this problem a reset will be added.

The module below has an input r (for reset) which is to work as follows: When r=1 at a positive edge the
product h*ai should start a new running sum. That is, that particular h*xai should be added to zero. When
=0 at a positive edge the product h*ai should be added to the sum of the previous products. (If r=0 is
always true then the hardware as illustrated works correctly.)

h wh mac2r
wa A A wa

o hoh
T

Ik

Add hardware to the diagram to implement the reset. E] Complete the Verilog to implement the reset.
Use parameters for the bit widths wh and wa.

The registers inferred from the Verilog must match the diagram and [| be sure that the reset is applied
to the correct value.

module mac2r

endmodule

mt . pdf

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Fall 2020 Midterm Exam Exam mt . pdf

Problem 3: [20 pts] Appearing below are the modules from the previous problem. Suppose that in the
multiplier below bit i of the product were computed in time [47 + 2] u; and that a ripple adder were used for
the sum. Let w denote the value of wh and wa (which means wh==wa).

—E h wh macl h wh mac?2
wa A V\;aL"-E wa A A wa
clk
_Ea—... [] CIk

(a) Find the minimum clock period for each using the simple model, and taking into account cascading. (The
clock period is the length of the critical path, including the register delay.)

D Find the clock period for mac1 with cascading. D Don’t forget to include the delay of the register.

D Find the clock period for mac2 with cascading. D Don’t forget to include the delay of the registers.

(b) Find the minimum clock period for each using the simple model assuming that the multiplier output and
adder input could not cascade.

D Find the clock period for mac1 without cascading. D Don’t forget to include the delay of the register.

D Find the clock period for mac2 without cascading. D Don’t forget to include the delay of the registers.

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Fall 2020 Midterm Exam Exam

Problem 4: [20 pts] Appearing below is a recursively defined multiplier constructed using bfa (binary full
adder) and bha (binary half adder) modules.

module mult_tree_bfas #(int wa = 16, int wb = wa, int wp = wa + wb)
(output uwire [wp-1:0] prod, input uwire [wa-1:0] a, input uwire [wb-1:0] b);

if (wa == 1) begin
assign prod = a 7 b : 0;
end else begin
// Split a in half and recursively instantiate a module for each half.
localparam int wn = wa / 2;
localparam int wx = wb + wn;
uwire [wx-1:0] prod_lo, prod_hi;

mult_tree_bfas #(wn,wb) mlo(prod_lo, alwn-1:0], b);
mult_tree_bfas #(wn,wb) mhi(prod_hi, alwa-1:wn], b);

assign prod[wn-1:0] = prod_lo[wn-1:0];

uwire cl[wp-1:wn-1];

assign cl[wn-1] = 0;
for (genvar i=wn; i<wx; i++)

bfa b(c[i], prod[il, prod_lol[i], prod_hil[i-wn], cl[i-1]);
for (genvar i=wx; i<wx+wn; i++)

bha b(c[i], prod[i], prod_hili-wn], cli-1]1);

localparam int wz = wp - WX - wn;
if (wz > 0) assign prod[wp-1 :- wz] = 0;
end
endmodule

Show the hardware that will be inferred for two levels of recursion and compute its cost. That is, show three
instances of mult_tree_bfas: a top-level one, and two recursive instantiations. Show the hardware for the
top-level instance and both of the two recursive instantiations. (It is only necessary to show two levels.) Do
this for wa=8 in the top-level module.

D Show the inferred hardware.

Be sure to distinguish hardware (such as a bfa module) from values computed during elaboration.

[]

D Compute the cost of the hardware in your diagram using the simple model. (Work out the cost of a bha by
hand.) D The cost should be for two levels, not for hardware going down to the base case.

mt . pdf

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Fall 2020 Midterm Exam Exam mt . pdf

Problem 5: [20 pts] Answer each question below.

(a) Appearing below is a multiply/add module, nnMADDfp, that computes its result using a FP add and
multiply module. The values on the ports are IEEE 754 floats, and when wa=32 the format is IEEE 754
single, the same as a SystemVerilog shortreal. That is followed by an incomplete testbench module,
testnnMADD. The testbench module generates random values for the nnMADDfp module in variables ar, br,
and sir, and computes what the result should be, sor.

Add Verilog code to deliver ar, br, and sir to the nnMADDfp instance, and to put the output of nnMADDfp
into sor_mut so that sor_mut has the correct type of value. Note that one does not need to understand
what is inside of nnMADDfp, nnAddfp, nor nnMultfp.

[] Deliver (whatever that means) ar, br, and sir to nnMADDfp instance. [| Get output of the nnMADDfp
instance into variable sor_mut.

module NNMADDfp #(int wa = 10)
(output uwire [wa-1:0] so, input uwire [wa-1:0] a, b, si);
uwire [wa-1:0] p;
nnMultfp #(wa) mu(p, a, b);
nnAddfp #(wa) ad(so, si, p);
endmodule

module testnnMADD;
localparam int w = 32, ntests = 100;
uwire [w-1:0] so;
logic [w-1:0] a, b, si;
nnMADDfp #(w) n(so, a, b, si);

initial begin

for (int t=0; t<ntests; t++) begin
shortreal sor, ar, br, sir, sor_mut;

ar = rand_fpQ); // Value to be used as input a to nnMADDfp.
br = rand_£fp(Q); // Value to be used as input b to nnMADDfp.
sir = rand_fp(); // Value to be used as input si to nnMADDfp.

sor = ar * br + sir;

#1;
sor_mut = ; // <-- DON’T FORGET.
if (sor '= sor_mut) handle_incorrect_result();
end
end
endmodule

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Fall 2020 Midterm Exam Exam mt . pdf

(b) The module below will not compile or simulate due to multiple assignments to temperature, which is
declared uwire. Changing uwire to wire will fix the compile problem. Nevertheless, is that the right fix?

module more_stuff #(int w = 16)
(output uwire [w-1:0] v, y, input uwire [w-1:0] a, b, c);

uwire [w-1:0] temperature;

assign temperature = a + b;
assign v = temperature >> c;
assign temperature = a - b;

assign y = temperature << c;

endmodule

D What problem remains after changing temperature from a uwire to a wire?

D Fix the problem based on what the code looks like its trying to do.

(¢) An important part of synthesis is optimizing. It is possible to optimize before and again after technology
mapping.

D What is technology mapping? D Show an example of logic before and after technology mapping. (Make
up some technology.)

D Describe an optimization that can be done before technology mapping. Provide an example. (This is done
all the time in class.)

D Describe an optimization that can be done only after technology mapping (or perhaps during). Provide an
example, feel free to make things up.

https://www.ece.lsu.edu/ee4755/2020/mt.pdf

Fall 2020 Final Exam Exam fe.pdf

Name
Digital Design using HDLs
LSU EE 4755
Solve-Home Final Examination
Wednesday, 9 December 2020 to Friday, 11 December 2020 16:30 CST

Problem 1 (20 pts)
Problem?2 (20 pts)
Problem3 (15 pts)
Problem4 (10 pts)
Problem 5 (35 pts)

Alias Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Fall 2020 Final Exam Exam fe.pdf

Problem 1: [20 pts] Module probi_seq, below, is based on the solution to 2016 Final Exam Problem
1 (also appearing in problem set https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf,
please look at that solution). In that problem an incomplete diagram of the hardware was given, similar to
the one on the next page, and a module was to be completed so that it computes vO*v0 + vO*vl + vi*vl
consistent with the hardware. The completed module appears below, with minor simplifications. If you must
know, the simplifications include omitting the floating-point modules’ round inputs and status outputs. Also,
the case statement was replaced by an if/else statement. In case anyone is concerned, this wordy aside
would be omitted from an in-class exam.

Though module probl_seq is now complete, the hardware diagram isn’t. In this problem complete the
diagram of the synthesized hardware based on the module below. The diagram omits the hardware for step,
select signals for the multiplexors, enable signals for some of the registers, etc. Optimize the hardware that
compares step to a constant. Do so by showing individual gates rather than an equality or comparison unit.

D Complete the diagram so that it shows inferred hardware after some optimization.

D Where step is compared to a constant, show individual gates, not a comparison unit.

module probi_seq
(output logic [31:0] result, output logic ready,
input uwire [31:0] vO, vi, input uwire start, clk);

uwire [31:0] mul_a, mul_b, add_a, add_b, prod, sum;

logic [2:0] step;
logic [31:0] acO, acil;

localparam int last_step = 4;

always_ff Q(posedge clk)
if (start) step <= 0;
else if (step < last_step) step <= step + 1;

CW_fp_mult m1(.a(mul_a), .b(mul_b), .z(prod));
CW_fp_add al(.a(add_a), .b(add_b), .z(sum));

assign mul_a = step < 2 7 v0 : vi;
assign mul_b = step == 0 7 vO : vi;
assign add_a = acO, add_b = acl;

always_ff @(posedge clk)
begin
acO <= prod;
if (step < 3) acl <= step ? sum : O;
if (start) ready <= 0; else if (step == last_step-1) ready <= 1;
end

assign result = sum;

endmodule

https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf
https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Fall 2020 Final Exam

Exam

probl_seq
start
.
ml &
E] vo ji cw_ip.Mmult al a
ac0 [cwrpadd 0
[|
t
A
1 VI
[
32'do
clk 1
= S N
ready
t
A

fe.pdf

https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Fall 2020 Final Exam Exam fe.pdf

Problem 2: [20 pts] Consider again that module from Problem 1 of the 2016 final exam. Appearing below
is the start of a Verilog description of a pipelined version of this module. The ports are the same as in
the sequential version from the previous problem, however the module must operate in pipelined fashion,
meaning that a new v0, v1 pair could arrive at the inputs each cycle.

Complete the module. Two floating-point units are instantiated for your convenience. Add floating-point
and other hardware as needed.

D Complete module so that it operates in pipelined fashion.

module prob1_pipe (output uwire [31:0] result, output uwire ready,
input uwire [31:0] vO, vi, input uwire start, clk);

uwire [31:0] mul_a, mul_b;

uwire [31:0] add_a, add_b;

uwire [31:0] prod, sum;

// Add or modify FP units and other hardware.

CW_fp_mult mi(.a(mul_a), .b(mul_b), .z(prod));

CW_fp_add al(.a(add_a), .b(add_b), .z(sum));

endmodule

https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Fall 2020 Final Exam Exam fe.pdf

Problem 3: [15 pts] Yet again, consider the solution to 2016 Final Exam Problem 1. (The solution appears
in the sequential problem set, https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf, feel
free to look at it.) Appearing below is an incomplete diagram of the hardware with some timing information
shown, and a timing diagram. In this problem several performance measures will be computed based on the
simple model.

I start probl_seq
e
A m al Ei
_]7 o acO [cwrpadd o N
imm|
Lf A LJEI— start ||
e vl } step 4 0 1 2 B s
T 32'd0 mul_a_ Jfvo XX‘vl
acl mulb o Jin “Mux delay.
T A prod fTvor TR0 22
| ac0 f)(voz Xval)(\/12
@ : ready acl Mutdelay. JO Yvor Yoou1+vor
clk A g sum SO0 M 22 + vova + vor
t —£1 ready _\]7

Let t,,, = 251y denote the delay of the CW_fp_mult unit and let ¢, = 20 u; denote the delay of the CW_fp_add
unit. The arrival times of signals at the multiplexor select inputs and at the ready register are shown

boxed in blue| Base the delay of the registers and multiplexors on the simple model.

(a) Determine the clock period for this module using the assumptions above and show the critical path on
which this clock period is based.

D Determine the clock period. E] Show critical path used to determine the clock period.

[] Show work, and state any assumptions.

(b) Based on your answers above determine the latency and throughput for this calculation.

[] The latency is:

[] The throughput is:

https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf
https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Fall 2020 Final Exam Exam fe.pdf

Problem 4: [10 pts] The bfa_tree_bfas module below has a flaw: It won’t compile if wp < wa+wb. That’s
a big deal, because in many—perhaps most—cases when one multiplies two w-bit integers all one wants is
the w least significant bits of the product.

D Modify the module so that it will work correctly for values of wp<=wa+wb. I:] Do so in a way that generates
less hardware even without optimization of unconnected nets and unread variables.

module mult_tree_bfas #(int wa = 16, int wb = wa, int wp = wa + wb)
(output uwire [wp-1:0] prod,
input uwire [wa-1:0] a, input uwire [wb-1:0] b);

if (wa == 1) begin
assign prod = a ? b : 0;
end else begin

localparam int wn = wa / 2;
wb + wn;

localparam int wx

uwire [wx-1:0] prod_lo;

uwire [wx-1:0] prod_hi;

mult_tree_bfas #(wn,wb) mlo(prod_lo, alwn-1:0], Db);

mult_tree_bfas #(wn,wb) mhi(prod_hi, alwa-1:wn], b);

assign prod[wn-1:0] = prod_lo[wn-1:0];

uwire c[wp-1:wn-1];

assign clwn-1] = 0;

for (genvar i=wn; i<wx; i++)
bfa b(cl[i], prod[il, prod_lo[il], prod_hil[i-wn], c[i-1]);

for (genvar i=wx; i<wx+wn; i++)
bha b(c[i], prod[il, prod_hil[i-wn], c[i-1]);

localparam int wz = wp - WX — wn;
if (wz > 0) assign prod[wp-1 :- wz] = 0;

end
endmodule

https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Fall 2020 Final Exam Exam fe.pdf

Problem 5: [35 pts] Answer each question below.

(a) When is it less expensive to implement design X using an FPGA, and when is it less expensive to
implement design X (the same design) using an ASIC? Cost here refers to the purchase price, not something
computed using the simple model.

[] An FPGA is less expensive for design X when ... [| Explain.

[] An ASIC is less expensive for design X when ... [] Explain.

(b) A testbench is written to verify whether a Verilog module does what it is supposed to do. (It’s not just
for homework assignments.) Consider a component that could quickly and thoroughly be tested after it has
been manufactured.

D Is a testbench still necessary for the Verilog description of this component?

D Explain.

A company has two testbench teams, the good team, and the okay team. (The good team is much better
than the okay team.) Is it better to use the good team (rather than the okay team) for the testbench when
the design is being made into an FPGA or when the design is being made into an ASIC?

D Better to use the good team for writing the testbench when fabricating an O FPGA or O ASIC .

D Explain.

https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Fall 2020 Final Exam Exam fe.pdf

(¢) In each code fragment below indicate whether the non-blocking assignments are necessary, must be
replaced by a blocking assignment, or whether it does not matter which is used. Assume typical use of

Verilog.

D Are the non-blocking assignments Q necessary, O must be replaced by blocking assignments, O either
one will work .

[] Explain.

// Fragment A
always_comb begin x <= a + y; end // Line 1
always_comb begin a <= b + c; end // Line 2

D Are the non-blocking assignments O necessary, O must be replaced by blocking assignments, O either
one will work .

[] Explain.

// Fragment B
always_ff Q@(posedge clk) begin x <= a + y; end // Line 1
always_ff 0(posedge clk) begin a <= b + ¢; end // Line 2

(d) Consider three ways of designing digital hardware: combinational, sequential, and pipelined.

Sequential hardware is the lowest-cost alternative for many designs. (Some of which appear on this test.)
Provide an example of some non-trivial hardware for which a sequential design would not be less expensive
than a combinational design. The hardware might compute an arithmetic expression, as does the hardware

in Problem 1.

D Non-trivial hardware that can’t be made less expensive with a sequential design compared with a combina-
tional design. [] Explain.

https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Fall 2020 Final Exam Exam fe.pdf

(e) Both modules below have an input port providing an array of unsigned integers, and an output port,
elt_min, which is set to the smallest of these numbers. The two modules are nearly identical, the difference
is that in min_b_s (the s is for shortcut) the loop ends when a value of 0 is found (because there can’t be
anything smaller, so why bother looking), while in min_b the loop always iterates for n-1 iterations. Consider
a situation in which most inputs contain a zero. Which module has a shorter critical path (meaning that it
is faster in a typical digital design)?

module min_b #(int w = 4, int n = 8)
(output logic [w-1:0] elt_min, input uwire [w-1:0] elts[n]);
always_comb begin
elt_min = elts[0];
for (int i=1; i<n; i++)
if (elts[i] < elt_min) elt_min = elts[i];
end
endmodule

module min_b s #(int w = 4, int n = 8)
(output logic [w-1:0] elt_min, input uwire [w-1:0] elts([n]);
always_comb begin
elt_min = elts[0];
for (int i=1; i<n && elt_min > 0; i++)
if (elts[i] < elt_min) elt_min = elts[i];
end
endmodule

D Which module has a shorter critical path, Q min b or O min b_s ?

[] Explain.

https://www.ece.lsu.edu/ee4755/2020/fe.pdf

Fall 2019 Midterm Exam Exam mt . pdf

6 Fall 2019

115

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Fall 2019 Midterm Exam Exam mt . pdf

Name
Digital Design Using HDLs
LSU EE 4755
Midterm Examination
Wednesday, 30 October 2019 10:30-11:20 CDT

Problem 1 (20 pts)
Problem 2 (25 pts)
Problem 3 (27 pts)
Problem 4 (28 pts)

Alias Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Fall 2019 Midterm Exam Exam

Problem 1: [20 pts] Appearing below is one of the solutions to Homework 2, the count leading zeros
module.

module clz_bi_tree #(int w = 19, int ww = $clog2(w+l))

(output uwire [ww:1] nlz, input uwire [w:1] a);
if (w==1) begin
assign nlz = 7 a;
end else begin
localparam int wlo = w/2, whi = w - wlo;

localparam int wwlo = $clog2(wlo+1), wwhi = $clog2(whi+l);
uwire [wwlo:1] 1z_lo;
uwire [wwhi:1] 1z_hi;
clz_bi_tree #(wlo) clo(1z_lo, alwlo:1])
clz_bi_tree #(whi) chi(1lz_hi, alw:wlo+1]);
assign nlz = 1z_lo < wlo ? 1lz_lo : wlo + 1lz_hi;
end
endmodule

Show the hardware that will be inferred for the module for w > 1. Just show one level, don’t show what is
inside of clo and chi.

[] Show synthesized hardware for one level. [| Be sure to show clo and chi (but not their contents).

mt . pdf

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Fall 2019 Midterm Exam Exam mt . pdf

Problem 2: [25 pts] In Homework 2 a clz (count leading zeros) module was constructed recursively by
splitting the input bit vector and connecting each half to a smaller instance. The incomplete module below
is similar except that the input vector is to be split into thirds and each third connected to a recursive
instance. Complete the module.

[] Complete so that clz_tri_tree computes clz.
module clz_tri_tree #(int w = 19, int ww = $clog2(w+l))

(output uwire [ww-1:0] nlz, input uwire [w-1:0] a);

if (w==1) begin
assign nlz = 7 a;

// [:] Make any needed changes to terminal case(s).

end else begin

// [] Finish these localparams.
localparam int wlo =

localparam int wmi

localparam int whi

localparam int wwlo = $clog2(wlo+1), wwmi = $clog2(wmi+l), wwhi = $clog2(whi+l);
uwire [wwlo-1:0] 1z_lo; // No need to change these four lines.

uwire [wwmi-1:0] 1z _mi;

uwire [wwhi-1:0] 1z_hi;

// [:] Finish module connections below.

clz_tri_tree #(wlo) clo(1z_lo, al 1)
clz_tri_tree #(wmi) emi(lz_mi, al 1)
clz_tri_tree #(whi) chi(1lz_hi, al 1)

// [] Finish nlz.

assign nlz =

end
endmodule

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Fall 2019 Midterm Exam Exam mt . pdf

Problem 3: [27 pts] Appearing below are modules that test if two bit vectors are equal in some way.

(a) Show the hardware for the module below at the default size using basic gates: AND, OR, XOR, NOTs,
and bubbled inputs and outputs. Do not use something like E]

module eq #(int w = 4) (output uwire equal, input uwire [w-1:0] a, b);
assign equal = a == b;
endmodule

D Show hardware using basic gates at default size.

(b) Show the cost and delay of the module in terms of w (the value of parameter w) using the simple model.

[] In terms of w: [] Cost and [| Delay.

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Fall 2019 Midterm Exam Exam mt . pdf

(¢) The module below also tests equality but it does so after shifting the first operand. Show the hardware
in terms of basic gates after optimization.

module eqgs #(int w = 6, int s = 2) (output uwire equal, input uwire [w-1:0] a, b);
localparam logic [w+s-1:0] zero = 0;
assign equal = zero + (a << s) == b;

endmodule

D Show hardware at default size after optimization.

(d) The module below performs a different operation than the one above. Explain the difference and show
an example.

module eqt #(int w = 16, int s = 5) (output uwire equal, input uwire [w-1:0] a, b);
assign equal = (a << s) == b;
endmodule
[| Difference between operation egs and eqt.

[] Show a value for a and b for which the output of eqs and eqt are different.

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Fall 2019 Midterm Exam Exam

Problem 4: [28 pts] Answer each question below.

(a) Appearing below is synthesis data taken from the solution to Homework 2. The Delay Target column
shows the maximum delay constraint given to the synthesis program.

Module Name Area Delay Delay
Actual Target
clz_w32 26290 3.110 10.000 ns
clz_tree_w32 21706 1.425 10.000 ns
clz_w32_1 36476 1.007 0.100 ns
clz_tree_w32_5 37356 0.577 0.100 ns

D In general, which result should be used if the only goal were to minimize area,
the results for the O 10.0ns Target or for the O 0.1ns Target ? D Explain.

D In general, which result should be used if the only goal were to minimize delay,
the results for the O 10.0ns Target or for the O 0.1ns Target ? D Explain.

(b) Provide w-bit declarations requested below.

// D Declare each object to be w bits and consistent with its name.

//

uwire [] bit_zero_is_msb;
uwire [] bit_zero_is_1sb;
uwire [] bit_zero_is_middle;

mt . pdf

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Fall 2019 Midterm Exam Exam mt . pdf

(¢) The module fragment below starts with six declarations (the object names starting with r), each providing
a value (either a+b or x+y). Some of those declarations will result in compile errors. Identify them and explain
the problem. If possible fix the problem without changing the object kind (localparam, uwire, var).

module my_mod
#(int w = 10, int x = 11, int y = 12)
(input uwire [w:1] a, b);

1]
©
+
g

localparam logic [w:1] rlp

localparam logic [w:1] r2p

I
b
+

3

uwire [w:1] rilw = a + b;
uwire [w:1] r2w = x + y;
logic [w:1] rll = a + b;

logic [w:1] r21

I
e

+
=

D Indicate which ones are wrong and D the reason that they are wrong.

[] Indicate which can’t be fixed and [] and explain why not.

(d) Explain what $realtobits does, and what hardware will be synthesized for it, if any.

always_comb begin
x = $realtobits(z);

end

[] Purpose of realtobits.

[] Synthesized hardware.

https://www.ece.lsu.edu/ee4755/2019/mt.pdf

Fall 2019 Final Exam Exam fe.pdf

Name Formatted For 2-Sided Printing

Staple Here

Digital Design using HDLs
LSU EE 4755
Final Examination

Friday, 13 December 2019 10:00-12:00 CST

Problem 1 (30 pts)
Problem 2 (25 pts)
Problem 3 (20 pts)
Problem 4 (25 pts)
Alias Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2019/fe.pdf

Fall 2019 Final Exam Exam

0O OO

Problem 1: [30 pts] Appearing below is the solution to Homework 6, the accumulation module. The next
page shows the pipelined adder and st_occ, which is some of the inferred hardware. Show the rest of the
inferred hardware after some optimization. Leave the pipelined adder as a box.

module add_accum #(int w = 21, n_stages = 3)
(output logic [w-1:0] sum, output logic sum_valid,
input uwire [w-1:0] ai, input uwire ai_v, reset, clk);

logic [n_stages-1:0] st_occ;
assign sum_valid = !st_occ;
uwire aout_v = st_occ[n_stages-1];

uwire [w-1:0] aout;
uwire [w-1:0] a0 = ai_v 7 ai : sum;
uwire [w-1:0] al = aout_v 7 aout : sum;

add_pipe #(w,n_stages) add p0(aout, a0, al, clk);

logic sum_occupied;

uwire [1:0] n_values = ai_v + sum_occupied + aout_v;
uwire saa = n_values >= 2; // Start an addition.
uwire write_sum = !sum_occupied && n_values == 1;

always_ff Q(posedge clk) if (reset) begin
sum <= 0;
sum_occupied <= 0;
st_occ <= 0;

end else begin
if (write_sum) sum <= aout_v ? aout : aij;
sum_occupied <= n_values[0];
st_occ <= { st_occ[n_stages-1:0], saa };

end

endmodule

Show inferred hardware after some optimization, but D leave add_pipe as a box.

Show logic associated with n_values as basic gates and a single BFA, do not show adders and do not show
comparison units.

Clearly show all input and output ports, do not confuse parameters with ports.

Avoid effortlessly optimized hardware, such as gates with constant inputs.

fe.pdf

Staple Here

Staple Here

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

Fall 2019 Final Exam Exam fe.pdf

Staple Here

add_pO
a0 =
N add_pipe aout
ai —
°39) | aout v

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

Fall 2019 Final Exam Exam fe.pdf

Problem 2: [25 pts] Appearing below is hardware from the solution to Homework 5, Problem 2. The
parameter names have been shortened, such as changing wv to v and using 1g v for wvb. The diagram shows
the delay through some of the modules, including the pop module. Treat e and a (delays for E] and)
as given constants for the first part.

(a) Based on the provided delays and using the simple model for others, compute the arrival time (delay) of
signals at each register input. That’s two inputs for each of five registers. The solution for ready is shown
in blue, so only four registers remain. Also, highlight the/a critical path to the err register.

& best_match
start Sample solytion 1 | :" | = v,k
in blue italic. d. | 8
1 en o
X —\ < | ready L
1 L

<e> (e+1) A

en

Pos |
g v

o
=~
~
%
(@)
|
(0]
>
@ {sod 4nd
<
|
1

start

Imm|
[
<
~
S
(@)
<
23| 3
;_'. o
\O_|:/
>
|eA ys

=
Q 0

gg_ pgp lStart Q -

key :
3 - <6 Ig k> ~0 A

7
c (S
Al

|_-I

(mm|

D Show the arrival time of the enable and data signal at each register input and E] Highlight a critical path
to err with a squiggly line.

D Take into account constant inputs when computing delays.

4

Staple Here

Staple Here

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

Fall 2019 Final Exam Exam

Staple Here

Staple Here

(b) The equality module is shown with a delay of e. Show the hardware for that module and compute the
cost and delay using the simple model. Take into account the width of the inputs and the fact that one

input is a constant.

D Sketch hardware for equality module for lgv = 8 and v — k = 101100015, and I:] taking into account the

constant input.

D Show the cost of the hardware for the equality module above based on the simple model in terms of 1gwv.
E] Don’t forget to take the constant input into account.

D Show the delay of the hardware based on the simple model in terms of 1gwv. D Don’t forget to take the

constant input into account.

fe.pdf

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

Fall 2019 Final Exam Exam fe.pdf

: fibo, w=16
Problem 3: [20 pts] The hardware illustrated P
to the right emits a famous integer sequence.
Write a synthesizable Verilog description of the +
hardware.
[] Complete the module, [| be sure that it is || E’i[]
synthesizable. 1 0 w
A A
D Use non-blocking assignments carefully.
&
D Be sure to include all I:] input and output ports reset l
and D parameters. 1 .
i
w
D Make sure that all objects have the appropriate clk 0
. B A
widths.
module fibo
endmodule

Staple Here

Staple Here

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

Fall 2019 Final Exam Exam

Staple Here

Staple Here

Problem 4: [25 pts] Answer each question below.

(a) Appearing below are synthesis script results for the pipelined integer adder from Homework 6. That
adder computes a w-bit integer sum using an n-stage pipeline in which each stage computes [w/n] bits of
the sum, starting with the [w/n] least-significant bits in the first stage.

All syntheses are of a w = 24-bit adder, versions with n = 1, 2, 3, 4, and 6 stages are synthesized. The delay
target is set to an easy 90ns.

Module Name Area Delay Delay
Actual Target
add_pipe_w24_n_stagesl 29928 10.174 90.000 ns
add_pipe_w24_n_stages2 47043 5.428 90.000 ns
add_pipe_w24_n_stages3 64159 3.701 90.000 ns
add_pipe_w24_n_stages4 81275 2.837 90.000 ns
add_pipe_w24_n_stages6 115506 1.973 90.000 ns

[] Based on this data provide the [| latency and [| throughput for the three-stage adder. Be sure to []

use appropriate units for the throughput.

D Note that the area (cost) increases with the number of stages. Based on the description above what is the
main contributor to the increase in cost?

fe.pdf

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

Fall 2019 Final Exam Exam

(b) The two modules below appear to be similar.

module plan_l(output logic [7:0] e, input logic [7:0] a,b);
logic [7:0] c;
always_comb begin
c =a+ b;
e =c + a;
end
endmodule

module plan_ll(output logic [7:0] e, input logic [7:0] a,b);
logic [7:0] c;
always_comb e = c + a;
always_comb ¢ = a + b;

endmodule

D For which module will the simulator perform unnecessary addition? D Explain.

D Is the result computed by the two modules different or the same? D Explain.

(¢) What value will y have at the end of the initial block?

module S;
logic [15:0] a,b,y;
initial begin
a=1;
b = 100;
<= 10;
= 0;
<= a + b;
= 999;
1
= 2;
b <= 20;
#200;
// Show value of y at this point in execution.
end

P HS <SS O

endmodule

[] Value of y at end of block is:

fe.pdf

Staple Here

Staple Here

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

Fall 2019 Final Exam Exam

(d) Consider the declarations below.

module types;

E int en;
& logic [31:0] 1lo;
bit [31:0] b;

uwire [31:0] u = 33;
localparam int p = 22;
endmodule

D Object u has the same data type as one of the other objects. Which is it?

[] What is the difference between 1o and b (logic and bit)?

D Notice that u is assigned a value. What is it about object 1o that makes it illegal to assign a value in its

declaration?

D Add correct code to assign value 44 to lo.

Staple Here

fe.pdf

https://www.ece.lsu.edu/ee4755/2019/fe.pdf

Fall 2018 Midterm Exam Exam mt . pdf

7 Fall 2018

132

https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Fall 2018 Midterm Exam Exam mt . pdf

Name
Digital Design using HDLs
LSU EE 4755
Midterm Examination
Friday, 26 October 2018 9:30-10:20 CDT
Problem 1 (22 pts)
Problem?2 (20 pts)
Problem3 (23 pts)
Problem4 (10 pts)
Problem 5 (25 pts)
Alias Exam Total ____ (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Fall 2018 Midterm Exam Exam mt . pdf

Problem 1: [22 pts] The illustration below shows some of the inferred hardware for the behav_merge
module from the solution to Homework 6. The hardware that’s shown is for typical iterations i and i+1.
Show the hardware for iterations i=0 and i=1 with optimizations applied.

: o
. : .
{}a) behav_merge, n, w
g n. lg -
1 b ia ib
[] Show hardware for iterations i=0 and i=1. l 20l q

all]

D Also show hardware for code before for loop. b;o] G

=)

D Optimize hardware. Take into account possible values

of ia and ib.
1

n
w
w
n
I
module behav_merge ia [ib
n —
n
ib

rm
o

input uwire [w-1:0] a[n]l, bln]);

logic [$clog2(n+1)-1:0] ia, ib; H i—~
always_comb begin

(output logic [w-1:0] x[2*n], i
w
U x[i+1]
ia = 0; ib = 0;

for (int i = 0; i < 2%n; i++) g
if (ib==n || ia!=n && al[ial<=b[ib]) 1 1
x[i] = al[ia++]; else x[i] = b[ib++]; Gy —Ei'j
i

end |
ia

endmodule E

#(int n = 4, int w = 8) q

https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Fall 2018 Midterm Exam Exam mt . pdf

Problem 2: [20 pts] Appearing once again is part of the Homework 6 solution, this time with items labeled
in blue. Show the cost and delay of these, as requested below. See the previous problem for the Verilog
description. The phrase most expensive means for the value of ¢ for which the device needs all inputs, even
after optimization. For the mux, show the cost and delay for the tree implementation.

a
[] Cost of most expensive a-mux in terms of g nk b behav_merge, n, w E
n and w. . : ;
ia| |ib a-lim
jmnl b /
0T i _—
alo] Y n
| amm W
a-mux g X011
blo1 Y
[] Delay of most expensive a-mux in terms | b1} A f‘

of n and w. Y 7:)
n

_>\L—|f/ = ol X
ia ibw i-mux
[] Cost of most expensive i-mux in terms of i —

n and w. alo1 Y n

imnl
o

a[l]

b[0] Y
b[1]

[] Delay of most expensive i-mux in terms 1 1
of n and w. @ @
|

w
D x[i+1]

<\
(r

[] Cost of most expensive a-1im in terms of n and w [| after optimizing for constant inputs.

[] Delay of most expensive a-1im in terms of n and w [| after optimizing for constant inputs.

https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Fall 2018 Midterm Exam Exam

Problem 3: [23 pts] Output 1t of module comp, below, should be 1 iff a is strictly less than b, and eq
should be 1 iff a==b. Both a and b are unsigned integers. The module recursively instantiates two instances
of itself, one is supposed to compare the low bits of the inputs, the other compares the high bits. Complete

the module so that it works for any positive w.
[] Complete the module, don’t miss the [| FILL IN items.

D Make sure that it works for odd and even values of w.

module comp
#(int w = 8)
(output uwire 1t, eq, input uwire [w-1:0] a, b);

if () begin // Terminating Case Condition
assign 1t = l'a && b;
assign eq = a == b;

end else begin

uwire 1lo, 1lhi, elo, ehi;

<---- [] FILL IN

// Instantiate two comp modules, connect each to about half the inputs.

//

// e
comp #() clo(1llo, elo, al 1,
comp #() chi(lhi, ehi, al 1,
assign 1t = ;

assign eq ;

end
endmodule

______________ <-- D FILL IN

// <——— [:] FILL IN

// <———= [:] FILL IN

mt . pdf

https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Fall 2018 Midterm Exam Exam

Problem 4: [10 pts] The output of plus_amt, x, is to be set to b + amt. Input b and output x are expected
to be in IEEE 754 double FP format (the same format as type real). (Note: the port declarations are not
to be modified in the problems below.) Several variations on the module appear below. Hint: Solution to
this problem require the correct use of realtobits and/or bitstoreal. Grading Note: The bonus problem
was not on the original exam.

(@) The module below does not compute the correct result. Fix the module by modifying the always_comb
block. The module does not need to be synthesizable.

D Fix so that x is assigned the correct result, amt plus value of b.

module plus_amt
#(real amt = 1.5)
(output logic [63:0] x, input uwire [63:0] b); // DO NOT modify ports.
// Both x and b are IEEE 754 doubles (reals).

always_comb begin
// Change code below.

X = b + amt;

end

endmodule

(b) [0 pts] ’Bonus Problem‘ Complete the module below so that it uses the CW_fp_add module to do the
addition. The parameters to CW_fp_add are already correct, just connect the inputs and outputs.

D Complete so that it computes the correct result.

module plus_amt
#(real amt = 1.5)
(output logic [63:0] x, input uwire [63:0] b); // DO NOT modify ports.
// Both x and b are IEEE 754 doubles (reals).

uwire logic [7:0] s; // Unused.
// Computes z = a + b.
CW_fp_add #(.sig width(52),.exp_width(11)) // This line correct, don’t change.
fadd(.status(s), .rnd(0), // This line correct, don’t change.
-z(), .a(), .b())

endmodule

mt . pdf

https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Fall 2018 Midterm Exam Exam

Problem 5: [25 pts] Show the hardware that will be inferred for the Verilog code below.

[] Clearly show module ports.
[] Show inferred hardware. Don’t optimize.
[] Pay close attention to what is and is not inferred as a register.
module regs #(int w = 10, int k1 = 20, int k2 = 30)
(output logic [w-1:0] vy,
input logic [w-1:0] b, c,
input uwire clk);
logic [w-1:0] a, x, z;
always_ff @(posedge clk) begin
a=>b+ c;
if (a>kl) x

if (a>k2) z
y =x + z;

b + 10;
b + x; else z = ¢c - Xx;

end

endmodule

mt . pdf

https://www.ece.lsu.edu/ee4755/2018/mt.pdf

Fall 2018 Final Exam Exam fe.pdf

Name
Digital Design using HDLs
LSU EE 4755
Final Examination
Wednesday, 5 December 2018 15:00-17:00 CST

Problem 1 (20 pts)
Problem?2 (25 pts)
Problem3 (20 pts)
Problem4 (10 pts)
Problem 5 (25 pts)

Alias Exam Total ____ (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Fall 2018 Final Exam Exam fe.pdf

mult seq d prob 2 (w,m
Problem 1: [20 pts] Appearing to the right is the Unopﬁmizga ;p= w/m (w.m)
hardware inferred for the Homework 7 Problem 2

module, the fast sequential multiplier which skipped :D» Cou I
over zeros in the multiplicand.

1plier
(a) Notice that some hardware is circled in blue. Op- "
timize that hardware and show the cost of the op-
timized hardware. The optimized hardware should
generate signals sv_prod and oa new. If possible,
replace the multiplexors with simpler gates.

poud

[] Show optimized hardware. Tw

D Cost of optimized hardware:

m
o

=
I< | lg w/m
2 iter
o
clk |
-

|leAe 3no

m
o

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Fall 2018 Final Exam Exam

mult_seq _d_prob 2 (w,m)

(b) In the version of the module appearing be-
low the units have been replaced by one
module, gt, the changed hardware appears in
blue. As can be inferred from the diagram bit
i of the output of gt, gtv, is 1 iff i>iter. In
the Verilog code below gt is instantiated but it

Unoptimized n = w/m

plier
inm]
0T

w

2w

is not being used. Modify the Verilog code so
that the existing for loop uses the output of
gt instead of the > operators. Pay attention

windoe

to the version of iter used by gt.

D Use gt output in existing for loop.

inml
U

N
=

[] Make sure that gt uses correct iter version.

module mult_seq d prob_2
#(int w = 16, int m = 2)
(output logic [2*w-1:0] prod,
output logic out_avail,

inml
o

input uwire clk, in_valid,
input uwire [w-1:0] plier, cand);

pljeA ui

localparam int n = (w+m - 1) / m;
localparam int iter_lg = $clog2(n); clk
uwire [n-1:0][m-1:0] cand_2d = cand; e

bit [iter_lg-1:0] iter, next_iter;

A |leAe 3no

L

poad

]
o

logic [2*%w-1:0] accum;

uwire [n-1:0] gtv;

o

uwire [iter_1g-1:0] gt_iter = 0; // [] FILL IN
gt #(n,iter_1lg) gti(gtv, gt_iter);
always_ff @(posedge clk) begin

if (in_valid) begin

iter = 0; accum = 0; out_avail = O;

end else if (l!out_avail && iter == 0) begin
prod = accum; out_avail = 1;

end

accum += plier * cand_2d[iter] << (iter * m);

next_iter = 0;
for (int i=n-1; i>0; i--) if (i>iter && cand_2d[i]) next_iter = i;
iter = next_iter;

end
endmodule

fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Fall 2018 Final Exam Exam

Problem 2: [25 pts] The point of the gt module in the previous problem was to reduce cost, just in case
the synthesis program didn’t notice that the cost of computing each of n-1>iter, n-2>iter, ..., 2>iter,
1>iter, would be less than n — 1 times the cost of computing one of them. The recursive module below
computes these quantities and can be used for the gt module from the previous problem.

module gtd_rec #(int n = 16, int lgn = $clog2(n))
(output logic [n-1:0] gt, input uwire [lgn-1:0] iter);
localparam int nh =n / 2; // Note: n must be a power of 2.
if (n == 2) begin
assign gt[0] = 0;
assign gt[1] = liter[0];
end else begin
uwire [nh-1:0] gtlo;
gtd_rec #(nh) glo(gtlo, iter[lgn-2:0]);

localparam logic [nh-1:0] zeros = 0, ones = -1;
assign gt = iter[lgn-1] ? { gtlo, zeros } : { ones, gtlo };
end
endmodule

(a) Show the hardware that will be inferred for this module for an arbitrary value of n. In this case, do not
show what is inside the recursively instantiated module.

[] Show hardware for arbitrary n > 2. (Don’t show recursive module contents.)

(b) There should be a significant optimization opportunity in the hardware above. Show it.

D Show how the hardware will be optimized. The result should be AND, OR, and other basic logic gates.

fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Fall 2018 Final Exam Exam fe.pdf

(¢) Show the hardware that will be inferred for n = 8 after elaboration. That is, show the hardware inside
all of the recursive instantiations.

D Show hardware for n = 8. Show the contents of all recursively instantiated modules.

(d) Compute the cost and delay using the simple model. Show these in terms of n assuming that n is a
power of 2.

[] Cost and [] delay in terms of n.

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Fall 2018 Final Exam Exam fe.pdf

Problem 3: [20 pts] Consider the module below.

module MisC #(int n = 8)
(output logic [n-1:0] a, g, e,
input uwire [n-1:0] b, c, j, T, input uwire clk);

logic [n-1:0] z;

always_ff Q@(posedge clk) begin

a<=b+c; // Note: nonblocking assignment.
z = a+ j;
g =2z

end

always_comb begin
e = a x f;
end

endmodule

(a) Show the hardware that will be inferred for the module above.

D Show inferred hardware. E] Pay attention to what is and is not a register. E] Clearly show module
ports.

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Fall 2018 Final Exam Exam

module misc #(int n = 8)
(output logic [n-1:0] a, g, e,
input uwire [n-1:0] b, c, j, f, input uwire clk);

logic [n-1:0] z;

always_ff Q@(posedge clk) begin // Code Position Label: alf
a<=Db+c; // Note: nonblocking assignment.
z=a+ j;
g =2z

end

always_comb begin // Code Position Label: alc
e = ax*x f;
end

endmodule

(b) Suppose that the event queue is empty at ¢ = 10 when simulating the module above. Show the contents
of the event queue for the code above based on the following changes: At t = 10 j changes. At ¢t = 12 clk
changes from 0 to 1. At ¢t = 14 £ changes.

D Show the state of the event queue from ¢ = 10 until it is empty.

fe.pdf

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Fall 2018 Final Exam Exam fe.pdf

Problem 4: [10 pts] Answer each question below.

(@) The module below is not compilable. Explain why and fix it based on what it looks like it is trying to
do.

module more
(input uwire [5:0] w,
input uwire [w-1:0] a, b,
output uwire [w:0] s);
assign s = a + b;

endmodule

[] Fix the problem.

[] Describe the problem:

(b) The module below is supposed to count cycles but it won’t work as written. Describe the problem and
fix it.

module tic_toc
(output logic [7:0] cycles,
input uwire clk, reset);

always_comb begin

if (reset) cycles = 0;
else if (clk) cycles = cycles + 1;

end
endmodule

[] Describe the problem:

[] Fix the problem.

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Fall 2018 Final Exam Exam fe.pdf

Problem 5: [25 pts] Answer each question below.

(a) Appearing below is synthesis data showing the clock period of degree-m sequential workfront multipliers
and degree-m sequential regular (dm) multipliers for sizes m = 1, m = 2, m = 4, and m = 8.

Module Name Area Period Period Total

Target Actual Latency
mult_seq_wfront_m_w32_ml 191334 1000 3766 241024
mult_seq_wfront_m_w32_m2 205303 1000 3857 123424
mult_seq_wfront_m_w32_m4 260182 1000 5266 84256
mult_seq_wfront_m_w32_m8 351910 1000 7031 56248
mult_seq_dm_w32_ml 246818 1000 31113 995616
mult_seq_dm_w32_m2 279486 1000 30994 495904
mult_seq_dm_w32_m4 314724 1000 32127 257016
mult_seq_dm_w32_m8 408659 1000 31251 125004

As m increases the clock period of the workfront multiplier increases by a significant amount, while the
period of the sequential multiplier barely changes. Why?

D Why does the workfront period increase so much more than that of the regular multiplier?

Let p,(m) and p,.(m) denote the clock period of the degree-m workfront and regular multipliers. Show
expressions for L, (m) and [,.(m), the latencies of these multipliers.

[] Finish the following expression for latency: l,,(m) = p.,(m)

[] Finish the following expression for latency: I,.(m) = p,(m)

(b) The reasoning in the statement below is, as of this writing, incorrect. Provide the correct reason to not
spend time on multiplier modules.

“One should not spend time trying to develop efficient multiplication hardware because the synthesis program

s very good at optimizing logic and will synthesize something at least as good as a human can.”

D When working on a design that makes heavy use of multiplication one should just use multiplication operators
and not try to implement your own because:

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Fall 2018 Final Exam Exam fe.pdf

(¢) Sequential multipliers SO and S1 have the same latency and cost, but the clock period for S1 is lower
than SO.

D Which is preferred? D Explain.

Pipelined multipliers PO and P1 have the same latency and cost, but the clock period for P1 is lower than
Po.

[] Which is preferred? [] Explain.

10

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Fall 2018 Final Exam Exam fe.pdf

(d) In the module below notice that cand_2d is no longer available. Modify the line updating accum to use
cand instead.

module mult_seq dm #(int w = 16, int m = 2)
(output logic [2*w-1:0] prod,
input uwire [w-1:0] plier, cand, input uwire clk);

localparam int iterations = (w+m - 1) / m;
localparam int iter_lg = $clog2(iterations);

// uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg:1] iter;
logic [2*%w-1:0] accum;

always @(posedge clk) begin
if (iter == iter_lg’(iterations)) begin
prod = accum; accum = 0; iter = O;
end
// [:] Fix line below
accum += plier * cand_2d[iter] << (iter * m);
iter++;

end
endmodule

11

https://www.ece.lsu.edu/ee4755/2018/fe.pdf

Fall 2017 Midterm Exam Exam mt . pdf

8 Fall 2017

150

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Fall 2017 Midterm Exam Exam mt . pdf

Name
Digital Design using HDLs
EE 4755
Midterm Examination
Monday, 16 October 2017 9:30-10:20 CDT
Problem 1 (20 pts)
Problem 2 (20 pts)
Problem 3 (20 pts)
Problem 4 (15 pts)
Problem 5 (10 pts)
Problem 6 (15 pts)
Alias Exam Total ____ (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Fall 2017 Midterm Exam Exam mt . pdf

Problem 1: [20 pts] Write a Verilog description of the hardware illustrated below. The description must

include the modules and instantiations as illustrated. The description can be behavioral or structural, but
it must be synthesizable.

5 a?2 - all] tba
b2 |2
H— o10] b[1]
bf0 bfl
BFA fast BFA fast I
ha \ _fas g +La \ _Tas ;E', sb E
0T) 7] 0T) 0 4| 3V|
B— £ B— 2 £
b vi b 7 4
L 8 L 8 msb
ci ci ci
=8 £ £ £ H—

D Verilog corresponding to illustrated hardware.

[] Show instantiations, | | Verilog for instantiated module(s), [| and all module ports.

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Fall 2017 Midterm Exam Exam mt . pdf

Problem 2: [20 pts] Appearing below is a partially completed recursive description of an n = 2%-input,
w-bit multiplexor, which is a generalized version of the multiplexors appearing in Homework 1. Complete it.

D Fill in the condition and code for the terminating case.

D Complete recursive case, including the instantiation port and parameter connections (look for FILL IN).

module muxn #(int w = 5, int b = 4, int n = 1 << b)
(output uwire [w-1:0] x, input uwire [b-1:0] sel, input uwire [w-1:0] a[0:n-1]);

if () // Terminating Case Condition <---- [] FILL IN
begin
// Terminating Case

end else begin
// Recursive Case

uwire [w-1:0] y[2];
// Instantiate two n/2-input muxen, and connect each to half the inputs.

//
// -——- — <---- [] FILL IN

muxn #(. w(), .b()) mlo(y[0], sell[b-2:0], al O : n/2-11);

// — —_ <---- [] FILL IN
muxn #(.w(), .b()) mhi(y[1], sell], aln/2 : n-1 1);

// Instantiate one 2-input mux.

//
// _— ———— e <---- [] FILL IN
muxn #(.w(), .b()) m2()
end
endmodule

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Fall 2017

Midterm Exam

Exam

Problem 3: [20 pts] Appearing below to the right is an 8-input multiplexor constructed from 2-input
multiplexors using the technique from Homework 1 and from the previous problem. Call a multiplexor
constructed this way a tree mux. Appearing below to the left is a diagram showing a flat mux, the kind
usually used in class. The flat mux diagram shows a timing analysis based on the simple model, and some
details about cost.

For reference: Z?;é a2! = a(2® — 1). Assume that n is a power of 2.

otal).

sajeb Yo M

<{gn—>

mux n, w

s One decode AND per input (n total).
M
T

@ % % % w gate ANDs per

5 i input (nw t

©E g B

a0 e
aa

o s=1

al e
aa

w

-] >
© &
<Qa
S

© "

By)
a(n-1)

(a) Compute the cost of an n-input, w-bit flat mux using the simple

model and without optimization.

[] Cost of flat mux in terms of n and w.

select

a0

1:1

2 8

al

a2

a3

A
—

a4

7 <

a5

ab

a7

(b) Compute the cost of an n-input, w-bit tree mux using the simple model.

7

[
I

2:2

D Cost of tree mux in terms of n and w. D Describe assumptions made about 2-input mux implementation.

(¢) Compute the delay of an n-input, w-bit tree mux using the simple model.

D Delay of tree mux in terms of n and w.

mt . pdf

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Fall 2017 Midterm Exam Exam mt . pdf

Problem 4: [15 pts] Show the hardware that will be synthesized for the modules below.

(a) Show the hardware that will be inferred for the module below, including the minimum number of bits in
each wire. Assume that sqrt is defined in a library somewhere.

module wqf
#(int w = 16)
(output logic signed [2*w-1:0] rad,
output uwire [31:0] srad,
input uwire [w-1:0] a, b, c);
sqrt #(32,2*w) si(srad,rad);

always_comb begin

rad = bxb - 4 x a *x c;
if (rad < 0) rad = 0;

end

endmodule

D Show inferred hardware. I:] Show minimum correct bit widths.

(b) Show the hardware that will be inferred for the module below.

module sort2 #(int w = 4)
(output logic [w-1:0] x[2], input uwire [w-1:0] a[2]);

always_comb begin

for (int i=0; i<2; i++) x[i] = al[i]l;
if (al0] < a[1]) begin x[0] = al[1]; x[1] = al[0]; end

end

endmodule

D Show inferred hardware.

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Fall 2017 Midterm Exam Exam mt . pdf

Problem 5: [10 pts] Answer each question below.

(a) The mux2 module below uses implicit structural code. Modify it so that it uses behavioral (procedural)
code.

module mux2 #(int w = 16)
(output uwire [w-1:0] x,
input uwire s, input uwire [w-1:0] a,b);

assign x =8 == 07 a : b;

endmodule

[] Modify so that is procedural. [| Change ports if necessary.

(b) Modify the module port and parameter declarations below so that the Verilog is correct. Do not modify
the contents of the module itself. Note that opt is not defined, but that it should be. Note: In the original
eram assign was omitted from the module body, making the problem impossible to solve.

module sum_or_ dff
#(int w = 16)
(output uwire [w-1:0] x,
input uwire [w-1:0] a, b);

if (opt == 0) assign x = a+b; else assign x = a-b;

endmodule

[] Modify port and parameter declarations for correctness.

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Fall 2017 Midterm Exam Exam mt . pdf

Problem 6: [15 pts] Answer each question below.

(a) Why is always_comb preferred over always @(x or y or ..) when describing combinational logic?

[] always_comb preferred because ...

[] What is the risk with always @(x or y or ..)7

(b) Describe what the technology mapping step of synthesis is, and the kind of optimizations that need to
be performed after technology mapping.

D Technology mapping is:

[] Optimizations that must be performed after technology mapping:

(¢) The module below adds a real and an integer and assigns the sum (in real format) to its output. It is
valid Verilog but is not synthesizable by Owr EDA software. So, you call Owr EDA and ask, “why not?”.
They answer, “because it is impossible to add an integer to a real.” Is that the real reason? Explain.

module plusri (output real sum, input real a, input [20:0] x);
assign sum = a + X;
endmodule

D Reason a+x not synthesizable by Owr EDA software:

https://www.ece.lsu.edu/ee4755/2017/mt.pdf

Fall 2017 Final Exam Exam fe.pdf

Name
Digital Design using HDLs
LSU EE 4755
Final Examination
Wednesday, 6 December 2017 15:00-17:00 CST

Problem 1 (15 pts)
Problem?2 (25 pts)
Problem3 (20 pts)
Problem4 (10 pts)
Problem 5 (30 pts)

Alias Exam Total ____ (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Fall 2017 Final Exam Exam fe.pdf

Problem 1: [15 pts] The Verilog code below is the solution to Problem la of Homework 7. Below that is

the hardware for a slightly different pipelined multiplier. Modify the hardware to match the Verilog code.
Changes need to be made for each line commented DIFFERS.

D Modify hardware to reflect Verilog.

module mult_fast 1a #(int w = 16, int m = 4)
(output uwire [2*w-1:0] prod,
output uwire out_avail, input uwire clk, in_valid, // D DIFFERS
input uwire [w-1:0] plier, cand);
localparam int nstages = (w+m - 1) / m;
logic [2*w-1:0] pl_accum[0:nstages];
logic [w-1:0] pl_plier[0:nstages], pl_cand[0:nstages];

logic pl_occ[O:nstages]; // [] DIFFERS
assign prod = pl_accum[nstages];
assign out_avail = pl_occ[nstages]; // [] DIFFERS
always_ff @(posedge clk) begin
pl_occ[0] = in_valid; // [] DIFFERS
pl_accum[0] = O; pl_plier[0] = plier; pl_cand[0] = cand;

for (int stage=0; stage<nstages; stage++) begin
pl_plier[stage+1] <= pl_plier[stagel;
pl_accum[stage+1] <= pl_accum[stage] + (pl_plier[stagel

* pl_cand[stage] [m-1:0] << stage*m); // [] DIFFERS
pl_cand[stage+l] <= pl_cand[stage] >> m; // [] DIFFERS
pl_occ[stage+1] <= pl_occ[stagel; // [:} DIFFERS

end
end
endmodule
mult_fast_la w=16, m=4
LPIET bl plert0) w| g wl| § w| § W
| 7 i 7 ?—1 7 T_)_ 7
w I | I
A A A
cand = o o
s w -g -g -g
M ’ S S S
w | | !
pl_cand[0] A N A
3:0 — — - —
= ad Jak A
£ E E ge| prod
] =] =] S =1 ,
8 8 8 2 e
Ik o o il I s 2w
r C A=t /Ao A=t w A=}

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Fall 2017 Final Exam Exam fe.pdf

Problem 2: [25 pts] Module oldest_find_plan_b, illustrated below, is based on an alternative solution
to Homework 7 Problem 1b. Below the hardware illustration is incomplete Verilog code for this module.
The Verilog code uses abbreviated names, such as ns, comments show the original names from the assign-
ment, such as nstages. Complete the module. Note: This problem can be solved without having ever seen
Homework 7, though not as quickly.

oldest_find_plan_b w, ns
C

L o
Tnst1 oc[1] [oc[2] oc[ns] ox
0 000 | 1+[lg nS]L
1 2 ns @7 avail
0
L :::::

inm|

[

ca

7

wllns+1] %7
w
ca[1]
v
o
3

ca[ns]

W
OI: |-

inm|

D Complete the module so that it matches the hardware above.
module oldest find_plan_b

#(int w = 15, int ns = 3 /* nstages */)

(output logic [$clog2(ns):0] ox, // oldest_idx
output uwire avail, // out_avail
input uwire oc[0:ns], // pl_occ

input uwire [w-1:0] cal0O:ns]); // pl_cand

endmodule

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Fall 2017 Final Exam Exam fe.pdf

Problem 3: [20 pts] Appearing below are two variations on the oldest index module from the previous
problem. The Plan A version is based on the code from the posted Homework 7 solution. The Plan B
module is slightly different.

(a) Compute the cost of each module based on the simple model after optimizing for constant values. Use
symbol w (for w) and n (for ns). Base the cost of an a-input, S-bit multiplexor on the tree (recursive)
implementation. Recall that the tree implementation consists of & — 1 two-input multiplexors arranged in a
tree.

[] Plan A cost in terms of w and n. [] Show cost components on diagram, such as cost of big mux, [|
don’t forget to account for the constant inputs, and D for the number of bits in each wire.

oldest_find_plan_a w, ns
M oc
LJns+1 ¢oc[1] ¢oc[2] *oc[ns] ox L
OiD—'tD— 000 1+[lg ns]LJ
1 2 ns avail
e
M ca
I_J[w][ns+1] calol ™
w
ca[l]
w
o]
8 0
ca[ns]
w L

[] Plan B cost in terms of w and n. [| Show cost components on diagram, such as cost of big mux, []
don’t forget to account for the constant inputs and, D for the number of bits in each wire.

oldest_find_plan_b w, ns
oc

Jnsl+1 ¢oc[1] ¢oc[2] *oc[ns] ox g
1+[lg ns]

1 2 ns avail
A e
L ca

J[w][ns+1] %ﬁ\
w
0
call]
W
0
o]
3
ca[ns]

v
0:<: L’

o

inm|

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Fall 2017 Final Exam Exam fe.pdf

(b) Show the delay along all paths and show the critical path. Compute delay based on the simple model
after optimizing for constant values. Use the tree mux described in the previous part.

[] Plan A: [] show delay along all paths, [| highlight the critical path, [] and show the delay through
each component. Show these D in terms of w and n, and D account for constant inputs such as the
zeros in the equality units.

oldest_find_plan_a w, ns
ocC

E]ns’+1 *oc[l] ¢OC[2] *oc[ns] ox
1+[lg ns]L

SN —
1 2 ns avail

L
[uE)

1 Cca

Twlins+1] calol N
w

innl

call]
w

ooo
o

calns]

[] Plan B: [] show delay along all paths, [| highlight the critical path, [| and show the delay through
each component. Show these D in terms of w and n, and D account for constant inputs such as the
zeros in the equality units.

oldest_find_plan_b w, ns
ocC

E]ns’+l *oc[l] *oc[Z] *oc[ns] ox E
1+[lg ns]

1 2 ns avail
A e
ca

[uE)

1

J[W][r;S+1] %7\
w
0
call]
W
o)
o]
3

calns]

v
O:C: -

innl

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Fall 2017 Final Exam Exam fe.pdf

Problem 4: [10 pts] Explain why each of the modules below is not synthesizable by Cadence Encounter
(or similar tools) and modify the code so that it is without changing what the module does. Note: The
warning about not changing what the module does was not in the original exam.

module one_run #(int w = 16, int lw = $clog2(w))
(output logic all_1s, input uwire [w-1:0] a, input uwire [1lw:0] start, stop);
always_comb begin
all_1s = 1;

for (int i=start; i<stop; i++)
all_1s = all_1s && alil;

end
endmodule

[] Reason code above is not synthsizable:

[] Modify code so that it is.

module running_sum #(int w = 32)
(output logic [w-1:0] rsum,
input uwire [w-1:0] a, input uwire reset, clk);

always @(posedge clk) begin
if (reset) rsum <= 0;
end

always @(posedge clk) begin

rsum <= rsum + a;
end

endmodule

[] Modify code so that it is synthsizable.

[] Reason code above was not synthsizable:

D Explain assumption about intended behavior of this module.

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Fall 2017

Final Exam

Exam

Problem 5: [30 pts] Answer each question below.

(a) Show when each piece of code below executes (use the C labels) up until the start of C5¢, and show when
and in which region each piece is scheduled. See the table below.

module €q;
logic [7:0]
always_comb begin
x1 = a + b;
yl =2 % b;
end
assign x2 = 100 + a + b;
assign y2 = 4 * b;
assign z2 = y2 + 1;
initial begin
//
a = 0;
b = 10;
#2;
//
a=1;
b <= 11;
#2;
//
a = 2;
b = 12;
end
endmodule

D Continue the diagram below so that it shows scheduling up to the point where C5c executes.

Step 1 Step 2 Step 3
t=0 t=20 t=0
Active Active Active
C5a/z
Inactive| | Inactive
C1
NBA 2
C3
NBA
t=2
Inactive
C5b

// C1

// C2
// C3
// C4

Cba

C5b

Chc

a, b, ¢, d, x, y, x1, x2, y1, y2, z2;

fe.pdf

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Fall 2017 Final Exam Exam fe.pdf

(b) Which of the two modules does what it looks like it’s trying to do? Explain.

module sal(input logic [7:0] a, b, c, d, output wire [7:0] x, v);
assign x = a + b;

assign y = 2 * Xx;
assign x = ¢ + d;
endmodule

module sa2(input logic [7:0] a, b, ¢, d, output logic [7:0] %, v);
always_comb begin
X = a + b;

y = 2 % x;
X =c + d;
end
endmodule

D Module that is probably correct is:

D Major problem with other module.

D Provide a possible wrong answer from other module.

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Fall 2017 Final Exam Exam fe.pdf

(¢) Define throughput and latency and indicate where each is preferred. Provide examples appropriate for
pipelined systems.

[] Throughput is:

[] For example:

[] Latency is:

[] For example,

D If the goal is to improve throughput is higher throughput good or bad?

D If the goal is to improve latency, is higher latency good or bad?

D In what situation is latency more important than throughput?

(d) When we synthesize we specified a target delay, for example, 400 ns.

D Does specifying a larger delay mean that there will be less optimization?

D Explain.

https://www.ece.lsu.edu/ee4755/2017/fe.pdf

Fall 2016 Midterm Exam Exam mt . pdf

9 Fall 2016

167

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Fall 2016 Midterm Exam Exam mt . pdf

Name
Digital Design using HDLs
EE 4755
Midterm Examination
Friday, 21 October 2016 12:30-13:20 CDT
Problem 1 (20 pts)
Problem 2 (20 pts)
Problem 3 (20 pts)
Problem 4 (10 pts)
Problem 5 (10 pts)
Problem 6 (20 pts)
Alias Exam Total ____ (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Fall 2016 Midterm Exam Exam

Problem 1: [20 pts] Write a Verilog description of the hardware illustrated below. The description must
include the modules and instantiations as illustrated. The description can be behavioral or structural, but
it must be synthesizable.

mal mod b
L f 4 c mod a
[} [N N} } \ %
ma?2 i

]
(mml
|-

(mm
[m .

o :EYE c Diod a
D | DD
B3

mm
|y i
T
I“IE

()
[N

22 -
Vi [mnl b
3:3 T

D Verilog corresponding to illustrated hardware.

[] Show instantiations, | | Verilog for instantiated module(s), [| and all module ports.

mt . pdf

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Fall 2016 Midterm Exam Exam mt . pdf

Problem 2: [20 pts] Appearing below is the lookup_elt module from Homework 4 and following that an
incomplete module named match_amt_elt. Complete match_amt_elt so that the value at output port md is
set to the number of bits in clook that match corresponding bits in celt. For example, if clook=5’b00111
and celt=5’b00111 then md should be 5, if clook=5’b00101 and celt=5’b00111 then md should be 4,
and if c1look=5’b11000 and celt=5’b00111 then md should be 0. Code must be synthesizable, but can be
behavioral or structural.

D Complete the module so that md is set to the number of matching bits.

D Make sure that md is declared with sufficient width.

module lookup_elt #(int charsz = 32) // This module is for reference only.
(output logic match, input uwire [charsz-1:0] char_lookup, char_elt);
always_comb match = char_lookup == char_elt;

endmodule

module match_amt_elt
#(int charsz = 32)
(output logic md,
input uwire [charsz-1:0] clook,
input uwire [charsz-1:0] celt);

endmodule

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Fall 2016 Midterm Exam Exam

Problem 3: [20 pts] Show the hardware that will be synthesized for the modules below.

(a) Show the hardware that will be inferred for the module below. Show acme_ip_sqrt as a box.

module vmag(output uwire [31:0] mag, input uwire signed [31:0] v [3]);

logic [63:0] sos;
acme_ip_sqrt #(32) si(mag,sos);

always_comb begin

sos = 0;
for (int i=0; i<3; i++) sos += v[i] * v[i];
end
endmodule

[] Show inferred hardware. | | Don’t forget acme ip_sqrt.

D Clearly show input and output ports of vmag.

mt . pdf

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Fall 2016 Midterm Exam Exam mt . pdf

Problem 3, continued:

(b) Show the hardware that will be inferred for the module below, before and after optimization. Note: In
the original exam the input was named vi.

module min_elt(output logic [1:0] idx_min, input uwire signed [31:0] v [3]);
always_comb begin
idx_min = O;
for (int i=1; i<3; i++) if (v[i] < v[idx_min]) idx_min = i;
end
endmodule

[] Show inferred hardware. | | Clearly show input and output ports.

[] Show hardware after some optimization.

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Fall 2016 Midterm Exam Exam mt . pdf

Problem 4: [10 pts] Appearing in this problem are several variations on a counter.

(a) Show the hardware inferred for each counter below.

module ctr_a(output uwire [9:0] count, input clk);
logic [9:0] last_count;
assign count = last_count + 1;
always_ff Q(posedge clk) last_count <= count;
endmodule

module ctr_b(output logic [9:0] count, input clk);

uwire [9:0] next_count = count + 1;
always_ff Q@(posedge clk) count <= next_count;

endmodule

D Inferred hardware for E] ctr_a and E] ctr_b.

(b) There is a big difference in the timing of the outputs of ctr_a and ctr_b. Explain the difference and
illustrate with a timing diagram.

[] Difference between two modules. [| Timing Diagram.

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Fall 2016 Midterm Exam Exam mt . pdf

Problem 5: [10 pts] Appearing below is the solution to the 2015 midterm exam Problem 2. Estimate the
cost of this module as illustrated but use variable s for the number of bits in sum (shown as sswid) and in
each a element (shown as parameter f). Assume that the cost of a BFA is 10 units and that the cost of a
n-input AND and OR gate is n — 1 units. Take into account the 0 input to one of the multiplexors.

module ssum #(int n = 3, int £ = 4, int swid = £ + $clog2(n))
(output logic [swid-1:0] sum,
input uwire [n-1:0] mask, input uwire [£-1:0] a[n]);
always @* begin
sum = 0;
for (int i=0; i<n; i++) if (mask[i]) sum += alil;
end
endmodule

SSUM n=3, f=4, sswid = 6
mask i=0and 1. =2

mask[1:0] 1:0 mask[2]i 22

(mm|
L

0 | I sum_
|

4_

Lal2]

L

/

a 31014 “al1]

/

(mm|
L

[] Cost of illustrated hardware. []| Account for 0 mux input.

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Fall 2016

Midterm Exam

Exam

Problem 6: [20 pts] Answer each question below.

(a) Show the values of the variables as indicated below:

module tryout();

logic [15:0] a;
logic [0:15] b;
logic [3:0]1[3:0] e;
logic [3:0] =x1, x2;

initial begin

a = 167h1234;
x1 = a[3:0];

b = 16°h1234;
x2 = b[0:3];

e = 167h1234;
e[0] = e[0] + ’hf;

e = 167h1234;
e[0]1[0] = e[0][0] + ’hf;

end

endmodule

(b) Describe something that can be done during elaboration that cannot be done during simulation, and
something that can be done during simulation, that cannot be done during elaboration.

D Something that can be done during elaboration but not during simulation is:

D Something that can be done during simulation but not during elaboration is:

// [] Value
// [] Value
// [] Value
// [] Value

of x1 is:

of x2 is:

of e is:

of e is:

mt.pdf

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Fall 2016 Midterm Exam Exam mt . pdf

(¢) Appearing below are two alternatives for an integer division module, Plan A and Plan B. Both are
impractical, but Plan A is not even synthesizable.

module div_plan_a #(int w = 16) (output logic [w-1:0] quo, input uwire [w-1:0] a, b);
always_comb begin
for (quo = 0; a > quo * b; quot++);
end
endmodule

module div_plan_ b #(int w = 16) (output logic [w-1:0] quo, input uwire [w-1:0] a, b);
localparam int LIMIT = 1 << w;
always_comb begin

quo = 0;
for (int i=0; i<LIMIT; i++) if (a < i * b) quot+;
end
endmodule

[] Why isn’t Plan A synthesizable? Be specific as possible.

D What might be a practical objection to the Plan B approach?

(d) The magfp module below is not synthesizable due to the use of the real data type. How would the
module need to be changed so that it would be synthesizable and would operate on floating-point values.

module magfp(output real mag, input real vi [3]);
real sos;
sqrt #(32) si(mag,sos);
always_comb begin

sos = 0;
for (int i=0; i<3; i++) sos += vil[i] * vil[il;
end
endmodule

[] Show changes to port declaration for synthesizability.

D Explain with a few examples how the rest of the code would need to be changed.

https://www.ece.lsu.edu/ee4755/2016/mt.pdf

Fall 2016 Final Exam Exam fe.pdf

Name
Digital Design using HDLs
EE 4755
Final Examination
Thursday, 8 December 2016 12:30-14:30 CST

Problem 1 (30 pts)
Problem 2 (20 pts)
Problem 3 (15 pts)
Problem 4 (15 pts)
Problem 5 (10 pts)
Problem 6 (10 pts)

Alias Exam Total ____ (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Fall 2016 Final Exam Exam

Problem 1: [30 pts] The diagram and Verilog code below show incomplete versions of module prob1_seq.
This module is to operate something like mag_seq from Homework 6. When start is 1 at a positive clock
edge the module will set ready to 0 and start computing vO*v0 + vO*xvl + vixvl, where vO and v1 are
each IEEE 754 FP single values. The module will set ready to 1 at the first positive edge after the result is
ready.

Complete the Verilog code so that the module works as indicated and is consistent with the diagram. It is
okay to change declarations from, say, logic to uwire. But the synthesized hardware cannot change what is
already on the diagram, for example, don’t remove a register such as acO and don’t insert any new registers
in existing wires, such as those between the multiplier inputs and the multiplexors.

Don’t modify this diagram, write Verilog code.

probl _seq ready
start tH
_Eai... A
m1l =
- vo al 3
|} Cwifpimult (ﬂ
ac0 [cwm.add Q
B g ;s
[«3p)
5 A rnd
vl
tH 3'b0
32'do
clk acl
B A
Don’t modify this diagram, write Verilog code.
module prob1_seq(output uwire [31:0] result, output uwire ready,
input uwire [31:0] vO, vi, input uwire start, clk);
uwire [7:0] mul_s, add_s;
uwire [31:0] mul_a, mul_b; uwire [31:0] add_a, add_b; uwire [31:0] prod, sum;

logic [31:0] acO, acl; logic [2:0] step;
localparam int last_step = 1;
always_ff Q(posedge clk)

if (start) step <= 0; else if (step < last_step) step <= step + 1;

CW_fp_mult mi(.a(mul_a), .b(mul_b), .rnd(0), .z(prod), .status(mul_s));
CW_fp_add a1(.a(add_a), .b(add_b), .rnd(0), .z(sum), .status(add_s));

assign ready = step == last_step; /// THIS MUST BE CHANGED.

/// USE NEXT PAGE FOR SOLUTION!

endmodule

fe.pdf

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Fall 2016 Final Exam Exam

probl_seq ready
start m{ }E}
Problem 1, continued: Solution on this page. t i -
+ vo aw e mult [| aco aldd a
[] Complete Verilog so that module -2 g
computes vO*v0 + vO*vl + vixvl. g -Lmd | A nd T
vi) — b0
[] Synthesized hardware must be consistent with di- 3240
agram, | | especially synthesized registers. clk acl
; | A
[] Note that ready must come from a register.

D Don’t skip the easy part: connections to adder.

module probi_seq(output uwire [31:0] result,
input uwire [31:0] vO, vi,

uwire [7:0] mul_s, add_s;

Don’t modify, Verilog only.

output uwire ready,

input uwire start, clk);

uwire [31:0] mul_a, mul_b; uwire [31:0] add_a, add_b; uwire [31:0] prod, sum;
logic [31:0] acO, acl; logic [2:0] step;
localparam int last_step = 1; // [] MUST BE CHANGED.

always_ff @(posedge clk)
if (start) step <= 0; else if (step < last_step) step <= step + 1;

CW_fp_mult m1i(.a(mul_a), .b(mul_b), .rnd(3°d0), .z(prod), .status(mul_s));
CW_fp_add ai1(.a(add_a), .b(add_b), .rnd(3°d0), .z(sum), .status(add_s));

assign ready = step == last_step; // [] MUST BE CHANGED.

endmodule

fe.pdf

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Fall 2016 Final Exam Exam fe.pdf

Problem 2: [20 pts] Analyze the timing of the two similar modules on the next page using the timing
model used in class, as requested in the subproblems. Assume that all adders are synthesized as a ripple
connection of binary full adders and that the comparison units are also based on ripple hardware.

(a) Before analyzing the modules, show the delay of each of the components listed below using the simple
model given in class. For this part assume that all inputs are available at ¢t = 0.

[] Delay for BFA is:

[] Explain or show diagram.

[] Delay for a w-bit adder is:

[] Explain or show diagram.

[] Delay for a w-bit < (less than) comparison unit is:

[] Explain or show diagram.

[] Delay for a w-bit, n-input multiplexor is:

[] Explain or show diagram.

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Fall 2016 Final Exam Exam fe.pdf

Problem 2, continued:

(b) Find the length of critical path in the two modules below using the timings above. Where applicable
make the reasonable assumption that a ripple adder can start when its lower bits arrive, not when all bits
of its input are stable.

i limit greedy fit ch limit fcfs_fit
0 0
w sum sum
2 2w
a|l S al ©
>\
o w o w
= + =+
@ E*\-ﬁ”
o w é w
b + N +
Nk o
bl w bl w
ke * o +
@ sum sum
W + W 1

[] Length of critical path for greedy fit in terms of w. | | Show work for partial credit.

[] Length of critical path for fcfs_fit in terms of w. [| Show work for partial credit.

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Fall 2016 Final Exam Exam

Problem 3: [15 pts] Complete the Verilog code so that it cor-
responds to the module shown.

[] Complete module.

module fcfs fit #(int nelts = 4, int w = 16)
(output logic [w-1:0] sum,
input uwire [w-1:0] al[nelts], limit);

always begin // I:] FINISH ALWAYS STATEMENT

for (int i=0; i<nelts; i++) begin

end

end

endmodule

[limit

fcfs_fit

(]

T

L
[0le

(]
[mE)

0
sum

>\

@s

[T]e

@

[zleT

@

S

[elep

0
;

sum

fe.pdf

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Fall 2016 Final Exam Exam fe.pdf

Problem 4: [15 pts] Appearing to the right is fcfs_cfit, a £ limit fefs_cfit n=d, w=16, o=

version of the fcfs_fit module in which the a input has been S Osum
. . . . N

changed to a parameter, meaning that a is an elaboration-time N

constant. Compute the cost of this module using the simple § %

model used in class and accounting for optimization based on
the constant values. As in an earlier problem, adders and com-
parision units are ripple-style.

16h'3755
[1]e}
= @ =
+
Y

[] Cost of the al0] comparison unit.

D Explain.

e}
felo)

)

,_Ii

[] Cost of the a[1] adder.

0
;

16h'4755
[e1et

D Explain.

sum

[] Cost of the a[0] multiplexor.

D Explain.

[] Cost of the a[2] multiplexor.

D Explain.

D Total cost.

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Fall 2016 Final Exam Exam fe.pdf

Problem 5: [10 pts] Answer each question below.
(a) A time slot in the Verilog event queue contains many regions, among them active, inactive, and NBA.

Explain how an event gets put in each region. (You can use the next subproblem for examples.)

[] An event is put into the active region when:

[] An event is put into the inactive region when:

D An event is put into the NBA region when:

(b) In the code fragment below show the order in which the statements are executed after the posedge clk.
Identify a statement by the value that is assigned. The first two statements executed are a and b, that’s
shown. (Since a is a nonblocking assignment, the execution of a only means that a+1 was computed, it
doesn’t mean that a was changed.) Complete the “Order of statements” list.

module regions;
always_ff Q@(posedge clk) begin
a<=a+1;
b=Db+1;
end

always_comb s = a + b;
always_comb ax = a + 2;

always_comb ay = ax + 5;
always_comb by = bx + 4;
always_comb bx = b + 3;

endmodule

[] Order of statements: a, b,

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Fall 2016 Final Exam Exam fe.pdf

Problem 6: [10 pts] Appearing below is the pipelined mag module from Homework 6.
(a) Suppose it turns out that the multiply (CW_fp_mult) takes twice as long as the add (CW_fp_add). Based

on this fact, modify the pipeline to reduce cost, but without affecting clock frequency. Draw in your changes,
there’s no need to write Verilog. Also, comment on latency and throughput changes.

[] Modify for lower cost based on faster adder.

[] Does the change [| help throughput? Does it help [| latency?

mag_pipe
0:ml —
32 = cw » Mult 0] %
= VS
> H P eh a1 ¢
v[0] o 8 — rnd 2 —I\Cij?add g ~
i " 1l . — 8 " o
v 32 —_ av_p_mult E rnd 5_' a2 % ©
=) vsq(ll | — T awpaddl S| = £
2 _E 2 3b0 | ™ | E m
v[1] 2| ¢s_{rmd > g ?, o
B - = m -
32 5 ci r;irn?ljl-l t 2] § g 3'|b0
~ vsq =) N
2 _E g g
v[2] a g | rnd > >
™ a ey
clk /l\ Stage 0 /l\ Stage 1 /l\ Stage 2 /l\
imm|
|-

(b) Suppose that the v input arrives very early in the clock cycle. Based on this modify the pipeline to reduce
cost.

[] Modify for early-arriving v.

mag_pipe
0:ml _
32 =y cwjpimU"I [0] %
— VS
> H N sh a1 ¢
v[0] =l g]md > _I\cw,fp,add 2|l ~
£2 " 1iml = — 8 o o
v —_ cw e Mult = rnd = a2 3 ©
32 — Q —
= _E vsql] %_ T cwioadd] S| = £
3 N %)
v[1] = s _|rmd g| o | 8I £
S - o rnd oy
2:m1l - = T
32 = v mult vsq2] = = 3'b0
A > _E g g
vi2l | 2| sdmd 2 2
) [oN o
clk /l\ Stage 0 /l\ Stage 1 /l\ Stage 2 /l\
imm|
|}

https://www.ece.lsu.edu/ee4755/2016/fe.pdf

Fall 2015 Midterm Exam Exam mt . pdf

10 Fall 2015

186

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Fall 2015 Midterm Exam Exam mt . pdf

Name
Digital Design using HDLs
EE 4755
Midterm Examination
Wednesday, 28 October 2015 11:30-12:20 CDT

Problem 1 (20 pts)
Problem?2 (20 pts)
Problem3 (20 pts)
Problem4 (20 pts)
Problem 5 (20 pts)

Alias Exam Total ____ (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Fall 2015 Midterm Exam Exam mt . pdf

Problem 1: [20 pts] Complete the Verilog description of the hardware illustrated below. It’s okay—and a
time saver—to use the == operator.

ezmod
(mm|
[]
a Q)) Q
S B N |u

——d
Qg

X

D_E}

Q

g \ y

| 2
—o /
S
9
D Complete the port declarations.
[] Complete the module.
module ezmod
(output // DON’T FORGET
input); // THE PORTS

endmodule

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Fall 2015 Midterm Exam Exam mt . pdf

Problem 2: [20 pts] Consider the module below.

module ssum #(int n = 3, int £ = 4, int swid = £ + $clog2(n))
(output logic [swid-1:0] sum,
input uwire [n-1:0] mask, input uwire [£f-1:0] aln]);
always @x begin
sum = 0;
for (int i=0; i<n; i++) if (mask[i]) sum += al[il;
end
endmodule

(a) Show the hardware that will be synthesized without optimization and using default parameters.

[] Hardware without optimization.

(b) Show the hardware that will be synthesized using the default parameters with optimization. In particular,
try to make use of a four-input multiplexor for the first two iterations of the i loop.

[] Hardware with optimization and using a four-input mux.

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Fall 2015 Midterm Exam Exam mt . pdf

Problem 3: [20 pts] Appearing below is the ssum module from the previous problem and the start of
a recursive version of the module, ssum_rec. Finish ssum_rec so that it performs the same computation,
but does so using a tree connection of hardware rather than the linear connection that ssum describes.
(For partial credit only use a generate loop to instantiate ssum modules of a fixed size; for full credit use
recursion.)

module ssum #(int n = 3, int f = 4, int swid = £ + $clog2(n))
(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [£-1:0] a[n]);
always @* begin
sum = 0;
for (int i=0; i<n; i++) if (mask[i]) sum += alil;
end
endmodule

D Complete module so that it describes a tree structure specified using recursion.

module SsSum_rec
#(int n = 3, int f = 4, int swid = £ + $clog2(n))
(output logic [swid-1:0] sum,
input uwire [n-1:0] mask,
input logic [£-1:0] a [n-1:0]);

endmodule

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Fall 2015 Midterm Exam Exam mt . pdf

Problem 4: [20 pts] Show the hardware that will be synthesized for the module below.

module yam(output logic [7:0] x, vy, z,
input uwire [7:0] a, b, c, input uwire [1:0] op, input uwire run, clk);
logic [7:0] x1, %2, e;

always_ff @(posedge clk) begin
e = b;
z = a + b;

if (op ==0) e = z;
else if (op==1) e =a + x;
else if (op==2) e = a + x1;
x2 = x1;
x1 = x;
if (run) x = e;

end

always_comb y = x1 + x2 - c;

endmodule

[] Show hardware, including [| registers and [| module ports.

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Fall 2015 Midterm Exam Exam mt . pdf

Problem 5: [20 pts] Answer each question below.
(a) Show the values of a, b, and ¢ when the code reaches Point 1 and Point 2.

module short_answers;
int a, b, c;
initial begin
a=0; b=20; c=0;

a=1;
a <= 2;
a <= #3 3; //
b=a+10; // -—-a——- - b--- --- c---
c <=a+ 20; //
// Point 1:
#1;
// Point 2.
end

my_prog my_prog_instance(a,b,c); // Ignore for part (a).

endmodule

[] At Point 1, values for [| a, []| b,and [] c.
[] At Point 2, values for [] a, [| b,and [| c.

(b) The definition of the my_prog program from the previous part appears below. Show the contents of the
Verilog event queue at Point 1 in the code from the previous part, include the effect of code in short_answers
as well as my_prog. Show events in the form “t = 1969, region=NL-East, Resume Point 3”7 and “t = 2015,
region=X, Update variable z,” but use real region names.

program my_prog(input int a, b, c);
initial forever @(a or b or ¢) begin
// Point 3;
$display("Let’s go Mets!");
end
endprogram

[] Contents of event queue at Point 1, show [| region names and [| time stamps.

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Fall 2015 Midterm Exam Exam

(¢) The module below is in explicit structural form, in which only primitive gates (and module instantiations)
are used. Will the synthesis program synthesize exactly that arrangement of gates? Explain.

module bfa_structural(output uwire sum, cout, input uwire a, b, cin);
uwire term001, term010, terml100, termllil;
uwire ab, bc, ac;
uwire na, nb, nc;
not n1(na, a);
not n2(nb, b);
not n3(nc, cin);
and al(term0O1, na, nb, cin);
and a2(term010, na, b, nc);
and a3(term100, a, nb, nc);
and a4(termlll, a, b, cin);
or ol(sum, term001, term010, termi100, termiill);
and al0(ab, a, b);
and all(bc, b, cin);
and al2(ac, a, cin);
or o2(cout, ab, bc, ac);
endmodule

D Will synthesis program emit exactly these gates? D Explain.

(d) Based on a hand analysis of my_mut we expect it to have a clock period of 12ns. Shown below is an
excerpt from the testbench for my_mut that includes the code for generating a clock. Assume that the Verilog
time unit is set to 1 ns. How does the clock declaration below affect the timing of the synthesized hardware?

module testbench();
logic clock;
initial clock = 0;
always #5 clock = !clock;
// Other declarations omitted.
my_mut woof(x,y,a,b,clock);

[] The effect of the declaration of clock on timing of synthesized hardware is ... [| because

mt.pdf

https://www.ece.lsu.edu/ee4755/2015/mt.pdf

Fall 2015 Final Exam Exam

Name
Digital Design using HDLs
LSU EE 4755
Final Examination
Saturday, 12 December 2015 12:30-14:30 CST

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6

Alias Exam Total

Good Luck!

15 pts
20 pts
20 pts
15 pts

10 pts

~— ~ ~ ~ ~ ~—

20 pts

(100 pts)

fe.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Fall 2015 Final Exam Exam fe.pdf

Problem 1: [15 pts] Write a Verilog description of the hardware illustrated below.

thing
c

]
|

aﬂs A
|
b0

I'I'Il__l

en

(=2
=

o
w
oo~

e
| I [y I N N A |
o
N

I
o
I

0~

en 16

L clk [

Imm|
L

D Verilog description of hardware including E] port declarations and D port and other sizes.

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Fall 2015 Final Exam Exam fe.pdf

Problem 2: [20 pts] The module below implements a simple memory module.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)
(output uwire [dbits-1:0] rd_data,
input uwire [size_1g-1:0] wr_idx, dinput uwire [dbits-1:0] wr_data, input uwire write,|j
input uwire [size_1g-1:0] rd_idx, input uwire clk);
logic [dbits-1:0] storage [size-1:0];
always_ff Q@(posedge clk) if (write) storagelwr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(a) Show the hardware that will be synthesized for this module when elaborated with size_lg = 2. Use
registers, multiplexors, decoders, and basic gates. Do not use a memory module.

[] Show synthesized hardware, including hardware for [| reading and [| writing.

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Fall 2015 Final Exam Exam

Problem 2, continued: Appearing below is the module from the previous page.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)
(output uwire [dbits-1:0] rd_data,

input uwire [size_1g-1:0] wr_idx, dinput uwire [dbits-1:0] wr_data, input uwire write,|j
input uwire [size_1g-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff Q@(posedge clk) if (write) storagelwr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(b) Assume that initially location 1 (storagel[1]) holds a 10, location 2 holds a 20, location 3 holds a 30,
and so on. Complete the timing diagram below, consistent with this module.

clk

write

wr_idx 0 ><4 ><3

wr_data 0 ><44 ><33

i 1 Jz BE

rd_data

D Complete rd_data row of timing diagram.

fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Fall 2015 Final Exam Exam fe.pdf

(¢) Modify the module below (same as one on previous clk
page) so that its behavior is consistent with the timing
diagram to the right. That is, if the location being
written is the same as the one being read the rd_data write
output shows the data on wr_data. If the locations
don’t match or nothing is being written the behavior
is unchanged. wr_idx 0 X3

[] Modify the module.
wr_data 0 X33

rd_idx 3

rd_data 30 X 33

module smemory_bp #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)
(output uwire [dbits-1:0] rd_data,
input uwire [size_lg-1:0] wr_idx, input uwire [dbits-1:0] wr_data, input uwire write,|j
input uwire [size_1lg-1:0] rd_idx, input uwire clk);

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storagel[wr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Fall 2015 Final Exam Exam fe.pdf

Problem 3: [20 pts] The module below and the similar one on the next page are like the memory module
from the previous problem, except that their output is the sum of locations rd_start, rd_start+1, ...,
rd_start+rd_len-1. Assume that rd_start+rd_len <= size.

module rsum_plan_a #(int sz_lg = 4, int ebits = 8, int size = 1 << sz_lg)
(output logic [ebits-1:0] sum,
input [sz_1g-1:0] wr_idx, input [ebits-1:0] wr_data, input write,
input [sz_1g-1:0] rd_start, input [sz_1g-1:0] rd_len, input clk)

logic [ebits-1:0] storage [size-1:0];

// Don’t show synthesized hardware for line below.
always_ff Q@(posedge clk) if (write) storagelwr_idx] = wr_data;

// Plan A -- Show Synthesized Hardware for this Verilog
always_comb begin

sum = O;
for (int i=0; i<size; i++) if (i < rd_len) sum += storagel i + rd_start];
end
endmodule

(a) Show the hardware that will be synthesized for the always_comb block. Include basic optimizations, but
don’t optimize to the point where hardware is identical to Plan B (next page).

[] Show not-too-optimized hardware for sum.

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Fall 2015 Final Exam Exam

(b) Appearing below is Plan B for the module. Though we know it produces the same value for sum as Plan
A, it might be synthesized into different hardware. Show the hardware synthesized for Plan B.

module rsum_plan_b #(int sz_lg = 4, int ebits = 8, int size = 1 << sz_lg)
(output logic [ebits-1:0] sum,
input [sz_1g-1:0] wr_idx, input [ebits-1:0] wr_data, input write,
input [sz_1g-1:0] rd_start, input [sz_1g-1:0] rd_len, input clk);
logic [ebits-1:0] storage [size-1:0];

// Don’t show synthesized hardware for line below.
always_ff @(posedge clk) if (write) storagel[wr_idx] = wr_data;

// Plan B -- Show Synthesized Hardware for this Verilog
always_comb begin
sum = 0;
for (int i=0; i<size; i++)
if (i >= rd_start && i < rd_start + rd_len) sum += storagel[i];
end
endmodule

D Show the hardware that will be synthesized for Plan B.

(¢) Which one is better?

[] Which is better, Q Plan A or O Plan B .

D Explain, with a rough estimate of cost and timing.

fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Fall 2015 Final Exam Exam fe.pdf

Problem 4: [15 pts] Appearing below are excerpts based on the cam_hash module used in class, showing
what we called the hash_early design. Recall that with the early hash design the hash function (in module
hash) is computed before the positive clock edge while the lookup occurs after the positive edge. We assumed
that the hash could be computed in about % of our target clock period.

module cam_hash_exceprt
(output [dwid:1] out_data, output out_valid, output ready,
input [kwid:1] in_key, input [dwid:1] in_data,
input Cam_Command in_cmd, input clk);

logic [kwid:1] b_key;

logic [dwid:1] b_data;

logic [hkey_size-1:0] b_hash;
Cam_Command b_cmd;

uwire [hkey_size-1:0] ohm_key_out;

always_ff @(posedge clk) begin
b_key <= in_key;
b_data <= in_data;
b_cmd <= in_cmd;
b_hash <= ohm_key_out;
end

hash #(kwid,num_sets_lg) our_ hash module(ohm_key_out, in_key);

/// Hardware to find matching key below ...

(a) The early hash design requires that the external hardware has the right timing behavior. Show a timing
diagram in which the timing behavior is correct for early hash, and one in which it is wrong. The “wrong”
behavior should result in incorrect results using the early hash design, but correct results without the early

hash design.

[] Timing diagram showing [| correct and [| wrong behavior.

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Fall 2015 Final Exam Exam fe.pdf

Problem 4, continued:

(b) Register b_hash saves the hashed version of in_key, and b_key holds the unhashed version. Why do we
need the unhashed version?

[] b_key is needed because ...

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Fall 2015

Final Exam Exam

Problem 5: [10 pts] The Verilog below is part of a testbench (taken from icomp.v).
initial begin
/// Watchdog — Stop simulation if it’s taking too long.

fork begin

automatic int cyc_limit = in_str.len() * 100;

fork

wait (cycle_num == cyc_limit);

wait (tb_insert_done && tb_remove_done);
join_any

if (cycle_num >= cyc_limit) begin
$write("Exceeded cycle limit, exiting.\n");
$fatal(l);

end

end join_none

// Below: Send data to module under test.

(a) Generically explain what a fork and join pair do (ignoring the code above).

[] fork and join ...

(b) How would execution be effected if the last join_none were changed to join_any?

D Impact of changing join_none to join_any in code above.

(¢) How would execution be effected if the inner join_any were changed to a join_all?

[:] Impact of changing join_any to join_all in code above.

10

fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Fall 2015 Final Exam Exam

Problem 6: [20 pts] Answer each question below.

(a) Suppose we would like our hardware to operate at a 1 GHz clock frequency. How do we tell the synthesis
program? (The exact syntax is not important.)

D Method to tell synthesis program the clock frequency.

(b) The synthesis program will apply our target clock frequency to paths starting at launch points and
ending at capture points. We could explicitly specify such points but if we don’t it will use default launch
and capture points. What are they?

D By default timing is computed for paths that start at:

D and end at:

(¢) Suppose our target clock frequency is 1 GHz. What is the harm in telling the synthesis program to
synthesize for 2 GHz? For 0.5 GHz?.

D Harm in specifying 2 GHz when we just need 1 GHz:

D Harm in specifying 0.5 GHz when we just need 1 GHz:

11

fe.pdf

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Fall 2015 Final Exam Exam fe.pdf

(d) The code below will inconsistently assign a variable. Explain why and fix the problem.

module short_ans(output logic [7:0] x, y, input [7:0] a, b, ¢, input clk);
always Q@(posedge clk) begin
X = a + b;
end
always Q(posedge clk) begin

y =x + c;

endmodule

D Reason for inconsistent behavior:

[] Fix problem.

(e) Describe the problem with the module below. How might it affect simulation?

module short_ans2(output logic [7:0] x, input [7:0] a, b, input reset);
always_comb begin
if (reset) x = a; else x = X + b;
end
endmodule

D Problem with module.

[] Impact on simulation.

12

https://www.ece.lsu.edu/ee4755/2015/fe.pdf

Fall 2014 Midterm Exam Exam mt . pdf

11 Fall 2014

206

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Fall 2014 Midterm Exam Exam mt . pdf

Name
Digital Design using HDLs
EE 4755
Midterm Examination
Monday, 10 November 2014 11:30-12:20 CST

Problem 1 (20 pts)
Problem 2 (20 pts)
Problem 3 (10 pts)
Problem 4 (15 pts)
Problem 5 (13 pts)
Problem 6 (22 pts)

Alias Exam Total ____ (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Fall 2014

Problem 1: [20 pts] Write a Verilog description of the hardware shown below.

Midterm Exam

Exam

sbl_'l
o
+ 8'b0
lval N | ok 5
: 0
1
OP
T 0:0 lo
————q) en
| pi 1:1 A
lclk

D Write a Verilog module corresponding to the hardware above.

[] Be sure to declare module ports and [| any wires and vars (logic) used inside.

[] Pay attention to the differences between 1o and hi and [| the differences between sa and sb.

mt . pdf

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Fall 2014 Midterm Exam Exam mt . pdf

Problem 2: [20 pts] Appearing below is the multiply circuit from the solution to Homework 3, in Verilog
(slightly simplified) and as a diagram showing what hardware a synthesis program might infer.

module mult_seq_csa_m #(int wid = 16, int pp_per_cycle = 2)
(output logic [2*%wid-1:0] prod,
input logic [wid-1:0] plier, input logic [wid-1:0] cand, input uwire clk);

localparam int iterations = (wid + pp_per_cycle - 1) / pp_per_cycle;
localparam int iter_lg = $clog2(iterations);
localparam int wid_lg = $clog2(wid);

logic [iter_1g:0] iter;
uwire [2*wid-1:0] accum_sum_a[0:pp_per_cyclel, accum_sum_b[0:pp_per_cyclel;
logic [2*wid-1:0] accum_sum_a_reg, accum_sum_b_reg;

assign accum_sum_a[0] = accum_sum_a_reg;
assign accum_sum_b[0] = accum_sum_b_reg;

for (genvar i=0; i<pp_per_cycle; i++) begin

uwire [wid_lg:1] pos = iter * pp_per_cycle + ij;
uwire [2#wid-1:0] pp = pos < wid && cand[pos] ? plier << pos : 0;

CW_csa #(2xwid) csa
(.sum(accum_sum_a[i+1]), .carry(accum_sum_b[i+1]), .a(accum_sum_a[il), .b(accum_sum_b[il), .c(pp));
end

always @(posedge clk)
if (iter == iterations) begin
prod <= accum_sum_a_reg + accum_sum_b_reg;
accum_sum_a_reg <= 0;
accum_sum_b_reg <= 0;

iter <= 0;
end else begin
prod <= prod;

accum_sum_a_reg <= accum_sum_a[pp_per_cycle];
accum_sum_b_reg <= accum_sum_b[pp_per_cyclel;
iter <= iter + 1;

end
endmodule USE NEXT PAGE FOR SOLUTION
csa csa)
| ICW csa accum_sum_a[1] CW csa —| '2 5
T - accum_sum_b[1] - & |3
1 %)
Dpller - Ag
s o
§ o &
£ S a
N — &3

g 0 2
~ AB

T

cand + HE R prod

—en

A

1 iterations
| |
tf,-l |Ji-|
O
9]
S
L1

USE NEXT PAGE FOR SOLUTION

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Fall 2014 Midterm Exam Exam mt . pdf

(a) Show optimizations that might be performed that exploit the value m = 2 (that is, pp_per_iteration=2).

(b) Show the optimizations that might be performed assuming that wid is odd, and assuming that wid is
even, both for m = 2.

Modify diagram to show optimizations for pp_per_iteration = m = 2 and arbitrary wid.
Modify diagram to show optimizations for pp_per_iteration = m = 2 and odd wid.
Modify diagram to show optimizations for pp_per_iteration = m = 2 and even wid.

CSsa (1 CSa Iy 2
accum_sum_a a
— CW _csa — CW _csa 'S e
accum_sum_b[1] Q |3
: pi

plier P 0 pp! A
= 3

= 2 (pp. Aperfiterat(on)L A

2 (pp_per_iteration)

o
C |
bas g~
wns wnooe

A
°
Dcand N g prod
—en
_| A

iterations

1
|
y
LFF
19
>
L]

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Fall 2014 Midterm Exam Exam mt . pdf

Problem 2, continued:

(¢) The cost of the shifters with input plier in the design on the previous pages is significant. Explain how
these shifters can be eliminated by adding a register. Quickly sketch the hardware to illustrate your answer.

D Show how a register can be used to eliminate the costly shifters.

(d) Explain how the streamlined multiplier described in class eliminated the plier shifter without having to
add a register.

[] Show how the streamlined multiplier does not need an extra register to eliminate the shifter.

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Fall 2014 Midterm Exam Exam mt . pdf

Problem 3: [10 pts] The module below computes the prefix sum of a sequence of integers at its input.

module prefix_sum #(int len=8, int wid = 8)
(output logic [wid:1] psum [len], input uwire [wid:1] elts[len]);

always @* begin
psum[0] = elts[0];
for (int i=1; i<len; i++) psum[i] = psum[i-1] + elts[il;
end
endmodule

(a) Show the hardware that would be synthesized for the module before optimization, elaborated with
parameters len=4 and wid=8. Label the input ports elts[0], elts[1], elts[2], and elts[3]; and label
the output ports psum[0], psum[1], psum[2], and psum[3].

[] Show synthesized hardware.

(b) Estimate the delay for the synthesized hardware before optimization. Use w for the value of wid and L
for len. Assume that a w-bit adder has delay w.

D Delay in terms of w and L:

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Fall 2014 Midterm Exam Exam mt . pdf

Problem 4: [15 pts] Answer the following questions about the Verilog module below.
module timing() ;

logic [7:0] a, e, f2, g, gl, g2; logic clk; uwire [7:0] el, f, f1;
initial begin

clk = 0;

a = 11;

#1;

a=1;

a <= 22;

a<=#5a + 1;

#9;
a=7;

e = 10;
£2 = 30;
g = 40;
gl = 50;
g2 = 60;

#10;

// BO
a <= 700;
clk = 1;

#1;
// POINT X (See subproblem.)
end

always @(posedge clk) e = a; // Bl
always @x el = a; // B2
always ©% f=e+1; // B3
always @ f1 =el + 1; // B4
always @(posedge clk) f2 <= e + 1; // Bb
always @(posedge clk) begin // B6
g=1; gl = f1; g2 = £2; end
endmodule

(a) Show values for a versus time in the table below. For this part, only a. The table already shows that
a has value 11 from time 0 to time 1. Extend the table as long as necessary, and be sure to show values
for both ¢t and a. Note: The original exam did not provide the table. Also, in the original exam there were
differences in how a was assigned.

[] Complete the table.

t o 1
a [| | |

(b) Show the values that will be present on g, g1, g2 when execution reaches the POINT X comment in the
module above. For partial credit also show intermediate values for other signals used to compute the g’s.
(Look at next part before solving this one.)

[] At POINT X g= , gl= g2=

(¢) Recall that the event queue used for Verilog simulation has active, inactive, and NBA regions, among
others. Just before B1 starts execution in module timing above the active region might contain B1, B5, and
B6 (see the comments on the right). (What the other regions contain is part of this problem.) Show the
contents of the three regions when B5 starts. Assume that events in a region are scheduled in order.

[] When BS starts: Active = { }. Inactive = { 1. NBA = { 1.

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Fall 2014 Midterm Exam Exam mt . pdf

Problem 5: Answer each question below.

(a) [5 pts] Module add3 is supposed to compute the sum of its three inputs using instances of our_adder,
but it won’t work. Fix the problem. The fixed module should still use our_adder.

D Fix add3.

module add3(output uwire [15:0] sum, input uwire [15:0] a,b,c);

our_adder al(sum , a , b);
our_adder a2(sum , sum , C);
endmodule

(b) [8 pts] The output of the module below is like the input except the bit positions are reversed (after
enough clock cycles). Re-write the module so that it synthesizes to combinational logic (the c1lk input will
no longer be needed). Add a parameter to indicate the input and output bit width.

module bitrev(output logic [7:0] x, input uwire [7:0] a, input uwire clk);
logic [2:0] pos;
initial pos = 0O;

always @(posedge clk) begin
x[pos] = al[7-pos];
pos++;
end
endmodule

D Re-write so that it is combinational.

D Include a parameter wid to specify the size.

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Fall 2014 Midterm Exam Exam mt . pdf

Problem 6: Answer each question below.

(a) [6 pts] A Verilog module computes a result in one clock cycle. In our design we need that result in 3 ns,
which can easily be achieved. The right way to achieve that in Cadence Encounter is to use the define_clock
command to set the target clock period to 3ns. Suppose instead we used define_clock to set the period
to 1ps, an impossible goal. Note: The original ezam did not have the “can easily be achieved” phrase.

D Would the synthesized design meet our 3 ns performance goal?

D Considering typical design goals, what would be the disadvantage of setting the period to 1 ps for our design
even though we needed 3 ns?

(b) [10 pts] In the module below, translate directives are used to prevent the synthesis program from
reading the line with initial.

module mult_seq(output logic [311:0] prod, input logic [15:0] plier, cand, input uwire clk);
logic [3:0] pos; logic [31:0] accum;
// cadence translate_off <-- The translate synthesizer directive.
initial pos = 0;

// cadence translate_on <-- The translate synthesizer directive.

always @(posedge clk) begin

if (pos == 0) begin prod = accum; accum = 0; end
if (cand[pos] == 1) accum += plier << pos;
pos++;
end
endmodule

D Why shouldn’t the synthesis program see the line with initial?

D What would happen if the synthesis program saw the initial line?

D What would happen if the simulation program didn’t see the line with initial?

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Fall 2014 Midterm Exam Exam mt . pdf

(¢) [7 pts] All four variables below have a size of 32 bits, but there are differences between them.

logic [31:0] a;
logic b [31:0];
logic [0:31] c;
int e;

D Difference between a and b?

D Difference between a and c?

D Difference between a and e?

10

https://www.ece.lsu.edu/ee4755/2014/mt.pdf

Fall 2014 Final Exam Exam fe.pdf

Name
Digital Design using HDLs
EE 4755
Final Examination
Monday, 8 December 2014 10:00-12:00 CST

Problem 1 (20 pts)
Problem?2 (20 pts)
Problem3 (20 pts)
Problem4 (20 pts)
Problem 5 (20 pts)

Alias Exam Total ____ (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Fall 2014 Final Exam

Exam

Problem 1: [20 pts] The encode module below, based on Homework 4, is used to convert a decimal value
to binary one ASCII digit at a time. Input val_prev is the binary value so far, and output val_next is the
binary value after using ASCII character ascii_char. If ascii_char isn’t a numeric digit non_digit is set
to 1 and val_next is set to zero. There is also an overflow output.

module encode
#(int width = 32)
(output logic [width-1:0] val_next,
output logic overflow,
input uwire [7:0] ascii_char,

logic [width+3:0] val_curr;

output uwire non_digit,
input uwire [width-1:0] val_prev);

logic [3:0] high_bits, bin_char;

assign non_digit = ascii_char < Char_O || ascii_char > Char_9;

always_comb begin
bin_char = ascii_char - Char_0;

val_curr = 10 * val_prev + bin_char;

high_bits = val_curr >> width;

if (non_digit) begin overflow =
else begin
overflow = high_bits != 0;
val_next = val_curr;
end
end
endmodule

0; val_next = 0; end

(a) Show the hardware that will be synthesized for this module. Take into account optimizations (see the

next subproblem).

[] Synthesized hardware.

(b) Indicate how many units such as adders, multipliers, shifters, and multiplexors will actually be present
in the optimized hardware. The count should be based on the units that are present after optimization, not

on the hardware first inferred from the Verilog.

[] Number of adders. [] Number of multipliers. [| Number of shifters. [| Number of multiplexors.

fe.pdf

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Fall 2014 Final Exam Exam

Problem 2: [20 pts] Appearing below is another encode module, this one has a new input radix, which
indicates the radix (base) of the number to be converted. When completed the module should function like
the module from the previous problem, except that the digits form a radix-radix number. For example, if
radix were 10 it would operate like the previous module. If radix were 8 the digits would be octal, etc.

(a) Modify the module so that it takes into account the radix. Assume that radix can be any value from 2
to 16. Note that for a radix of 16 the valid digits are 0-9 and A-F (only consider upper case).

D Modify the module to generate the correct non_digit output.

D Modify the module to update val_next correctly given the radix.

typedef enum {Char_0 = 48, Char_9 = 57, Char_A = 65, Char_F = 70} Chars;
module encode radix #(int width = 32)
(output logic [width-1:0] val_next,
output logic overflow, output uwire non_digit,
input uwire [7:0] ascii_char, input uwire [width-1:0] val_prev,
input uwire [4:0] radix);

logic [width+3:0] val_curr;

logic [3:0] high_bits, bin_char;

always_comb begin

val_curr =

high_bits = val_curr >> width;
if (non_digit) begin
overflow = 0;
val_next 0;
end else begin
overflow = high bits != 0;

val_next = val_curr;
end
end
endmodule

fe.pdf

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Fall 2014 Final Exam Exam fe.pdf

Problem 2, continued:

(b) Suppose that module encode_radix (from the previous part) were to be used in a larger design in which
the values of radix could only be 2, 8, 10, and 16. Also suppose that the synthesis program can’t figure
out that radix is limited to these values. Why would the cost be higher than necessary, and how could
encode_radix be modified to get the lower cost hardware?

D Explain why the cost will be higher than is necessary.

D Show the changes to encode_radix so that the synthesis program will generate the lower cost design. The
port definitions cannot be changed.

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Fall 2014 Final Exam Exam fe.pdf

find_period
Problem 3: [20 pts] Ap- -
pearing to the right is hard- | start =
ware and a corresponding S
Verilog module. The mod- S0
ule is incomplete, finish it. W A
Hint: The hardware includes L]
an end-around shift, that’s — =
the part with the msb/lsb la- 30.0 msb &0
> done
bels. 32 ﬂ I'O | || ﬂH}
Tin_pat : %
[] Add sizes and other infor- 3131 Jsb A\
mation to port declarations.
-—Ten
[] Finish the Verilog code. ° 32 _ ||
1 | =
2\
er
| elk PEr,
module find_period
(output per, output done,
input in_pat,
input start, input clk);
endmodule

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Fall 2014 Final Exam Exam fe.pdf

Problem 4: [20 pts] The Verilog below is the key lookup part of the simple CAM module used in class.

logic [dwid:1] storage_data [ssize];
logic [kwid:1] storage_key [ssize];
logic [ssize-1:0] storage_full;

always_comb begin
mmatch = 0; midx = 0;
for (int i=0; i<ssize; i++)
if (storage_full[i] && storage_key[i] == key) begin mmatch = 1; midx = i; end
end

assign out_data = storage_datal[midx];

(a) Starting with the registers and key shown below, sketch the hardware synthesized for this code without
optimization. The hardware should produce values for mmatch and midx (but not out_data). Do so for
ssize=3. In class we often showed part of this as a box labeled “priority encoder” (or “pri” for short), in
this problem actually show the hardware.

[] Synthesized hardware for ssize = 3 to generate | | mmatch and [| midx.

key

storage key[0]
N ge_key

storage_full[0]
A

storage _key[1]
A

storage_full[1]
A

storage key[2]
N ge_key

storage_full[2]
A

(b) Assume that the cost of an a-bit comparison unit is a, and its delay is also a. Assume that the cost of an
a-input, b-bit multiplexor is ab and the delay is 1. Compute the cost and delay of the logic used to compute
midx in terms of ssize (use s in your formulas) and kwid (use k in your formulas). As with the previous
part, do this for the unoptimized hardware. Remember to solve this for an arbitrary value of ssize (s), not
for s = 3.

D Cost in terms of s and k:

[] Delay in terms of s and k:

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Fall 2014 Final Exam Exam fe.pdf

Problem 4, continued: Appearing below is a variation on the key lookup from the CAM module. Instead
of finding a matching key it finds the largest stored key that is < to the lookup key. Note that this version
doesn’t include storage_full.

logic [dwid:1] storage_data [ssizel;
logic [kwid:1] storage_key [ssizel;

always_comb begin
midx = 0; Dbkey = 0;
for (int i=0; i<ssize; i++)
if (storage_key[i] >= bkey && storage_key[i] <= key) // READ THIS LINE CAREFULLY
begin midx = i; bkey = storage_key[i]; end
end

assign out_data = storage_datal[midx];

(¢) Sketch the hardware for ssize=3.

D Sketch the synthesized hardware needed to generate bkey.

key

storage key[O0]
y ge_key

storage_key[1]
A

storage key[2]
N ge_key

(d) Compute the cost and performance in terms of ssize (use s) and the key size (use k). As before a k-bit
comparison unit (equality or magnitude) costs k and has a delay of k and an a-input, b-bit mux costs ab and
has a delay of 1. Hint: There’s a big difference.

[] Cost in terms of s and k:

[] Delay in terms of s and k:

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Fall 2014 Final Exam Exam fe.pdf

Problem 5: [20 pts] Answer each question below.

(@) The module below is supposed to count from 0 to max (inclusive), then return to zero. Strictly speaking
it does, but there are problems, including the fact that it’s not synthesizable. Fix the problems.

module counter #(int max = 3) (output logic [7:0] count, input uwire clk);
always @(posedge clk) begin
count <= count + 1;
end
always @* begin
if (count == max) count <= 0;
end
endmodule

[] Why isn’t the module synthesizable?

D Fix the problem.

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Fall 2014 Final Exam Exam

(b) There is a problem with the module below due to the way that a is declared.

module sal(output uwire a, input uwire c, d);
always_comb begin
a=c&d;
end
endmodule

D Fix the problem by changing the declaration of a.

D Fix the problem without changing the declaration of a.

(¢) Describe a situation in which using always_comb has a benefit over using always @x*.

D Situation where always_comb helps.

fe.pdf

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Fall 2014 Final Exam Exam fe.pdf

(d) The module below is supposed to be computing z2 + 32.
module sa2(output logic [63:0] sos, input uwire [63:0] x, y);

logic [63:0] al, bl, a2, b2;
uwire [63:0] p, s;

fpmul £1(p,al,bl);
fpadd £2(s,a2,b2);

always @ begin
// Compute x"2.
al = x; Dbl = x;
#1;
S0S = p;
// Compute y~2.
al = y; bl =y;
#1;
// Compute x°2 + y~2.
a2 = p; b2 = sos;
#1;
s0S = 8;

end

endmodule

[] Explain why the module is not synthesizable.

[] Fix the problem.

10

https://www.ece.lsu.edu/ee4755/2014/fe.pdf

Spring 2001 Midterm Exam Exam mt . pdf

12 Spring 2001

227

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Spring 2001 Midterm Exam Exam mt . pdf

Name
Digital Design Using Verilog
EE 4702-1
Midterm Examination
16 March 2001 8:40-9:30 CST
Problem 1 (30 pts)
Problem 2 (25 pts)
Problem 3 (35 pts)
Problem 4 (10 pts)
Alias Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Spring 2001

Midterm Exam

Exam

Problem 1: Complete the Verilog behavioral description below so that it operates as follows.
Compute 32-bit output eq_time so that it is the number of consecutive positive edges of input
clk for which 32-bit inputs siga and sigb remain equal. The counting should start on the first
positive edge of clk after siga becomes equal to sigb; the count starts at zero at the moment they
become equal, and while they remain equal the count is incremented at each positive edge. The
count should go back to zero at the first positive edge of clk after siga becomes unequal to sigb.
The count goes to zero even if siga and sigb become equal again before the positive edge. Sample
output appears in the timing diagram below. (30 pts)

m/siga |0 1 I3 [7
m/sigb |1 J21 [7
m/clk | | L] L] | | [
m/eq_time —{0 i 0 ! 2 o ! 2
0 [‘ 50 [[100 | | | \150 | | 200 (.

module monitor(eq_time, siga, sigb, clk);
input siga, sigb, clk;

output eq_time;

// Don’t forget to declare port types.

endmodule

Don’t get bogged down: There are eight more problems, some can be answered quickly.

2

mt . pdf

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Spring 2001 Midterm Exam Exam mt . pdf

Problem 2: Complete the following timing diagram problems.

(a) Complete the timing diagram below. (15 pts)

module timing_stuff();
reg clk, clk3, clk2a, clk2b, clk2c, clk2d,
initial begin
clk = 0; clk2a = 0; clk2b = 0; clk2c = 0; clk2d = 0; clk3 = 0;
end

Time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

always #5 clk = !clk

always Q(posedge clk) clk2a = !clk2a

always #12 Q(posedge clk) clk2b = !clk2b

always @(posedge clk) #12 clk2c = !clk2c

always @(posedge clk) clk2d <= #12 !clk2d

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Spring 2001 Midterm Exam Exam mt . pdf

(b) Complete the timing diagram below. Be sure to clearly indicate when a signal value changes.
(10 pts)

module timing();
integer a, b, c, d;
initial begin

a = 0;
b = 10;
c = 20;
d <= #0 3;
d = 30;
d <= #1 300;
d <= #2 3000;
#1;
b = 100;
c <= 200;
a<=#5 b + c;
#1;
b = 1000;
c <= 2000;
#10;
end

endmodule

Time 0 2 4 6 8 10

a

b

c

d

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Spring 2001 Midterm Exam Exam mt . pdf

Problem 3: Answer each question below. Some can be answered quickly, try answering those
questions first.

(a) The match_count_x modules below are supposed to count the number of times input symbol is
the same as input targ. Output count should be incremented if symbol is the same as targ after
a change in symbol. Most or all of the modules below don’t work properly. For each non-working
module describe the problem and how it is simulated. It is important to describe how the incorrect
Verilog is simulated and why it is wrong.

Port declarations and initializations are not shown, but assume they are present and correct. Be-
havior for unknown and high-impedance values is undefined. In other words, the problems are not
related to declarations, initialization, or unknown values. (10 pts)

module count_match_1(count,symbol,targ); // Declarations and init. not shown.

always wait(symbol == targ) count = count + 1;

endmodule

module count_match_3(count,symbol,targ); // Declarations and init. not shown.
always #10 if (symbol == targ) count = count + 1;

endmodule

module count_match_4(count,symbol,targ); // Declarations and init. not shown.
always @(symbol == targ) count = count + 1;

endmodule

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Spring 2001 Midterm Exam Exam mt . pdf

(b) Show how each of the three adders below can be used in the module use_adders to add seven
to input a. Do not modify the adders themselves. (10 pts)

module adderl(x,a,b);
input a, b;
output x;
wire [31:0] a, b;
wire [31:0] x = a + b;
endmodule

module adder2(x,a);

input a;

output x;

parameter b = 0;

wire [31:0] a;

wire [31:0] x = a + b;
endmodule

module adder3(x,a);

input a;

output X;

wire [31:0] a;

wire [31:0] x = a + ‘b;
endmodule

module use_adders(x_1,x_2,x_3,a);
input a;
output x_1, x_2, x_3; // Each output should be a + 7
// Use adderl, adder2, and adder3 to generate respective x_ outputs.

endmodule

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Spring 2001 Midterm Exam Exam mt . pdf

(¢) Show the values that will be assigned in each assignment to r. Variables a, c, and r are six-bit
registers. (5 pts)

a = 6’°b101010;
c = 6’°bx1x0x1;

r =& a;
r =1 a;
r =" a;
r =& c;
r =1 c;
r =" c;

(d) Do the two code fragments below do the same thing? If not, how do they differ? (5 pts)
// Fragment A.

if (foo > bar) x =x + 1; elsey =y + 1;

// Fragment B.

case (foo > bar)
1: x =x + 1;
default: y =y + 1;
endcase

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Spring 2001 Midterm Exam Exam mt . pdf

(e) Why can’t the following increment macro be re-written as a function or task in Verilog 957
(5 pts)

‘define incr(a) a=a+l
//
// Sample uses of macro.
for (i=0; i<10; ‘incr(i)) x = x + y;
for (j=0; j<10; ‘incr(j)) begin foo(j); k = k + x; end

Problem 4: The module below counts the number of five’s and nine’s appearing at input c.
Explain exactly when five’s and nine’s are counted (start cycle and end cycle), and describe any
restrictions on the counts. (10 pts)

module yet_another_symbol_counter(fives, nines, c);
input c;
output fives, nines;
wire [7:0] c;
reg [31:0] fives, nines;

initial fork

begin
fives = 0;
nines = 0;
end
#50 fork:A

repeat (42) @(¢) if (¢ == 5) fives = fives + 1;
#100 disable A;

join

#70 fork:B
forever @(¢) if (¢ == 9) nines = nines + 1;

#200 disable B;
join

join

endmodule

https://www.ece.lsu.edu/ee4755/2001/mt.pdf

Spring 2001 Final Exam Exam fe.pdf

Name
Digital Design Using Verilog
EE 4702-1
Final Examination
9 May 2001 7:30-9:30 CDT
Problem 1 (15 pts)
Problem 2 (18 pts)
Problem 3 (17 pts)
Problem 4 (18 pts)
Problem 5 (12 pts)
Problem 6 (20 pts)
Alias Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Spring 2001 Final Exam Exam fe.pdf

Problem 1: The module below is in an explicit structural form.

(a) Re-write the module in behavioral form. The delays can be assumed to be pipeline delays.
(10 pts)

(b) What is the difference between pipeline and inertial delays? Which kind of delay is used in your
solution to the problem above? (5 pts)

module expl_str(x,y,a,b,c);
input a, b, c;
output x, y;
wire a, b, c, x, y;
wire na, nb, nc, t3, t5, t6;

not nl(na,a);

not n2(nb,b);

not n3(nc,c);

and #1 al1(t3,na,b,c);
and a2(t5,a,nb,c);
and a3(t6,a,b,nc);

or ol1(x,t3,t6);

or #3 02(y,a,tb);

endmodule
module behavioral(x,y,a,b,c);
input a, b, c;
output x, y;
// Solution here. Don’t forget types for ports!

endmodule

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Spring 2001 Final Exam Exam fe.pdf

Problem 2: The module below sets output rot to the number of times that input a must be
rotated (end-around shifted) to obtain the value on input b, or to 32 if a is not a rotated version
of b.

(a) Write a testbench module that tests rots with input pairs a=0,b=0; a=0,b=1; a=0,b=2; and
a=0,b=3. (The rot output should be zero for the first pair and 32 for the others.) The testbench
should include an integer err and set it to the number of incorrect outputs.

It is important that the testbench makes correct use of ready and start. (Part of the problem
is determining just what is “correct use.”) The testbench should use ready rather than assumed
timing. Also, test only a single instance of rots and don’t forget the clock. (18 pts)

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk; output ready, rot;
reg ready; wire [31:0] a, b;
reg [5:0] rot; wire start, clk;

reg [31:0] acpy;
initial rot = O;
always @(posedge clk) begin
ready = 1; while (!start) @(posedge clk);
ready = 0; while (start) @(posedge clk);
rot = 0; acpy = a;
while (acpy != Db && rot < 32) @(posedge clk) begin
acpy = { acpy[30:0], acpyl[31] };
if (acpy == a) rot = 32; else rot = rot + 1;
end
end
endmodule

module testrot();
integer err;

endmodule

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Spring 2001 Final Exam Exam

Problem 3: Convert the rots module (repeated below) to synthesizable Form 2 (edge-triggered
flip-flops). Do not change the ports or what it does. In particular, ready and start must be used
the same way. Ignore reset. (17 pts)

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk; output ready, rot;
reg ready; wire [31:0] a, b;
reg [5:0] rot; wire start, clk;

reg [31:0] acpy;
initial rot = O;
always @(posedge clk) begin
ready = 1; while (!start) @(posedge clk);
ready = 0; while (start) @(posedge clk);
rot = 0; acpy = a;
while (acpy != b && rot < 32) @(posedge clk) begin
acpy = { acpy[30:0], acpy[31] };
if (acpy == a) rot = 32; else rot = rot + 1;
end
end
endmodule

module rots(ready, rot, start, a, b, clk);
input a, b, start, clk;
output ready, rot; // Don’t forget port types and other declarations.

acpy = { acpy[30:0], acpyl[31] };
if (acpy == a) rot = 32; else rot = rot + 1;

endmodule

fe.pdf

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Spring 2001 Final Exam Exam fe.pdf

Problem 4: Two synthesizable descriptions appear below.
(a) In what synthesizable form is the Verilog description below? (2 pts)

() Draw a schematic showing the approximate RTL-level description generated by a synthesis
program like Leonardo. (7 pts)

module whatsyna(x, y, z, a, b, op);
input a, b, op;
output x, y, Z;
wire [7:0] a, b;
wire [1:0] op;
reg [7:0] x, vy, z;

always @(op or a or b) begin

if (a==0) 1y =Db;

if (a<b) z = a; else z = b;

case (op)
0: x = a + b;
1: x = a;
2: X = b;
endcase
end
endmodule

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Spring 2001 Final Exam Exam fe.pdf

Problem 4, continued:
(¢) In what synthesizable form is the Verilog description below? (2 pts)

(d) Draw a schematic showing the approximate RTL-level description generated by a synthesis
program like Leonardo. (7 pts)

module whatsyn2(sum, nibbles, a, b, c);
input nibbles, a, b, c;
output sum;
wire [15:0] nibbles;
wire a, b, c;
reg [6:0] sum;

reg [15:0] n2;
reg last_c;
integer i;

always Q@(posedge a or negedge b)
if (!'b) begin

sum = O;
end else begin

if (¢ != last_c) begin
n2 = nibbles;
for (i=0; i < 4; 1 =i + 1) begin
sum = sum + n2[3:0];
n2 = n2 > 4;
end
end
last_c = c;

end

endmodule

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Spring 2001

Problem 5: In the diagram below c, d, and identifiers starting with c1k are all initialized to zero.

Final Exam

Exam

Complete the timing diagram. (12 pts)

Time 0 5 10 15 20
a | |

b | | _
always Q@(posedge a) clkl = !clkl

always @(a) @(b) clk2 = !clk2

always @(a or b) c¢lk3 = |clk3

always @(a | b) clkd4 = !clk4d

always @(posedge (a | b)) clkb = !clk5
always @(a) c <= a

always @(a) d <= #1 ¢

always @(a or c) clk6 = |clk6

always @(a or ¢) #0 clk7 = !clk7

always @(a or c) #2 clk8 = !clk8

fe.pdf

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Spring 2001 Final Exam Exam fe.pdf

Problem 6: Answer each question below.

(a) The code below, based on the Homework 3 solution, simulates properly before synthesis but in
the post-synthesis simulation the testbench reports an incorrect beep time.

What goes wrong? Fix the problem without modifying the code below the indicated line. Hint:
The beep can start (and stop) at a slightly different time than the code below. (5 pts)

module beepprob(beep, clk);
input clk;
output beep;

assign beep = | beep_timer;

// DO NOT MODIFY CODE BELOW THIS LINE.
always Q@(posedge clk) begin
// Lots of stuff;
if (beep_timer) beep_timer = beep_timer - 1;

end

endmodule

(b) Describe something that a parameter can be used for that an ordinary input port cannot and
something that an input port can be used for that a parameter cannot. (5 pts)

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

Spring 2001 Final Exam Exam fe.pdf

(c) What is the difference between case, casex, and casez? (5 pts)

(d) Explain how each of the three statements below behave differently with unknown values. In
particular, explain what has to be unknown and how the results of each statement is different.

(5 pts)

ml =a>b?c: d;
if (a>b) m2 = c; else m2 = d;

case (a>b)
1: m3 = c;
default: m3 = d;
endcase

https://www.ece.lsu.edu/ee4755/2001/fe.pdf

— Spring 2000 <« Midterm Exam Exam mt . pdf

13 Spring 2000

245

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

« [=] Spring 2000 « Midterm Exam Exam mt . pdf

Name
Digital Design Using Verilog
EE 4702-1
Midterm Examination
5 April 2000 8:40-9:30 CDT

Problem 1 __ (40 pts)

Problem2 (60 pts)
Alias Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

« [=] Spring 2000 « Midterm Exam Exam mt . pdf

inclk
in
outclk
out
full
empty

Problem 1: Complete the Verilog description (below) of a FIFO-like module which has a 3-bit
data input, in; a 7-bit output, out; 1-bit inputs inclk and outclk; and 1-bit outputs full and
empty. The module operates like a FIFO (first in, first out) except that the width of the data input
and output ports are different: it reads data 3 bits at a time (on a positive edge of inclk) and
outputs 7 bits at a time (consisting of data from two input words plus one bit of a third). Unless
the module has less than 3 bits of space left, on a positive edge of inclk the value on in is stored.
The oldest 7 bits stored by the module always appear on output out. On a positive edge of outclk
the oldest 7 bits are removed and the output displays the next 7 bits. Output full is 1 if the
module cannot accept another 3 bits of input and is 0 otherwise; output empty is 1 if the module
is empty and is 0 otherwise. Parameter storage is the total number of bits stored by the module.
An example of the module operating is shown in the timing diagram below. (40 pts)

001 Jo10 Joil J100 101 [110 Ji11 J0o00 Jooi Joi0 [oil Ji00)

-

w0 [0000001 [0010001 [1010001 0110001 1111101 |ooo1000

[]

]

0 10 20

module width_change(out,full,empty,outclk,in,inclk);
input outclk, in, inclk;
output out, full, empty;

parameter storage = 20;

wire [6:0] out; // Can change to reg for solution.
wire [2:0] in;

wire inclk, outclk;

wire full, empty; // Can change to reg for solution.

reg [storage-1:0] sto; // Storage for data.
integer amt; // Number of occupied bits in sto.

// USE THE NEXT PAGE FOR THE SOLUTION.

endmodule // width_change

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

« [=] Spring 2000 « Midterm Exam Exam mt . pdf

Problem 1, continued: The diagram and code from the previous page are repeated below.

etk | [L) L] L] [] R S A S R oL
in[001 [010 Joi1 J100 101 110 (111 Jooo foo1 [oi0 [o11 [100)
outclk T e
out == Joo00001 foo10001 [1010001 0110001 [1111101 0001000
full]
empty [|
0 | 10 | 20

module width_change (out,full,empty,outclk,in,inclk) ;
input outclk, in, inclk;
output out, full, empty;

parameter storage = 20;

wire [6:0] out; // Can change to reg for solution.
wire [2:0] in;

wire inclk, outclk;

wire full, empty; // Can change to reg for solution.

reg [storage-1:0] sto; // Storage for data.
integer amt; // Number of occupied bits in sto.

// Solution goes here.

endmodule // width_change

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

— Spring 2000 < Midterm Exam Exam

Problem 2: Answer each question below.

(a) Describe something that a function can do (or be used for) that a task cannot.

something that a task can do (or be used for) that a function cannot. (10 pts)

(b) Convert the following behavioral code to explicit structural code. (10 pts)

module btos(x, a, b);

input a, b;
output x;
wire a, b;
reg X;

always @(a or b) if(a) x = b; else x = “b;

endmodule // btos

Describe

mt . pdf

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

« [=] Spring 2000 « Midterm Exam Exam mt . pdf

(¢) Show the changes (values and times) to a and b in the module below. (10 pts)

module assig();
reg [15:0] a, b;
initial

a<=b + 10;
b <= #5 b + 20;

endmodule

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

« [=] Spring 2000 « Midterm Exam

Exam

(d) Show the changes (values and times) to x in the module below using the timing diagram

provided. (10 pts)

module eventsl();
wire a, b, ¢, d;
reg [2:0] x;
reg [3:0] 1i;
assign {d,c,b,a} =

initial begin
0;

forever #10 i = 1
end

i =

always begin
#15;
e(a);
x = 1;
@(posedge a) x =
@ aorb) x = 3;
@Cal bl c
wait(a | b) x
wait(a) x = 6;
wait("a) x = 7;
end // always begin

endmodule // eventsl

| d) x
=5;

R R R A R A
300

mt . pdf

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

« [=] Spring 2000 « Midterm Exam Exam mt . pdf

(e) Show the changes (values and times) to aa in the module below. (10 pts)

module d();
reg a;
wire aa;

and #(2,3) (aa,a,l);

initial begin
a = 0;

O WP HEP HE
[
o

end
endmodule // d

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

« [=] Spring 2000 « Midterm Exam Exam mt . pdf

(f) Complete module after so that it does the same thing as before. All procedural code in module
after must go in the one initial process. The solution must use fork and join. Structural code
cannot be added. (10 pts)

module before(asum,bsum,out,a,ainp,b,binp,c);
output asum, bsum, out;
input a, ainp, b, binp, c;

reg [9:0] asum, bsum, out;
wire [9:0] ainp, binp;
wire a,b,c;

always @(a) asum = asum + ainp;

always @(b) bsum = bsum + binp;

always Q@(posedge c) out = asum + bsum;

endmodule
module after(asum,bsum,out,a,ainp,b,binp,c);
output asum, bsum, out;
input a, ainp, b, binp, c;
reg [9:0] asum, bsum, out;
wire [9:0] ainp, binp;

wire a,b,c;

// ALL code must go in the initial process below.
initial begin

end // initial

endmodule

https://www.ece.lsu.edu/ee4755/2000/mt.pdf

« [=] Spring 2000 Final Exam Exam [Solution| [Sol Cod¢] fe.pdf

Name
Digital Design Using Verilog
EE 4702-1
Final Examination
8 May 2000, 7:30-9:30 CDT
Problem 1 (20 pts)
Problem 2 (20 pts)
Problem3 (20 pts)
Problem 4 (20 pts)
Problem 5 (20 pts)
Alias Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

« [=] Spring 2000 Final Exam

Problem 1: The modules below are supposed to describe combinational logic that rearranges bits.
The output of module rearrange, below, is a rearranged version of its input a; input op determines
how the bits are rearranged. Module rerearrange uses two instances of rearrange to reverse and
then left shift its inputs. Unfortunately, the modules are not quite ready for tape out because both
contain errors.

Find and fix the following kinds of errors. (Points may be deducted if correct Verilog is identified

as having errors.) (20 pts)

Exam [Solution| [Sol Code]

e A: One compile error. (Modelsim will not compile it.)

e B: One load error or warning. (Modelsim will compile it but will issue a warning or

error message when loading it.)

e (: Three errors that result in incorrect output. The code will simulate but the output,

if any, will be incorrect.

Lines with the comment // 0Okay do not have errors. None of the errors are typographical or are

due to syntactic minutise such as missing semicolons.

module rerearrange(y,a);

input a;

wire [7:0] a;

wire
assign

operation;
operation =

output y;
reg [7:0] y;

el.op_reverse;

rearrange el(temp,a,operation);

assign

endmodule

operation =

module rearrange(x,a,op);

input
wire [7:0]
reg [7:0]

parameter
parameter
parameter
parameter

a, op;
a;
X3

op_reverse
op_identity

op_left_shift

op_right_sh

el.op_left_shift;
rearrange e2(y,temp,operation);

output X;
wire [1:0] op;

wire [0:7] temp;

reg [2:0] ptr, ptr_plus_one;

ift

0; // Reverse order of bits.

1; // No change.

2; // Circular (end-around) left shift.
3; // Circular (end-around)

always @(a) for(ptr=0; ptr<8; ptr=ptr+l) begin
ptr_plus_one = ptr + 1;
case(op)

op_reverse:
op_identity:
op_right_shift:
op_left_shift:
endcase

end
endmodule

x [ptr]
x [ptr]
x [ptr]
x[ptr_plus_one]

al[7-ptr];
alptr];
a[ptr_plus_one];
alptr];

right shift.

//
//
//
//

//

//
//
//
//

Okay
Okay
Okay
Okay

Okay

Okay
Okay
Okay
Okay

fe.pdf

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

+— Spring 2000 Final Exam Exam [Solution] [Sol Code fe.pdf

Problem 2: Using the grid show the register values for the first 40 time units of execution of the
module below. (20 pts)

module clocks();
reg clk, clk2, clk3, clk4, clkd, clk6, clk7, clkS8;
initial begin

clk = 0; clk2 = 0; clk3 = 0; clk4 = 0;
clk5 = 0; clk6 = 0; clk7 = 0; clk8 = 0;
end
always #8 clk = “clk;

always @(clk) #4 clk2 = “clk2;
always @(clk) clk3 <= #10 clk;
always @(posedge clk) clk4 = “clk4;
always #2 forever #8 clkb = “clk5;
always wait(clk) #3 clk6 = “clk6;
always @(clk | clk4) clk7 = “clk7;
always @(clk or clk4) clk8 = ~clk8;

endmodule

Time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

clk

clk2

clk3

clk4d

clkb

clk6

clk7

clk8

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

+— Spring 2000 Final Exam Exam [Solution] [Sol Code] fe.pdf

Problem 3: Draw a schematic of the hardware Leonardo will synthesize for the following Verilog
code examples. These should approximate the RTL schematic, showing the hardware before opti-
mization and technology mapping. If flip flops are used, indicate if they are level triggered or edge
triggered. Otherwise, don’t worry about using the precisely correct gate or symbol, as long as it’s
functionally correct.

(a) Show an approximate RTL schematic for the module below. What form is the description in?
Hint: think about what form the code is in. (6 pts)

module mod_a(x,y,a,b,c);
input a,b,c;
output x,y;
wire [7:0] b, c;
reg [8:0] x, y;

always @(a or b or ¢) begin
if(a) begin
Xx =Db + c;
y =b - c;
end else begin
x=Db - c;
end
end
endmodule

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

fe.pdf

Exam [Solution| [Sol Code]

— Spring 2000 Final Exam

Problem 3, continued: (b) Show an approximate RTL schematic for the module below. What
form is the description in? Hint: think about what form the code is in. (6 pts)

module mod_b(x,y,d,e,f,g,h);
input d,e,f,g,h;
output x,y;
reg X,V

always @(posedge d or negedge e or posedge f)
if(d) begin

x = 0;
y=1

end else if (f) begin
x = 1;

end else begin
if(g) x = h;
y = h;

end

endmodule

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

« [=] Spring 2000 Final Exam Exam [Solution| [Sol Cod¢] fe.pdf

Problem 3, continued: (c¢) Show an approximate RTL schematic for the module below. Assume
that the synthesis program will not infer that this module performs magnitude comparison. Use

symbols and for bit comparison. (8 pts)

module compare(gt, 1t, a, b);
input a, b;
output gt, 1t;
wire [2:0] a, b;
reg gt, 1t;
integer i;

always @(a or b) begin
gt = 0; 1t = 0;
for(i=2; i>=0; i=i-1) if(!gt && !1t) begin
ifC ali]l < bli]) 1t = 1;
if(afi] > b[i]) gt = 1;
end
end

endmodule

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

« [=] Spring 2000 Final Exam Exam [Solution| [Sol Cod¢]

Problem 4: The incomplete code below, compare_ism, is for a magnitude comparison module
(similar to the one in the previous problem, except it’s sequential).

When input start is set to 1, output valid goes to zero and the module computes 1t and gt.
When 1t and gt are set to their proper values valid is set to one. The module is to compare one
bit position per cycle of input clk. Output valid should go to one as soon as possible.

Complete the module so that it is in the form of an implicit state machine, synthesizable by
Leonardo. The solution can be based on the combinational module compare, below. Don’t forget
signals start and valid. (20 pts) Hint: The solution is very similar to the combinational module.
For partial credit ignore synthesizability but follow other specifications.

module compare(gt, 1lt, a, b); // Synthesizable combinational implementation.
input a, b; output gt, 1t;
wire [31:0] a, b;
reg gt, 1t; integer i

always @(a or b) begin
gt = 0; 1t = 0;
for(i=31; i>=0; i=i-1) if(!gt && !1t) begin
if(C alil < bli]l) 1t = 1;
if(afi]l > bl[i]) gt = 1;
end
end
endmodule

// Implicit state machine implementation.
module compare_ism(gt, 1t, valid, a, b, start, clk);

input a, b, start, clk; output gt, 1t, valid;
wire [31:0] a, b; reg gt, 1lt, valid;
wire start, clk; integer 1i;

1; // Part of solution.
1;

if(alil < b[i]) 1t
if(afi] > b[i]) gt

endmodule

fe.pdf

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

+— Spring 2000 Final Exam Exam [Solution] [Sol Code] fe.pdf

Problem 5: Answer each question below.

(a) Complete the module below so that it will stop simulation (using the system task $stop) if there
is no change in signal heartbeat for 1000 simulator time units. There might be many changes
in heartbeat, but the first time heartbeat remains unchanged for 1000 simulator time units
simulation should be stopped. Hint: use a fork. Also, the answer is short. (5 pts)

module watchdog(heartbeat);
input heartbeat;
wire heartbeat;

endmodule // watchdog

(b) What is a critical path? At what point in the design flow can one first find out about critical
paths? (5 pts)

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

+— Spring 2000 Final Exam Exam [Solution] [Sol Code] fe.pdf

(¢) Provide an example case statement in which the directive exemplar case_parallel is needed.
What is its effect? (5 pts)

(d) The module below is supposed to zero the middle 3 bits of its input. It’s rejected by the compiler
(the ”b=""line), identify and fix the problem. (5 pts)

module whatswrong(a,b);
input a; output b;
wire [8:0] a; wire [8:0] b;
assign b = {a[8:6],0,a[2:0]};

endmodule

https://www.ece.lsu.edu/ee4755/2000/fe.pdf

— Fall 2024 — Midterm Exam Solution mt sol.pdf

14 Fall 2024 Solutions

263

https://www.ece.lsu.edu/ee4755/2024/mt_sol.pdf

— Fall 2024 — Midterm Exam Solution mt sol.pdf

Name Sotution
Digital Design Using HDLs
LSU EFE 4755
Midterm Examination
Wednesday, 23 October 2024, 11:30-12:20 CDT

Problem 1 (22 pts)
Problem?2 (18 pts)
Problem3 (20 pts)
Problem4 (10 pts)
Problem 5 (30 pts)

Alias The best p&ﬁ. is the 1ast p&ft. Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2024/mt_sol.pdf

— Fall 2024 — Midterm Exam Solution

Problem 1: [22 pts] Below is the Homework 3 Problem 1 solution with some object names shortened.

typedef enum logic [3:0] {Char_Blank=0, Char_Dot=1, Char_Open=2, Char_Close=3} Char;
module pmatch_a #(int n = 5, wn = $clog2(n+l))

(output logic [wn-1:0] 1t_un_close, rt_un_open, input uwire [3:0] str[0:n-1]);
if (n ==1) begin

assign lt_un_close = str[0] == Char_Close 7 1 : 0;

assign rt_un_open = str[0] == Char_Open 7 : 0;

end else begin
localparam int n_left = n/2;
localparam int n_right = n - n_left;
localparam int wl = $clog2(n_left+l), wr
uwire [wl-1:0] 1t_close, lt_open;
uwire [wr-1:0] rt_close, rt_open;
pmatch_a #(n_left, wl) plt(lt_close, lt_open, str[0:n_left-1]);
pmatch_a #(n_right, wr) prt(rt_close, rt_open, strln_left:n-1]);

$clog2(n_right+1);

uwire logic signed [wn-1:0] delta = lt_open - rt_close;
assign 1t_un_close = delta < 0 7 lt_close - delta : lt_close;
assign rt_un_open = delta >= 0 ? rt_open + delta : rt_open;
end
endmodule

(a) Show the hardware that will be inferred for the base case. Show hardware after optimization taking into
account constants.

M Show inferred hardware for base (n==1) case of the module above. MShOW input and output ports.

M Optimize taking into account constant values of all kinds. @Don’t miss the Char definition above the
module. Don’t show a comparison unit such as E], instead show the gates from which it was made

and optimize them, taking into account the number of bits on each output port.

Solution appears below. The left-most version is without optimization, in the middle version the multiplexors have been optimized
10 wire, and in the rightmost version the comparison units have been optimized to AND gates.

Before Optimization Optimized Muxes Optimized Comparisons
pmatch_a (n=1) pmatch_a (n=1) pmatch_a (n=1)
3:3
1 _C—/—C 1
It_un_ It un + -
Char _Close 0 Close Char _Close close O'IO tun_
P - i - " close
S 1 1 S S
el el rt_un_ mali 3:3 rt_un_
g g open 1 g ’ cc open 1
re_un_ 1 1
Char open © :D_?pﬁg_ Char Open 0:0
1 1

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2024/mt_sol.pdf

— Fall 2024 — Midterm Exam Solution

pmatch_a (8, 4 +2(w+1)),_ 'a,~F
o Plt H S
I':S ko)
| 3
Fl 7
= 0
n IQJ
~
1 5
B o
g f
s| 3)
—| @
(D +
3 |g_ w;1 @ /
2| o 7 7
= rt_open A Critical Path

Appearing above is hardware that will be inferred for the non-base case.
(b) Compute the cost of the hardware at this level (ignore what’s inside plt and prt) based on the simple
model using the bit widths from the diagram, such as w-1.

M Show the cost of each component except for hardware inside of plt and prt.

M Be sure to show the cost of the optimized comparison unit!

S0 far as computing cost here is concerned there are three Types of components: the mu\tlp\@xors, the comparison unit (‘m This QQSQ)|
and the adder and subtractors.

Multiplexors: The cost O & w-DIt MUX 18 3w 1. There are two multiplexors, so the]tom\ multiplexor cost is 6w uc |

Comparison: The COMPArison unit checks If delta Is negative. To do that Just eheck If the MOST-SIGNIMCANT DIT (SOrt of a sign
It IS 1. S0, the | comparison cost is zero |

Adder and subtractors: The cost of an 2-bit ripple adder i8 9 u.. Note that an 2-bit ripple unit has 2-bit inputs and, when one
includas the carry-out, computes an (z+1)-bit result. The unit that computes deltais w—1 bits, and lest this get 100 tedious, treat

the other subtractor and adder as having w-dIt Inputs. So, | the ripple units' combined cost is 9(w — 1 + 2w) ue = [27w — 9 uc |

(¢) Compute the delay through the module starting from launch points 1t_close, 1t_open, rt_close, and
rt_open. The capture points are 1t_un_close and rt_un_open. Use the bit widths from the diagram, such
as w-1.

M Show the arrival time at each wire from launch to capture.

M Take into account cascaded ripple units and Mand the optimized comparison unit.

The timing appears on the diagram above. Also shown, though not asked for, is the critical path (in red). For arrival time at the
Outputs of the ripple units two times are shown: the time of the least-signifieant bit and the time of the most-signincant bit. For
example, the LSB of delta is arrives at 4 ug and the MSB arrives at 2w ug. FOr clarity the unit, ug, is omitted from the diagram.
The comparison unit just passes the MSB of delta (it does not add any additional delay).

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2024/mt_sol.pdf

— Fall 2024 — Midterm Exam Solution mt sol.pdf

Problem 2: [18 pts] Appearing below is an alternative solution to Homework 3 Problem 1. The only
difference is the last few lines.

module pmatch_b #(int n = 5, wn = $clog2(n+l))
(output logic [wn-1:0] 1t_un_close, rt_un_open,
input uwire [3:0] str[0:n-1]);
if (n ==1) begin
assign lt_un_close = str[0] == Char_Close 7

=
e
o .-
.- o

assign rt_un_open = str[0] == Char_Open 7
end else begin

localparam int n_left = n/2;

localparam int n_right = n - n_left;

localparam int wl = $clog2(n_left+l), wr

uwire [wl-1:0] 1t_close, lt_open;

$clog2(n_right+1);

uwire [wr-1:0] rt_close, rt_open;

pmatch_b #(n_left, wl) plt(lt_close, lt_open, str[0:n_left-1]);
pmatch_b #(n_right, wr) prt(rt_close, rt_open, strn_left:n-1]);
uwire logic signed [wn-1:0] delta = lt_open - rt_close;

// Lines above are identical to pmatch_a.

uwire [wn-1:0] delta_n = delta < O 7 delta : O;
uwire [wn-1:0] delta_p = delta >= 0 ? delta : 0;
assign lt_un_close = lt_close - delta_n;

assign rt_un_open = rt_open + delta_p;
end
endmodule

(a) Show the hardware that will be inferred for pmatch_b. For your convenience the hardware for pmatch_a
is shown in the upper right. Note: In the original exam the condition for delta_n was delta <= 0 and the
condition for delta_p was delta > 0. Though the hardware computed the correct result, the comparison
would have been more expensive since it would have had to check for a zero condition, not just negative.

M Show inferred hardware on the facing page.

Solution appears on the facing page. One major difference is that the addition and subtraction are done afterthe multiplexors. Also
notice that each multiplexor has 4 constant input, zero. Finally, notice that the output of the comparison unit 1or delta<o can be
used for the line needing delta>=0 sinee one or the other is true.

(b) Compute the simple-model cost of the hardware.

M Write next to components that cost the same as corresponding components in pmatch_a and com-

pute the cost of other components after optimization.

The costs are shown in the d'\agram in green. The omy significant difference is the mu\tip\@xors. Bacause each has a constant input
the cost of each is NOW w u, (U\Q mu\t'\p\@xors in pmatch_a eost 3w uc Q&QT\).

(¢) Compare the critical path lengths.

M Will the critical path in pmatch_a be much different than the one in pmatch_b? MExplain.

Yes, the critical paths will be very different. In the diagram the arrival times are circled and the eritical path is shown as o red
dashed line. Because there is & multiplexor with & late-arriving select signal between the initial subtraction and the subsequent add
or subtract, the ripple units are no longer caseaded. That means the least significant bit does not arrive at the adder and subtractor
until [2w + 1] ug (due to the multiplexor select signal not stabilizing until 2w ug). As 4 result pmatch_b takes nearly twice as
long.

https://www.ece.lsu.edu/ee4755/2024/mt_sol.pdf

— Fall 2024 — Midterm Exam Solution mt sol.pdf

pmatch_a
plt
o -
5= w/l —+
I_| 3 [lticlose -
0] Q - |
ol S 5
| = | It open I
I o [}
2 o w-1 L8 3 °
=~ ™ | n
+ s ®
n prt w]
I
w-1 o)
g T
> 3 | rt_close)
| 2 Sw
0} =g
+ Ig' w-1 +
3 Q 7
o rt_open

pmatch_b
- plt 1
C W- w
1> -3 —— —H
o| & |t close |""
+| g =
i lt_open =
1) o ' § 0
q W 1 H 8
+ 1 prt o
- W';ll same ; 3
rt_close same
23 ™ O L -
D i
=+ .9 rt_open 75w | |Z
? c- l_ ! 5)
~ w-1 o—] [deita p |’ ®
Cost: w ﬁ'\ A—HH
—/ (aw+3)
same

https://www.ece.lsu.edu/ee4755/2024/mt_sol.pdf

— Fall 2024 — Midterm Exam Solution mt sol.pdf

Problem 3: [20 pts] Appearing below are some of the dot modules from the solution to Homework 1. On
the facing page is incomplete module dotn. Complete dotn so that it describes hardware that computes the
dot product of n-element vectors recursively, where n is the parameter. That is, dotn must instantiate dotn
and should instantiate mult and add where needed.

module mult #(int w = 5) (output uwire [w-1:0] p, input uwire [w-1:0] a, b);
assign p = a * b;
endmodule

module add #(int w = 5) (output uwire [w-1:0] s, input uwire [w-1:0] a, b);
assign s = a + b;
endmodule

module dot2 #(int w = 5)
(output uwire [w-1:0] dp, input uwire [w-1:0] a[1:0], b[1:0]);
// Computes dp = al[0] * b[0] + a[1] * b[1];
uwire [w-1:0] pO, pil;
mult #(w) m0(pO, al[0], b[0]);
mult #(w) mi(pl, al1l, bl[1]);
add #(w) ad(dp, pO, pl);
endmodule

module dot3 #(int w = 5)
(output uwire [w-1:0] dp, input uwire [w-1:0] a[2:0], b[2:0]);
// Computes dp = a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
uwire [w-1:0] pO, p2;
dot2 #(w) do(pO, al[1:0], b[1:0]);
mult #(w) m2(p2, al2], b[2]);
add #(w) a2(dp, pO, p2);
endmodule

https://www.ece.lsu.edu/ee4755/2024/mt_sol.pdf

— Fall 2024 — Midterm Exam Solution mt sol.pdf

M Complete dotn so that it describes tree-structured hardware computing an n-element dot product. The tree
depth should be [lgn].

M Instantiate mult for multiplication and add for addition, and of course dotn for a dot product of a smaller
vector.

@ To keep things easy all wires are w bits.

The solution appears below. Note that the multiplication is performed in the base case and that the adds are done in the recursive
instances

module dotn
#(int w =5, n = 4)
(output uwire [w-1:0] dp,
input uwire [w-1:0] a[n-1:0], b[n-1:0]);

// SOLUTION
if (n==1) begin

// Base Case: Just multiply.

//
mult #(w) m(dp, al0], b[0]);

end else begin

// Recursive Case: Split inputs between recursive instances ..
//

localparam int nlo = n/2;

localparam int nhi = n - nlo;

uwire [w-1:0] dplo, dphi;

dotn #(w,nlo) dlo(dplo, a[nlo-1:0], b[nlo-1:0]);

dotn #(w,nhi) dhi(dphi, al[n-1:nlo], b[n-1:nlo]);

//
// .. and add their outputs ..
//
add #(w) a(dp, dplo, dphi);
end
endmodule

https://www.ece.lsu.edu/ee4755/2024/mt_sol.pdf

— Fall 2024 — Midterm Exam Solution mt sol.pdf

Problem 4: [10 pts] Appearing below is the logarithmic shifter presented in class, followed by a version
that’s supposed to be better (but isn’t). The hoped-for improvement is due to instantiating the exact number
of multiplexors (muxw2) needed, rather than enough for the maximum shift amount.

module shift_right_logarithmic #(int w = 16, 1lgw = $clog2(w))
(output uwire [w-1:0] shifted,
input uwire [w-1:0] un, input uwire [lgw-1:0] amt);
// This module is correct.
uwire [w-1:0] s[lgw:-1];
assign s[-1] = un;
for (genvar i=0; i<lgw; i++)
muxw2 #(w) st(s[i], amt[i]l, s[i-1]1, s[i-1]1 >> (1 << i));
assign shifted = s[lgw-1];
endmodule

module shift_right_logarithmic_better_maybe #(int w = 16, lgw = $clog2(w))
(output uwire [w-1:0] shifted,
input uwire [w-1:0] un, input uwire [lgw-1:0] amt);
uwire [w-1:0] s[lgw:-1];
assign s[-1] = un;

// Use exactly the number of stages needed!!!
uwire [lgw-1:0] lg_amt; // LINE ADDED
my_clog2 #(lgw) mc(lg_amt, amt); // LINE ADDED. Set lg_amt = $clog2(amt) = [lgamt];

for (genvar i=0; i<lg_amt; i++) // LINE DIFFERS
muxw? #(w) st(s[i], amt[i]l, s[i-1]1, sl[i-1]1 >> (1< i));
assign shifted = s[lg_amt-1]; // LINE DIFFERS
endmodule

M Why won’t the Verilog above compile?

The Verilog won't compile because the for 100p is o generate 100p and its stop condition, i<lg_amt, is NOT an elaboration-time
constant expression due 1o 1g_amt be'mg a module output (OT the mc instance of the my_clog?2 modu\«e). e \OOp would have to
bea generate \()()p Dacause it is in module Scope and because the iterator is declared genvar.

M Is it possible to fix the Verilog error in such a way that cost is lower with smaller shift amounts? MEXplain.

No. Tha cost is determined by the amount of hardware needed to synthesize the module. Once the module is synthesized, manufac-
tured, and shipped to a customer its cost (meaning the amount of hardware) can't ehange. This isn't Hogwarts, we're muggles (at
least | am).

M Is it possible to fix the Verilog error in such a way that the delay reported by a synthesis program is lower?
9 Explain.

No, because the delay reported by the synthesis program will be based on the critical path, which is the longest path.

M Is it possible to fix the Verilog error in such a way that the delay actually is lower? MExplain.

1T you must have a shorter delay Tor & lower Shift amount that is possible but (1) 1T won't be mueh of an improvement below galactic
sizes and (2) the \Og'\Q outside the module will have to be GQS'\gT\QG 10 take L\(lVElMQgQ of the lower delay with sorter shift amounts.
S0, U\()Ugh the answer £o this question is Yes, as a pT&Qt'\Q&\ matter the answer is still no.

https://www.ece.lsu.edu/ee4755/2024/mt_sol.pdf

> Fall 2024

— Midterm Exam Solution

Problem 5: [30 pts] Answer the following Verilog questions.

(@) The module below uses multidimensional arrays.

//

2 1 3 4 1 2
module mda(input uwire [2:1] ¢ [5:1], input uwire [7:1]1[2:1] a [5:1]1[3:1]);
// Add dimension(s) to the declaration of e so that the assignment is correct.
//
// SOLUTION
uwire [2:1] e [5:1] = c;

//

// M Add dimension(s) to the declaration of b so that the assignment is correct.
//

/7 SOLUTION

uwire [2:1] b = al1]1[1]1[1];

logic g [7:0];
logic [7:0] h;

initial begin
Which is correct,

O only the assignment to g, O only the assignment to h, or ® both are correct.
Explain.

gl1]
h([1]
end

h([1];
gli];

endmodule

Qf What is the size of c, in bits? MWhat is the size of a, in bits?
The size of object ¢ 18 2 x 5 = 10 bits. The size of object ais 7 x 2 x 5 x 3 = 210 bits.

Explanation for multiple-choice question about g and h. 1t 18 true that g is an unpacked array and h is a packed array and the two
Kinds of array work differently. But in this case both g[1] and h[1] refer to 1-bit quantities, and so assigning one to the other is
no problem. (Possible final-exam question: ask about h[1:0] and g[1:0].)

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2024/mt_sol.pdf

— Fall 2024 — Midterm Exam Solution

(b) In the module below indicate whether each code fragment is correct.

module kinds #(logic [31:0] pg = 123)
(output uwire [31:0] 00, dinput uwire [31:0] ik);

// MIS the line below correct? ® Yes ONO D If not, explain.

localparam logic [31:0] z02 = pg + 4755;

// MIS the line below correct? O Yes ®No @If not, explain.

localparam logic [31:0] z03 = ik;

A localparam can only be assigned an elaboration-time cONStant expression (‘me\ud‘mg literals and elaboration-time QOT\SI&MS). Since
ik i 2 module input it cannot De an elaboration-time constant.

// MAre the lines below correct? O Yes ® No MIf not, explain.

localparam logic [31:0] z04;
assign z04 = pg;

Though pg is an elaboration time constant, it must be assigned 1o z04 in the declaration statement (Lh@ statement starting starting
with localparam). Put another way every localparam declaration must include the constant value.

// @Are the lines below correct? O Yes ® No @If not, explain.

uwire [31:0] z10 = pg;
assign z10 = ik;

Object z10 is declared uwire. A uwire must have exactly one driver. Both lines above are drivers, which is one too many. To
keep the assign line one would need to remove =pg from the uwire declaration (DUI keep the r@st).

// MIS the line below correct? ® Yes QNO D If not, explain.

uwire [31:0] z13 = ik;

endmodule

10

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2024/mt_sol.pdf

— Fall 2024 — Midterm Exam Solution mt sol.pdf

(¢) When we run a synthesis program we specify a delay target. In class we often synthesize twice, once with
a delay target of 100 ns and a second time with a target of 0.1ns. What is the harm in specifying a delay
target lower (faster) than one needs? Isn’t faster better?

M Harm in setting delay target too low is:
Short angwer: The harm is SyﬂIhQSXZQG hardware that's more QOST.\y than it would have been with the correct d@\&y.

The delay target should be set to the delay that's needed by a design. For example, the design team may have decided that they
would like 2 2.5 GHz clock frequency and so they would set the delay targel 10 5= = 400 ps. The synthesis program will
optimize delay until the 400 ps target is met, and then optimize cost. Typieally the lower the delay, the more the hardware will cost.

In Scenario A the team needs 400 ps but the person running the synthesis program specified g target of 200 ps and didn't tell
anyone. When the more-costly-than-they-need-to-be manufactured components are used in & product they are clocked at 400 ps,
wasting their potential. The competition might have & less expensive product that runs at the same speed.

In Scenario B the team needs 400 ps, the person running the synthesis program specifies a target of 200 ps, and told the team. S0
the design is run at 200 ps. Though the hardware runs faster, it's of no beneflt because the toaster makes great toast with either
component. Thare's no point in sampling the image sensors any faster to 20 Hz to make good toast.

(d) A 32-bit signed integer, say i, is converted into a 32-bit IEEE 754 floating-point format (8-bit exponent,
23-bit significand) and then back into a 32-bit integer, j.

M Is it guaranteed that i = j for all —23! <4 < 231? MEXplain based on the FP representation.

No. The significand IS only 23 bits, meaning the fraction is 24 bits (eounting the implieit 1). Consider two integers 253,969,77019 =
23,456a16 and 253,969,77119 = f23,456b16. Each is seven hexadecimal digits and so would need at least 28 bits 1o represent.
To represent these in the FP format the significand would be set to the most signincant 24 bits, f2,34561¢ (Including the implieit
1), omitting the least-signincant hex digit a or b. (The exponent would be set to 154 Tor both numbers.) Since the two numbers have
identical FP representations converting them back to integers will yield the same number, f23,45701¢.

Appearing below is the complete FP representation of 253,969,7701¢9 = f23,456a16 and f23,456b16 = 253,969,7711¢ In
32-bit (single, whieh is the format deseribed in the problem) and 64-bit (double, a higher-precision format) formats. Notice that the
fractions (F) of the numbers' single representations are the same, but the fractions of their double representations are diferent.

Value 253969770.0000000000000000 == 2.539698e+08

Single: 44723457 1299330135
S 0 E 0x9a = 154 F 0x723457
Double: 412e468ad4000000 4732797820489170944

S 0 E Ox4la = 10560 F 0xed468ad4000000

Value 253969771.0000000000000000 == 2.539698e+08

Single: 44723457 1299330135
S0 E 9a = 154 F 723457
Double: 412e468ad6000000 4732797820522725376

S 0 E Ox4la = 1060 F 0xed468ad6000000

11

https://www.ece.lsu.edu/ee4755/2024/mt_sol.pdf

Fall 2023 Midterm Exam Solution mt sol.pdf

15 Fall 2023 Solutions

275

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Fall 2023 Midterm Exam Solution mt sol.pdf

Name Sotution
Digital Design Using HDLs
LSU EE 4755
Midterm Examination
Friday, 27 October 2023, 11:30-12:20 CDT
Problem 1 (30 pts)
Problem 2 (25 pts)
Problem 3 (30 pts)
Problem 4 (15 pts)
Alias AgaIN on 8 April Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Fall 2023

Midterm Exam Solution

Problem 1: [30 pts] Appearing below is the permutation module from the solution to Homework 3.
Using the illustration of the ports show the inferred hardware for an instantiation with n=4. Show the n=4
instantiation but not what is inside the n=3 recursive instantiation.

module perm
#(int w = 8, n = 20, wd = $clog2(n))

(output uwire [w-1:0] pdata_out[n], output uwire [wd-1:0] pnum_out[n],

output uwire carry_out,
input uwire [w-1:0] pdata_in[n], input uwire [wd-1:0] pnum_in[n]);

if (n ==1) begin

assign pdata_out[0] = pdata_in[O0];
assign carry_out = 1;
assign pnum_out[0] = 0O;

end else begin

uwire [wd-1:0] pos = n - 1 - pnum_in[n-1];
assign pdata_out[n-1] = pdata_in[pos];
uwire [w-1:0] prdata_in[n-1];
for (genvar i=0; i<n-1; i++)
assign prdata_in[i] = i < pos ? pdata_in[i] : pdata_in[i+1];

uwire co;
perm #(w,n-1,wd) rp(pdata_out[0:n-2], pnum_out[0:n-2], co,
prdata_in, pnum_in[0:n-2]);

uwire [wd-1:0] dnext = pnum_in[n-1] + co;
assign carry_out = dnext >= n;
assign pnum_out[n-1] = carry_out ? O : dnext;

end

endmodule

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Fall 2023 Midterm Exam Solution mt sol.pdf

M Show inferred hardware for n=4. Be sure to use Mthe illustrated module ports and to show Mthe
recursively instantiated module (but not its contents).

@ Show hardware, @do not confuse elaboration-time computation with computation hardware.

Solution appears below. Notice that elaboration-time constants such as i and n are replaced by their values. Notice also that
pdata_in[i] for =0 is inferred simply as & wire connecting to input pdata_in[0], whereas pdata_in[pos], because pos
is not & constant, is inferred as a multiplexor with data inputs connecting to each pdata_in input.

perm n=4
. rp
pdata_in[1] [1] i
N prdata_in[0] (0] perm o pdata_out[0] ik
| J 2 _ S [1]
[0] [0] — & n=3 & H12 tH
0 21| % = 3
]
= |2 2] " g
T Im
4 o
Q
E’r [1] k= Ei'
I 1 g [0] - pnum_out[0] ik
3 . E 2 [1] dh
3] Bl N — 12 o [T
— T 21| 3 = e
_\l 5 carry_out |— |3
o
=
pdata_in[pos] -
pnum_in[0]
[1]
H
[2]
T
c 3
3] 0sS
3 p
I_, pnum_in[n-1]
=

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Fall 2023 Midterm Exam Solution

Problem 2: [25 pts] A ripple adder to compute a + b is to be used in situations where a is a constant.
(a) Find the cost and delay of a BFA with input a constant (for use in the ripple adder). A BFA is shown
for your convenience.

M Show the BFA(s) optimized for input a constant.

D Use a truth table to find optimizations not revealed by constant pushing: in a correct solution the delay
does not depend upon a.

M Show simple-model cost of this(these) module(s) and |V|show simple-model delay(s) of this(these) module(s).
Optimization Plan Optimized Hardware, Showing Timing

BFA BFA BHA
ao

a_ \ £ E
TPy =D s Do b

f H H
0= © ®

funilinnl
REpgEEy

aniiun]

ot

m <

f
s}

fam)
t
o

The optimized BFAs appear on the right. The

TSt row shows optimization for a=0 and the | a 7 i £ Lai c

second row for a=1. The Arst column, headed & |) N*‘/—\D_“E 4 E

Optimization Plan, shows the impact of the b i j / * @ Hr:» > ® i
\ . _

o

o

constant a vatue on gates in the full BFA, the [Lci
second column shows 4 cleaned-up version of 1
the logic, and, for the Timing analysis, With ar-
rival times labeled in graeen.

fam)
t

o
g)

A binary full adder with one constant input is little different than 4 binary half adder, and so a constant-input BFA is labeled BHA.
The optimization for the a=0 case is straightforward. For the a=1 case an initial optimization would use both an AND gate and an
OR gate 10 compute co. But the logie can be simplified further by noting that when b=1 directly connecting ci to the OR gate has
no effect, and when b=0 directly connecting ci to the OR gate has the intended effeet. Or perhaps one just remembers the Boolean
algebra identity z + Ty = = + y.

’ThQ cost of each moduleis 3+ 1 = 4 u,. Actually, the cost of each module can be reduced 1o just 3 ue by sphitting the XOR into
three gates and using the AND or OR gate 10 replace one of those gates With other zaro-cost changes needed o compute exclusive
or. Final exam problem?

The arrival times are labeled in green. In both modules | the delay of sum is 2y | and | the delay of co is 1uy | Lucky for us the
delay of co s 11y, because that Impacts the delay of tha TIpple adder.

(b) On the facing page show the optimized hardware, cost, LSB delay, and MSB delay of a w-bit ripple adder
for computing a + b + ¢, where ¢, is a carry-in bit (cin in the diagram) and a is a constant. (See the
check box items for details.) Use the illustration on the facing page as a starting point.

M Show the hardware optimized for a constant a and a non-constant cin.

M Compute the simple-model cost of this hardware in terms of w.

M Compute the simple-model delay of the LSB of the sum.

M Compute the simple-model delay of the MSB of the sum in terms of w and show the critical path.

@ Don’t forget that a is a constant.

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Fall 2023

Midterm Exam

Solution

mt sol.pdf

a w ripple_adder w
W
Ib]
il al1] al2] alw-1]
2 b[1] b[2] -
® | blol Bit 0 - LSB Bit 1 Bit 2 blw-1] Bit w-1 -- MSB
BFA BFA BFA BFA
la g || L2\ g ||la £ £
£) 3 L) 3 b H £ H
o o o o
cin_ L ci il A b A bt A AN A
£ £ 51— o oo
[oJoo)
w
sum H
1 a w)'b1010 w ripple_adder w
i o
LJH @ a[l] al2] afw-1]
S b[1] b[2] -
;|\ bl0] Bit 0 -- LSB Bit 1 Bit 2 blw-1] Bit w-1 -- MSB
i BHA BHA BHA
L0 g Lt 5 Lgeo g +
O) DORE Qe TR T O N OF
b b b
7
o o o
) O la @ T™@8| la @ —O¢
© . = L =
000 :
LsB Delay (2) MSB Delay (w+1)

Solution £o part b appears above. The exact BHA units to use depend on the value of a. The diagram is Tor a = 1010s.

The cost of each BHA IS 4 u,, 80] the total cost 1s 4w uc ‘ Based on the analysis shown in green on the diagram the | LSB delay is 2 uy
and the | MSB delay 18 [w + 1] ug ‘ Tha critical path for the MSB is shown in red.

(¢) If cin were removed (or set to zero) the cost and delay of the optimized adder would depend on a
Explain why, and illustrate with the example of a=2.

M How are cost and delay dependent on a when cin removed? MExplain using the example a=2.

IT cin=0 the cost of the bit 0 BHA drops 1o zero. If bit a[0]=0 then the co of the bit 0 BHA is 0, a constant, while if a[0]=1
the co output is b [0], not a constant. So for the case of @ = 105 the co output of the bit 0 BHA IS 0, but the co output of the
Bit 1 BHA is b[1], whieh is not a constant. For this @ = 105 case the cost of the bit 0 and bit 1 BHAS i zero, but the cost of the

remaining BHAS 18 4 u, each. For @ = 100 the cost of the Tirst three BHAS would be zero. So the cost of the constant adder with
cin=0 depends on the number of consecutive 08 starting at the LSB of a.

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Fall 2023

Midterm Exam Solution

Problem 3: [30 pts] Answer the following Verilog questions.

(@) The module below makes extensive use of multidimensional arrays.

//

2 1 3 4 1 2

module mda(input uwire [2:1] ¢ [5:1], input uwire [7:1]1[2:1] a [5:1]1[3:1]);

//

// M Add dimension(s) to the declaration of e so that the assignment is correct.
//

// SOLUTION

uwire [2:1] e = c[1];

// M Add dimension(s) to the declaration of b so that the assignment is correct.
//

// SOLUTION

uwire [7:11[2:1] b [3:1] = ali1];

logic g [7:0];
logic [7:0] h;

initial begin

jWhich is correct, Q the assignment to g or ® the assignment to h. MExplain.
g = 1; // Compile error because g is an unpacked array and 1 is a scalar.
h =1; // Correct, h is a packed array and so is treated as an integer.

end

endmodule

M What is the size of c, in bits? MWhat is the size of a, in bits?
The size of object c is 2 x 5 = 10 bits. The size of object als 7 x 2 x 5 x 3 = 210 bits.

(b) The module below does not compile.

module more_stuff #(int n = 20) (output uwire [31:0] sum, input uwire [31:0] a [n]);

logic [31:0] acc;
always_comb begin
acc = al0];
for (int i=1; i<n; i++)
my_fixed_adder al(acc, acc, ali]);
end
assign sum = acc;

endmodule

M Describe the major problem. @DO NOT try to fix the problem.

A module cannot be instantiated in procedural code, which the code above is doing with my_fixed_adder. This is & major problem
Decause it can't be fixed by just changing a declaration or adding new objects. The instantiation must be removed from the procedural
code. Another problem is that acc eonnects 1o two parts of my _fixed adder. A reasonable guess would be that one of those is
an output and the other is an input. 1t makes no sense to connect the same object to HOth an input and an output.

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Fall 2023 Midterm Exam Solution mt sol.pdf

(¢) The module below is supposed to set z = a? + b.

module wrong_way(output logic [31:0] x, input uwire [15:0] a, b);
logic [31:0] asq;
uwire [31:0] bsq = b * b;

// initial asq = a * a; // Original line.
always_comb asq = a * a; // Corrected line.
always_comb x = asq + bsq;

endmodule

M Explain the problem. MUsing sample inputs show the expected output and the actual output.

M Fix the problem.

Because asq is assigned in an initial block it will only be assigned once. Suppose at ¢ = 0 the inputs are a=2 and b=3. Then
the corract output will appear, x=13. But suppose at ¢ = 1 the inputs change o a=5 and b=6. Object asq Will keep its initial
value, 4, and 5o the output will be 2z = 22 + 62 = 40 (computed using the £ = 0 value of @ and the ¢ = 1 value of b).

The simplest N 18 10 change initial 10 always_comb, That's shown above.

(d) The module below does not compile.

module my_adder(output uwire [31:0] s, input uwire [31:0] a, b);
always_comb s = a + b;
endmodule

module my_adder(output logic [31:0] s, input uwire [31:0] a, b);
// Fixed module.
always_comb s = a + b;

endmodule

M Why won’t module above compile? MFiX problem by changing declarations.

Because s is assigned in procedural code it must be a var kind, not a net kind. (A uwire i anet K'md.) The fixed module is shown
Delow the broken one.

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Fall 2023 Midterm Exam Solution mt sol.pdf

(¢) The module below compiles but does not provide the expected outputs, p, = a?, p, = b%, and p = a? +b.

module incorrect_way(output logic [31:0] pa,pb,p, input uwire [15:0] a, b);
wire [31:0] sq;
assign sq = a * a;
always_comb pa = sq;
assign sq = b * b;
always_comb pb = sq;
always_comb p = pa + pb;
endmodule

module correct_way(output logic [31:0] pa,pb,p, input uwire [15:0] a, b);
/// SOLUTION
uwire [31:0] sqa, sgb;
assign sqa = a * a;

always_comb pa = sqa;
assign sqb = b * b;
always_comb pb = sqgb;

always_comb p = pa + pb;
endmodule

M What will be the values of outputs pa, pb, and p?

I a 7 b the value of each output will be x, the Verilog value indicating (in this case) conflicting drivers to an output. \f @ = b then
the corract result will be computed.

M Describe the problem. MFix it.

The problem is that sq is continuously assigned in two places, which though it does not violate any Verilog rules (note that sq is
declared wire rather than uwire) it nevertheless does nothing useful. Suppose the axa line drives sq [0] toward 0 and the bxb
line drives bit sq[0] toward 1. The value of sq[0] will be x, which i$ not what we want.

A simple X is 10 use diferent objects for a*xa and bxb. That is shown above.

Grading Note: Many students incorrectly deseribed the value of sq as alternating between a*a and bxb. That doesn't happen
Decause the simulator computes sq Dy Tirst combining the a*a and bxb values (maybe using an old a or b, but always combining
the Two). So there is never a time when sq is cleanly equal 10 axa Or bxb (unless a=b).

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Fall 2023 Midterm Exam Solution mt sol.pdf

Problem 4: [15 pts] Answer each question below.

(a) A company has two teams, A (very good) and C' (slackers) working on modules and a testbench for an
important product. Describe the following consequences:

M The A team works on the modules and the C' team works on the testbench. A possible bad outcome is:

The testbench passes the modules, indieating that the modules produce the correct outputs. The company then manufactures the
modules and ships them to customars. The customers discover aws in the modules that the testbench should have, but didn't,
uncover. Fortunately the customers weren't avionies or medical equipment manufacturers.

M The A team works on the testbench and the C team works on the modules. A possible bad outcome is:

The testbench correctly identines erroneous module outputs and the C team fixes problem after problem identified by the testbench
until eventually they have 4 set of modules that the testbeneh passes. The company ships the modules to customers and customers
find that the modules do indeed work flawlessly. The only problem is that the modules COST Twice s much as competitors' produets
and use Mve times the energy. The customers go out of business and so there are no Tollow-on orders.

Grading Note: Many students assumed that the C' team could not get the modules working at all. That would be the F team.
\We should assume that experienced practicing engineers can get things working and won't be tripped up by problems that might have
plagued them in their student days.

(b) In typical use when running simulation a testbench generates inputs for a module-under-test and the
outputs are checked by the testbench to see whether they are correct. After running synthesis we learn how
fast the module is. If simulation is computing the module outputs why can’t it tell us how fast the module
is?

M Synthesis can provide timing information and simulation can’t because:

Determining what the output of a module is, is not the same thing as determining when that output will arrive (the delay of the
output). To determine timing one needs to know the target technology, and that is not provided to the simulator. Further, one needs
10 Optimize 4 design, and that's 2lso not somathing a simulator does. A synthesis program reads the Verilog, a target technology (in
the form of 4 design KIt) and transforms the original design Into one using componaents from the target technology, and then optimizes
the design to meet a Timing constraint at minimum cost.

(¢) A gadget can be built using an ASIC or an FPGA. Describe which is more appropriate for each situation
below.
M The gadget must be working within a month. O ASIC or ® FPGA. MExplain.

An ASIC must be manufactured, a time consuming process that can last months.

M Per-gadget cost must be under $1000. Only ten will be made. O ASIC or ® FPGA. MExplain.
Full-Credit Answer: One can easily buy one FPGA for under $1000, but the minimum order for an ASIC i$ thousands of units.

Ezplanation: The minimum number of ASICS that can be manufactured is one wafer with, which might Tt hundreds of ehips. To
make 9 warter one must make shadow masks, which themselves aren't cheap. S0 it makes no sense o use an ASIC target for only ten
Cnips. In contrast, an FPGA is programmed after it is manufactured. Programming an FPGA i3 more like writing memory. So even
if you just buy ten FPFAs there are others buying the same model of FPGA and sharing the development costs.

M Per-gadget cost must be under $100. Ten thousand will be made. @ ASIC or O FPGA. MExplain.

The high costs of setting up an ASIC target can be divided by the 10,000 units that will be sold, resulting in a cost that might be
lower than an FPGA.

https://www.ece.lsu.edu/ee4755/2023/mt_sol.pdf

Fall 2023

Staple This Side

Name Solution

Alias

Final Exam

Solution

fe sol.pdf

Formatted For Two-Sided Printing

Digital Design using HDLs
LSU EE 4755
Final Examination

Thursday, 7 December 2023 15:00-17:00 CST

Qx?

Problem 1
Problem 2
Problem 3
Problem 4

Exam Total

Good Luck!

28 pts
25 pts
27 pts

~—~ o~ o~
N N

20 pts

(100 pts)

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2023/fe_sol.pdf

Fall 2023

Final Exam Solution

Problem 1: [28 pts] Appearing below is the solution to Homework 5.

(a) On the facing page show the inferred hardware for an instantiation with n=4.

(b) Explain why the cost of the hardware corresponding to the line n_match += match is much lower than
one would expect for hardware performing wc-bit addition.

EZT'FheILmatch += match is much less expensive because:

Because match is only one Dit. AlSo, n_match starts off with an initial value of 1 50 the number of bits needed for the aarly 1
iterations is small.

Grading Note: A wvery similar question was asked in Homework 4, Problem 1b.

module UNiq_vector_seq
#(int we = 10, n = 4, wc = $clog2(n+l))
(output logic [n-1:0] uniq_bvec, output logic [wc-1:0] n_match,
input uwire [we-1:0] element, input uwire start, clk);

logic [we-1:0] elements [n-1:0];
logic [n-1:0] occ_bvec;
logic [wc-1:0] uniq_at [n-1:0];

always_ff @(posedge clk) begin

automatic logic [wc-1:0] match_pos = n;

n_match = 1;

for (int i=n-1; i>=1; i--) begin

automatic logic next_occ_bvec = !start && occ_bvec[i-1];
automatic logic match = next_occ_bvec && element == elements[i-1];

n_match += match;
if (match) match_pos = i;

elements[i] <= elements[i-1];
occ_bvec[i] <= next_occ_bvec;

uniq_at[i] <= match ? n : uniq_at[i-1];
uniq_bvec[i] <= !next_occ_bvec || !match &% i >= uniq_at[i-1];

end

elements[0] <= element;

occ_bvec[0] <= 1;

unig_at[0] <= n - match_pos;
uniq_bvec[0] <= match_pos == n;

end

endmodule

fe sol.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2023/fe_sol.pdf

Fall 2023 Final Exam Solution fe sol.pdf

M Show inferred hardware for n=4.

@ Do not confuse ports with parameters. @(Do not confuse elaboration-time computation with computation
hardware.

Solution appears Delow. RQg'\SIQFS and gates shown in gray can De eliminated Dy optimization.

start uniqg_vector_seq
(ma|
=T
I—O next_occ_bvec ?:)ﬂt_occ_bvec ?:)ﬂt_occ_bvec
1
occ_bvec[0 occ_bvec[1 occ_bvec[2
| [0] A |] A | [2]
element
(| /
elem- elem- elem-
A | ents[0] A | ents[1] A | ents[2]
clk n_match(>— ,_O— ,_O— n_match
‘EH_ + + + ~ 1 M
n_match P H
match match match A §
6 match_pos [~y
match_pos 4'(n) >
¢7 () (i) (i)
4 (n) uniq_at V uniq_at uniq_at
A 3 ri:F A | A 5
a |4 2 |4 : a
1) = 20 > 3() =
=
=2
2
msb =
<
(1]
4 (n) !
=T
= AN
Isb

Staple This Side

https://www.ece.lsu.edu/ee4755/2023/fe_sol.pdf

Fall 2023 Final Exam Solution fe sol.pdf

Problem 2: [25 pts] Illustrated on the facing page is a diagram showing inferred hardware similar to the
word_count module from last year’s final exam. An important difference is that it is shown for n_avg_of=n,
not the specific value of 4. Assume that n is a power of 2.

M In terms of n, wl, wn, and v show simple-model arrival times at each wire and Mshow a critical path.

@ Account for cascaded ripple units @constant inputs, and remember that n can be any power of 2, not
neccesarily 4.

The arrival times are shown in purple, and 4 critical path is shown as & dashed red line.

To solve this correctly one must pay attention to bit widths. Most bit widths are directly marked, such as w; for lword and w,, for
nwords, but one had to infer that 1sum I8 w; + v DILS Wide. (In the original problem lsum Was w; + 4 bits wide.) That width
has been directly added to the solution but in the unsolved problem it must be inferred from the wl+v-1:v (in the original problem
wl+3:2) hit slice used at the input to the lavg mux.

Constant inputs affect the delay of adders, multiplexors, and the comparison unit. The delay of & w-bit constant-input adder is
[w — 1] 1. To see how, St carry-in 1o zero In the constant adder shown in 2023 Midterm Exam Problem 2. Because n 1s & power of
2 the least-signinicant Ig 7 bits of 7 are zero. Since v = Ign (see the top of the module ilustration) the COMPAriSON Nyords = N
can skip the Trst o bits and so the delay of the ripple comparison cirewit is wy, — v — 1 (& recursive construction would have a
logarithmic delay).

The subtractor and adder computing 4 result for Isum are cascaded and so their respective delays are not added. To make it & bit
more tricky one INput to the adder is wy bIts and the other i w; + v bits. So the adder consists of approximately w; BFAS, with
a carry delay of 2 each, and v BHAS with & carry delay of 1 each, plus the final sum XOR with 4 total delay of 2(w; + 1) + v.
The adder can start when the least-signinieant bit arrives at 21g(n) + 4 80 the arrival time of the result at the output of the adder
(Input to the register) is 21g(n) + 2(w; + 1) +v +4 = 3v + 2(w; + 1) 4 4. 1T the problem were solved for an Isum width of
wy + 4 the arrival time would be 21g(n) + 2(w; + 1) +4 +4 = 2v + 2(w; + 1) + 8.

The illustrated eritical path assumes 21g(n) + 2(w; + 1) + v 4+ 4 > w,, + 1. The registers aiso have delays, whieh are not
shown. The delays are 6 uy Tor registers without enables and 8 u Tor registers With enables. The time unit, u, has been omitted
in the diagram to save space and in this diseussion 1o save time.

M In terms of n, wl, wn, and v compute the simple-model cost of the Plan B hardware, assuming n is a power
of 2. Account for constant inputs.

The costs appear in the table below. For the costs of the constant-input adder see 2023 Midterm Exam Problem 2.

Item Count Each Total
Constant input v-bit Adder 1 4v 4v
v-DIT Register with Enable (tail) 1 10v 10v
(v 4 1)-Input AND Gates n v nv
w;-BIL Regjsters with Enable (1rec} n 10wy 10nw;
wy-BIt, n-Input Multiplexor 1 3Bwi(n—1) 3wi(n-—1)

Grading Note: A common mistake was using the wrong number of bits for the registers and multiplexor.

S
2

https://www.ece.lsu.edu/ee4755/2023/fe_sol.pdf

Fall 2023

Final Exam

Solution

WC word count (n_avg of=n, v=Ig(n_avg of))
E - —avg_ gth_avg_ word_start |
S LT
Ia_ word_part =
0
) (wi+1) (wi+2) word_ended |
@, \ \ T
< s © 2
1) =\ 1
2 L
S _O\; |W0r(/j m
m qhar = 1 + 1 @ wl
-
3 E: K .
Cascaded ripple upits. ¢
| reset / A &
H 3 (21g n + 2(wl+1) 1+1)+v (0)
s PRI wl
n /|) T B W, }
4 clk w Critical : LI P @
H Path il2(wl+1) / en
g Qlgn + 2(wi+1)+v+4) Wy
H L /L
— Q o Wl S LT VA
g n(n avg of)
i Plan B Ve
i Hardware
2lgn=2v
:)_ en Ire¢[n-1]
<ooo \\9 A @
N o
v-1 — €N T
- ll_I
1 ¢ O —
v-1 A tail : 5
: -
_ : ©), nwords L
... ?m
1 wn
nwd wn-1 f A

Staple This Side

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2023/fe_sol.pdf

Fall 2023 Final Exam Solution

Problem 3: [27 pts] The two modules below look for a match of input target in an n-element array elts
but only check elements 0 to i_limit-1. Output n_match is the number of matching elements and match_i
is the lowest i for which elts[i]==target and i<i_limit, or n if there is no match. (These modules could
be used in the uniq_vector module.) Module fmatch_comb is complete and works correctly.

(@) Module fmatch_rec has some code for a recursive implementation. Complete it so that it performs the
same calculation as fmatch_comb.

M Complete fmatch_rec so that it computes the same values as fmatch_comb.

@ Don’t forget to show the bit ranges of elts in the connections to the recursive instantiations.

Solution appears on the next page.

module fmatch_comb
#(int n = 22, w = 12, wn = $clog2(n+l))
(output logic [wn-1:0] n_match, match_i,
input uwire [w-1:0] elts[n-1:0], target, input uwire [wn-1:0] i_limit);

// Do not modify this module. It is correct.
always_comb begin

n_match 0;
match_i n;

for (int i=n-1; i>=0; i--) if (i < i_limit && elts[i] == target) begin
n_match++;
match_i = i;

end

end

endmodule

fe sol.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2023/fe_sol.pdf

Fall 2023 Final Exam Solution

Staple This Side

Staple This Side

module fmatch rec
#(int n = 22, w = 12, wn = $clog2(n+l))
(output uwire [wn-1:0] n_match, match_i,
input uwire [w-1:0] elts[n-1:0], target, input uwire [wn-1:0] i_limit);

if (n ==1) begin
// Do not modify the n==1 code, it works.
uwire match = i_limit != O && elts[0] == target;
assign n_match = match;
assign match_i = match 7 0 : 1;

end else begin

// SOLUTION: Split elements between recursive instances.

//

localparam int nlo = n/2;
localparam int nhi = n - nlo;
localparam int wnr = $clog2(nhi+1);

uwire [wnr-1:0] nm_lo, nm_hi, mi_lo, mi_hi;

// SOLUTION: For lo instance make sure i_limit does not overflow.

//

uwire [wnr-1:0] il_Jo = i_limit <= nlo ? i_limit : nlo;

// SOLUTION: For hi instance adjust i_limit because elts[nlo]
// for this instance is the same as elts[0] for the lo instance.

//

uwire [wnr-1:0] il_hi = i_limit <= nlo ? O : i_limit - nlo;

// SOLUTION: Connect low nlo elements of elts to lo instance and
// SOLUTION: remaining elements of elts to hi instance.
//

fmatch_rec #(nlo,w,wnr) ilo(nm_lo, mi_lo, elts[nlo-1:0], target, il_lo);
fmatch_rec #(nhi,w,wnr) ihi(nm_hi, mi_hi, elts[n-1:nlo], target, il_hi);

// SOLUTION: Add number of matches found by each recursive instance.
//

assign n_match = nm_lo + nm_hi;

// SOLUTION: If lo instance did not find a match (mi_lo == nlo)
// then use match_i from high instance, adjusting the value. Otherwise
// use match_i from lo instance.

//
assign match_i = mi_lo == nlo ? mi_hi + nlo : mi_lo;

end

endmodule

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2023/fe_sol.pdf

Fall 2023 Final Exam Solution fe sol.pdf

Problem 4: [20 pts] Answer each question below.

(a) Consider two technology targets, FabFab A1000, an ASIC, and LUTeq FXL9000, an FPGA. Floating-
point multipliers are available on the A1000 and the FXL9000 targets.

M On, one of these targets a design can have as many multipliers as will fit on the chip. Which target is it?
jExplain.
An ASIC. The synthesized design uses components from the ASIC technology target, in the same way the printed page of a text
document uses characters from 4 font. 1f & text document consists of the letter L TQpQQT.QG 1600 times, that's no prob\@m Daecause
there is no way £o run out of the letter L. S0, if the Sym.hQSiS program p\QQQG 1000 QOP\QS of the FP mu\tip\l@r from the FabFab
A1000 IQthO\Ogy Kit all over the ASIC emp, that's not o prob\Qm.

M On the other target there is a fixed numper of FP multipliers, say 5. Does that mean a design that needs 7
FP multipliers can’t use the target? Explain. The number of needed multipliers can’t be reduced.

An FPGA consists of a ixed number of components that can be configured and interconnected to implement the synthesized design.
Usually those components are simple 100k-up tables that can be configured to perform simple logic functions (SUQT\ as AND). But an
FPGA might have a small number of larger components, such a8 FP functional units.

The FXL9000 just has 5 FP multipliers, but it presumably has plenty of other logie. That other logic can be configured to implement
a FP multiplier. So, the design would use the 5 FP multipliers on the FPGA plus use the other logic to “make’ another 2 FP
multipliers.

(b) The output of the module below will be 1t=1 for inputs a=100, b=40, amt=20, indicating that 100440 <
20, which is wrong of course. It works correctly for a=100, b=40, amt=5, meaning the output is 1t=0.

module less_than(output uwire 1t, input uwire [6:0] a, b, amt);
assign 1t = a + b < amt;
endmodule

M Why is the output wrong?

since a, b, and amt are all 7 bits the addition will be performed at a precision of 7 bits, and so there Will be an overfow. (The
largest value is 27 = 127.) Rather than using the correct sum, 100 + 40 = 140 = 100011002, the Verilog simulator and the
synthesized hardware will use the lower 7 bits, 00011002 = 121o.

M What is the largest value of amt for which the module output is correct when the other inputs are a=100,
b=407
The OUEPUI Will be correct for values of amt 1ess than or @qum 1012 (DQQ&USQ hoth 140 < 12and 12 < 12 are TQ\SQ), 80 the \Mg‘éSt
value for amt 18 12.

S
2

https://www.ece.lsu.edu/ee4755/2023/fe_sol.pdf

Fall 2023 Final Exam Solution

Staple This Side

Staple This Side

fe sol.pdf

(¢) The hw output of the module below is supposed to be set to the number of 1s in input vec at the positive
edge of the clock. Due to a beginner’s Verilog error it does not work.

module pop #(int n = 5, wn = $clog2(n+l))
(output logic [wn-1:0] hw, input uwire [n-1:0] vec, input uwire clk);

always_ff Q@(posedge clk) begin

hw <= 0;
for (int i=0; i<mn; i++) hw <= hw + vecl[i];

end
endmodule

M Describe the problem. MDescribe how it’s possible that hw can be greater than n with this error. MFix
the problem.

short Answer: The code uses non-blocking assignments but because it refers 1o values of hw that are assigned in the always_ff
block 1t should have used blocking assignments. The computed value of hw may be large because the value of hw used in hw +
vec[1] will be from the last i iteration in previous clock cycle, and so the initialization to zero will not be seen. The problem

I8 fixed by ehanging hw <= 0 hw = In both places.

Longer Explanation: The value assigned to hw in the non-blocking assignments will not be visible in the execution of the always_ff
in which they were assigned. Therefore the hw + vec[i] expression will use the value of hw from before the positive edge. (To
be precise, since the last time the simulator event queue processed the non-blocking assignment (NBA) region.) So, each of the n
iterations uses the same hw value. That value would be the value assigned in the last (i=n-1) iteration from the previous clock
cyele. The other n—1 assignments in the 100p and the hw <= 0 assignment never make it Into hw. Since hw is never set 10 0 its

value will omy increase, and so will exceed n.
(d) Consider the population module below.

module pop_comb #(int n = 5, wn = $clog2(n+l))
(output logic [wn-1:0] hw, dinput uwire [n-1:0] vec);
always_comb begin
hw = 0;
for (int i=0; i<n; i++) hw = hw + vec[i];
end
endmodule

M The loop above is procedural. Re-write the module below so that it is a generate loop. The array s should
come in handy.

Solution appears below. Note that o wire must be provided, s [i], for each iteration to handle the intermediate sum.

module pop_comb #(int n = 5, wn = $clog2(n+l))
(output uwire [wn-1:0] hw, input uwire [n-1:0] vec);

// SOLUTION
uwire [wn-1:0] s [n-1:0];
assign s[0] = vec[0];
for (genvar i=1; i<n; i++)
assign s[i] = s[i-1] + vec[il;
assign hw = s[n-1];
endmodule

https://www.ece.lsu.edu/ee4755/2023/fe_sol.pdf

Fall 2022 Midterm Exam Solution mt sol.pdf

16 Fall 2022 Solutions

294

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

<« [—| Fall 2022 < [—| Midterm Exam Exam| Solution mt sol.pdf
p

Name Solution

Digital Design Using HDLs
LSU EE 4755
Midterm Examination

Wednesday, 19 October 2022, 11:30-12:20 CDT

Problem 1 (25 pts)
Problem?2 (31 pts)
Problem3 (20 pts)
Problem4 (12 pts)
Problem 5 (12 pts)
Alias SeNUNT? Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Fall 2022 Midterm Exam

Solution

Problem 1: [25 pts] Answer the following multiplexor questions.

(a) Complete module mux4 so that it implements a 4-input multiplexor using instantiations of the 2-input
multiplexor shown below. Do not use procedural code.

g Complete mux4 so that it implements a 4-input multiplexor @ using mux?2 instantiations.

@ Do not use procedural code. @ Do not change the ports or default parameters of mux4 or mux2.

@ Don’t forget to declare any objects that are used.

The solution appears below. The Tirst two muxen, m01 and m23, connect to the data inputs (a0-a3), two per mux. Note that both
of these muxen use s [0] as the select bit. The select connection of the third mux, m0123, connects to bit s [1].

module mux4
#(int w = 3)
(output uwire [w-1:0] x,
input uwire [1:0] s,

// SOLUTION

//
uwire [w-1:0] a01, a23;

input uwire [w-1:0] a0, al, a2, a3);

mux2 #(w) mo1(a01, s[0], a0, al);

mux2 #(w) m23(a23, s[0], a2, a3);

mux2 #(w) m0123(x, s[1], a01, a23);
endmodule
module Mux2

#(int w = 6)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, al);

assign x = s 7 al : a0;
endmodule

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Fall 2022 Midterm Exam Solution mt sol.pdf

(b) Module mux2_bad only works for w=1. Describe the problem and show the correct mux output and the
output of mux2_bad for w=4, s=0, a0=2, and al1=4.

module mux2_bad
#(int w = 4)
(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, al);
assign x = !s & a0 || s && al;
endmodule

@ In mux2 (a correct mux) when w=4, s=0, a0=2, and al=4, @ output x= 2
@ In mux2_bad when w=4, s=0, a0=2, and al=4, @ output x= 1

@ Explain the problem when w is not 1.

The problem is that a0 and a1l are operands of a logical AND operator, &&, and so they will be converted 1o & Boolean (1-011) Type.
That changes both the 2 and 4 in the example 1o & 1. There would be no problem if a0 and al were already 1 bit.

(¢) Complete module mux2_1r below so that it recursively implements a 2-input w-bit mux. All that remains
to be done is completing the connections to the two recursive instances, m1 and mr.

The solution is shown below. Note that instance m1 was declared with w=1 and mr was declared With w=w-1 a8 part of the problem.
S0 To complete the module instance m1 connects with one bit of each of x, a0, and al. Here bit zero was chosen but any DIt position
would do. Instance mr connects to the remaining w-1 bits of x, a0, and al. The select signal is the same Tor HOTh instances.

Note that there is no pf&QUQQ\ reason to YQQUYSWQW daeseribe a Q*mPUY, mu\t'\p\exor this Way, or 10 YQQUTSWQ\y deseribe a Zf'mput
mu\t'\p\exor at all.
module mux2_1r
#(int w = 5)
(output uwire [w-1:0] x,
input uwire s, input uwire [w-1:0] a0, al);

if (w==1) begin

assign x = !s & a0 || s && al;
end else begin

// SOLUTION
mux2_1r #(1) m1(x[0], s, a0[0], al[o]);
mux2_1r #(w-1) mr(x[w-1:1], s, aO[w-1:1], allw-1:1]);

end

endmodule

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Fall 2022

Problem 2: [31 pts] The val output of atoi_it_m_to_1 is the value of the radix-r ASCII-represented
number appearing at its input, str, and output nd is the number of digits. Unlike the Homework 2 Problem
2 module, this module starts at the most-significant digit rather than the least-significant digit.

Midterm Exam Solution

module atoi_ it m to |

#(

int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+l))
output logic [wv-1:0] val,

output logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n:0];
uwire is_digit[n:0];
uwire [wd-1:0] ndi[n:0];
assign is_digit[n] = 0;
assign ndi[n] = 0;

assign vali[n] = O;
assign nd = ndi[0];
assign val = vali[0];

localparam int wcv = $clog2(r);

for (genvar i=n-1; i>=0; i--) begin

// Find Value of Digit i
uwire [wcv-1:0] vald;
atoil #(r,wcv) a(vald, is_digit([i], strl[i]);

// Multiply (scale) the accumulated sum.
uwire [wv-1:0] valns;

mult_by_c #(.w_in(wv), .c(r), .w_out(wv)) mec(valns, valili+1]);

// Update accumulated value.

assign vali[i] = is_digit[i] ? valns + vald : O;
// Update number of digits.
assign ndi[i] = !is_digit[i] 7 0 : is_digit[i+1] ? ndili+1] : i + 1;
end
endmodule

(a) Describe how the behavior of the module would change if the loop direction were changed as shown

below, but no other changes were made.

for (genvar i=0; i<n; i++) begin

@ Change in behavior with ascending loop:

There will be no change in benhavior. 1t may be mora confusing to & human with the direction of the loop reversed, but the module does
axactly the same thing. To see that look at the line assigning ndi [i]. 1t is computed using ndi [i+1]. In & procedural language
the forward loop would not work because ndi [i+1] would not have been computed at iteration i when ndi [1] is written. But
this Is Verilog and assign I8 & continuous assignment that re-executes whenever its live-in values ehange, is_digit[i],
is_digit[i+1],and ndi[i+1] inthis case. All the generata l0op is doing is deseribing hardware, each iteration deseribes one set
of hardware. When the hardware for assign ndi from iteration x+1 executes it writes ndi [x+1] whieh results in the assign

4

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Fall 2022 Midterm Exam Solution

ndi for iteration x £o execute because ndi [x+1] is in the sensitivity list for the assign.

(b) On the next (facing) page show the hardware that will be inferred for an instantiation of atoi_it_m_to_1

(descending loop version) with n=3 and r=10. Show each instantiation of atoil and mult_by_c as a box,
do not show their contents. The inferred hardware for atoi_it is shown for reference.

For reference, part of Homework 8 Problem 2 solution shown below.

atoi_it .r(14), .n(3)
0 vali[-1] = add | = add =2 add | vall.
m_b_c| 5 £
(1) |vals = . vals
. e IR
&5 str[0] " 0 str[1] ” O:D str[2]
atoi vald atoi P2 vald | [atoi
X) .r(14) r(14) H(14) . ‘
|s?valld[-1] —_ “/_ is_valid[0] —_D_ is_valid[1] —_D_ is_valid[2]
0 I N '\l nd 1
ndif-1] 7L ndifo] 5| mdir 3_1) T =t

For reference, part of Homework 8 Problem 2 solution shown above.

@ Show inferred hardware for atoi_it_m_to_1 for n=3 and r=10.

@ Show the hardware inferred for the operators, such as && and 7:.

@ Do not confuse parameters and ports and omit hardware that does not belong, such as “hardware” to
compute values needed at elaboration time.

Solution appears below. Hardware that can easily be eliminated by optimization appears in gray.

atoi_it m_to | .r(10), .n(3)
str
nd
0—
™ is_digit[2] is_digit[1] is_digit[0]
R atoi J atoi J atoi J
° i 1.r(10) 04 .r(10) 0 ..|.r(10) E
K : . val
—|— add —|— add —|— add :
0 im_b c
o .c(10)
E ...

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Fall 2022 Midterm Exam Solution

(¢) Module atoi_m_to_1 will only show the value of numbers that are right-aligned in str, otherwise the
value will be shown as zero. For example, for input str="__123" the output would be val=123 and nd=3,
but for input str="_123_" the output would be val=0 (because the rightmost character is not a digit).
Modify the module so the val output is the value of the number regardless of its location. If there is more
than one number, say str="__12_345_" show the value of the rightmost number, 345 in this case.

@ Modify so that val and nd are for numbers whether or not they are right-aligned.
@ Do not use procedural code.
@ Avoid costly or slow solutions.

@ A correct solution only requires a few changes.

Solution appears in the Verilog on the next page.

In the original code, If is_digit [i] was false then the value and length were set to zero. But now since there can be non-digjt
eharacters o the right of the number we can't set these to zero. So the first case in the expressions assigning vali[i] and ndi[i]
pass the value and length along when is_digit [i] is false.

ITboth is_digit[il and is_digit [i+1] are true then & number is continuing at position i. For vali[il we need to add
on the sealed number from the left (valns) and the eurrent digit, vald. It is digit[i] is true but is digit[i+1] 1s false
then vali I8 Just the value of the current digit, vald. Unlike in the original hardware we can't rely on valns being zero for this
Casa.

In the original hardware the value of i+1 was used for ndi [i] af the 1eft-most digit. That won't work here because there could be
non-digit characters to the right of the number, S0 We ean't use the position of the Arst non-digit character to compute the length.
Instead, when a number is continuing, both is_digit[i] and is_digit[i+1] are true, the hardware adds 1 1o the previous
value of the length (ndi [i+1]).

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

<« [—| Fall 2022 < [—| Midterm Exam xam| Solution mt sol.pdf
p

module atoi_ it m to |
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+l))
(output logic [wv-1:0] val,
output logic [wd-1:0] nd,
input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n:0];
uwire is_digit[n:0];
uwire [wd-1:0] ndi[n:0];
assign is_digit[n] = 0;
assign ndi[n] = 0;

assign vali[n] = O;
assign nd = ndi[0];
assign val = vali[0];

localparam int wcv = $clog2(r);
for (genvar i=n-1; i>=0; i--) begin

// Find Value of Digit i
uwire [wcv-1:0] vald;
atoil #(r,wcv) a(vald, is_digit[i], strl[i]);

// Multiply (scale) the accumulated sum.
uwire [wv-1:0] valns;
mult_by_c #(.w_in(wv), .c(r), .w_out(wv)) me(valns, valil[i+1]);

// Update accumulated value.
// assign valil[i] = is_digit[i] ? valns + vald : O;
/// SOLUTION
assign vali[i] =
lis_digit[i]l 7 valili+1]
is_digit[i+1] ? valns + vald : vald;

// Update number of digits.
// assign ndi[i] = !is_digit[i] 7 0 : is_digit[i+1] ? ndil[i+1] : i + 1;
/// SOLUTION
assign ndil[i] =
lis_digit[i] 7 ndi[i+1]
is_digit[i+1] ? ndi[i+1] + 1 : 1;

end
endmodule

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Fall 2022

Midterm Exam

Solution

Problem 3: [20 pts] Tllustrated below is the hardware for one of the atoi modules from Homework 3.
The delays for the add, atoil, and mult_by_c modules are shown in blue. For atoi the delay of the value
(valdr) output is zero and the delay of the is_digit (lower) output is 3.

(a) Based on the illustrated delays and using the simple model find the delay at each output, val and nd,
and show the critical path to each.

@ Use the simple model and indicated delays to find the delay at outputs val and nd.

@ Show the critical path to both val and nd.

@ Take into account constant values.

Solution appears below. Note that the delay of & 2-input mux with one constant input is 1, and the delay with two constant inputs

is zero.
atoi_it .r(10), .n(3)
. add.]. add.| val
vali[0] m b cpals H tH
L ilvali[1] m_b_cJ—
.c(10) c(100)| vals
rﬂStr 1 1 ‘_20_’ 1 ‘_20_’
T sl <0 . =l <0 0N 5| <o 0
@ % atol aldr]% % aldr E n_, % atoi aldr 5@
wn /7 o w0 Q 0N — =
Lr(10) = r(10)H3) 1 .r(10) 1 e
=3 2 [‘31 is.valid[0]) is_valid[1]
0 3 -3~ — \§ <3 is_valid[2] nd
ndil-1] JJ ndi[0] HiEynait) S— S x=
1 2 3-UrEyndir2
- S {OLIN G

(b) Modify the design to reduce the delay at val by moving multiplexors. The modification is simple though
will increase cost. Show your modification either on the diagram or in the Verilog code below.

@ Modify to reduce the delay at val by moving multiplexors.

@ Do not change what the module does.

The solution appears below, with the moved mux shown in orange. By moving the mux to the output of the m_b_c module it can
start at ¢ = 0 rather than WAITIng T0r the mux select signal to arrive.

atoi_it .r(10), .n(3)

li[0] 041 - add, J add]2,
vali Jmbc]ﬂ [vali[1] m_b_c| J
.c(10) c(100)| vals
r__1str 1 i —20— 1| <20—
J — <0 _} —_ <0 < - -0 -
P — - N
© 2| [atoi adr | § Elifatoilf =% g’ 5L | atoi o é@
— 10 [o Lr(10)H 1 L.r(10 1 e
r(10) [é’ is.valid[0] o @1 2o
<3 -3 is_valid[1] « 3 —| is_valid[2]
0—) . el A nd
ndi[-1] I_JJ ndif0] > [P Eynai Wgram Gl
0 1 1

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Fall 2022 Midterm Exam Solution

Problem 4: [12 pts] Answer each question below.

(a) The module below will not compile because of the way the module connections are declared. Fix the
problem by changing the declarations.

@ Change declaration to fix problem.

The solution appears below. Since x is assigned proceduraly it must be declared logic, which make it & var Kind rather than g
net kind.

module yucx2
#(int w = 5)
(output logic [w-1:0] x, // SOLUTION: Change port from uwire to logic.
input uwire [1:0] s, input uwire [w-1:0] a0, al);

always_comb begin

x = a0;
if (s !'=0) x = al;
end
endmodule

(b) The mv output of findmax is supposed to be set to the value of the largest of the three inputs. Assuming
it compiles and simulates, it still won’t work. Identify the problem.

@ Why won’t mv be set to the maximum of a0, al, a2?

Because mv 8 omy initialized once, at the b@g‘mmng of simulation whereas a0, al, and a2 can thmg% any time.

@ Provide an example that illustrates the incorrect behavior.

AL ¢ = 10 the inputs are a0=4, a1=7, a2=3. The output will be mv=7. Later at £ = 10 inputs are a0=3, a1=2, a2=0. The
output will still be mv=7 because there is no way for mv 10 be set 1o & smaller value.

module findmax
#(int w = 5)
(output logic [w-1:0] mv,
input uwire [w-1:0] a0, al, a2);

initial mv = 0;

always_comb if (mv < a0) mv = a0;
always_comb if (mv < al) mv = al;
always_comb if (mv < a2) mv = a2;

endmodule

module findmax
#(int w = 5)
(output logic [w-1:0] mv, input uwire [w-1:0] a0, al, a2);
always_comb begin // SOLUTION: Possible fix. (Not the best.)
mv = 0; // mv is initialized whenever the a’s change.
if (mv < a0) mv = a0;
if (mv < al) mv = al;
if (mv < a2) mv = a2;
end
endmodule

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

Fall 2022 Midterm Exam Solution

Problem 5: [12 pts] Answer each question below.

(a) Type logic is an example of a four-state type. Name those four states and describe what the non-numeric
ones are used for.

g Name the four logic states.
They are 0, 1, x, and z.

@ Describe what the non-numeric ones signify.

State x for var types can mean uninitialized. For both var and uwire it can mean an ambiguous results. For net kinds (such as
uwire) it can mean a bit is driven by more than one driver. State z for net types means it is not being driven (in a high impedance
smg)_

(b) Most synthesis programs will not synthesize a module that includes a delay, such as the one below. Why
not?
module madd
#(int w)
(output logic [w-1:0] w,
input uwire [w-1:0] a, b, c);
always_comb begin

W = a * b;

#5; // Allow enough time for multiplication to finish.

W=w+ aj;

end

endmodule

@ Why isn’t a delay synthesizeable?

Though it would be possible for & synthesis program and technology target to provide for delays, it would not be very useful, especially
in digital logic design. In the module above the output of the multiplier connects to the input of the adder. A delay has no role to
play, since the inferred hardware is just a buneh of connected gates. There is no way to, and no need to, tell the gates that their
INput values have arrived and so now its time to start working,

10

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2022/mt_sol.pdf

<« [—| Fall 2022 <« [~ Final Exam Exam| Solution fe sol.pdf
p

Name Solution Formatted For Two-Sided Printing

Staple This Side

Digital Design using HDLs
LSU EE 4755
Final Examination

Friday, 9 December 2022 15:00-17:00 CST

Problem 1 (20 pts)
Problem 2 (20 pts)
Problem3 (15 pts)
Problem 4 (20 pts)
Problem 5 (25 pts)
Alias Multiplexor Mayhem (Student Suggestion) Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Fall 2022 Final Exam Solution fe sol.pdf

Problem 1: [20 pts] Module norm_comb, below, computes the normal of a vector using floating-point
arithmetic units from a library. The delay through each unit in nanoseconds is shown in the diagram.

. norm_comb @
5 fo_mul[_NX
O —
;
O 20—
© fo_mul[_NY
B
................ 4

5
T
|
T
5
|

=

2

N

Critical Path (One of several possible.)

(a) Compute the latency and throughput norm_comb given the timings shown in the diagram.

M Compute the arrival time (delay) at each module output.

Arrival times and delays at the outputs are snown as circled purple numbars.

M Show the critical path.

A critical path is shown as 4 red dotted line. Several others are possible, Tor example, another eritical path starts at y. The illustrated
critical path ends at nz, but it could have ended at ny Of nx.

M The latency of this module is:

The | latency is 80ns |.

(BQQ&USQ This is a combinational module, the latency is the same as the eritical p&th.)

M The throughput of this module is:

Assuming that the clock period is the same as the eritical path length, the ’ througnput is sloofs =12.5M°® ‘, where op refers 10 o
normalization operation. (The throughput is given in units of Work per unit time. The unit of work here is a normatization, and the

unit of time is SQQOHC\.)

(b) Draw a diagram of a pipelined implementation of the norm module. The goal is to maximize throughput
first then minimize latency given the delays shown in the diagram from part a. Give some thought as to
what arithmetic units go in what stage. Show the latency and throughput of your pipelined implementation.

M Draw a diagram (not Verilog) of a pipelined version of this norm module. @r Be sure to show pipeline
latches.

@ For the given delays: Maximize throughput. @ Avoid a hasty solution that has a higher latency than is
necessary.

The diagram appears below. Stage boundaries waere cnosen to minimize eritieal path, which is 40ns due to the fp_rsqrt module.

2

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Fall 2022 Final Exam Solution

Staple This Side

Staple This Side

The following discussion is to help future students understand the solution. Those taking the test need only
show the diagram. To make it a pipeline, pipeline latenes (collections of registers) have been inserted to divide the arithmetic
units into three stages. The pos\t'\omng of the p'\p@\me latehes has been chosen to minimize the eritical p&th, and so maximizing clock
frequency and throughput.

Recall from course material that the launeh points are assumed to be module inputs and are always at register outputs. The arrival
times at launch points are by definition zero. The capture POINts are always register inputs. In general they can be module OULPULS,
but here we are assuming that the module outputs are not capture points, meaning that module outputs must be stable at the
beginning of a clock cycle. (It would also be correct to assume that module outputs were capture points, so long as the
computation of latency and throughput took this into account.) The diagram shows arrival times eireled in purple including delays
at the capture points.

The critical path, shown in a red dashed ling, is 40 ns, and so the clock period must be set to 40 ns (plus the delay of the register).
The path length in the other two stages is 20 ns. Were it not for £p_rsqrt the clock period would be half (and so the clock
frequency would be twice as high). BUT it is what it is, and 50 the caleulations in the Tirst and last stages finish with 20 ns o slack
(meaning they arrive 20 ns before the end of the clock eycle, which by coincidence is 20 ns after the start of the clock eyele).

In & correct solution the fp_rsqrt module must be in a stage Dy itsell. For examp\e, were an fp_mul moved into the stage with
the fp_rsqrt then the critical path would inerease 1o 60 ns, nurting performance. Though it would be possible to put the Two
adders in their own stage without enanging the eloek period, that would inerease cost because another pipeline laten would be needed.

norm_comb_pipe .
20
1 x(0) -0 -0 —
3 fo_mulff} | X
M —
Lz —20— ©
o sq fp_mul|| m
| —— |
fo sq fo_mull| "%y
—To— 20— | Al
L {fp_sq
Critical Path (the only one)

M The latency of this pipelined implementation is:

Latency refers to the time to complete a normalization operation. The pipeline has three stages and the clock period is af least 40 ns
(the critical path length). Therefore the ’ lateney is 3 X 40ns = 120 ns ‘

Notice that the latency is higher than the combinational module. That is due o the 20 ns of slack in the Tirst and last stages.

M The throughput of this pipelined implementation is:

Because the implementation is pipelined a new result is computed each clock cycle so the ’throughput 1S Jous eae = 25 M2 |
Notice that the throughput is higher than the combinational module. That's because the module simuitaneously compuies three
operations.

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Fall 2022 Final Exam Solution fe sol.pdf

Problem 2: [20 pts] Incomplete module norm_comb_n is a version of the norm module from the previous

1
problem, now written for vectors of any length, not just 3. (Output u; = n; (Z;l;ol ’UJQ) ’ .) It makes use

of module norm_sos to annputethesun1§:?;gzﬁ. (That is, v3 +v? + -+ +v2_;.) Complete the modules
so that they compute their output combinationally. Use a recursive implementation for norm_sos and use

generate loops for the needed code in norm_comb_n.

M Complete norm_comb_n so that it computes u in part by using norm_sos. M Use a generate loop. M Use
fpmul, don’t use arithmetic operators.

// SOLUTION
module norm_comb n #(int w = 32, int n = 8)
(output uwire [w-1:0] ul[n], input uwire [w-1:0] v[n]);

uwire [w-1:0] sos; // Sum 0f Squares
norm_sos #(w,n) ns(sos, v); // This part is correct, don’t modify it.

uwire [w-1:0] rmag, rs_in;
fp_rsqrt r(rmag, sos); // SOLUTION: Changed rs_in to sos.

// SOLUTION: Use a genvar loop to instantiate one fp_mul per element.
for (genvar i=0; i<n; i++)
fp_mul mi(ulil, v[i], rmag);
endmodule

M Complete norm_gos so that it computes Z?:_Ol ’UJQ-. M Describe the module recursively. M Use fp_sq

and fp_add, do not use arithmetic operators.

module nNorm_sos #(int w = 32, int n = 4)
(output uwire [w-1:0] sos, input uwire [w-1:0] v[n-1:0]);

// SOLUTION
if (n==1) begin

fp_sq s(sos, vI[0]);
end else begin

n/2;
n - nlo;

localparam int nlo
localparam int nhi

uwire [w-1:0] soslo, soshi;

norm_sos #(w,nlo) slo(soslo, v[nlo-1:0]);
norm_sos #(w,nhi) shi(soshi, v[n-1:nlo]);
fp_add #(w) a(sos, soslo, soshi);

end
endmodule

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

<« [—| Fall 2022 <« [~ Final Exam xam| Solution fe sol.pdf
p

Problem 3: [15 pts] Appearing below is the inferred hardware from the pipelined add accumulate module
covered in class. Based on the simple model, show the timing, including the critical path, and compute the
cost. The BFA module is, of course, a binary full adder. If you don’t remember its cost and delay, just work

it out.
add_accum
sum
E]@\fy | T add_p0 @
al @ _O_IL | | = ~en
ai v X A add_pipe aout W
[: \ =1
LJ@ R al R [| @ 0 AJ N @§
X ©
(© © Q
1 A A A aout_v)
sum_valid
L
o= O
co At e Y
] BFAs @ .—\ @
ici CI)
reset @ T@ ... A—r
= sum_occupied
&—(0)

M Show the timing (signal arrival time at each component output) and M the critical path. @r Note that
aout arrives at t = 0.

Solution appears above. Arrival times are circled purple numbers and the critical path is o dashed red line.

M Compute the cost using the simple model. Do not include the cost of add_pipe but M include the cost of
the BFA. Pay attention to bit widths.

The ’tota\ cost 18 [34w + 43] ue
Item Count Each Total

. The table below shows the cost of each kind of component.

Non-Constant 2-input, w-bit Multiplexors 3 3w Jw
Constant 2-input, w-bit Multiplexor 1 w w
w-DIt Register with Enable 1 10w 10w
w-DIL Registers without Enable 2 Tw 14w
1-bit Registers 4 7 28
2-input Gates 4 1 4
3-input NOR Gate 1 2 2
BFA 1 9 9
Total Cost 34w + 43

Staple This Side

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Fall 2022 Final Exam Solution

Problem 4: [20 pts] Appearing below are simplified solutions to Homework 4.

(a) Below is a simplified version of the “official” solution. (Reset hardware is not shown, ignore its absence.
Some object names shortened.) Show the hardware that will be inferred for this module when instantiated
with n_avg_of=4. (Some of the hardware will be similar to the r_avg2 module from the 2021 final exam.)

module word_count
#(int wl = 5, wn = 6, n_avg_of = 10)
(output logic word_start, word_part, word_ended,
output logic [wl-1:0] lword, lavg, output logic [wn-1:0] nwords,
input uwire [7:0] char, input uwire reset, clk);

uwire nws, nwp, nwd;
word_classify we(word_start, word_part, word_ended,
nws, nwp, nwd, char, clk, reset);

logic [wl-1:0] lrecent[n_avg_of]; // len_recent
logic [wl+$clog2(n_avg_of):0] lsum; // len_sum

assign lavg = nwords >= n_avg_of 7 lsum / n_avg_of : O;

always_ff @ (posedge clk) begin
lword <= nws 7 1 : nwp ? lword+l : lword;
nwords <= nwd 7 nwords + 1 : nwords;

end

// Plan A Code (Referred to in next subproblem.)
always_ff @ (posedge clk) if (nwd) begin

lsum += lword - lrecent[n_avg_of-1];
for (int i=n_avg_of-1; i>0; i--) lrecent[i] = lrecent[i-1];

lrecent[0] = lword;

end
endmodule

fe sol.pdf

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Fall 2022

Staple This Side

Staple This Side

Final Exam

Solution

M Show inferred hardware for n_avg_of=4.

M Show word_classify as a box, don’t attempt to show its contents.

Solution appears below.

Note that the value of 1word used 1o compute 1sum += lword - lrecent [n_avg of] is the value at the register output.
That's because 1word is &SS'\gﬂQd using a hOﬂ-b\OQng assignment. (\I would have been wrong 1o assign lword using a D\OQng
assignment because then whether the 1sum expression used an old or new lword would depend on simulator Ummg.)

Bacause n_avg_of

least-signineant bits of Isum. Dividers are expensive so This is o good thing.
The body of the last always_ff block is guarded by a if (nwd). That is inferred as an enable on all of the registers inferred

for that block, whieh 18 1sum and the 1lrecent registers.

fe sol.pdf

4 (Q power of 2) the term lsum/n_avg_of has been inferred as Simply consisting of all but the two

_char
17

(|

_reset

(mm|
L

clk

(mm|
[

Ayisseppiom [£

word_count (n_avg_of=4) word_start &
word_part |
LT
word_ended |
=T
s
o
S lword
(H— B
nwp %
T A
nws
0 lav
- Ilsum 9py
ﬂWd —1 en WI‘;32
A
4 (n_avg_of)
3 2 s 8
— én en en — en
A ’7 A ’7 A A
nwords
LT
O
A

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Fall 2022

(b) The word_count_plan_b module below uses a different approach to keeping track of 1sum. The only
difference is the hardware under the Plan B Code comment. This version avoids a loop! That’s great, right?
Show the hardware that will be inferred for the Plan B Code for n_avg_of = 4 and indicate impact on cost

Final Exam Solution

and performance.

mo

dule word_count_plan_b
#(int wl = 5, wn = 6, n_avg_of = 10)
(output logic word_start, word_part, word_ended,
output logic [wl-1:0] lword, lavg,
input uwire [7:0] char,

uwire nws, nwp, nwd;
word_classify we(word_start, word_part, word_ended,
nws, nwp, nwd, char, clk, reset);

logic [wl-1:0] lrecent[n_avg_of];
logic [wl+$clog2(n_avg_of):0] Ilsum;
logic [$clog2(n_avg_of):0] tail;

assign lavg = nwords >= n_avg_of 7 lsum / n_avg_of : O;

always_ff @ (posedge clk) begin
lword <= nws 7 1 : nwp ? lword+l : lword;
nwords <= nwd 7 nwords + 1 : nwords;

end

// Plan B Code
always_ff @ (posedge clk) if (nwd) begin

lsum += lword - lrecent[taill;
lrecent[tail] = lword;

tail = tail == n_avg_of - 1 7 0 : tail + 1;

end

endmodule

M Describe impact on cost of Plan B compared to Plan A.

Plan B would be much more expensive due to the 1recent [tail] terms. The inferred hardware for lrecent [tail] used on

output logic [wn-1:0] nwords,
input uwire reset, clk);

fe sol.pdf

the right-nand-side of an expression is an n_avg_of-input multiplexor. The ¢ost of the hardware f0r 1recent [taill=1lword

would be a decoder to pf()\/\dQ anaple inputs to the lrecent registers. There is 2180 the cost of the tail register and the associated

adder. None of this hardware is needed for Plan A.

M Describe impact on performance of Plan B compared to Plan A.

Because of the two arithmetie units (subtract and add) operafing on non-constant values it is likely that lrecent [taill and
lrecent [n_avg of] are on the eritical paths In their respective modules. Plan B adds 21g mgyg of e 10 the critical path in
comparison With Plan A, so it certainly hurts performance.

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Fall 2022

M Show inferred hardware for Plan B Code. (No need to show hardware for code above the Plan B Code

Final Exam

comment.)

Staple This Side

The inferred hardware corresponding to the Plan B Code appears below, cireled by o green dotted line. The four lrecent

Solution

registers also appear in the Plan A design. Everything else is an added cost.

Staple This Side

M Consider using an enable (en) signal on the registers to simplify the hardware.

wc word_count (n_avg_of=4) word start
g = e
a word_part |
In =
g word_ended e
< s
)
e Iword |
1 =T
= char nwp A7
8 T A
| reset nws
T 0 lavg
clk O—m| [, i
H nwd en wl+3:2
A @j
— 4 (n_avg_of)
Plan B %'
 Hardware _D_ " | irecror ol
@_ M Lireer _7\
A z
D € N irecr21 =
A
D_ N ireer3)
=) A
R o
— en L=
1 tail
A
_ : i@_ﬂ; nwords |
... o
1
nwd A A

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

<« [—| Fall 2022 <« [~ Final Exam xam| Solution fe sol.pdf
p

Problem 5: [25 pts] Answer each question below.
(a) Show a sketch of the hardware for an 8-bit left shift module, using the logarithmic approach presented
in class.

M Show hardware for 8-bit left shift module. Include the M 3-bit shift amount input, M the 8-bit data M
input and 8-bit data output.

Solution appears below.

3 shift_left_logarithmic
£ n';

3

+
A3

Qo

Q

~

Q

I__ Isb

S ShiftbyOorl ShiftbyOor2 Shift by 0 or 4

(b) Provide the following delays based on the simple model.

M What is the delay for a w-bit ripple adder for @ the LSB and M the MSB.

The delay of the [LSB is 41, | and the delay of the | MSB Is 2(w + 1) u¢ |

M What is the delay for the sum of three w-bit values, say a + b + ¢, when computed using two ripple adders
and accounting for cascading. Delay of the sum’s LSB and MSB.

The general formula for the simple-model delay of bit 4 at the output of r caseaded ripple adders is [4(n — 1) + 2(i + 2)] ;. For
this case substitute 7 — 2. For the LSB, 4 — 0 and for the MSB, ¢ — w — 1.

The delay of the | LSB is 8 uy |and the delay of the ’ MSB 18 [8 + 2(w — 1)] u¢ ‘

10

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Fall 2022

Staple This Side

Staple This Side

Final Exam

Solution

(¢) In the code fragment below there is an error in one of the last two lines.

module examples(input uwire [31:0] a, b);
// Incorrect.
// Correct.

localparam logic [31:0] la = a + b;
uwire logic [31:0] ua = a + b;

M Which line above is incorrect? @ Why?

The 1irst line is incorrect because the value assigned 10 localparam Must De an elaboration-time constant. Since a and b are

module inputs they are not elaboration time constants.

(d) The code fragment below lacks declarations.

M Declare objects aa, ca, and fa so that the code below is correct.

module examples(input uwire [31:0] a, b,

// SOLUTION
// SOLUTION

uwire [31:0] aa;
logic [31:0] ca, fa;

assign aa = a + b;
always_comb ca = a + b;

always_ff @(posedge clk) fa = a + b;

input uwire clk);

(e) Again consider the code above that assigns aa, ca, and fa. Draw a timing diagram that includes values
of a, b, and clk for which at least one of the values aa, ca, and fa will at times differ from the others.

M Draw a timing diagram showing how aa, ca, and fa won’t all be the same all the time.

Tha timing diagram appears to tha right. The timing of the
changes on input b before ¢ = 70.0 result in the output
fa being diTerent than aa and ca for much of the time.
This is because changes b oceur well before the positive edge
0of clk. Outputs aa and ca, because they are driven by
combinational logic, Wil start changing as soon as b starts
changing. In contrast £a only starts changing at the positive
adge of clk, and the changes are based on the values of a
and b that were present at the positive edge. For example,
b starts to change at ¢ = 40.0, which 18 100 late for fa 10
change immediately, it must wait until £ = 50.0. Starting
al ¢ = 70.0 changes 1o b complete just before the positive
edge, and 0 aa and fa have close 1o identical timing.

t/ps 400 50.0 60.0 70.0 80.0
L I I R
a 10
b2 3 Y4 X5 Y6 f7)8

aa,ca 12 13 X14X15 X16 X17_X18

fa 12 13 Y15 Y17 Y18
. aa and fa . oaandfa

different similar

11

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2022/fe_sol.pdf

Fall 2021 Midterm Exam Solution mt sol.pdf

17 Fall 2021 Solutions

316

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

<« [—| Fall 2021 < [—| Midterm Exam Exam| Solution mt sol.pdf
p

Name Solution

Digital Design Using HDLs
LSU EE 4755
Midterm Examination

Wednesday, 27 October 2021, 11:30-12:20 CDT

Problem 1 (25 pts)
Problem 2 (30 pts)
Problem 3 (10 pts)
Problem 4 (10 pts)
Problem 5 (15 pts)
Problem 6 (10 pts)
Alias YW SOMg Exam Total (100 pts)

2 V(mRNA) = R.<1 Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Fall 2021 Midterm Exam Solution mt sol.pdf

Problem 1: [25 pts] Appearing in this problem are two variations on hardware that selects one of four
inputs, i, based on the position of the least-significant 1 in a 4-bit quantity, fmt. This is similar to the
hardware needed in the solution to Homework 2, except that here i [3] can be selected.

module nn_sparse #(int w = 20)
(output logic [w-1:0] o, input uwire [w-1:0] i[4], input uwire [3:0] fmt);

(a) Show the hardware that will be inferred for is0 and show that hardware after optimization.

uwire [w-1:0] isO = fmt[0] ? i[0] : fmt[1] 7 i[1] : fmt[2] 7 i[2] : i[3];

@ Show inferred hardware.

@ Show optimized hardware. Hardware can be re-arranged to reduce delay.

@ Use only basic logic gates and multiplexors.

Solution appears below. The unoptimized hardware Tollows the rules for inference of the conditional operator (?) In the optimized
version the eritical path is reduced Dy Two units by rearranging the three multiplexors into a reduction tree and using an OR gate 1o

provide 4 control signal Tor the mux at the root.
nn_sparse (w) Unoptimized. _ nn_sparse (w) Optimized.
Critical path length is 6 ut. B Critical path length is 4 ut.
[l fmt [l fmt
[z [z
4 il:l 4 T2:2
Y
} N
TwW TwW Tw
T3] Til2] Till] Til0] J—)
[l 2
Twxa Critical path TW o Tw Tw tw Critical path
H shown in red. . $i[3]1 hi[2] hi[1] hi[O] shown in red.
¢ [l I/
[7
w X 4

(b) Compute the cost and delay of the optimized hardware for is0 in terms of w. (That’s w, not its default

value.)

@ In terms of w cost is:
Each multiplexor (optimized or not) cost 3w u. and the OR gate cost 1 uc. The total cost for the unoptimized version is 9w uc
and the total cost for the optimized version is [9w + 1] ue.

@ In terms of w delay is:
The dQ\&y lthUgh Q Q-mPUI mU\Up\QXOT is 2 ut. In the Unopnm-\ZQd version the critical PQU\ passes thr(}\lgh three mU\Up\QXOfS| for
a delay of 6. In the optimized version the eritical PAth passes through Just 2 muxen, for a delay of 4 1.

Note that the delay is not & function of w. Be sure that you thoroughty understand why this is true.

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Fall 2021 Midterm Exam Solution

(c) Appearing below is an alternative design. Net isOb will have the same value as 1s0. Show the hardware
below before and after optimization. For isiO do not show multiplexors after optimization. For isOb use

two-input multiplexors (as many as needed).

uwire [1:0] isiO = fmt[0] ? O : fmt[1] 7 1 : fmt[2] 7 2 : 3;
uwire [w-1:0] isOb = i[isiO];

@ Show inferred hardware.
The inferred hardware QPPQMS baelow. The \Og-\Q Qomputmg isiO is similar to the \Og\Q Qomputmg is0 in the pr\/\OUS pMT., QXQQPT,
that its mpUES are constants rathar than elements of i. The inferred \Og-\Q for isO hereis a TOUY—mPUt mU\Up\QXOYA

nn_sparse (w) Unoptimized hardware.
Purple shows mux delays

fmt after optimization.

R A—
4 §¢2:2 ¢1:1 ¢O:O
2'd3 i

(mm|
LI
N

TW T™wW T™wW TwW 4
Til01 pilll pif2] i3]

(mm}
00 (W]

4 Critical path shown in red.

3
X -

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Fall 2021

Midterm Exam

Solution

@ Show optimized hardware, optimize to reduce delay.

@ Use basic logic gates and @ no muxen for isi0 and @ two-input muxen (plus other logic) for is0b.

The optimized logie computing isi0 appears below after several steps in the optimization process. At the last step the logie for
1sOb s 2ls0 shown, but that logie is not fully optimized. The optimization shown below is based on the Verilog code above. A
synthesis program that has not been provided with the limit on the values of fmt could do no better. (With knowledge that exactly
one DIt of £mt Will be 1 a synthesis program (or human) would optimize the two lines above into the logie given for the solution to
part () of this problem.)

h fr,r)t

inml

4
2'd3

2'd2

2:2

<

\—/

2'dl

o
—

2'do

h
[
-
~13
=]

—
2'b11

2'b10

2'b01

il
[u.)

-y
~13
+

2'b11

2'b10

il
[u.)

2'b10

Isb

i[0]

2'b01

[o]ots!

2'b00

3

i[1]

il
J

i[2]

i[3]

[T]ors!

isOb

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Fall 2021 Midterm Exam Solution

(d) Compute the cost and delay of the optimized hardware (from the previous part) in terms of w. (That’s
w, not its default value.)

@ In terms of w cost is:

The cost of the logie in the last section of the illustration above the cost is [34 3 X 3w] uc. The cost would drop 10 [1+3 x 3w] u,
If the selact signals to the first two multiplexors were connected 48 shown in the optimized solution 1o part (a).

@ In terms of w delay is:

The delay of the hardware in the last seetion of the ilustration above is [1 4+ 1 + 2 + 2] ug, With the critieal path passing through
the logie generating isi0[0]. One cyele can be saved by switehing the positions of 1si0[0] and isi0[1] and correspondingly
rearrange the order of the i inputs to the nrst two multiplexors to i [0], i[2]1, i[1], i[3]. That would reduce the critical
path by 1.

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

<« [—| Fall 2021 < [—| Midterm Exam xam| Solution mt sol.pdf
p

Problem 2: [30 pts] The next_dist4 hardware illustrated below consists of several duplicated pieces of
hardware, one of which is circled. Call the circled hardware an ami unit (for add-minimum).

& |_ L{0] next_dist4 (w)
oo e N Critical path
7 1 is red dashed line.
L[1]
6\’ d[1] (+
uz | " Cascaded
“o ar
w
L13]
e (
e W ~

(a) Compute the cost and delay of the module using the simple model, and show the critical path on the
illustration. Assume that the adder and comparison units are based on ripple adders.

@ Cost in terms of w:

The module consists for four adders, three comparison units and 3 multiplexors. Each of these devices operate on w Dits. Based on
the slides deseribing the simple model, the cost of & w-bit ripple adder is Yw uc, the ¢ost of & w-bit comparison unit is 4w, and

the cost of & w-DIt 2-input multiplexor is 3w. The total cost is ’ [4 x 9w + 3 x 4w + 3 X 3w]u. = 57w |

@ Show critical path. @ Delay in terms of w:

@ Account for any cascading ripple units.
The critical pam appears on the illustration as a red dashed line.

The start of the path passes through an adder and a comparison unit. In isolation the delay of an adder i8 2(w + 1) ug and the
delay of & comparison unit is slightly less, [2w 4+ 1] ug according to the simple model slides. But because the output of the adder
(actually two adders) connacts to the comparison unit the cascaded delgy can be used, whieh is [4 4+ 2(w + 1)] ug = [2w + 6] uy.
Because of the multiplexors caseading delays cannot be used for the other Two comparison units. That is because their upper inputs
don't arrive until the mux select signal stabilizes. SO the remaining delay is that of three 2-INPut muxen and two w-bit comparison

UNIES: [3 % 2+ 2 x (2w + 1)] ug = [4w + 8] uy. The total delay 18 | [2w + 6 + dw + 8 u, = [6w + 14] u; |

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Fall 2021

Midterm Exam Solution

(b) Appearing below are two incomplete modules, one is an ami module the other is the next_dist4 module.
Complete these modules to match the diagram using as many ami modules as needed. The ami module can
use procedural or implicit structural code. The next_dist4 module must instantiate and use ami modules
but can contain procedural or implicit structural code.

@ Complete the ami module so that it matches the circled hardware.

@ Complete the next_dist4 module using as many ami modules as needed.

@ Don’t forget to E{ declare any intermediate objects that are used.

@ Noting that there are four adders and the width of each wire is w, M declare and use parameters appro-
priately.

module ami #(int w = 22) /// SOLUTION

(output uwire [w-1:0] s_out,
input uwire [w-1:0] L, d, s_in);

// Compute sum ..

//
uwire [w-1:0] sum = L + d;
//
// .. and connect it to s_out if it’s smaller than input value, s_in.
//
assign s_out = sum < s_in 7 sum : s_in;
endmodule
module next dist4 #(int w = 12) /// SOLUTION

(output uwire [w-1:0] e,
input uwire [w-1:0] L[4], d[4]);

// Compute first sum. This does not need a comparison, so don’t use ami.

//
uwire [w-1:0] e0 = L[0] + d[0];

// Interconnections between ami instances.

//

uwire [w-1:0] el, e2;

// Instantiate three ami modules and interconnect them properly.
//

ami #(w) al(el, L[1], d[1], 0);

ami #(w) a2(e2, L[2], d[2], el);

ami #(w) a3(e, L[3], d[3], e2);

endmodule

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Fall 2021

(¢) Incomplete module next_dist is a generalization of next_dist4 to n elements per input. The module
includes a generate loop. Use that loop to instantiate ami modules so that it performs the correct calculation.

Midterm Exam Solution

Keep the loop simple, don’t try to fix the delay problem.

@ Complete module, taking advantage of the generate loop.

@ Be sure to instantiate ami modules, M connect the first ami correctly, M and don’t leave e unconnected.

module next_dist
#(int n = 20, w = 12)

(output uwire [w-1:0] e,
input uwire [w-1:0] L[nl, d[n]);

localparam logic [w-1:0] mv = "w’(0);
uwire [w-1:0] ee[n-1:-1];
assign ee[-1] = mv;

assign e = ee[n-1];

for (genvar i=0; i<n; i++) begin

/// SOLUTION

ami #(w) a(eel[i], L[i], d[il, eeli-1]);

end

endmodule

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Fall 2021 Midterm Exam Solution

Problem 3: [10 pts] Consider the with_assign module below.

module with_assign #(int w = 10)

(output uwire [w-1:0] g, input uwire [w-1:0] b, c);

uwire [w-1:0] a, f;

// Sensit. Execution Time
// List And Scheduled Lines
assign g=f | ¢; // Line 1 f,c X X X
assign f = a * ¢c; // Line 2 a,c x ->(L1) x —>(L1)
assign a = b + ¢; // Line 3 Db,c x —>(L2)
Y -
// Active Active Active
// List List List
endmodule

(a) Why might the module confuse or annoy humans?

@ with_assign could be confusing because:

The datafiow order (OYGQT of GQPQT\GQHQ'\QS) 15 from bottom £o top but humans expect Lo read these things from top to bottom. (LmQ

2 depends on Line 3, Line 1 depends on Line 2.) That would be annoying.

(b) The module makes extra work for simulators too. Suppose that the input values to with_assign, b and
c, change at ¢ = 10. About how many times will each line below execute in a worst-case scenario? The
following sentence was not in the original exam: Use sensitivity lists to justify your answer.

@ About how many times does each line execute? @ Explain with sensitivity lists.

See the work in the comments above for this discussion. At ¢ = 10 because b and c change Lines 1-3 are all put Tirst in the inactive
1S, then in the active list for execution. As a result of their execution Line 1 and Line 2 are placed in the ingetive list. That becomes
the active list when the Tirst one shown is empty. The execution of Lines 2 causes Line 1 1o be seneduled a third time. S0 in total,

Line 1 executes 3 times, Line 2 executes twice and Line 3 once.

(¢) Complete the sans_assign routine below so that it does the same thing as with_assign but is less

confusing and less work for simulators.

@ Complete routine below. (Yes, it’s easy but not trivial.)

module sans_assign #(int w = 10)

(output logic [w-1:0] g, input uwire [w-1:0] b, c);

logic [w-1:0] a, f; // SOLUTION: Change to logic.

always_comb begin

// SOLUTION: Put lines in dataflow order.
a=b+c; // Line 3
f=ax*xc; // Line 2
g=1f | c; // Line 1

end
endmodule

Also g.

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Fall 2021 Midterm Exam Solution mt sol.pdf

@ Why does sans_assign make less work for the simulator than with_assign? Explain using sensitivity lists.

The sensitivity list of the always_comb Consists of just b and c. Objects a, £, and g are not in the sensitivity list (DQQ&USQ their
values when begin 1§ reacned are not USQO). The always_comb block will only be scheduled for execution when b or ¢ changes.
S0 for the £ = 10 scenario the block—and each line—is exacuted just once.

10

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Fall 2021 Midterm Exam Solution mt sol.pdf

Problem 4: [10 pts] Appearing below is an ordinary multiplier, followed by a multiplier that is naively
designed to take advantage of special cases (first operand is 0 or 1), followed by a module that instantiates
both.

module mult #(int w = 32)
(output logic [w-1:0] p, input uwire [w-1:0] a, b);
always_comb p = a * b;
endmodule

module mult_1a #(int w = 32)
(output logic [w-1:0] p, input uwire [w-1:0] a, b);

always_comb begin
if (a==0)p=0;
else if (a==1) p = b;
else p = a * b;

end

endmodule

module nm #(int w = 32, logic [w-1:0] c = 12)
(output uwire [w-1:0] prods[4], input uwire [w-1:0] a[4], b[4]);

mult #(w) ml (prods[0], a[0], b[0]);

mult #(w) m2 (prods[1], c, bl[1]);

mult_1la #(w) mal(prods[2], a[0], b[0]);

mult_la #(w) ma2(prods[3], c, b[1]);
endmodule

@ Explain why m1 will be faster (lower delay) than mal, even when possible values of a[0] include 0, 1, and
other values. Assume good synthesis programs.

The eritical path of mult goes through just a multiplier. The critical path of mult_la goes through a multiplier and a multiplexor,
and so the eritical path is longer. The fact that the output is available sooner for the two special cases does not change the eritical
path.

g How will the cost and performance of m2 and ma2 compare (to each other) using good synthesis programs?
That is, which should be chosen when delay is the only concern and, which of the two should be
chosen when cost is the only concern. The answer should not depend on any particular value of c.

In m2 and ma2 the a input is & constant. The synthesis program will then be able to determine, Tor mult_1a, which part of the
if/else chain executes and synthesize only Tor that. It a=3 then it will be the axb part, and so the two modules are identical. In
DOth m2 and ma2 the Syntnesis program can see that the a input is & constant and will optimize the multiplier appropriately. That
means if a=1 ma2 Wil have no advantage.

11

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

<« [—| Fall 2021 < [—| Midterm Exam xam| Solution mt sol.pdf
p

Problem 5: [15 pts] Answer the following questions about Verilog syntax and semantics.

(a) Appearing below are four variations on a multiplier with a constant input. Most have errors that would
prevent them from compiling. For each indicate whether there is an error, and if so, what the error is and a
minimal fix.

@ Module is O correct or @has the following error and fix:
The QSS'\gﬂQO statements, such as p=0;, in the module below are an error in & module context.

module mult_2a #(int w = 32, logic [w-1:0] a = 12)
(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (a==0) p = 0;

else if (a ==1) p = b;

else P =a* b;
endmodule

One solution is to switeh 1o & continuous assignment (M\ assign smwm@m), that has been done below.

module mult_2a #(int w = 32, logic [w-1:0] a = 12) /// SOLUTION
(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (a==20) assign p = 0; // SOLUTION: Use assign.
else if (a==1) assign p = b;
else assign p = a * b;

endmodule

12

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Fall 2021 Midterm Exam Solution mt sol.pdf

@ Module is O correct or @ has the following error and fix:

A procedural assign is being used on a net kind (uwire in this Q&SQ). 50, unlike mult_2a, the Kind of assignment statement is
orrect here since the assignment oceurs in procedural code. The problem is Kind of object being assigned.

module mult_2b #(int w = 32, logic [w-1:0] a = 12)
(output uwire [w-1:0] p, input uwire [w-1:0] b);

always_comb begin

if (a==20) p = 0;
else if (a==1) p = b;
else p = a*b;
end
endmodule

A simple Tix is to ehange p 1o a var. Note thal uwire is short for uwire logic and that logic is short for var logic.

module mult_2b #(int w = 32, logic [w-1:0] a = 12)
(output logic [w-1:0] p, input uwire [w-1:0] b);
// SOLUTION: Change p from "uwire logic" to "var logic".

always_comb begin

if (a==20) p = 0;
else if (a==1) p = b;
else P =a*b;
end
endmodule

13

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

<« [—| Fall 2021 < [—| Midterm Exam xam| Solution mt sol.pdf
p

@ Module is O correct or @ has the following error and fix:

The if in the code below is & generate if, and its condition, b==0, i NOL an elaboration-time constant. (ThQ expression b==0 13
not an elaboration-time constant because b is a module '\ﬂp\lt.)

module mult_2c #(int w = 32, logic [w-1:0] a = 12)
(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (b ==20) p = 0;

else if (b ==1) p = a;

else P = a * b;
endmodule

A X is To make the code procedural by wrapping it in an always block and making p & var.
Note: Changing b to a in the if condition is NOT an appropriate fix because it changes what the module does.
module mult_2c #(int w = 32, logic [w-1:0] a = 12)

(output logic [w-1:0] p, input uwire [w-1:0] b);
always_comb /// SOLUTION: Change generate if to procedural if.

if (b==20) p = 0;

else if (b ==1) P = a;

else P = a * b;
endmodule

@ Module is @ correct or O has the following error and fix:

module mult_2d #(int w = 32, logic [w-1:0] a = 12)
(output uwire [w-1:0] p, input uwire [w-1:0] b);

if (a==20) assign p = 0;

else if (a==1) assign p = b;

else assign p = a * b;
endmodule

14

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

<« [—| Fall 2021 < [—| Midterm Exam xam| Solution mt sol.pdf
p

(b) Show the values of b and ¢ where requested below.

The solution appears below. The difference between a, b, and c are in how the bits are numnered. That only impacts the use of the
indexing (D'\t SQ\QQI) operator, [i]. 1t does not afect assignments and other references £o the objects. For that reason b and c on
the Tirst assignment are the same as a. However, the second assignment of b refers 1o the Dits, S0 they are reversed.

module assortment;
logic [15:0] a;
logic [0:15] b;
logic [16:1] c;

initial begin

a = 167h1234;
b = a;
C=

a;
// EZj Show value of b and c after line above executes:

// SOLUTION:
// b = 16"h1234
// ¢ = 16°h1234

#1; // Not really needed.
for éffnt i=0; i<16; i++) b[i] = alil;

// Show value of b after line above executes:

// SOLUTION

// b = 16"h2c438
// = 16’b_0010_1100_0100_1000
//

// Note that:
// a = 16’b_0001_0010_0011_0100

end
endmodule

15

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

mt sol.pdf

Fall 2021 Midterm Exam Solution

Problem 6: [10 pts] Answer the following synthesis questions.

(a) Cadence Genus defines the following three synthesis steps: syn_gen (generic), syn_map (mapped, or
technology mapping), and syn_opt (optimized). Answer the following questions about technology mapping.

g Explain what happens during technology mapping.

In technology mapping genaric gates (say, a 3-Input AND gate) are replaced by gates in the target technology. The replacement can
also happen at a higher level, so & generic adder module would be replaced by an adder in the target technology, if sueh o thing is

provided.

@ Even if optimization were done before technology mapping why is it important optimize after technology
mapping?
The optimization would be on generic gates, which might be available at any size. The target technology might have gates with, say,
2,4, 016 mputs, but not 3 or 5 'mputs. S0 another round of opt'\m'\zat'\on m'\gm find o way 10 use those wasted 'mputs. Also, after

technology mapping the delay of gates are known, and so delay OpLimization can oceur.

(b) What is the big disadvantage of setting the delay target too low when performing synthesis? (The small
disadvantage is that it takes a longer time to run.)

@ Disadvantage of setting delay target too low during synthesis:

With a very large delay target the optimization program can minimize cost. As the delay is lowered the optimization will have 1o
substitute higher-cost alternatives to meet the delay target. (FOF example, substituting a carry lookahead adder for a ripple QGGQY.)
Making the delay smaller than it needs o be can result in costs higher than they need to be.

16

https://www.ece.lsu.edu/ee4755/2021/mt_sol.pdf

Fall 2021

Staple This Side

Name Solution

Alias

Final Exam

Solution

fe sol.pdf

Formatted For Two-Sided Printing

Digital Design using HDLs
LSU EE 4755
Final Examination

Wednesday, 8 December 2021 7:30 CST

Good Luck JWST!

Problem 1
Problem 2
Problem 3
Problem 4

Exam Total

Good Luck!

30 pts
35 pts

15 pts

~ o~ o~
N N

20 pts

(100 pts)

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Fall 2021 Final Exam Solution

Problem 1: [30 pts] For the modules in this problem input sample holds a new value each cycle, and
output r_avg holds the average of the last n_samples inputs. (Ignore the fact that the module needs but

lacks a reset.)
(@) For the module below show the hardware that will be inferred when instantiated with default parameters.
Be sure to optimize for the default value of n_samples.

module ravg2 #(int w = 8, n_samples = 4)
(output logic [w-1:0] r_avg,
input uwire [w-1:0] sample, input uwire clk);

logic [w-1:0] samples[n_samples];

parameter int wm = $clog2(n_samples);

parameter int ws = w + wm;
logic [ws-1:0] tot;

always_ff @(posedge clk) begin
samples[0] <= sample;
for (int i=1; i<n_samples; i++) samples[i] <= samples[i-1];
tot <= tot - samples[n_samples-1] + samples[0];

end

always_comb r_avg = tot / n_samples;

endmodule

Solution on next page.

fe sol.pdf

B

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Staple This Side

Staple This Side

Fall 2021 Final Exam Solution

M Show hardware for the module above using default parameter values.

M Optimize for these parameter values.

Solution shown below. Notice thal because non-b\ook'mg assignments were used to assign samples [i], the computation of tot
uses the register outputs. n pMUQU\M samples [0] is the register output, which is the value of sample from the previous QyQ\Q.

Because n_samples=4 is & power of 2, the division, tot/n_samples, can be done by shifting right by two bits. Since the shift
S constant Just use bits 7:2 of tot and place two bits of Zero in the MSB of the output.

r_avg2 (w=8, n_samples=4)

[0]so|dwes
[T]1sa|dwes
[z]sa)dwes
[€1so|dwes

imm|
LH

a|dwes T®
>
>
>
>

msb g

3 ®,
== -
i =
7:2

P /

5 + ——
A

A Isb

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Fall 2021 Final Exam Solution

(b) The module to the right is similar to ravg2 except that it has three arithmetic unit instantiations: an
adder, a subtractor, and a divide-by-constant unit. Modify ravg3 so that it uses these modules. For full
credit connect them so that the critical path passes through at most one module per cycle. In a correct
solution r_avg will arrive at the output of ravg3 later than it would in module ravg?2.

M Modify ravg3 so that it uses the three arithmetic units.
@ For full credit, the critical path can go through at most one arithmetic unit per cycle.

@ The connections to the arithmetic units can be changed (say from aal to something else).
@ Do not add unnecessary cost or delay.

Solution appears below.

Please be sure to understand the following important points.

So that the eritical path passes through at most one arithmetic module, the inputs to the arithmetic modules cannot connect to
arithmetic module outputs. Instead, they connect to registers, such as tot and samples [0].

S0 that the running sum is correet, the values of samples[0] and samples[n_samples-1] must be used in the same eycle.
For that reason the subtractor is used to compute samples[0] - samples[n_samples-1]. It would not be correct to
compute diff = tot - samples[n_samples-1] in one cycle and tot = diff-samples[0] In the next cycle because

samples[0] Is the wrong value.
Notice that samples[0] was directly connected to the subtractor input. That's more convenient than using an intermediate
variable, say sal.

fe sol.pdf

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Fall 2021 Final Exam Solution fe sol.pdf

Staple This Side

Staple This Side

module ravg3 #(int w = 8, n_samples = 4)
(output logic [w-1:0] r_avg,
input uwire [w-1:0] sample,
input uwire clk);

logic [w-1:0] samples[n_samples];

parameter int wm $clog2(n_samples);
parameter int ws = w + wm;
logic [ws-1:0] tot;

// SOLUTION - Declare a register to hold output of subtractor.
logic [ws-1:0] pl_diff;

always_ff Q@(posedge clk) begin
samples[0] <= sample;
for (int i=1; i<n_samples; i++) samples[i] <= samples[i-1];
// tot <= tot - samples[n_samples-1] + samples[0]; // Modify or eliminate this line.

// SOLUTION - Write output of subtractor and adder into registers.
pl_diff <= diff;
tot <= sum;

end

// always_comb r_avg = tot / n_samples; // Modify or eliminate this line.

// SOLUTION - Remove unneeded declarations. (aal, etc.)
uwire [ws-1:0] sum, diff;

// SOLUTION - Use subtract to compute samples[0] - samples[n_samples-1]
our_sub #(ws,w) sub2(diff, samples[0], samples[n_samples-1])

// SOLUTION - Use adder to compute new value of tot.
our_adder #(ws,ws) adderl(sum, tot, pl_diff);

// SOLUTION - Use divider to compute r_avg.
our_div_by #(w,ws,n_samples) div3(r_avg, tot);

endmodule

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Fall 2021 Final Exam Solution fe sol.pdf

Problem 2: [35 pts] Appearing below is a Verilog description of a lower-cost version of the bit_keeper
module from Homework 4 and a diagram of the hardware.
typedef enum { Cmd_Reset=0, Cmd_Rot_To=1, Cmd_Write=2, Cmd_Nop=3, Cmd_SIZE } Command;
module rot_left #(int w = 10, amt = 1)

(output uwire [w-1:0] r, input uwire [w-1:0] a);

assign r = { alw-amt-1:0], alw-1:w-amt] };

endmodule
module bit_keeper_lite #(int wb = 64, wi = 8, ws = $clog2(wb))
(output logic [wb-1:0] bits, output uwire ready,
input uwire [1:0] cmd, input uwire [wi-1:0] din,
input uwire [ws-1:0] pos, input uwire clk);
localparam int ramt_a = 1; // Specify Rotation Amounts

localparam int ramt_b = 1 << (ws >> 1);

uwire [wb-1:0] ra, rb;

rot_left #(wb,ramt_a) rli(ra,bits);

rot_left #(wb,ramt_b) rl8(rb,bits);

logic [ws-1:0] rot_to_do; // Remaining amount of rotation to do.

assign ready = rot_to_do == 0;

always_ff @(posedge clk) case (cmd)
Cmd_Reset: ©begin bits = 0; rot_to_do = 0; end
Cmd_Rot_To: rot_to_do = pos; // Initialize rotation. Rotate during Nop.
Cmd_Write: Dbits[wi-1:0] = din;

Cmd_Nop: // Continue Executing a Cmd_Rot_To

if (rot_to_do >= ramt_b) begin
bits = rb; // Use output of larger rot module.
rot_to_do -= ramt_b; // Decrement remaining rot amt.

end else if (rot_to_do >= ramt_a) begin
bits = ra; // Use output of smaller rot module.
rot_to_do -= ramt_a; // Decrement remaining rot amt.

end

endcase
endmodule

(a) Find the cost and delay of the illustrated hardware using the simple model. Take into account the
presence of constants. For the addition and comparison units assume a ripple implementation. Show any
assumptions made. (See the next part before solving this one.)

M Show cost in terms of wy, w;, and w;. @Take into account constants.

The hardware consists of YQg\SIQYS‘ mu\t‘xp\@xors, adders, Qompar'\son units, and constant shifters.

Shifters: Since they shift by a constant amount the total ’ shifter cost is zero ‘

Registers: The cost of & w-Dit register is Tw ue. There are two registers, bits and rot_to_do. There sizes are wy and wy,

0 their combined ’ ost 18 7(wp + ws) u |

Two-Input Multiplexors: The cost 0f & w-DIT, 2-INPUt MUX i8 3w uc. In the illustrated hardware there are two wy-bit 2-input
muxen and two w,-bit 2-INPUT muxen. (None oT their inputs are eonsmm.) Their total ’ oSt 18 [2 X 3wp + 2 X 3w ue = 6(wp + ws) ue |

Four-Input Multiplexors: A w-DIL Tour-input mux can he constructed from three 2-input muxen, and so its cost would is
3 X 3wue = 9w ue. The cost of & w-bit, 2-INPUt Mux With 2 constant data input 18 w ue. Each of the four-input muxen has a

6

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Fall 2021 Final Exam Solution

Staple This Side

Staple This Side

constant data input, reducing the cost to (2 X 3 + 1)wue = 7w uc. The total cost of the two four-input muxen accounting for
the constant input ’ 18 7(wp + ws) ue |

Adders: An ordinary w-bit ripple adder costs 9w u.. A w-DIt ripple adder with one constant input costs 4w . The two adders
each have one constant input. Based on Just that their costs are 4 x 2ws u.. But the value of ramt_b is 2/2, and 50 the ws /2
least-signinicant bits of ramt_b are zero. That means the adder passes those low bits through unehanged, reducing the adder cost to
JUSt w, /2 ue. Looking at the ramt_a adder in isolation one would have to conelude that its cost is 4w, ue With ramt_a=1. But the
output of the adder is ignored if rot_to_do>ramt_b meaning that we can assume the input to the ramt _a adder is no greater than

ramt_b and S0 we only need o wS/Q-D'\t adder. With both of those optimizations the total | adder cost is 2 x 4“; Ue = 4w, ue |

Comparison Unit: Recall that o pr\Q COMPArison unit is constructed from the carry \Og'\Q of Npp\é subtractor. The cost of &
w-hit Comparison is 4w ue. BUT One constant input reduces the cost to JUSt w ue. With no further optimizations the cost of the
TWO comparison units 1s 2w uc.

The ramt_a comparison i irrelevant if rot_to_to is greater than ramt_b, and o only ws/z DIts need be examined. If the
ramb_b COMPArison operation were > then it could just examine ws/2 DITS. But since the operation is strictly greater than all Dits
must be considered. But using the output of the ramt_a COMPArison the >ramt_b comparison could be done Dy examining ws/Q

more bits. The total comparison] CoSL1S 2 X % ue = w, U |

M Show delays and arrival times on the diagram, and Mhighlight the critical path. These should be in terms

of wy, w;, and ws.

@ bit_keeper_lite
2

)

fuml

The Um‘mgs and critical p&U\ are shown on the di-
agram. Blue shows the dQ\&y U\T()Ugh Q Qomponem,
such as 2 for two—'mput mU\Up\QXOFS. Circled times
show the GQ\&\/ of the \ong@st p&th smrt‘mg at module rot_left rot_left

. . . . (amt=ramt_a) 2 (amt=ramt_b)
mputs and nglS‘CQT OUtpUtS. A critical p&th is shown

as a red dotted line. Note that there are several eriti- bits ©
cal p&thS in this circuit U\O\Jgh OT\\y one is illustrated.

wb-1:wi blts
=1 wb
I
Wi lsb

fuml

o g
' © |u!p pwd

H
|nn}

Multiplexor Delay: Thedelay of an ordinary two- =
INPUT MUX S 2 ug. 1T one input is constant the delay E
i 1ug. The delay of an n-input mux is [lg n]2uy, - N

whieh works out to 4 Ut for o T()UY—'mpUt mux. The J
next sub-problem shows how that delay can effectively =R

be reduced 10 2 u on the eritical path. The diagram
10 The Tight does NOt reflect that optimization.

~N=
&

op 03 j04

IN

Adder Delay: The delay of & w-bit ripple adder
WIth 4 constant input is wug. The timings in the
diagram are based on w /2-bit adders.

Comparison Delay: The delay of & w-DIt ripple comparison unit with & constant input is w ug. The Timings in the diagram are
based On w, /2-DIL COMPATiSON units.

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

<« [—| Fall 2021 <« [~ Final Exam xam| Solution fe sol.pdf
p

(b) In class we assume that a four-input mux is implemented using a reduction tree of 3 two-input muxen.
For the illustrated hardware that would result in a longer critical path than is necessary. Modify the diagram
on the right to show a better way of implementing the four-input multiplexors.

M Replace four-input multiplexors with two-input muxen connected to reduce critical path.

Solution appears on the lower half of the next page. The Tour-input mux has been replaced by three Two-input muxen, but not
connected in 4 reduction tree. The benefit of this non-tree connection is that one of the inputs, the fourth as used here, has a delay
of only 2ug. That is the input that carries the critical path, and so the critical path delay is reduced by 2uy.

(¢) Notice that care was taken to ensure that ramt_b is a power of 2. Explain how the fact that ramt_b is
a power of two reduces the cost of the adder and comparison unit operating on ramb_b. Also explain how a
power-of-2 ramb_b can reduce the cost of the other adder and comparison unit, if the synthesis program is

clever enough. Hint: Consider the binary representation of rot_to_do.
M Since ramt_b is a power of 2 the adder and comparison unit connected to ramt_b are lower cost because:

Because the lower ws /2 bits of ramt b are all zero. Because ramt b is 4lso & constant there is no need for an adder at all for the
least signineant ws /2 bits.

M Since ramt_b is a power of 2 the adder and comparison unit connected to ramt_a (yes, a) are lower cost
because:

Because the output of the ramt _a adder is only used if rot_to_do <= ramt_b. Therefore there is no point in providing an adder
that can handle more than w5/2 DITs. FOr the same reason the comMparison unit need onty consider the lower ws/2 DIts.

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Fall 2021

Staple This Side

Final Exam

Solution

Solution appears below.

Staple This Side

bit_keeper_lite
S
3
Q. |wb-1:wi w’b bits
m ! 7
Hal W b r
s rot_left rot_left
I |(amt=ramt_a) ~ |(amt=ramt_b) 0 _\l wb
—H
N J bits
bits J
rot_to_do T
Q
o
o 5
: 3
ws
N 3
Ir—f
IO
2 S &
€ €
Nir g g
=
M)
S s
o
0
, bit_keeper_lite
imm}
‘--'g 1:1 0:0
2 wb-1:wi bits
z'_l b
m / I b 0
Haol W b |
3 rot_left rot_left L
(amt=ramt_a) (amt=ramt_b) L wh L
[mE]
\I bits
D
rot_to_do # __D
=5 A
© c 0
I
— @© pre—
g
ws
N 3
ot
(o]
© 2 WAN B DS
J_,I 4-!' o)
€ €
oo @© @©
-EH—Q 0 O
=
imm}
L_I_c e
o
0

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Fall 2021 Final Exam Solution

(d) Appearing below is a version of bit_keeper_lite with four ready outputs, r1, r2, r3, and r4. On the

diagram add hardware that will be synthesized for each.

module bit_keeper_lite #(int wb = 64, wi = 8, ws = $clog2(wb))

(output logic [wb-1:0] bits, output uwire rl, output logic r2, r3, r4,
input uwire [1:0] cmd, input uwire [wi-1:0] din,
input uwire [ws-1:0] pos, input uwire clk);

localparam int ramt_a = 1;
localparam int ramt_b = 1 << (ws >> 1);

uwire [wb-1:0] ra, rb;
rot_left #(wb,ramt_a) rli(ra,bits);
rot_left #(wb,ramt_b) rl8(rb,bits);

logic [ws-1:0] rot_to_do;
assign rl = rot_to_do == 0; // [\Z/Show hardware for ril.

always_ff @(posedge clk) begin
r2 = rot_to_do == 0; // [\Z/Show hardware for r2.
case (cmd)
Cmd_Reset: begin bits = 0; rot_to_do = 0; end
Cmd_Rot_To: rot_to_do = pos;
Cmd_Write: bits[wi-1:0] = din;
Cmd_Nop: begin
if (rot_to_do >= ramt_b) begin
bits = rb;
rot_to_do -= ramt_b;
end else if (rot_to_do >= ramt_a) begin
bits = ra;

rot_to_do -= ramt_a;
end
r3 = rot_to_do == 0; // [\Z/Show hardware for r3.
end
endcase
rd = rot_to_do == 0; // [\Z/Show hardware for r4.
end
endmodule

@ Show hardware that will be synthesized for r1, r2, r3, and r4.

fe sol.pdf

Solution appears on the next page. Because they are assigned in an always_ff, the values of r2, r3, and r4 visible outside
the block come from registers. Pay close attention to where rot_to_do i8 assigned and where it8 value is referenced. For r1 it
is referenced outside of the always_ff block and so the value is from the registar. The value of rot_to_do used for r2 also
comes from the register output because it had not been QSS'lgﬂQG yat in the block. For r3 the value of rot_to_do ass'\gned in the
cmd=Cmd_Nop €ase is used. A mux KQQPS r3 unchanged when cmd is not Cmd_Nop. (ThQ value of enumeration constant Cmd_Nop

i8 3.) Finally, r4 is assigned al the end of the block, S0 it uses the value of rot_to_do that will be written to the register.

10

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

<« [—| Fall 2021 <« [~ Final Exam xam| Solution fe sol.pdf
p

bit_keeper _lite
M1 12/
L_ls
Q. [wb-1:wi bits
wb
H—— ’
o wi Isb
> rot_left rot_left
(amt=ramt_a) ~ |(amt=ramt_b) 0 _\l wp L
71
N J bits
bits J
t to d A
rot_to_do
-0 A
=
o g —]
E —
© Y 0 —
I\l ws
N J 3
&
© Keo) /\ IO
-ul “| 1/1 8‘
{3_... g E 0’103 Cmd=3
n T ;
) I
rl
E].u V;'S =0 |
8 r2
/\ LT
=0 Al r3 t
r4
=0 J\ Sas::

11

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Fall 2021 Final Exam Solution fe sol.pdf

Problem 3: [15 pts] Consider the modules below.

module ba
(output logic [15:0] next_x, next_y, x, ¥,
input uwire [15:0] a, ¢, input uwire clk);

always_ff @(posedge clk) x = next_x;
assign next_x = a;

assign next_y = x + C;

always_ff @(posedge clk) y = next_y;

endmodule
module test ba;

uwire [15:0] x, y, next_x, next_y;
logic [15:0] a, c;
logic clk;

ba bal(next_x, next_y, X, y, a, ¢, clk);

initial begin
// t =20
clk = 0;
a=0; c=0;
#1; // t
clk = 1;
#1; // t
clk = 0;
#1; // t
clk = 1;
#1;
clk = 0; a <= 1; c <= 10; // Line t4
#1; // t =5
clk = 1;
#1; // t
clk = 0;
#1; // t
clk = 1; a <=12; c <=120; // Line t7
#1; // t =8
clk = 0;

end

I
=

Il
N

I
w

~
~
ct
]
S

I
[e)}

]
~

endmodule

12

Staple This Side

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Fall 2021 Final Exam Solution

Staple This Side

Staple This Side

O 1 2 3 4 5 6 7 8

next X

next y 1011 21

X 1

o O] |Of |O

y 10)11

(a) Complete the timing diagram so that it shows the values of next_x, next_y, x, and y that would be
produced with the modules above. Note: In the original exam test_ba did not use non-blocking assignments
to a and c.

M Complete timing diagram from ¢t = 4 to t = 8.1. @Note that there is a negative clock edge at t = 4.

Solution appears above.

(b) At t = 5 we can be sure that y=next_y will execute before next_y=x+c. Explain how this ordering is
assured by the rules for the event queue.

M Explain how event queue regions assure y=next_y executes before next_y=x+c at t = 5.

Att =5clk changes from O 1o 1, resulting in the two always_£1f items being scheduled. The two will eventually reach the active
region of the event queue, and one of them will be chosen Trst. Assume that the first always_ff is chosen first. The next_y
assignment has x and c in 1ts sensitivity list, and so 1t is only scheduled for execution when at least one of these changes. At ¢ = 5
x changes, and that will result in the next_y assignment being placed in the ingetive region of the event queue. The scheduler will
continue to remove and execute events from the active region until the active region is empty. Therefore the second always_ff is
guaranteed To execute before the next_y assignment.

(¢) Notice that a and c are assigned using non-blocking assignments on Lines t4 and t7. Explain why the
order of execution would be ambiguous at t = 7 if line t7 used blocking assignments: a=1; c=10;. Note:
This question was not in the original exam.

[] Describe ambiguity (more than one possible execution order) if blocking assignments were used.
D Would non-blocking assignments x <= next_x and y <= next_y remove the ambiguity? D Explain.

13

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

<« [—| Fall 2021 <« [~ Final Exam xam| Solution fe sol.pdf
p

Problem 4: [20 pts] Answer each question below.
(a) The foolish sqrt module below has several issues.
module sqgrt #(int w = 16)
(output logic [w-1:0] r, input uwire [w-1:0] a);

always_comb begin

r = 0;
while (r * r < a) r++;

end

endmodule

M Explain why, due to the Verilog rules for bit widths, the expression r * r < a won’t compute the intended
result.
Because r and a are 16 bits the eomput;mon Will be done 1o 16 bits of pl‘QQ\S'\O\'\| and so due to overfiow r*xr<a can be false when

it should be true.

M Why is the sqrt module likely not synthesizeable?

Baecause the maximum number of iterations of the while 100p cannot be directly determined. The maximum number of iterations
in fact will be about 2w/2, and it's not impossible that & synthesis program would figure that out. I1t's just not likely because this is

not the typical 10op that would be used to deseribe hardware.

M What would be the problem with the hardware if it were synthesizable?

The maximum number of fterations is 2/2. For the default value that's 28 = 256. There would need to be 256 MuItiply units,
256 cOMPArison units, and 256 muxen. That's alot of hardware. And anyway there are mueh better ways of computing & square root.

14

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Fall 2021 Final Exam Solution

Staple This Side

Staple This Side

(b) Consider the two division modules below. In the first a2 is a parameter, in the second it is a module
port. Use the div_demo module for your answers to the questions below.

module our_div_by
#(int wq = 5, wd = 10, logic [wd-1:0] a2 = 4)
(output uwire [wgq-1:0] quot, input uwire [wd-1:0] al);
assign quot = al/a2;
endmodule

module our_div
#(int wq = 5, wd = 10)
(output uwire [wgq-1:0] quot, input uwire [wd-1:0] al, a2);
// cadence inline
assign quot = al/a2;
endmodule

module div_demo
#(int w = 21)
(output uwire [w-1:0] di, 42,
input uwire [w-1:0] x1, %2, x3, x4);

localparam logic [w-1:0] y1 = 4755;

// Could replace our_div with our_div_by because yl1 is constant.
our_div #(w,w) dwould work(dl, x1, y1);

// Could not replace our_div with our_div_by because
// divisor (x2) not a constant.
our_div #(w,w) dwould not_work(d2, x1, x2);

endmodule
M Show an instantiation of our_div for which our_div_by could work.

M Show an instantiation of our_div for which our_div_by could not work.
Solution appears above. To use our_div_by the divisor needs to be a constant. That's the case in the first Qxamp\e, but not in
the second QXQmP\Q

M Explain how the use of the cadence inline pragma in our_div makes it possible to instantiate our_div in
places that otherwise might need our_div_by.

1T ensures that each instantiation of our _div will be opnm'\sz SQP&Y&IQW based on its arguments. Without the pragma the SyI\U\QS'\S
program ngm Optimize our_div Once, assuming two non-constant inputs, and then copy the opt'\m'\zed GQSQNPUOH 10 p\&QQS where

there are constant inputs.

15

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

<« [—| Fall 2021 <« [~ Final Exam xam| Solution fe sol.pdf
p

(¢) Answer the following questions about latency and throughput.

M Define latency.

Latency 1S the amount of time needed to compute 2 result from start to finish. \What & result is depends on the context. The result
mMight be computed combinationally, or sequentially over several eyeles.

M Define throughput.

Througnput is the number of results computed per unit time. For example, iT over 10 seconds 200 results are computed, the throughput
18 200/10 = 20 results per second.

Consider a sequential circuit (such as mult_step from Homework 6) and a pipelined version of the sequential
circuit (such as multi_step_pipe). Assume that both have the same clock frequency.

M Remembering that the clock frequencies are the same, compared to the sequential version, does the pipelined

version typically have
Q lower latency, ® the same latency, or ® higher latency. MExplain.

1T depends. In g reasonable design the latency of the sequential version will be equal to or possibly greater than the pipelined version.
A sequential design can re-use hardware, and so if it prioritizes low cost 1t will use less hardware over o greater number of cyeles

resulting in & higher latency than & p'\pe\m@d design.

M Compared to the sequential version, does the pipelined version typically have
O lower throughput, O the same throughput, or ® higher throughput. Explain.

By dennition, o pipelined circuit computes 4 result each clock eycele, and so 1t throughput is nigh. A sequential cireuit will require
several eycles to compute something and so its throughput will be lower.

M Ignoring the cost of registers, compared to the sequential version, does the pipelined version typically have
Q lower cost, O the same cost, or ® higher cost. Explain.

The sequential version re-uses units (SUQT\ as arithmaetic UNIS) over multiple cycles. The pipelined version must have one unit for each
operation, and so its cost will be highar.

16

Staple This Side

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Fall 2021

Staple This Side

Staple This Side

Final Exam

Solution

fe sol.pdf

17

https://www.ece.lsu.edu/ee4755/2021/fe_sol.pdf

Fall 2020 Midterm Exam Solution mt sol.pdf

18 Fall 2020 Solutions

350

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020

Name Solution

&

Midterm Exam Solution

Digital Design Using HDLs
LSU EE 4755
Solve-Home Midterm Examination

Friday, 6 Nov 2020 to early Monday, 9 Nov 2020 05:00 CST)

Work on this exam alone. Regular class resources, such as notes, pa-
pers, documentation, and code, can be used to find solutions. Outside
material that covers the same topics, such as Verilog tutorials, digital
logic design guides can also be used. Do not try to directly seek out
solutions to any question here. That is, don’t Web-search the text of
a problem. Do not discuss this exam with classmates or anyone else,
except questions or concerns about problems should be directed to Dr.

Koppelman.

Warning: Unlike homework assignments collaboration is not allowed
on exams. Suspected copying will be reported to the dean of students.
The kind of copying on a homework assignment that would result in a
comment like “See eed755xx for grading comments” will be reported if
it occurs on an exam. Please do not take advantage of pandemic-forced

test conditions to cheat!

Problem 1
Problem 2
Problem 3
Problem 4

Problem 5

r>2m = R.<l1 Exam Total

Good Luck!

mt sol.pdf

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020 Midterm Exam Solution

Problem 1: [20 pts] Appearing below are some variations on a multiply accumulate module.

(a) Complete the Verilog code below so that it matches the illustration.

macl

h wh

t
a0
[__lal Vi (X s 1]
| 7 7111
Wwa A wa

Ik
ek

@ Complete the Verilog.
@ Use parameters for the bit widths wh and wa.

g The registers inferred from the Verilog must match the diagram.

/// SOLUTION
module maci
#(int wa = 32, wh = 16)

(output logic [wa-1:0] ao,
input uwire [wh-1:0] h,
input uwire [wa-1:0] ai,
input uwire clk);

always_ff @(posedge clk) ao <= h * ai + ao;

endmodule

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020 Midterm Exam Solution mt sol.pdf

(b) Complete the Verilog code below so that it matches the illustration, similar to the one on the previous
page.

mac?2

h wh

.

= o ao

(| al / (x /[

LT 7 A N |
wa A wa

ek

@ Complete the Verilog.
@ Use parameters for the bit widths wh and wa.

@ The registers inferred from the Verilog must match the diagram.

/// SOLUTION
module mac2

#(int wh = 4, wa = 3)

(output logic [wa-1:0] ao,
input uwire [wh-1:0] h,
input uwire [wa-1:0] ai,
input uwire clk);

logic [wa-1:0] p;

always_ff @(posedge clk) begin
p <= h *x ai;
ao <= p + ao;

end

endmodule

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020 Midterm Exam Solution mt sol.pdf

Problem 2: [20 pts] The mac (multiply-accumulate) modules compute a running sum of products. The
alert student might have noticed that there is no way to reset the sum. In this problem a reset will be added.

The module below has an input r (for reset) which is to work as follows: When r=1 at a positive edge the
product h*ai should start a new running sum. That is, that particular h*xai should be added to zero. When
=0 at a positive edge the product h*ai should be added to the sum of the previous products. (If r=0 is
always true then the hardware as illustrated works correctly.)

h wh mac2r
* wa A + A wa
- r /10
|] |_ 4|_>
_Eaﬂ Alrl 0

@ Add hardware to the diagram to implement the reset. @ Complete the Verilog to implement the reset.
@ Use parameters for the bit widths wh and wa.

@ The registers inferred from the Verilog must match the diagram and E(be sure that the reset is applied
to the correct value.

The hardware QhﬁﬂgQS appear apove in green and the VQN\Og code appears balow in all sorts of colors.

The problem states that when r=1 the accompanying values of h and ai must start 4 new running sum. To implement this a register
nas been added, ri, so that the value of r moves with the product h*ai, S0 that in the next cycle that product h*ai is added to
ZQro rather than 1o ao. 1T r were connected directly to the multiplexor then the hxai arriving with r would be added T0 & NoON-zero
value.

Grading Note: No one solved this 100% correctly.

/// SOLUTION
module mac2r #(int wh = 4, wa = 3)
(output logic [wa-1:0] ao,
input uwire [wh-1:0] h,
input uwire [wa-1:0] ai,
input uwire r, clk);

logic [wa-1:0] p;
logic ri;

always_ff Q@(posedge clk) begin
rl <= r;
p <= h * ai;
ao <=p+ (rl1 7?0 : ao);
end
endmodule

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020 Midterm Exam Solution mt sol.pdf

Problem 3: [20 pts] Appearing below are the modules from the previous problem. Suppose that in the
multiplier below bit i of the product were computed in time [47 + 2] u; and that a ripple adder were used for
the sum. Let w denote the value of wh and wa (which means wh==wa).

—E h wh macl h wh mac?2
wa A V\;aL"-E wa A A wa
clk
_Ea—... [] CIk

(a) Find the minimum clock period for each using the simple model, and taking into account cascading. (The
clock period is the length of the critical path, including the register delay.)

g Find the clock period for mac1 with cascading. @ Don’t forget to include the delay of the register.
short answer: The clock period 18 [4(w — 1) + 2 +4 + 6] uy, = [4w + 8] .

Explanation: Taking into account caseading in this case means that when we compute the time needed to compute the addition we
take Into account the act that bit ¢ arrives at time 47 4+ 2 and that 4 ripple adder is used o compute the sum. Bt 0 of the product
arrives at the adder's bit 0 BFA at time 4 x 0 + 2 = 2, and 0 1ts 0utputs, Sum and carry-out, arrive at 2 + 4 = 6. Bit 1 of the
product arrives at the adder's bit 1 BFA at time 4 x 1 4 2 = 6 as does the carry out from bit 0, 50 the sum and earry out won't
De avallable until 6 + 4 = 10. This pattern persists, 80 bit ¢ of the adder output is available af time 47 + 2 +4 = 4¢ + 6. The
adder is w bits wide, S0 the MSB is not avallable until time [4(w — 1) 4+ 6] uy = [4w + 2] ug. To compute the clock period we
need to tack on the 6 uy register delay, bringing the clock period to [4w + 2 + 6] uy = [4w + 8] uy.

g Find the clock period for mac2 with cascading. @ Don’t forget to include the delay of the registers.

short answer. The clock period is [max{4(w — 1) + 2, 2(w + 1) } + 6]uy = [max{4w — 2, 2w + 2} + 6]y, =
[Aw — 2 + 6] uy = [4w + 4] ug, Tor w > 2.

Explanation: The clock period is determined by the critical (longest) path. Paths start at launeh points and end at capture points.
Register outputs are launeh points and register inputs (Hoth data and enable) and capture points. Usually (but not always) module
INPUTS are launch points and module OUTPULS are capture Points. There are two possible critical paths. Path one is from h (or ai),
through the multiplier, to the register input, path two is from ao, through the adder, to the register input. The length of path one
18 4(w—1) +2+6 = 4w + 4 and the length of path o 1s 2(w + 1) + 6 = 2w 4 8. When w > 1 path ona is longer and so
the clock period must be [4w + 4] ug.

And what about caseading? That doesn't apply here because there is o register between the multiplier and the adder and so all bits
arrive af the input to the adder at the same time.

(b) Find the minimum clock period for each using the simple model assuming that the multiplier output and
adder input could not cascade.

@ Find the clock period for mac1 without cascading. @ Don’t forget to include the delay of the register.
short Answer: The clock period is [4(w — 1) + 2 4+ 2(w + 1) + 6] uy = [6w + 6] uy.

Explanation: Without cascading the adder must wait Tor every bit of the product to be computed. The last bit of the product is
available at 4(w — 1) + 2 and only then can the addition start (with the no-caseading assumption). So adding the addition time,
2(w + 1), and register delay, 6, gives the clock period.

Note that the no-cascading assumption was made for pedagogical reasons. 1T indeed DIt 7 0f the product arrives at 49+ 2 and a
ripple adder is used, cascading should be taken into account when computing the delay.

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020 Midterm Exam Solution mt sol.pdf

@ Find the clock period for mac2 without cascading. @ Don’t forget to include the delay of the registers.

The clock period for mac2 is the same with and without the caseading assumption, o the period is the same as the one computed
above, [4w + 4] ug.

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020 Midterm Exam Solution mt sol.pdf

Problem 4: [20 pts] Appearing below is a recursively defined multiplier constructed using bfa (binary full
adder) and bha (binary half adder) modules.

module mult_tree_bfas #(int wa = 16, int wb = wa, int wp = wa + wb)
(output uwire [wp-1:0] prod, input uwire [wa-1:0] a, input uwire [wb-1:0] b);

if (wa == 1) begin
assign prod = a 7 b : 0;
end else begin
// Split a in half and recursively instantiate a module for each half.
localparam int wn = wa / 2;
localparam int wx = wb + wn;
uwire [wx-1:0] prod_lo, prod_hi;

mult_tree_bfas #(wn,wb) mlo(prod_lo, alwn-1:0], b);
mult_tree_bfas #(wn,wb) mhi(prod_hi, alwa-1:wn], b);

assign prod[wn-1:0] = prod_lo[wn-1:0];

uwire cl[wp-1:wn-1];
assign cl[wn-1] = 0;
for (genvar i=wn; i<wx; i++)
bfa b(c[i], prod[il, prod_lol[i], prod_hil[i-wn], cl[i-1]);
for (genvar i=wx; i<wx+wn; i++)
bha b(c[i], prod[i], prod_hili-wn], cli-1]1);
localparam int wz = wp - WX - wn;
if (wz > 0) assign prod[wp-1 :- wz] = 0;
end
endmodule

Show the hardware that will be inferred for two levels of recursion and compute its cost. That is, show three
instances of mult_tree_bfas: a top-level one, and two recursive instantiations. Show the hardware for the
top-level instance and both of the two recursive instantiations. (It is only necessary to show two levels.) Do
this for wa=8 in the top-level module.

continued on next page.

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020 Midterm Exam Solution mt sol.pdf

@ Show the inferred hardware.

The inferred hardware is shown on the next page. The binary full and half adders are shown as boxes. Only the carry-out port
s labeled, With & co, of course. As most reading this should easily figure out, the port at the top of each BFA and BHA module
s carry-in, the port on the right-nand side is the sum, and the two BFA inputs on the left hand side are the two bits to be added
together.

Note that the bits of a are spiit S0 that the less signinicant bits connect 1o mlo and the more signiticant bits connect 10 mhi. In
contrast all bits of b connect 10 both mlo and mhi.

@ Be sure to distinguish hardware (such as a bfa module) from values computed during elaboration.

An o,xamp\o, of 2 value eompumd dUN\'\g alaboration is wx. The value at each level is shown. Since the value has been oompumd
GUNT\g alaboration there is no need to emit hardware to compute 4 value that is &\TQAGy Known.

@ Compute the cost of the hardware in your diagram using the simple model. (Work out the cost of a bha by
hand.) The cost should be for two levels, not for hardware going down to the base case.

As can be seen by looking at the l0op bounds of the generate loops, each instance consists of wb BFA modules and wn BHA modules.
For the top-level (wa=8) instance wb=8 and wn=4. In the mlo and mhi instances instantiated in the top level wb=8 and wn=2.
(Yes, wb 15 8 af every level.) So the number of BFA modules is 842 x 8 = 24, and the number of BHA modules is 4+2 x 2 = 8.
The cost of @ BFA 1S 9u.. A BHA can be construeted with an XOR gate for the sum and an AND gate for the carry out, for a cost
of 4u.. Howaever the carry out can be used to compute thesum: s = (a || ci) & !cowhere co = a && ci. Such a
construction nas a cost of just 3 uc.

The total cost is [24 x 9 + 8 X 3] uc = 240 u using the 3u, BHA or [24 X 94 8 x 4] u, = 248 u, using the 4 u, BHA.

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020

Midterm Exam Solution

mult_tree_bfas, wa=8, wb=8
wn=4, wx=12

mlo
mult_tree_bfas, wa=4, wb=8 1,:0 3’10
wn=2, wx=10 mlo |
mult_tree_bfas 2] g '_01 4]
— - 4 o 7
wa=2, wb=8 (0] BFAL]2 | 5 [0] BFA
7 co | Ye co
I o I
0 g E[g = BFA = BFA
/ 3 ||
£] g8 [1] - (1] "
30 _a ° 41 | (61 |
7 7 7 ’a
SN o []
8 ! 7
Easl (51 71 |
3] B (3] BFA
61 | 8] |
"] BFA] | BFA
= ?) [f” co [f” co
8 o mhi 71 91 |
mult_tree_bfas " | BFA " | BFA
wa=2, wb=8 [,5] <) [,5] co
a H 181 | (107 |
. k-] e 4 7
3’.2 1 3 3 (61 BFA 161 BFA
o IQ. 7 co va CO
b 2 [91 I [11] |
m 7 7
77 (7] BFA || 7] BFA
8 8
b 7 co 7 CO
9 | |
8] BHA (8l BHA
’ co ’ CO
I I
[91 BHA [91 BHA
’ co ’ CO
I
mhi (10] BHA
mult_tree_bfas, wa=4, wb=38 1,:0 °I°
wn=2, wx=10 h
_ mlo 2] 2 (111 BHA
mult_tree_bfas 7 8| 3 co
wa=2, wb=8 [?] BCIZA —] < IQ_
| =2
1.0 a E[3 = BFA
=l g 2 [11 g
74| L a °© [a] I
7 7 7
A b 2] T?__—
8 ’ I
] (5]
[3] BCIZA _—
6]
! BFA
b 4] o
7 .
8 mhi 7] |
mult_tree_bfas (5] " | BFA
wa=2, wb=8 7 clo
H (8l
a 7
3:2 T3 BFA
a g 2 m
z 9 _|
b [’]
7 (71 BFA
8
b 7 CO
Ay l
81 BHA
’ CO
9 I
(9] BHA| |
’ CO

poad

o

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020 Midterm Exam Solution mt sol.pdf

Problem 5: [20 pts] Answer each question below.

(a) Appearing below is a multiply/add module, nnMADDfp, that computes its result using a FP add and
multiply module. The values on the ports are IEEE 754 floats, and when wa=32 the format is IEEE 754
single, the same as a SystemVerilog shortreal. That is followed by an incomplete testbench module,
testnnMADD. The testbench module generates random values for the nnMADDfp module in variables ar, br,
and sir, and computes what the result should be, sor.

Add Verilog code to deliver ar, br, and sir to the nnMADDfp instance, and to put the output of nnMADDfp
into sor_mut so that sor_mut has the correct type of value. Note that one does not need to understand
what is inside of nnMADDfp, nnAddfp, nor nnMultfp.

g Deliver (whatever that means) ar, br, and sir to nnMADDfp instance. @ Get output of the nnMADDfp
instance into variable sor_mut.

The solution is shown below. First the INputs to instance n of nnMADDfD, variables a, b, and si, must be assigned the values in
variables ar, br, and sir. Because a, b, and si are of type Logic astatement like a=ar won't work because for suen a statement
Verilog will Tirst convert ar from & shortreal 10 & 32-DIT unsigned integer (logic [31: O]) 1T won't work because module
nnMADDEp expects a, though declared logic, 1o be in the same format as shortreal. To avoid the problem the Verilog system
task $shortrealtobits is used. That avoids the shortreal-T0o-integer or any other conversion. The bits are left unehanged.
A similar funetion is used for re-interpreting the module output, so, from logic 10 shortreal.

A serious arror whieh 100 many students made was instantiating an nnMADDEp module inside the t l00p. First, the module is already
instantiated. Second, It makes no sense to instantiate a module in procedural code.

Note. In the original exam ar, br, ete. were declared real instead of shortreal. The solution would be no dimerent:
$shortrealtobits should still be used. But the explanation above would have been more complicated sinee in statement
a=$shortrealtobits (ar) there would be a conversion: ar would be converted from real 10 shortreal, but then the bits
in the shortreal would be assigned to a with no further changes.

Verilog code, including the solution, on next page.

10

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020 Midterm Exam Solution mt sol.pdf

module NNMADDfp #(int wa = 10)
(output uwire [wa-1:0] so, input uwire [wa-1:0] a, b, si);
uwire [wa-1:0] p;
nnMultfp #(wa) mu(p, a, b);
nnAddfp #(wa) ad(so, si, p);
endmodule

module testnnMADD;
localparam int w = 32, ntests = 100;
uwire [w-1:0] so;
logic [w-1:0] a, b, sij;
nnMADDfp #(w) n(so, a, b, si);

initial begin

for (int t=0; t<ntests; t++) begin
shortreal sor, ar, br, sir, sor_mut;

ar = rand_fpQ); // Value to be used as input a to nnMADDfp.
br = rand_fp(); // Value to be used as input b to nnMADDfp.
sir = rand_fpQ); // Value to be used as input si to nnMADDfp.

sor = ar *x br + sir;

/// SOLUTION

a = $shortrealtobits(ar); // Move bits of ar to a without changing them.
b = $shortrealtobits(br); // This operation is sometimes called ..

si = $shortrealtobits(sir); // .. a reinterpretation cast.

#1;

sor_mut = $bitstoshortreal(so); // <-- MORE OF THE SOLUTION.

if (sor '= sor_mut) handle_incorrect_result();
end

end
endmodule

11

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020 Midterm Exam Solution

(b) The module below will not compile or simulate due to multiple assignments to temperature, which is
declared uwire. Changing uwire to wire will fix the compile problem. Nevertheless, is that the right fix?

module more_stuff #(int w = 16)
(output uwire [w-1:0] v, y, input uwire [w-1:0] a, b, c);

uwire [w-1:0] temperature;

assign temperature = a + b;
assign v = temperature >> c;
assign temperature = a - b;
assign y = temperature << c;

endmodule

module more_stuff #(int w = 16)
(output uwire [w-1:0] v, y, input uwire [w-1:0] a, b, c);

/// SOLUTION

uwire [w-1:0] t1, t2;
assign t1 = a + b;
assign v = tl1 >> c;
assign t2 = a - b;

assign y = t2 << c;

endmodule

@ What problem remains after changing temperature from a uwire to a wire?

Short answer: The same value of temperature is used to compute both v and y, IhOUgh the coder's intent may nave been different
values. That value of temperature CONSISLS Of bits common to a+b and a—b, and x's elsewhere. 1t's not HKQ\y the coder intended

that either.

Longaer explanation. With the “fix" object temperature is driven Dy two different assignments, a+b and a=b. In DIt positions
where a+b and a—b are both O, the value would be O. In bit positions where a+b and a=b are both 1, the value would be 1. But,

in DIt positions where a+b and a-b difer the value would be x.

An important thing to remember is that continuous assignments, which is what the assign keyword specifies, are executed whenever
objects on the right-nand side change. As a consequence the values for both v and y will ultimately be computed with the same

value 0f temperature.

@ Fix the problem based on what the code looks like its trying to do.

Solution appears above.

12

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020 Midterm Exam Solution

(¢) An important part of synthesis is optimizing. It is possible to optimize before and again after technology
mapping.

@ What is technology mapping? @ Show an example of logic before and after technology mapping. (Make
up some technology.)

In the technology Mapping step generic gares are replaced With gates In the target technology. For example, consider the expression
y=!Ca &b || c & d). That might be inferred into the Tollowing generic gates: two AND gates and ona NOR gate. A target
technology might have a special AND-OR-INVERT gate that computes the entire expression, and because of the way CMOS FETS
can ba intereonnacted does S0 USING lass time or area than two AND gates and a NOR gate in the same technology.

@ Describe an optimization that can be done before technology mapping. Provide an example. (This is done
all the time in class.)

Expression a || (!a) && bcan beoptimized to a || b. Other examples include constant propagation and folding, such a3 a
&& 1 being optimized 10 a.

@ Describe an optimization that can be done only after technology mapping (or perhaps during). Provide an
example, feel free to make things up.

Realistie timing data is available for the gates used in teehnology mapping. For that reason, any optimization that reduces delay
should be done after technology mapping.

13

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2020/mt_sol.pdf

Fall 2020 Final Exam Solution fe sol.pdf

Name Solution

Digital Design using HDLs
LSU EE 4755
Solve-Home Final Examination

Wednesday, 9 December 2020 to Friday, 11 December 2020 16:30 CST

Problem 1 (20 pts)
Problem?2 (20 pts)
Problem3 (15 pts)
Problem4 (10 pts)
Problem 5 (35 pts)
Alias MRNA! Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Fall 2020 Final Exam Solution fe sol.pdf

Problem 1: [20 pts] Module probi_seq, below, is based on the solution to 2016 Final Exam Problem
1 (also appearing in problem set https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf
please look at that solution). In that problem an incomplete diagram of the hardware was given, similar to
the one on the next page, and a module was to be completed so that it computes vO*v0 + vO*vl + vi*vl
consistent with the hardware. The completed module appears below, with minor simplifications. If you must
know, the simplifications include omitting the floating-point modules’ round inputs and status outputs. Also,
the case statement was replaced by an if/else statement. In case anyone is concerned, this wordy aside
would be omitted from an in-class exam.

Though module probl_seq is now complete, the hardware diagram isn’t. In this problem complete the
diagram of the synthesized hardware based on the module below. The diagram omits the hardware for step,
select signals for the multiplexors, enable signals for some of the registers, etc. Optimize the hardware that
compares step to a constant. Do so by showing individual gates rather than an equality or comparison unit.

M Complete the diagram so that it shows inferred hardware after some optimization.

M Where step is compared to a constant, show individual gates, not a comparison unit.

module probi_seq
(output logic [31:0] result, output logic ready,
input uwire [31:0] vO, vi, input uwire start, clk);

uwire [31:0] mul_a, mul_b, add_a, add_b, prod, sum;

logic [2:0] step;
logic [31:0] acO, acil;

localparam int last_step = 4;

always_ff Q(posedge clk)
if (start) step <= 0;
else if (step < last_step) step <= step + 1;

CW_fp_mult m1(.a(mul_a), .b(mul_b), .z(prod));
CW_fp_add al(.a(add_a), .b(add_b), .z(sum));

assign mul_a = step < 2 7 v0 : vi;
step == 0 7 vO : vi;
acO, add_b = acl;

assign mul_b
assign add_a

always_ff @(posedge clk)
begin
acO <= prod;
if (step < 3) acl <= step ? sum : O;
if (start) ready <= 0; else if (step == last_step-1) ready <= 1;
end

assign result = sum;

endmodule

https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf
https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Fall 2020 Final Exam Solution

Solution appears below in blue. A register was added to hold step. The value of step and start are used to determine multiplexor
select signals and register enable inputs. The solution is labeled with some step comparison results, sueh as step < 2. Those who
are unsure of how the illustrated logic computes these values are strongly urged to draw a truth table.

probl_seq
e start____ step < 2
Y0 m al L—:—:
== 1 cw_fp_mu|t 0
37 ac0 [cw_add il
[-
==
A
vl
£ . step < 3
A S en
clk step < 4 R acl
s . DC A A
2:2 a
o) ‘) \
% —L/ step # 0
1:1
g step =3
DT D
start {>c en | ready |
L]
A
2:2 step < 4 ADi
Dc en
step
Y
+ 1
§ 7ol 360 A
0

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Fall 2020 Final Exam Solution fe sol.pdf

Problem 2: [20 pts] Consider again that module from Problem 1 of the 2016 final exam. Appearing below
is the start of a Verilog description of a pipelined version of this module. The ports are the same as in
the sequential version from the previous problem, however the module must operate in pipelined fashion,
meaning that a new v0, v1 pair could arrive at the inputs each cycle.

Complete the module. Two floating-point units are instantiated for your convenience. Add floating-point
and other hardware as needed.

M Complete module so that it operates in pipelined fashion.

The solution that appears below is what would be expected on an exam. This problem was assigned as 2021 Homework 6 as 4
programming assignment. See that solution for additional details. In the solution below notice that the start signal is carried along
the pipeline and ninally connected to the ready output port.

The sequential hardware uses the value of register step $0 determine multiplexor and enable settings. That's not needed nhere
because each stage does & PMUQU\QY step, In effect make step 4 constant. (A\SO| Daecause there are more functional units fewer steps
are HQQGQG.) For that reason there is no equivalent to the step register in the p'\pé\de solution.

module prob1_pipe(output logic [31:0] result, output logic ready,
input uwire [31:0] vO, vi, input uwire start, clk);

/// SOLUTION

uwire [31:0] v00, vO01, vil, sl, s2;

logic [31:0] pl_1_v00, pl_1_v01, pl_1_viil;
logic [31:0] pl_2_v0001, pl_2_vii;

logic pl_1_occ, pl_2_occ;

CW_fp_mult moo(.a(v0), .b(v0), .z(v00));
CW_fp_mult mo1(.a(v0), .b(vl), .z(v01l));
CW_fp_mult mi1(.a(vl), .b(vl), .z(v1il));

CW_fp_add al(.a(pl_1_v00), .b(pl_1_v01), .z(sl));
CW_fp_add a2(.a(pl_2_v0001), .b(pl_2_vil), .z(s2));

always_ff @(posedge clk) begin

pl_1_v00 <= v00;
pl_1_v01l <= vO01;
pl_1_v11l <= vi1;
pl_1_occ <= start;

pl_2_v0001 <= s1;
pl_2_vil <= pl_1_v11;
pl_2_occ <= pl_1_occ;

result <= s2;
ready <= pl_2_occ;

end
endmodule

https://www.ece.lsu.edu/koppel/v/2021/hw06-sol.v.html
https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Fall 2020 Final Exam Solution

Problem 3: [15 pts] Yet again, consider the solution to 2016 Final Exam Problem 1. (The solution appears
in the sequential problem set, https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf, feel
free to look at it.) Appearing below is an incomplete diagram of the hardware with some timing information
shown, and a timing diagram. In this problem several performance measures will be computed based on the
simple model.

" start probl_seq
1 =
Ty] i @ al 3
LJ@ B @ cw_rp mult -31 ac0 [Frosad §
! ! =+ clk
N j A 3 start
vl <25>
= © <20> step 4 O 1 2)3)a
@ 32'do @ mula_ v N
i acl mulb o Jin “Mux delay.
A prod fTvor TR0 22
[ac0 f)(VOz Xval)(vl2
| 4 | ready acl Mutdelay. JO Yvor Yoou1+vor
clk H —£] sum XXXXXXVOZ XXXXXXV““,”XXXXXXVIZ + vOvl + v0?
t - @ —£1 ready _\

Let t,,, = 251y denote the delay of the CW_fp_mult unit and let ¢, = 20 u; denote the delay of the CW_fp_add
unit. The arrival times of signals at the multiplexor select inputs and at the ready register are shown

boxed in blue| Base the delay of the registers and multiplexors on the simple model.

(a) Determine the clock period for this module using the assumptions above and show the critical path on
which this clock period is based.

M Determine the clock period. M Show critical path used to determine the clock period.

M Show work, and state any assumptions.

Tha arrival Times of stable values are shown in the diagram and & critical path is shown as & red dashed line.
Another critical path (whieh must of the same length) pass through the upper multiplexor. Note that the eritical path is through
the multiplexor select signal, not through the data inputs. The eritical path length is 31 g, adding on the register delay, we get the
clock period of [31 4 6] ug = 37 ug.

(b) Based on your answers above determine the latency and throughput for this calculation.

M The latency is:

Since 1t takes four cycles to compute a result the lateney is 4 x 37uy = 148 uy.

M The throughput is:

The unit of WOYK 18 eomputmg Q UO + vov1 + 1)1 value. 1t takes four eycles 10 (0 80, 80 in This case the throughput is one over the

lateney of =as— = 1T uy = 1nsthen the throughput would be 0r 6756756 caleulations per second.

4><37u 148u 148 ns

fe sol.pdf

https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf
https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Fall 2020 Final Exam Solution fe sol.pdf

Problem 4: [10 pts] The mult_tree_bfas module below has a flaw: It won’t compile if wp < wa+wb.
That’s a big deal, because in many—perhaps most—cases when one multiplies two w-bit integers all one
wants is the w least significant bits of the product. Note: In the original exam some object names were
different and there was unused code setting high bits of the product to zero.

Modify the module so that it will work correctly for values of wp<=wa+wb. MDO so in a way that generates
less hardware even without optimization of unconnected nets and unread variables.

module mult_tree_bfas #(int wa = 16, int wb = wa, int wp = wa + wb)
(output uwire [wp-1:0] prod,
input uwire [wa-1:0] a, input uwire [wb-1:0] b);
if (wa == 1) begin
assign prod = a ? b : 0;

end else begin

localparam int wa_re = wa / 2;
localparam int wp_re = wb + wa_re;

uwire [wp_re-1:0] prod_lo;
uwire [wp_re-1:0] prod_hi;
mult_tree_bfas #(wa_re,wb) mlo(prod_lo, alwa_re-1:0], b);
mult_tree_bfas #(wa_re,wb) mhi(prod_hi, alwa-1l:wa_rel, b);

assign prod[wa_re-1:0] = prod_lo[wa_re-1:0];

uwire c[wp-1:wa_re-1];
assign cl[wa_re-1] = 0;

for (genvar i=wa_re; i<wp_re; i++)
bfa b(c[i], prod[i], prod_lo[il], prod_hil[i-wa_re], c[i-1]);

for (genvar i=wp_re; i<wp_retwa_re; i++)
bha b(c[i], prod[i], prod_hil[i-wa_re], c[i-1]);

end
endmodule

The solution ig on the next page.

https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Fall 2020

Final Exam Solution

module mult_tree_bfas #(int wa = 16, int wb = wa, int wp = wa + wb)

(output uwire [wp-1:0] prod,

input uwire [wa-1:0] a, input uwire [wb-1:0] b);

if (wa == 1) begin

assign prod = a ? b : 0;

end else begin

localparam int wa_re = wa / 2;
localparam int wp_re = wb + wa_re;

// SOLUTION:

// Compute the width of the product actually needed from the lo and hi modules.
localparam int wp_lo = min(wp_re, wp);

localparam int wp_hi = min(wp_re, wp - wa_re);

// SOLUTION: Possibly use fewer than wp_re bits for the product.
uwire [wp_lo-1:0] prod_lo;
uwire [wp_hi-1:0] prod_hi;

// SOLUTION: Compute how many bits of b are needed in the hi module.
localparam int wb_hi = min(wb, wp_hi);

// SOLUTION: Instantiate using the smaller values for the number

// of bits in the product (wp_lo, wp_hi) and a smaller value for

// the number of bits in b (wb_hi).

mult_tree_bfas #(wa_re, wb, wp_lo) mlo(prod_lo, alwa_re-1:0], b);
mult_tree_bfas #(wa_re, wb_hi, wp_hi) mhi(prod_hi, alwa-1:wa_re], b[wb_hi-1:0]);

assign prod[wa_re-1:0] = prod_lo[wa_re-1:0];

uwire c[wp-1:wa_re-1];
assign clwa_re-1] = 0;

// SOLUTION: Use wp_lo and wp_hi in the loop bounds so that
// there are only as many BFA and BHA modules as needed.
for (genvar i=wa_re; i<wp_lo; i++)

bfa b(c[i], prod[i], prod_lo[i], prod_hil[i-wa_re], c[i-1]);
for (genvar i=wp_lo; i<wp_hit+wa_re; i++)

bha b(c[i], prod[i], prod_hil[i-wa_re], cl[i-1]);

end

endmodule

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Fall 2020 Final Exam Solution

Problem 5: [35 pts] Answer each question below.

(a) When is it less expensive to implement design X using an FPGA, and when is it less expensive to
implement design X (the same design) using an ASIC? Cost here refers to the purchase price, not something
computed using the simple model.

@ An FPGA is less expensive for design X when ... M Explain.

... When only a small number will be Tabricated, say 1. An FPGA is a moderately priced mass-produced component, so you are
sharing the development costs With many other customers. An ASIC is made just for you, 5o even if you Wwant one you are paying for
a whole wafer full of chips, plus the cost of the masks needed for fabrication.

M An ASIC is less expensive for design X when ... M Explain.

... when a large number will be Tabricated, say 10,000. An ASIC contains just the logic you need, unlike an FPGA which has
customizable logic (SUQh as little look-up mb\es), Customizable connections between the logie, not to mention left-over stuff that you
didn't use. Therefore, if you fapricate enough ASIC Chips the per-ehip cost will be less than an FPGA.

(b) A testbench is written to verify whether a Verilog module does what it is supposed to do. (It’s not just
for homework assignments.) Consider a component that could quickly and thoroughly be tested after it has
been manufactured.

M Is a testbench still necessary for the Verilog description of this component?

M Explain.

Strictly speaking a testbeneh i3 not necessary, but practically speaking it is very necessary. A testbench can let the engineer know if
the HDL has an error in a short time, perhaps seconds. The testbench might even provide information that can be used to find the
Naw in the HDL. If there was no testbench then the component would need synthesized, fabricated, then tested. At best that would
take minutes (say, for an FPGA), but for an ASIC it might take weeks. Even if it were just minutes, that would add up until the
design ware working correctly.

A company has two testbench teams, the good team, and the okay team. (The good team is much better
than the okay team.) Is it better to use the good team (rather than the okay team) for the testbench when
the design is being made into an FPGA or when the design is being made into an ASIC?

M Better to use the good team for writing the testbench when fabricating an O FPGA or ® ASIC .

M Explain.

Suppose the testbench written by the good team finds a flaw that the okay team's testbench missed. For the ASIC, that diseovered
flaw would result in weeks of lost time while the flawed design was fabricated and then tested. It would also cost lots of money. For
the FPGA, perhaps only hours of time are wasted by synthesizing and downloading a flawed design. So for that reason it better to
use the good team for the ASIC designs.

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Fall 2020 Final Exam Solution fe sol.pdf

(¢) In each code fragment below indicate whether the non-blocking assignments are necessary, must be
replaced by a blocking assignment, or whether it does not matter which is used. Assume typical use of
Verilog.

M Are the non-blocking assignments O necessary, O must be replaced by blocking assignments, ® either
one will work .

M Explain.

// Fragment A
always_comb begin x <= a + y; end // Line 1
always_comb begin a <= b + c; end // Line 2

Short answer: The value of x will be updated either way (\N'\U\ Or Without the non-blocking gss'\gnm@nts) in the same time step.

Discussion: Notice that a is referenced in Line 1 and written in Line 2. Each is an always_comb, and S0 each line executes whenever
its live-in objects enange. The live-in objects for Line 1 are a and y, and the live-in objects for Line 2 are b and c. 1T y and b both
change, then Line 1 might De executed before Line 2. But because Line 2 Qh&ﬂgQS a Line 1 will execute a second time. Because
ais &SS'\gﬂQG using o ﬂOﬂ-b\OQng assignment a is not &QIUQ\\y Qh&ﬂde until all the active-region Work 18 Q()mp\@t@. But once that
happens a 13 changed and that leads 1o an execution of Line 1.

M Are the non-blocking assignments ® necessary, O must be replaced by blocking assignments, Q either
one will work .

M Explain.

// Fragment B
always_ff @(posedge clk) begin x <= a + y; end // Line 1
always_ff @(posedge clk) begin a <= b + ¢; end // Line 2

The non-blocking assignments are necessary hecause each line will execute just once in regcetion 1o the positive edge. Without the
non-blocking assignment results would depend on whether Line 1 was executed before or after Line 2.

(d) Consider three ways of designing digital hardware: combinational, sequential, and pipelined.

Sequential hardware is the lowest-cost alternative for many designs. (Some of which appear on this test.)
Provide an example of some non-trivial hardware for which a sequential design would not be less expensive
than a combinational design. The hardware might compute an arithmetic expression, as does the hardware
in Problem 1.

M Non-trivial hardware that can’t be made less expensive with a sequential design compared with a combina-
tional design. Explain.

Short Answar: Hardware for computing a * b + ¢, because the each operation is performed once. (Assuming a sequential adder and
multiplier are not practical.)

Explanation: A sequential design has lower cost than & combinational design when something in the combinational design can be
used multiple times. EXpression v + vovy + v7 can be computed by a sequential circuit consisting of one multiplier (used three
times) and one adder (used twice). But for a * b + ¢ there would be one multiplier and one adder in both the combinational and
sequential designs, So there is no cost benefit for the sequential design.

https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Fall 2020 Final Exam Solution

(e) Both modules below have an input port providing an array of unsigned integers, and an output port,
elt_min, which is set to the smallest of these numbers. The two modules are nearly identical, the difference
is that in min_b_s (the s is for shortcut) the loop ends when a value of 0 is found (because there can’t be
anything smaller, so why bother looking), while in min_b the loop always iterates for n-1 iterations. Consider
a situation in which most inputs contain a zero. Which module has a shorter critical path (meaning that it
is faster in a typical digital design)?

module min_b #(int w = 4, int n = 8)
(output logic [w-1:0] elt_min, input uwire [w-1:0] elts[n]);
always_comb begin
elt_min = elts[0];
for (int i=1; i<n; i++)
if (elts[i] < elt_min) elt_min = elts[i];
end
endmodule

module min_b s #(int w = 4, int n = 8)
(output logic [w-1:0] elt_min, input uwire [w-1:0] elts([n]);
always_comb begin
elt_min = elts[0];
for (int i=1; i<n && elt_min > 0; i++)
if (elts[i] < elt_min) elt_min = elts[i];
end
endmodule

M Which module has a shorter critical path, ® min b or O min b_s ?

M Explain.

The hardware in min_b is simpler 80 1t likely has a shorter critical path. For hardware there is no benent in ending the 100p early.

10

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2020/fe_sol.pdf

Fall 2019 Midterm Exam Solution mt sol.pdf

19 Fall 2019 Solutions

374

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Fall 2019 Midterm Exam Solution mt sol.pdf

Name Solution

Digital Design Using HDLs
LSU EFE 4755
Midterm Examination

Wednesday, 30 October 2019 10:30-11:20 CDT

Problem 1 (20 pts)
Problem 2 (25 pts)
Problem 3 (27 pts)
Problem 4 (28 pts)
Alias 11308 -l Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Fall 2019 Midterm Exam Solution

Problem 1: [20 pts] Appearing below is one of the solutions to Homework 2, the count leading zeros
module.

module clz_bi_tree #(int w = 19, int ww = $clog2(w+l))
(output uwire [ww:1] nlz, input uwire [w:1] a);
if (w==1) begin

assign nlz = 7 a;
end else begin
localparam int wlo = w/2, whi = w - wlo;

localparam int wwlo = $clog2(wlo+1), wwhi = $clog2(whi+l);
uwire [wwlo:1] 1z_lo;
uwire [wwhi:1] 1z_hi;
clz_bi_tree #(wlo) clo(1z_lo, alwlo:1])
clz_bi_tree #(whi) chi(1lz_hi, alw:wlo+1]);
assign nlz = 1z_lo < wlo ? 1z_lo : wlo + 1lz_hi;
end
endmodule

Show the hardware that will be inferred for the module for w > 1. Just show one level, don’t show what is
inside of clo and chi.

@ Show synthesized hardware for one level. @ Be sure to show clo and chi (but not their contents).

@ Clearly show module input and output ports, @ and show bit range in connections.

The solution appears below. Because w > 1 the terminal case is not elaborated and so not inferred. OT course, there is no hardware
for eomputmg elaboration-time constants such as wwlo.

clz_bi_tree
chi
: wlo =
wiwlo+1 clz_bi_tree + N
’ Iz_hi 1
ww
1] a/
Lel 7/
W clo
: wlo
wlo:1 clz_bi tree 1z lo

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Fall 2019

Midterm Exam Solution

Problem 2: [25 pts] In Homework 2 a clz (count leading zeros) module was constructed recursively by
splitting the input bit vector and connecting each half to a smaller instance. The incomplete module below
is similar except that the input vector is to be split into thirds and each third connected to a recursive
instance. Complete the module.

@ Complete so that clz_tri_tree computes clz.

The solution appears below.

module clz_tri_tree
#(int w = 19, int ww = $clog2(w+l))

(output uwire [ww-1:0] nlz, input uwire [w-1:0] a);

if (w==1) begin

assign nlz = 7 a;

// SOLUTION: Add a case for w=2 to avoid a zero-bit recursive instance.

end else if (w == 2) begin

assign nlz = af0] 7 0 : al1] 7 1 : 2;

end else begin

// SOLUTION: Divide bits between modules, be sure not to loose any.
localparam int wlo = w/3;

localparam int wmi = wlo;

localparam int whi = w - wlo - wmi;

localparam int wwlo = $clog2(wlo+1), wwmi = $clog2(wmi+l), wwhi = $clog2(whi+l);
uwire [wwlo-1:0] 1z_lo;
uwire [wwmi-1:0] 1z _mi;
uwire [wwhi-1:0] 1z_hi;

// SOLUTION: Divide a between modules.

clz_tri_tree #(wlo) clo(1z_lo, al wlo-1 : 0 1)
clz_tri_tree #(wmi) emi(1z_mi, al[w-whi-1 : wlo]);
clz_tri_tree #(whi) chi(1z_hi, al w-1 : w-whi]);

// SOLUTION: Combine the results of the three modules.
assign nlz = 1z_lo < wlo 7 1z_lo
lzmi <wmi 7 wlo + 1lz_mi : wlo + wmi + 1z_hi;

end

endmodule

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Fall 2019 Midterm Exam Solution mt sol.pdf

Problem 3: [27 pts] Appearing below are modules that test if two bit vectors are equal in some way.

(a) Show the hardware for the module below at the default size using basic gates: AND, OR, XOR, NOTs,
and bubbled inputs and outputs. Do not use something like E]

module eq #(int w = 4) (output uwire equal, input uwire [w-1:0] a, b);
assign equal = a == b;
endmodule

@ Show hardware using basic gates at default size.

The solution appears below with some colored labels to help with the next subproblem. Note that—never forget that—equality is
Tested using XNOR. (exclusive nor) gates.

€q
<2 —> =<—|jgw——>
530
“— | bio1 |
T
alll g
bl1] S
7 / L] -—
a[2] | +
bi21)
T
a[3]
Lb | o3 .
W) A critical path.

(b) Show the cost and delay of the module in terms of w (the value of parameter w) using the simple model.

@ In terms of w: @ Cost and @ Delay.

The cost 18 [Bw + w — 1Jue = [4w — 1] uc. The 3w term i for the XNOR gates and w — 1 term is for the big AND gate.
(In the solution above three 2-Input AND gates are shown rather than one 4-input AND gate.) The delay is [2 + [Igw]] ug, the 2
term is for an XNOR gate and the Igw tarm is for a path through the big AND gate.

To compute delay 4 critical path is needed. A critical path for the equality unit is shown above in red, starting at a[1]. Because of
symmetry in the equality unit the eritical path could have started at any input bit. The path through an XNOR I8 two gates, and &
path through the big AND is [lg w] gates.

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Fall 2019

Midterm Exam Solution

(¢) The module below also tests equality but it does so after shifting the first operand. Show the hardware
in terms of basic gates after optimization.

module eqgs #(int w = 6, int s 2) (output uwire equal, input uwire [w-1:0] a, b);
localparam logic [w+s-1:0] zero = 0;
assign equal = zero + (a << s) == b;

endmodule

@ Show hardware at default size after optimization.

The solution appears below. Because the shift is Dy 4 constant amount no shifter is needed, instead the bit positions are adjusted
(WmQh i3 why, Tor example, b [2] 18 compared 1o a[O]). Because we are adding zero no adder is needed. Because of the shift the
10w DTS 0T b and the Nigh DIts of a are compared 1o zero.

bl0]

eqgs

bl1]

{mm|
[N

o9
&

¥
|lenba

2

imm|
L

oo

(d) The module below performs a different operation than the one above. Explain the difference and show
an example.

module eqt #(int w = 6, int s = 2) (output uwire equal, input uwire [w-1:0] a, b);

assign equal = (a << s) == b;
endmodule
@ Difference between operation eqs and eqt.

@ Show a value for a and b for which the output of eqs and eqt are different.

In module eqgs the s MSB are compared £o zero, whereas in eqt the s MSB are ignored. For example, consider w = 6 and s = 2, and
fora = 1011113 and b = 11 11002. Module egs finds them not equal (because eight-bit quantities 101111002 # 0011 11002)
DUt eqt Tinds them equal (b@eause Six-Dit quantities 1111005 = 11 11002).

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Fall 2019 Midterm Exam Solution

Problem 4: [28 pts] Answer each question below.

(a) Appearing below is synthesis data taken from the solution to Homework 2. The Delay Target column
shows the maximum delay constraint given to the synthesis program.

Module Name Area Delay Delay
Actual Target
clz_w32 26290 3.110 10.000 ns
clz_tree_w32 21706 1.425 10.000 ns
clz_w32_1 36476 1.007 0.100 ns
clz_tree_w32_5 37356 0.577 0.100 ns

@ In general, which result should be used if the only goal were to minimize area,
the results for the @ 10.0ns Target or for the O 0.1ns Target ? Explain.

When the delay target is large the synthesis program is freer to minimize area (eost). It can try different cost-reducing optimizations
Without having them being rejected because they result in higher delay (as long as that delay is below the delay target).

@ In general, which result should be used if the only goal were to minimize delay,
the results for the O 10.0ns Target or for the @0.1 ns Target ? Explain.

The synthesis program frst tries to meet the delay target, then reduces cost. If the delay target is very low it will devote all of its
effort to reducing delay.

(b) Provide w-bit declarations requested below.

uwire [0 : w-1] bit_zero_is_msb; // SOLUTION
uwire [w-1 : 0] bit_zero_is_1lsb; // SOLUTION
uwire [w/2 : -w/2] bit_zero_is_middle; // SOLUTION.

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Fall 2019 Midterm Exam Solution mt sol.pdf

(¢) The module fragment below starts with six declarations (the object names starting with r), each providing
a value (either a+b or x+y). Some of those declarations will result in compile errors. Identify them and explain
the problem. If possible fix the problem without changing the object kind (localparam, uwire, var).

module my_mod
#(int w = 10, int x = 11, int y = 12)
(input uwire [w:1] a, b);

localparam logic [w:1] rlp = a + b; // SOL: Can’t fix, a + b not constant.

localparam logic [w:1] r2p = x + y; // SOL: Okay.

uwire [w:1] riw = a + b; // SOL: Okay.

uwire [w:1] r2w = x + y; // SOL: Okay.

logic [w:1] r1l = a + b; // SOL: Wrong, can’t continuously assign var type.
logic [w:1] r21 = x + y; // SOL: Wrong, can’t continuously assign var type.
// SOLUTION: Fixes:

logic [w:1] ri1l, r21;
always_comb begin ril

a+b; r2l =x+y; end

// The following is not wrong, but it’s longer than the original.
uwire [w:1] ri12, r2u;

assign rlw = a + b;

assign r2w = x + y;

@ Indicate which ones are wrong and @ the reason that they are wrong.

@ Indicate which can’t be fixed and @ and explain why not.

The value ASS'\gT\QG 10 2 localparam must be an elapboration-time constant. That's true for x+y because U\Qy are parameters, but
it's not true for a+b because a and b are module 'mputs and so could never be elaboration-time constants.

The assignments 10 riw and r2w are fine. SystemVerilog allows & net (including uwire) declaration to include a continuous
assignment.

The assignments to ril and r2l are Wrong hecause var OD]QQIS can ()\'\\y be &SS'\gﬂQd in p\"OQQdUY&\ code. That's easy 1o X Dy
pYOV\GH\g an always Dlock, which is shown above.

(Note that a declaration like logic [w:1] wv; isshorthand for var logic [w:1] v; and a declaration like uwire [w:1]
u; Is shorthand for uwire logic [w:1] u;))

Other than for rip the size, type, and kind of a, b, x, and y are not a problem. The sum x+y is & 32-bit 2-state integer.
IU's not an error 1o assign that to a w-bit four state type. Also note that the data type for all of the r[12] [pwl] objects are
logic. (Note that r[12] [pwl] is an ad-hoc regular expression matehing the objects being assigned above. Regular exprassions are
something you should Know in general, but not for this eourse.)

Grading Note: Students had more difficulty with this problem than I expected. As I pointed out in class, if
you don’t understand the different object kinds (net, var, param) and how they should be used you’ll waste
lots of time blindly changing things until the error messages go away.

7

https://xkcd.com/208/
https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Fall 2019 Midterm Exam Solution mt sol.pdf

(d) Explain what $realtobits does, and what hardware will be synthesized for it, if any.

always_comb begin
x = $realtobits(r);

end

@ Purpose of realtobits.

The realbits system 1ask is used to Move a set of bits from an object declared real 10 one declared as some kind of integer (S&y,
logic [63:0]). The bits are moved unchanged. 1T, instead the assignment were x=r; the simulator would convert the real
value in r 1o an integer.

g Synthesized hardware.

None. If we were to draw a diagram, there would be a wire labeled with both x and r.

https://www.ece.lsu.edu/ee4755/2019/mt_sol.pdf

Fall 2019 Final Exam Solution fe sol.pdf

Name Solution

Digital Design using HDLs
LSU EFE 4755
Final Examination

Friday, 13 December 2019 10:00-12:00 CST

Problem 1 (30 pts)
Problem 2 (25 pts)
Problem 3 (20 pts)
Problem 4 (25 pts)
Alias 41t Beging Exam Total _ (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Fall 2019 Final Exam Solution

Problem 1: [30 pts] Appearing below is the solution to Homework 6, the accumulation module. The next
page shows the pipelined adder and st_occ, which is some of the inferred hardware. Show the rest of the
inferred hardware after some optimization. Leave the pipelined adder as a box.

module add_accum #(int w = 21, n_stages = 3)
(output logic [w-1:0] sum, output logic sum_valid,
input uwire [w-1:0] ai, input uwire ai_v, reset, clk);

logic [n_stages-1:0] st_occ;
assign sum_valid = !st_occ;
uwire aout_v = st_occ[n_stages-1];

uwire [w-1:0] aout;
uwire [w-1:0] a0 = ai_v 7 ai : sum;
uwire [w-1:0] al = aout_v 7 aout : sum;

add_pipe #(w,n_stages) add p0(aout, a0, al, clk);

logic sum_occupied;

uwire [1:0] n_values = ai_v + sum_occupied + aout_v;
uwire saa = n_values >= 2; // Start an addition.
uwire write_sum = !sum_occupied && n_values == 1;

always_ff Q(posedge clk) if (reset) begin
sum <= 0;
sum_occupied <= 0;
st_occ <= 0;

end else begin
if (write_sum) sum <= aout_v ? aout : aij;
sum_occupied <= n_values[0];
st_occ <= { st_occ[n_stages-1:0], saa };

end

endmodule

M Show inferred hardware after some optimization, but @/leave add_pipe as a box.

M Show logic associated with n_values as basic gates and a single BFA, do not show adders and do not show
comparison units.

M Clearly show all input and output ports, do not confuse parameters with ports.

M Avoid effortlessly optimized hardware, such as gates with constant inputs.

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Fall 2019

Final Exam

solution appears Delow.

Solution

add_accum

sum
N
(|
g 1 add_pO
o] | 2o = — en
Z add_pipe aout 1
B ~ al 0 sum T
al_v J
A
|~
A
aout_v
A sum_valid L
I [
saa ~
co 3—
[, 4 —
BFA s —
ci e] A _I
reset | sum_occupied
tH -
H—-
clk

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Fall 2019 Final Exam Solution fe sol.pdf

Problem 2: [25 pts] Appearing below is hardware from the solution to Homework 5, Problem 2. The
parameter names have been shortened, such as changing wv to v and using 1g v for wvb. The diagram shows

the delay through some of the modules, including the pop module. Treat e and a (delays for E] and)
as given constants for the first part.

(a) Based on the provided delays and using the simple model for others, compute the arrival time (delay) of
signals at each register input. That’s two inputs for each of five registers. The solution for ready is shown
in blue, so only four registers remain. Also, highlight the/a critical path to the err register.

@ b
H est_match
start Solution Sample solution 7 = _v,k
in green. in blue italic. N 8
1 en Q
X —\ < ‘@ ready L
_/ 1 L]
©) <e> (e+1)] LA g
<3> . B
(@) 4+ en | I'D —] en
I e - 4 POS
clk 0 g v g v
s o T A A
©
val i *]
[] # msb 1
v (0) 1'b0
Isb 2
2
v-1:1
©
> Critical Path, 2 1g k
T © 0y | (ZF8lg kD
o 2160 0|} AS/2+8lg2 |
,\)D P start Q
N | PP |y rJen
@17~ H 5 N Q+6lgk+1) A err |
: / 7
key| .5 !‘IJ 2+8Ig k+3 9k
B : ' <6 Ig k> ~01 [= 5 + 8lg k] A

Ef Show the arrival time of the enable and data signal at each register input and M Highlight a critical path
to err with a squiggly line.

M Take into account constant inputs when computing delays.

4

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Fall 2019 Final Exam

Solution

solution to p&\”t a: Arrival times at YQg\StQY '\RPUIS, as well as the GQ\E}y at other po'mts, shown in green. The critical p;\m appears as

a red dashed (not squiggly) line.

Note that the delay of & mux with o constant data input is 1, which applies 1o two of the multiplexors in the diagram.

The eritical path in the solution starts at key. It would also be correet 1o start the critical path at sh_val (‘AT\G passing through

the XOR gates).

A common mistake was to show the critical path passing through o register. Paths start at register outputs and end at register

inputs.

(b) The equality module is shown with a delay of e. Show the hardware for that module and compute the
cost and delay using the simple model. Take into account the width of the inputs and the fact that one

input is a constant.

M Sketch hardware for equality module for lgv = 8 and v — k = 101100015, and M taking into account the

constant input.

Because of the constant input each XNOR gate
s optimized 1o either a NOT gate (where the
constant bit 1s O) or just wire (where the con-
Stant DIt 18 1). So the equality modula is Just
a [lgv]-input AND gate. See the lllustration
10 the right.

a[0]
R

1

/

all]
] >

0

/

0

al2]
bl2] |D

/

0

a[3] L |
o)) 15
al4]

bl4] IDo:

/

1

al5]
b[5] |D
1

/

/

b

0

a[6]
b[6] |Do—

/

al7]
o] >
8b'1011001

‘2160 A311ENb3
11g-g Jejnbay

al0]

all]

al2]

a[3]

q JO anjeA JueIsuod
uo paseq paziwndo

L

a[4]

a[5]

a[6]

b

al7]

8b'1011001

M Show the cost of the hardware for the equality module above based on the simple model in terms of Igv.
Don’t forget to take the constant input into account.

The hardware consists of a single g v-input AND gate. 1ts cost is [lgv — 1] u.

E/ Show the delay of the hardware based on the simple model in terms of lgv. M Don’t forget to take the

constant input into account.

The delay of an lg v-input AND gate is [lg[lgv]] uy.

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Fall 2019 Final Exam Solution fe sol.pdf

Problem 3: [20 pts] The hardware illustrated fibo, w=16

to the right emits a famous integer sequence.
Write a synthesizable Verilog description of the +
hardware.

MComplete the module, M be sure that it is] 0 ’ |

=
fum)
t

synthesizable. A

(mn
|

M Use non-blocking assignments carefully.
& & Y Jreset

@/Be sure to include all input and output ports
and parameters. clk 0

H—- A

st
imml
[m.]

[]/Make sure that all objects have the appropriate
widths.

Solution appears below. The warning about non-bloeking assignments needed £o be heeded in the solution below 50 that the value of
Fi used when updating Fi_next would be based on the old value of Fi.

// SOLUTION

module fibo
#(int w = 16)
(output logic [w-1:0] Fi, i,
input uwire reset, clk);

logic [w-1:0] Fi_next;
always_ff Q@(posedge clk) if (reset) begin
Fi <= 0;
Fi_next <= 1;
i <= 0;
end else begin
Fi <= Fi_next;
// Note: The non-blocking assignment above insures that the Fi +
// Fi_next expression below is computed using the old value of Fi.
Fi_next <= Fi + Fi_next;
i<=1i+1;

end

endmodule

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Fall 2019 Final Exam Solution

Problem 4: [25 pts] Answer each question below.

(a) Appearing below are synthesis script results for the pipelined integer adder from Homework 6. That
adder computes a w-bit integer sum using an n-stage pipeline in which each stage computes [w/n] bits of
the sum, starting with the [w/n] least-significant bits in the first stage.

All syntheses are of a w = 24-bit adder, versions with n = 1, 2, 3, 4, and 6 stages are synthesized. The delay
target is set to an easy 90ns.

Module Name Area Delay Delay
Actual Target
add_pipe_w24_n_stagesl 29928 10.174 90.000 ns
add_pipe_w24_n_stages2 47043 5.428 90.000 ns
add_pipe_w24_n_stages3 64159 3.701 90.000 ns
add_pipe_w24_n_stages4 81275 2.837 90.000 ns
add_pipe_w24_n_stages6 115506 1.973 90.000 ns

M Based on this data provide the M latency and M throughput for the three-stage adder. Be sure to M
use appropriate units for the throughput.

The latency 18 3 x 3.701 = 11.103 ns. The throughput s 13?"_%%[?5“ = 270.2 x 106 additions per second.

M Note that the area (cost) increases with the number of stages. Based on the description above what is the
main contributor to the increase in cost?

The main contributor to cost are the registers. Each stage requires three registers, two for the source OpQF&ﬁGS and one for the sum.

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Fall 2019 Final Exam Solution fe sol.pdf

(b) The two modules below appear to be similar.

module plan_l(output logic [7:0] e, input logic [7:0] a,b);
logic [7:0] c;
always_comb begin
c =a+ b;
e =c + a;
end
endmodule

module plan_ll(output logic [7:0] e, input logic [7:0] a,b);
logic [7:0] c;
always_comb e = c + a;

a + b;

always_comb c
endmodule

M For which module will the simulator perform unnecessary addition? M Explain.

Module plan_IT Will require extra work because when a cnanges the e = c + a ¢an be executed twice, Tirst Tor the change in a
then for the change in ¢ due To execution of the ¢ = a + b.

M Is the result computed by the two modules different or the same? M Explain.

The result at the end of a time step is the same. However plan_IT can leave e in different value than plan_I GUN\'\g a time step
(DQT()YQ e = c+a executes a second time, as described &DO\/Q).

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Fall 2019 Final Exam Solution

(¢) What value will y have

module S;
logic [15:0] a,b,y;
initial begin

a=1; //
b = 100; //
b <= 10; //
y = 0; //
y <= a + b; //
y = 999; //
#1; //
//
//
//
a = 2;
b <= 20;
#200;

// Show value of

at the end of the initial block?

SOLUTION information in comments below.

Value of b set to 100.

Update event b = 10 is put in NBA region. b still 100.

Value of y set to zero.

a+b computed: 1 + 100 = 101. Update event y=101 put in NBA region.
Value of y set to 999.

After #1 reached NBA events executed:

b set to 10

y set to 101. (a+b computed above using older b).
The lines below have no impact on y.

y at this point in execution.

// SOLUTION: y is 101.

end
endmodule

M Value of y at end of block is:

short answer: y=101.

EXplanation: y is assigned three times. For the blocking assignments, y=0 and y=999, the value is written when the respective
statement is executed. For the nOﬂ-D\OQng assignment, y<=a+b, the value a+b is computed when the statement is reached, but
the result is not &SS'\gﬂQd until the simulator reaches the timeslot ¢ = 0 NBA region. The same holds for ﬂOh-b\OQng assignment
b<=10. For that reason a+b is Qomputed using a=1 and b=100. See the comments in the code above.

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Fall 2019 Final Exam Solution

(d) Consider the declarations below.

module types;

int en;
logic [31:0] 1lo;
bit [31:0] b;

uwire [31:0] u = 33;
localparam int p = 22;
endmodule

M Object u has the same data type as one of the other objects. Which is it?

It Nas the same data type as [1o | The data type is Logic. Declarator uwire Is an object kind, not a data type. For uwire
kinds the default data type is Togic.

M What is the difference between 1o and b (logic and bit)?

Both are used to represent one DIt. Type bit has two states, 0 and 1, while 1ogic has four states, 0, 1, x, and z. The var
Logic objects have value x until they are assigned a value. In net logic objects (SUQY\ as something declared wire) the value is x
when there is more than one driver and at 1east one is Ariving & 0 and at 1east another is driving a 1. Anet object with zero drivers
Nnas value z. 1T is also possible to specify these values in literals, such as 1’bz.

M Notice that u is assigned a value. What is it about object 1o that makes it illegal to assign a value in its
declaration?

Object 1o is a variable Type, and so it can only be assigned in procedural code.

M Add correct code to assign value 44 to lo.
The solution appears below. If the g()&\ is 10 QSS\gﬂ an initial value then an initial block is QPPTOPY'\MQ.

An assign lo=44; is wrong because 1o is a var kind and continuous assignments (mc\ud‘mg assign) snould only be performed
On net kinds, sueh as uwire.

// SOLUTION
initial lo = 44;

10

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2019/fe_sol.pdf

Fall 2018 Midterm Exam Solution mt sol.pdf

20 Fall 2018 Solutions

393

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Fall 2018 Midterm Exam Solution mt sol.pdf

Name Solution

Digital Design using HDLs

LSU EE 4755
Midterm Examination

Friday, 26 October 2018 9:30-10:20 CDT

Problem 1 (22 pts)
Problem?2 (20 pts)
Problem3 (23 pts)
Problem4 (10 pts)
Problem 5 (25 pts)
Alias BlOCKEhAIN Apocalypse Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Fall 2018

Midterm Exam Solution

Problem 1: [22 pts] The illustration below shows some of the inferred hardware for the behav_merge
module from the solution to Homework 6. The hardware that’s shown is for typical iterations i and i+1.
Show the hardware for iterations i=0 and i=1 with optimizations applied.

.00,
ia; |ib 0
Ig n~
a alo] ,
T9n a a[o] w
1| x[01w 1 x[01w
b| ool 9 9
1l w b| w
. ik ik
g Optimization ;
ia| |ib Plan ia| |ib
0 Completed
alo0] Optimization alo]
a[l] w w
\ a[1]
R 1 x[1]w ||
| oy
w w
0 %Aj b[1]

L DS

1 Maximum ib

assumen > 2.

1 valueis 1,
I
==
ib

module behav_merge

]
\—y\—.ﬁ; ia b H
H SOLUTION ABOVE :
@ Show hardware for iterations 1=0 and i=1. g / , behav_merge, n, w
g n. gn -
ia| |ib
@ Also show hardware for code before for loop. 5 b —
al0] ; n
@ Optimize hardware. Take into account possible values l all] i/
of ia and ib. U x[i] w
b[0]
See the next page for a discussion of the solution. l bl1] i— w 2
e—
[
x

#(int n = 4, int w = 8)
(output logic [w-1:0] x[2*n],
input uwire [w-1:0] alnl, bln]);

a[0] ;

logic [$clog2(n+1)-1:0] ia, ib; [au
always_comb begin ¢ L N w
ia = 0; ib = 0; CORN !xu+u
for (int i = 0; 1 < 2%n; i++) lb?] %Aj
if (ib==n || ia'=n && al[ial<=b[ib]) P
x[i] = al[ia++]; else x[i] = b[ib++]; 1 n 1
end G—j —G-j
I —
endmodule ia -

m
o

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Fall 2018

Midterm Exam

Solution

a alo]

mt sol.pdf

00,
ia ib 0
Igln+
a alo]
ﬁ ~lgn
w
b| o
Nl W
0

IA

x[01w

(=]

J b| v

Optimization
ia| |ib Plan ia| |ib
V 0 Completed J
aro] Y Optimization > at01 L
all] w w
\ a[1]
| | 1] x[1]w ~ |] 1 x[1]w
ot P || L @ e
N 0 b[0] N 0
bI1] w T w T
0 b[1]
L \ |
1 1 Maximum ib 1 1
value is 1,
@ @ assumen > 2. @ @
I—>l o ol<—] [—>In—- o/ \= ol<—]
ia ib ia ib M
: : : o
: SOLUTION ABOVE e :
[]
a
3 behav_merge, n, w
Ig n. lg n -
1 b ia ib
a[0] & n=
[am w
Solution appears above. : Lo ,
~ | x[i] w
Explanation: To the left hardware that's no longer 0101 Y | 0
needed appears in gray. On the right the diagram | bl1] A T
[s redrawn with the unneeded hardware removed. :

The initial zero values for ia and ib make the
alia] and b[ib] muxen unnecessary. For i=1
those muxen each have two inputs since the possi-
ble values for ia and ib are either 0 or 1.

A value Tor n was not given, but it is reasonable to
assume that it is greater than 1. In that case the
output of all of the logic blocks will e Talse.
This makes the AND and OR gates unnecessary,
and so the output of the Dlock can connect
directly to the x mux and to the logic generating
the new ia and ib signals. For i=0 the ia signal
18 equal 1o the output o the block (that is, &
0 or 1), for ib (or to be exact, the least signifieant
DIt of ib) the output is inverted.

- @@D
@7
Ic

I—)L of \= OI<—]
ia |ib X4

a[Oli n

l a[1]
w

b[0 .

Lo x[i+1]
| bl1]

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Fall 2018 Midterm Exam Solution mt sol.pdf

Problem 2: [20 pts] Appearing once again is part of the Homework 6 solution, this time with items labeled
in blue. Show the cost and delay of these, as requested below. See the previous problem for the Verilog
description. The phrase most expensive means for the value of ¢ for which the device needs all inputs, even
after optimization. For the mux, show the cost and delay for the tree implementation.

a

@ Cost of most expensive a-mux in terms of 3 behav_merge, n, w E
n and w. ia| |ib /a—lim
The mux has n mputS (th@ size of the a mr&y) of

w bits each. The cost is | 3w(n — 1) ue | | al0l i
a[l]

n =
w
a'rnUX/:/ LO 1] X[i] w
bio1 Y.
w

al

imm|
[m.)

@ Delay of most expensive a-mux in terms

of n and w. i @7
n
The delay is| 2[lgn] ug | 1@5 @1
|

3
c
X

@ Cost of most expensive i-mux in terms of

n and w. i —
.)) i a[0] n
The i-mux Nas Just two inputs of 1g n bits each 0 N
a

according to the diagram. According to the Verilog - »
the number of bits is [Ig(n + 1)]. The cost is ° P DD w
3[lg(n+1)]uc | Note: 31gn would get full blo] Y o x[j+1]

eredit. b[1]

1 1
@ Delay of most expensive i-mux in terms @ @
I

I
of n and w. s

Since there are only o INputs the delay 1s | 2y |

@ Cost of most expensive a-1im in terms of n and w @ after optimizing for constant inputs.

INpUt 1 To the equality unit is & constant, so the Arst column of XOR gates 18 replaced by NOT gates (In positions whare the n bit
I8 0). SO the equality module is just the NOT gates plus n-Input AND gate, the cost of which is ’ (Mg(n+1)] = 1)uc |

@ Delay of most expensive a-1im in terms of n and w @ after optimizing for constant inputs.

The delay s | [Igflg(n + 1)]] ue |

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Fall 2018 Midterm Exam Solution mt sol.pdf

Problem 3: [23 pts] Output 1t of module comp, below, should be 1 iff a is strictly less than b, and eq
should be 1 iff a==b. Both a and b are unsigned integers. The module recursively instantiates two instances
of itself, one is supposed to compare the low bits of the inputs, the other compares the high bits. Complete
the module so that it works for any positive w.

@ Complete the module, don’t miss the @ FILL IN items.

@ Make sure that it works for odd and even values of w.

module comp
#(int w = 8)
(output uwire 1t, eq, input uwire [w-1:0] a, b);

if (W==1) begin // Terminating Case Condition <---- @ FILL IN
assign 1t = l!a && b;
assign eq = a == b;

end else begin

uwire 1lo, 1lhi, elo, ehi;

localparam int wio = w [2;
localparam int whi = w - wlo;

// Instantiate two comp modules, connect each to about half the inputs.

//
// — et <-- @ FILL IN
comp #(WI0) clo(1lo, elo, al WIO-1:0 1, bl WO-1:0 1);

comp #(WN1) chi(1hi, ehi, a[W-1:WI0 1, o[W-1:.Wl0 71);

assign 1t = N1 || ehi && 0 ; PR @ FILL IN
assign eq = 00 && ohi ; <--—- @ FILL IN
end
endmodule

Solution appears above, in blue, of course.

Explanation: The termination condition must be set 10 w==1 hecause the expression 'a && b would not set 1t 1o the correct
value it a and b were more than one-bIt quantities. Setting w==0 would make no sense from a Tunctionality vViewpoint.

The non-terminating case splits the bits making up the two inputs, a and b, between the two reeursive instantiations, clo and chi,
in g straightforward manner. Notice thal wlo and whi are computed separately (Y&U\QF than using w/2 for DOUN) 10 handle odd
values of w.

Finally, outputs 1t and eq must be computed from the outputs of clo and chi. Equal is the easier one. Input a equals b if their
oW Dits and nhigh Dits are both equal. That i3, eq = elo && ehi. For 1t 10 De true either 1hi is true (mem\mg that a<b
100King only at the most-signifieant b‘\tsj or if the high bits are equal, ehi, and 11o is true.

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Fall 2018 Midterm Exam Solution mt sol.pdf

Problem 4: [10 pts] The output of plus_amt, x, is to be set to b + amt. Input b and output x are expected
to be in IEEE 754 double FP format (the same format as type real). (Note: the port declarations are not
to be modified in the problems below.) Several variations on the module appear below. Hint: Solution to
this problem require the correct use of realtobits and/or bitstoreal. Grading Note: The bonus problem
was not on the original exam.

(@) The module below does not compute the correct result. Fix the module by modifying the always_comb
block. The module does not need to be synthesizable.

@ Fix so that x is assigned the correct result, amt plus value of b.

Two solutions appears below. In the original code one operand was an integer type, b, the other was 4 real type, amt. In such cases
the simulator would add code to convert b from an integer 1o 4 real. The simulator has no way of knowing that b already holds o
value in the real format. Once b is converted the value is ruined. Two solutions are shown below. In the first solution two new real
variaples are declared, one for b and one for x. The re-interpretation system task $bitstoreal is used Lo move the value in b 1o
b_real without changing the bits. In the statement x_real = b_real + amt; all three variables are real, so the simulator
does not Ao any type conversion. Finally, x is assigned from x_real USing the re-interpretation system task $realtobits. The
second solution uses these system Tasks the same way but without the intermediate variables.

module plus_amt
#(real amt = 1.5)
(output logic [63:0] x, input uwire [63:0] b);
// Both x and b are IEEE 754 doubles (reals).

real b_real, x_real; // Declare vars to hold real values.

always_comb begin
b_real = $bitstoreal(b); // Re-interpret b as a real.

X_real = b_real + amt; // Note: Both operands are FP, so do FP add.
x = $realtobits(x_real); // Re-interpret x_real as logic vector (int).
end
endmodule

module plus_amt // Compact solution, avoids need for new variables.
#(real amt = 1.5) (output logic [63:0] x, input uwire [63:0] b);

always_comb x = $realtobits($bitstoreal(b) + amt);

endmodule

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Fall 2018 Midterm Exam Solution mt sol.pdf

(b) [0 pts] ’Bonus Problem‘ Complete the module below so that it uses the CW_fp_add module to do the
addition. The parameters to CW_fp_add are already correct, just connect the inputs and outputs.

D Complete so that it computes the correct result.

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Fall 2018 Midterm Exam Solution

Problem 5: [25 pts] Show the hardware that will be inferred for the Verilog code below.

@ Clearly show module ports.
@ Show inferred hardware. Don’t optimize.

@ Pay close attention to what is and is not inferred as a register.

module regs #(int w = 10, int k1 = 20, int k2 = 30)
(output logic [w-1:0] vy,
input logic [w-1:0] b, c,
input uwire clk);

logic [w-1:0] a, x, z;

always_ff Q@(posedge clk) begin
a=>b+ c;
if (a>kl) x

if (a>k2) z
y = x + z;

b + 10;
b + x; else z = ¢c - Xx;

end

endmodule
solution appears below.

EXxplanation: The areq corresponding to the always_f£ block is outlined in a green dashed line. Registers are shown on the right-
hand boundary because the value that gets clocked into & register is the value present when control reaches the end of the block (U\Q
end statement ’ADOVQ). Four values are assigned within the block, a, x, z, and y. Registers are inferred only for those variables that
are 4 live out object of the bloek. That is true for y since it's also & module output and 8o iTs value is needed outside the block. In
contrast, the value of a that is computed in the block is ot used again after the end is reached. (\Nhen the block is re-entered &
new value of a will be Qomputed.) The same is true for z. But the value of x may be used after end is reached. That happens when
the block is re-entered and a < kq, in which case x is set 1o the previous value of x (IhQ one in the TQg'\StQT) rather than b+10.

regs, w, k1, k2

always ff @ (posedge clk)
X
M x

10;@ %

k1

(mm]
[

s T

0
L
LI

clk k2

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2018/mt_sol.pdf

Fall 2018 Final Exam Solution fe sol.pdf

Name Solution

Digital Design using HDLs

LSU EE 4755
Final Examination

Wednesday, 5 December 2018 15:00-17:00 CST

Problem 1 (20 pts)
Problem?2 (25 pts)
Problem3 (20 pts)
Problem4 (10 pts)
Problem 5 (25 pts)
Alias In_Colo Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2018 Final Exam Solution

fe sol.pdf

Problem 1: [20 pts] Appearing to the right is the mg;tgiigad;‘f?fn:z (wm)]
hardware inferred for the Homework 7 Problem 2

module, the fast sequential multiplier which skipped i
over zeros in the multiplicand.

plier
ul

poad

(a) Notice that some hardware is circled in blue. Op-
timize that hardware and show the cost of the op-
timized hardware. The optimized hardware should
generate signals sv_prod and oa new. If possible,
replace the multiplexors with simpler gates.

@ Show optimized hardware.

Solution appears to the lower-right in purple.

M Cost of optimized hardware:

m
us)

The [Ign]-input NOR gate implementing iter==0 Costs
[[lgn] — 1] ue.

pljeA Ul
=|a
E
3

The new AND and OR gates cost 1 u, eaeh. The existing (th

Uth&ndej T,hYQQ*mpUT. AND gQT.Q costs 2 Uc. The total cost is |
[[lgn] + 3] ue.

o
PR

T
|leAe 31no

m
us)

mult_seq_d_prob_2 (w,m)

Unoptimized n = w/m

plier
A

poud

m
o

plleA"ul
=|a
E
3

a
PR

h
T

|leae 3no

m
o

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2018 Final Exam Solution

(b) In the version of the module appearing be- mult_seq_d_prob_2 (w,m)

. Unoptimized n = w/m
low the units have been replaced by one P /

module, gt, the changed hardware appears in
blue. As can be inferred from the diagram bit
i of the output of gt, gtv, is 1 iff i>iter. In

plier
A

o
o

w

2w

the Verilog code below gt is instantiated but it

is not being used. Modify the Verilog code so

that the existing for loop uses the output of
gt instead of the > operators. Pay attention

windoe

to the version of iter used by gt.

M Use gt output in existing for loop.

inml
U

N
=

M Make sure that gt uses correct iter version.
module mult_seq d prob_2
#(int w = 16, int m = 2)
(output logic [2*w-1:0] prod,
output logic out_avail,

inml
o

input uwire clk, in_valid,

input uwire [w-1:0] plier, cand);

pljeA ui

localparam int n = (w+m - 1) / m;

localparam int iter_lg = $clog2(n);
uwire [n-1:0][m-1:0] cand_2d = cand; H
bit [iter_lg-1:0] iter, next_iter;

o
S

T

A |leAe 3no

L

poad

]
o

logic [2*%w-1:0] accum;

uwire [n-1:0] gtv;

o

uwire [iter_1g-1:0] gt_iter = (-m'\/fl\-\d 70 '\T,Qr); // E/ FILL IN
gt #(n,iter_lg) gti(gtv, gt_iter);
always_ff Q@(posedge clk) begin

if (in_valid) begin
iter = 0; accum = 0; out_avail = 0;

end else if (l!out_avail && iter == 0) begin
prod = accum; out_avail = 1;

end

accum += plier * cand_2d[iter] << (iter * m);

next_iter = 0;

// for (int i=n-1; i>0; i--) if (i>iter && cand_2d[i]) next_iter = i;
for (int i=n-1; i>0; i--) if (gt\/m && cand_2d[i]) next_iter = ij;

iter = next_iter;
end
endmodule

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2018 Final Exam Solution fe sol.pdf

Problem 2: [25 pts] The point of the gt module in the previous problem was to reduce cost, just in case
the synthesis program didn’t notice that the cost of computing each of n-1>iter, n-2>iter, ..., 2>iter,
1>iter, would be less than n — 1 times the cost of computing one of them. The recursive module below
computes these quantities and can be used for the gt module from the previous problem.

module gtd_rec #(int n = 16, int lgn = $clog2(n))
(output logic [n-1:0] gt, input uwire [lgn-1:0] iter);
localparam int nh =n / 2; // Note: n must be a power of 2.
if (n == 2) begin
assign gt[0] = 0;
assign gt[1] = liter[0];
end else begin
uwire [nh-1:0] gtlo;
gtd_rec #(nh) glo(gtlo, iter[lgn-2:0]);

localparam logic [nh-1:0] zeros = 0, ones = -1;
assign gt = iter[lgn-1] ? { gtlo, zeros } : { ones, gtlo };
end
endmodule

(a) Show the hardware that will be inferred for this module for an arbitrary value of n. In this case, do not
show what is inside the recursively instantiated module.

M Show hardware for arbitrary n > 2. (Don’t show recursive module contents.)

Solution appears below.

glo gtd rec, n, Ign

Isb

n
gtd rec, i 1 02 b/ .
: - ! ms
iter | '97-1 d n/2, Ign-1 |2 h9 5
m ’ O Jo/ n/2 <b
T Ign / O | 'b00...00—+] 5P n
1 o) #
msb

msb

. =

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2018 Final Exam Solution

(b) There should be a significant optimization opportunity in the hardware above. Show it.

M Show how the hardware will be optimized. The result should be AND, OR, and other basic logic gates.

Solution appears below. From the previous solution notice that the 7,/2 LSB of the lower mux input are all zeros. Therefore we can
optimize the three gates per DI, into just an AND gate using the inverted select signal. Similarly, the r2/2 MSB of the upper mux
input are all 1's, 50 Wwe can optimize those bits into just an OR gate.

gtd rec, n, Ign
gIo ¢ Isb
gtd rec, gtI’o[O] _3—
iter (971 4 n/2, Ign-1 |jn/2[otior1] D 9gt[]
[] 7 o i H
Ok 1 5, otz [-
Dc D_ msb

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2018 Final Exam Solution

(¢) Show the hardware that will be inferred for n = 8 after elaboration. That is, show the hardware inside
all of the recursive instantiations.

M Show hardware for n = 8. Show the contents of all recursively instantiated modules.

The solution appears Delow.

gtd rec, n=8, Ign=3
1'b0 S0 3_ Isb S0 3_ Isb
iter ‘}_rchtl’é)[l] 1T) 4 [omem T s 9t
s 1 A) —HH
D3I
—D_msb oot i
D
)
)
Dc D_msb

(d) Compute the cost and delay using the simple model. Show these in terms of n assuming that n is a
power of 2.

M Cost and M delay in terms of n.

The cost of the hardware for n = 218 0 (because With the simple model NOT gates are freel). The cost of the hardware for size
n =27 1> 118 n gares plus the cost of 4 size n/2 module. The total cost for & module of size . = 2", 7 > 118

3

dot=2m — 4= (20— D).
=2

Since the critical path through each level is 1, the Total delay is

n
Zlut =Mn—-1u = (Ign—1)uy.
=2

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2018 Final Exam Solution fe sol.pdf

Problem 3: [20 pts] Consider the module below.

module MisC #(int n = 8)
(output logic [n-1:0] a, g, e,
input uwire [n-1:0] b, c, j, T, input uwire clk);

logic [n-1:0] z;

always_ff Q@(posedge clk) begin

a<=b+c; // Note: nonblocking assignment.
z = a+ j;
g =2z

end

always_comb begin
e = a x f;
end

endmodule

(a) Show the hardware that will be inferred for the module above.
M Show inferred hardware. M Pay attention to what is and is not a register. M Clearly show module
ports.

Solution appears Delow. RQg\S'CQYS are inferred for a and g because U\Qy are live out vatues of the always_ff Dlock. Because a
ﬂOT\-D\OQng assignment 18 used for a the previous value of a is used (U\Q one baefore assigning b+C) when computing a+j.

misc

i NGO L
e
£ a

L

(mm|
L

L]-h o)
S
&
o

|_|_|
Ta
S

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2018 Final Exam Solution fe sol.pdf

module misc #(int n = 8)
(output logic [n-1:0] a, g, e,
input uwire [n-1:0] b, c, j, f, input uwire clk);

logic [n-1:0] z;

always_ff Q@(posedge clk) begin // Code Position Label: alf
a<=Db+c; // Note: nonblocking assignment.
z=a+ j;
g =2z

end

always_comb begin // Code Position Label: alc
e = ax*x f;
end

endmodule

(b) Suppose that the event queue is empty at ¢ = 10 when simulating the module above. Show the contents
of the event queue for the code above based on the following changes: At t = 10 j changes. At ¢t = 12 clk
changes from 0 to 1. At ¢t = 14 £ changes.

M Show the state of the event queue from ¢ = 10 until it is empty.

The solution appears below. Call the numbers along the top of the diagrams below steps. Step 1 Shows the state of the event queue
at ¢ = 10. Atstep 2 j changes. Object j is not in the sensitivity list for any piece of code S0 nothing happens, which is why step 3
s exactly like step 1. Sorry j. At step 6 clk changes from 0 to 1. Since clk is in the sensitivity list for the always_f£ block's
event control, @(posedge clk), the simulator will put & resume event for that block, shown as alf, in the inactive region. At
step 7 the active region is empty, so the inactive region is copied into the active region and so the always_££ block will execute in
step 9. (17 there were several items in the active ragion, they would exeeute one at time.) In step 11 the a <= b+c line results in an
update event for 2 being scheduled in the NBA region, shown as Upd-a. When the Upd-a event exeeutes it causes the always_comb
block, shown as ale, to be seheduled because both a and £ are on the sensitivity list for that block. Event ale executes at step 17,
after which there is no more work to do for ¢ = 12. At ¢ = 14 £ changes causing ale to be seceduled again.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t=10 |[—[t=10 |—=|[t=12 |—=|t=12 |—=|t=12 |—=|t=12 |—=|[t=12 |— |[t=12
active active active active active active active active
inactive inactive inactive inactive alf alf inactive Upd-a
nba nba nba alf inactive inactive nba inactive

nba nba nba Upd-a nba
Upd-a
16 17 18 19 20 21 22 23 24 25 26 27 28 29
— [t=12 — [t=12 — [t=12 — [t=14 — [t=14 — [t=14 — [t=14

active active active active active active active

inactive ale inactive inactive inactive ale inactive

ale inactive nba nba ale inactive nba

nba nba nba nba

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2018 Final Exam Solution fe sol.pdf

Problem 4: [10 pts] Answer each question below.

(@) The module below is not compilable. Explain why and fix it based on what it looks like it is trying to
do.

module more
(input uwire [5:0] w,
input uwire [w-1:0] a, b,
output uwire [w:0] s);

assign s = a + b;
endmodule
// SOLUTION
module more
#(int w = 16)
(input uwire [w-1:0] a, b,
output uwire [w:0] s);

assign s = a + b;

endmodule

M Fix the problem.

M Describe the problem:

Packed vector dimensions must be specitied using elaboration-time constants, but the dimensions of a, b, and s are specitied in terms
0T & module input, which is nOT & coNstant value. The NX assumes that w was supposed o be & module parameter.

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2018 Final Exam Solution fe sol.pdf

(b) The module below is supposed to count cycles but it won’t work as written. Describe the problem and
fix it.

module tic_toc
(output logic [7:0] cycles,
input uwire clk, reset);

always_comb begin

if (reset) cycles = 0;
else if (clk) cycles = cycles + 1;

end
endmodule

// SOLUTION

module tic_toc
(output logic [7:0] cycles,
input uwire clk, reset);

always_ff @(posedge clk)
if (reset) cycles = 0; else cycles = cycles + 1;

endmodule

M Describe the problem:

The sensitivity list of the always_comb module includes live-in values, including cycles in this case. Bul cycles is also &
live-out, and so there is the pOIQhU&\ for an infinite \oop since eacn Qh&ﬂgQ in cycle Will cause the always_comb 10 reexecute.

M Fix the problem.
In the fixed code, QPPQQH“% above, the always_comb i$ YQP\QQQG by an always_ff.

10

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2018 Final Exam Solution

Problem 5: [25 pts] Answer each question below.

(a) Appearing below is synthesis data showing the clock period of degree-m sequential workfront multipliers
and degree-m sequential regular (dm) multipliers for sizes m = 1, m = 2, m = 4, and m = 8.

Module Name Area Period Period Total

Target Actual Latency
mult_seq_wfront_m_w32_ml 191334 1000 3766 241024
mult_seq_wfront_m_w32_m2 205303 1000 3857 123424
mult_seq_wfront_m_w32_m4 260182 1000 5266 84256
mult_seq_wfront_m_w32_m8 351910 1000 7031 56248
mult_seq_dm_w32_ml 246818 1000 31113 995616
mult_seq_dm_w32_m2 279486 1000 30994 495904
mult_seq_dm_w32_m4 314724 1000 32127 257016
mult_seq_dm_w32_m8 408659 1000 31251 125004

As m increases the clock period of the workfront multiplier increases by a significant amount, while the
period of the sequential multiplier barely changes. Why?

@ Why does the workfront period increase so much more than that of the regular multiplier?

The eritical path of a degree-7 workfront multiplier passes through 7 binary-full adders (BFAs), whereas the eritical path for the
degree-mn regular multiplier passes through m — 1 4 2w BFAS (0r m — 1 + w for the streamlined version). For the workfront
multipliers the BFA part of the eritical path length increases by a factor of 8 when the degree inereases from m = 110 m = 8. In
contrast the BFA component of the eritical path for the regular multipliers increases by a factor of 447 ~ 1.11. That's a much
smaller increase and its effect is harder to see (that is 1.11 x 31113 # 31251) because the synthesis program can do more to
optimize longer eritical path lengths.

Let p,(m) and p,(m) denote the clock period of the degree-m workfront and regular multipliers. Show
expressions for I,,(m) and I.(m), the latencies of these multipliers.

Ef Finish the following expression for latency: I, (m) = py,(m) | x2[w/m]

Solution s above. The workfront multiplier requires 2[w/m/] clock cyeles to compute a solution. That's twice as many
eycles as the regular multiplier, but the clock period is much lower.

M Finish the following expression for latency: I,.(m) = p,(m)

solution is above. The regular multiplier requires [w /7] clock cyeles to compute a solution. That's half the number of
eycles of WoTKITont, but the period is much longer.

(b) The reasoning in the statement below is, as of this writing, incorrect. Provide the correct reason to not
spend time on multiplier modules.

“One should not spend time trying to develop efficient multiplication hardware because the synthesis program
is very good at optimizing logic and will synthesize something at least as good as a human can.”

M When working on a design that makes heavy use of multiplication one should just use multiplication operators
and not try to implement your own because:

The problem with the statement above is that as of this Writing, we can't expect a synthesis program to discover faster equivalent
versions of cireuits that we enter Tor cireuits of any complexity. For example, the synthesis program does not come close to optimizing
the benhavioral merge module from Homework 5 to the performance of a Bateher merge module. There are two reasons for using
multiply operators. First, we expect that humans have provided the synthesis program with a library of different multiplier designs
that the synthesis program will ehoose from. \We don't expaect our designs to be better than the designs produced by these humans.
The second reason is that by using multiplication operators rather than providing your own modules, the synthesis program might be
able 10 apply algebraic simplincations to some expressions.

11

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2018 Final Exam Solution fe sol.pdf

(¢) Sequential multipliers SO and S1 have the same latency and cost, but the clock period for S1 is lower
than SO.

M Which is preferred? M Explain.

Both mu\t'\p\'\ers nave the same cost, \MQT\Q% and throughput. IT no other factors are important then either one could be used.
GQT\QTA\\y sequential \Og'\Q USes more power at mgh@r frequencies and so the mgh@r clock pQNO(L and so S0, is prTQNQG.

Note that since the clock period of S1is lower, it must require more cycles to compute & product than S0. For example, suppose that
the period for S1 was 0.5 ns and the period for S0 was 1 ns. Suppose that S1 took 10 cyc to compute a product. The problem
states that the latency of S0 and S1 are the same, therefore SO must take 5 cyc.

Pipelined multipliers PO and P1 have the same latency and cost, but the clock period for P1 is lower than

PO.
E/ Which is preferred? M Explain.

Because these multipliers are pipelined the clock frequency determines throughput. Therefore P1, which has the higher higher clock
frequency, Wil have higher throughput.

12

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2018 Final Exam Solution fe sol.pdf

(d) In the module below notice that cand_2d is no longer available. Modify the line updating accum to use
cand instead.
module mult_seq dm #(int w = 16, int m = 2)
(output logic [2*w-1:0] prod,
input uwire [w-1:0] plier, cand, input uwire clk);

localparam int iterations = (w +m - 1) / m;
localparam int iter_lg = $clog2(iterations);

// uwire [iterations-1:0][m-1:0] cand_2d = cand;

bit [iter_lg:1] iter;
logic [2*%w-1:0] accum;

always Q(posedge clk) begin

if (iter == iter_lg’(iterations)) begin
prod = accum; accum = 0; iter = O;
end

// M Fix line below
accum += plier * QQﬂd‘Tﬂ*\tQY +. W\\ << (iter * m);

iter++;
end
endmodule

Solution appears above. The solution uses an indexed range expression, m¥iter +: m, 10 extract the m-Dit slice from cand.
The m*iter specinies the position to start and the mis the number of bits. Unlike the part select operator, :, with the index-
range operators, +: and —:, the 1irst operand does not need to He an elaboration-time constant. (TT\Q second operand must be an
elaboration-time constant for the part select and the index-range Opr&IOFS.)

The following is invalid Verilog: cand[m*(iter+1) -1 : mkiter], though it would retrieve the needed bits if
Systemvamog 2017 weren't 8o strict. 1t i invalid because with the ord'mary S\'\Q'\ng OPQFMOY, :, both OPQY&I\GS must be elaboration
time constants. Grading Note: Full credit was given for this answer since the indexed range operator was only
covered briefly.

13

https://www.ece.lsu.edu/ee4755/2018/fe_sol.pdf

Fall 2017 Midterm Exam Solution mt sol.pdf

21 Fall 2017 Solutions

415

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Fall 2017 Midterm Exam Solution mt sol.pdf

Name Solution

Digital Design using HDLs

Midterm Examination

Monday, 16 October 2017 9:30-10:20 CDT

Problem 1 (20 pts)
Problem 2 (20 pts)
Problem 3 (20 pts)
Problem 4 (15 pts)
Problem 5 (10 pts)
Problem 6 (15 pts)
Alias EVON IT6lNG. Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Fall 2017 Midterm Exam

Solution

Problem 1: [20 pts] Write a Verilog description of the hardware illustrated below. The description must
include the modules and instantiations as illustrated. The description can be behavioral or structural, but
it must be synthesizable.

el o1 al1] tha
a
£ b2 b[1]
b[0]
bfo bfl
a BFA_fast £ a BFA_fast £ Isb &
s3] \ 3 s3] 3 ¥4 3
= ,) ﬂ’ PR =) ﬂ’ > 4 ;S
b b
7 /
. i | 8 i | 8 msb
o s 8 s -
M Verilog corresponding to illustrated hardware.
M Show instantiations, M Verilog for instantiated module(s), M and all module ports.
// SOLUTION
module BFA_fast(output uwire sum, co, input uwire a, b, ci);
// Note: axb explicitly computed once and used twice.
uwire axb = a "~ b;
assign sum = axb " ci;
assign co = axb && ci || a && b;
endmodule
module tba(output uwire [2:0] sum, input uwire [1:0] a, b, input uwire ci);

uwire c;
BFA_fast bfoO(

sum[0], c,

af0], b[0], ci);

BFA_fast bf1(sum[1], sum[2], al1l, b[1]l, ¢);

endmodule

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Fall 2017 Midterm Exam Solution

Problem 2: [20 pts] Appearing below is a partially completed recursive description of an n = 2%-input,
w-bit multiplexor, which is a generalized version of the multiplexors appearing in Homework 1. Complete it.

M Fill in the condition and code for the terminating case.

M Complete recursive case, including the instantiation port and parameter connections (look for FILL IN).

module muxn #(int w = 5, int b = 4, int n = 1 << b)
(output uwire [w-1:0] x, dinput uwire [b-1:0] sel, input uwire [w-1:0] a[0:n-1]);

if (D==1) // Terminating Case Condition <———- EZ(FILL IN
begin
// Terminating Case

assign x = a[sell;

end else begin
// Recursive Case

uwire [w-1:0] y[2];

// Instantiate two n/2-input muxen, and connect each to half the inputs.

//

// -——- — <---- Ezf FILL IN

muxn #(C .w(W), .b(D-1)) mlo(y[0], sel[b-2:0], al O : n/2-117);

// P, —_—— e <——== M FILL IN

muxn #(C .w(W), .b(D-1)) mhi(y[1], sell[D-20 1, aln/2 : n-1 1);

// Instantiate one 2-input mux.

//

// e e <---- EZf FILL IN

muxn #(C .w(C W), .bC1)) m2(X SQ\U)-l\, y)

end

endmodule

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Fall 2017 Midterm Exam Solution mt sol.pdf

Problem 3: [20 pts] Appearing below to the right is an 8-input multiplexor constructed from 2-input
multiplexors using the technique from Homework 1 and from the previous problem. Call a multiplexor
constructed this way a tree mux. Appearing below to the left is a diagram showing a flat mux, the kind
usually used in class. The flat mux diagram shows a timing analysis based on the simple model, and some
details about cost.

For reference: Z?;é a2! = a(2® — 1). Assume that n is a power of 2.

mux n, w select
s One decode AND per input (n total). 0:0 1.1 2:2
t) 0w |n ' ' '
= = 03 w gate ANDs per
@ L% s input (nw total). a0
o g '\
a0 O >_ s
o (@) al T
o s=1 E |~
Q
al a o ﬁ
junl 0
o W a2
1>
© - |
<@> <ign>
=] a3
__|s=n-1 L~
© X
e -
T a(n-1) a4
(a) Compute the cost of an n-input, w-bit flat mux using the simple a5
model and without optimization. |~
a6 3\
M Cost of flat mux in terms of n and w.
As can be seen from the Glggram, the n decode gMQS Qach have 1g n 'mputs, for a total a7
cost of n(lgm — 1). The gate AND gates each have two inputs and there are nw |

of them, for 4 total cost of naw units. The OR gate has 7 inputs and there are w of
them, so their cost is (r — 1)w units. The total cost is then n(lgn —1) +2nw —w
units.

(b) Compute the cost of an n-input, w-bit tree mux using the simple model.

E/ Cost of tree mux in terms of n and w. MDescribe assumptions made about 2-input mux implementation.

As can be seen in the diagram, in the Arst column there are /2 = 20~ multiplexors, where n = 2°. The second column has
25=2 multiplexors, and so on, the last column has 29 = 1 multiplexor. The total number of Multiplexors is Z?;é 20 =201
multiplexors. The cost of & 2-input, w-DIt Mux fat is 3w units (see the previous part) and so the total cost of the tree mux I8

3w(2® — 1) = 3w(n — 1).
(¢) Compute the delay of an n-input, w-bit tree mux using the simple model.
M Delay of tree mux in terms of n and w.

The eritical path passes through lg 7 layers (columns in the diagram). Each layer is & 2-input mux, in whieh the eritical path passes
through an AND gate and 2 OR gate, each of two Inputs, S0 the delay is 2 units per layer. Therefore the delay is 21g n units.

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Fall 2017 Midterm Exam Solution mt sol.pdf

Problem 4: [15 pts] Show the hardware that will be synthesized for the modules below.

(a) Show the hardware that will be inferred for the module below, including the minimum number of bits in
each wire. Assume that sqrt is defined in a library somewhere.

module wqf
#(int w = 16)
(output logic signed [2*w-1:0] rad,
output uwire [31:0] srad,
input uwire [w-1:0] a, b, c);
sqrt #(32,2*w) si(srad,rad);

always_comb begin

rad = bxb - 4 x a *x c;
if (rad < 0) rad = 0;

end

endmodule

M Show inferred hardware. M Show minimum correct bit widths.

qu sl

Context-determined bit sqrt
rad srad
yi O

2W 32

[

rad

=

[

Explicitly 7 2w
specified bit widths.

7
\

w Inferred library modules.

Solution appears above. Note thal the basie arithmetic operators are replaced by library modules (S\'\()\NY\ a8 QHQ\QS) provided by the
synthesis program, whereas the sqrt module is explicitly instantiated in the module above. The multiplexor is inferred from the if
statement. The select signal is connected 1o & comparison module, however that could Q&S'\\y be opt'\m'\zed into a connection to the
sign DIt of output of the subtractor. S'\m'\\ar\y the x4 mu\tlpn@r could have been opt\m\z@d 10 a bit mnumbermg. But the question
asks Tor snferred hardware, and so even these Qasy optimizations are omitted. The sizes of the wires connected to module ports
are given explicitly in the wgf module, whereas widths of the internal wires are determined using Verilog rules for bit widths. Under
those rules multiplication and subtraction arguments' bit widths are context-determined. Note thal rad is explicitly sized 1o 2w
DIts, This context at the subTract output determines the size as the subTract inputs, which in turn determines the width needed Tor

the multiplies.

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Fall 2017 Midterm Exam

Solut

ion

(b) Show the hardware that will be inferred for the module below.

module sort2 #(int w = 4)

(output logic [w-1:0] x[2], input uwire [w-1:0] a[2]);

always_comb begin

for (int i=0; i<2; i++) x[i] = alil;

if (a[0] < al1]) begin x[0] = a[1]; x[1] = a[0]; end
end
endmodule
M Show inferred hardware.
: sort2
a[0] x[0]
x[0]
a
tH al[1]
X
W |
x[1]
al1] a[0]

x[1]

Solution appears above. Note that the effect of the for 100p is only to make x [0] another name for a[0] and x [1] another name

for af1].

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Fall 2017 Midterm Exam Solution mt sol.pdf

Problem 5: [10 pts] Answer each question below.

(a) The mux2 module below uses implicit structural code. Modify it so that it uses behavioral (procedural)
code.

module mux2 #(int w = 16)
(output uwire [w-1:0] x,
input uwire s, input uwire [w-1:0] a,b);

assign x =8 == 07 a : b;
endmodule
// SOLUTION
module mux2 #(int w = 16)
(output logic [w-1:0] x,
input uwire s, input uwire [w-1:0] a,b);

always_comb x = s == 0 7 a : b;

endmodule

E/ Modify so that is procedural. M Change ports if necessary.

solution appears above. Note that in addition to changing assign 10 always_comb, the Kind 0T 0bject Of the input port was
Qh&ﬂgéd from net to var. (uwire is an OD)QQI of kind net with a default data type of logic, and logic is a data Type with a
default object kind of \/M.)

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Fall 2017 Midterm Exam Solution mt sol.pdf

(b) Modify the module port and parameter declarations below so that the Verilog is correct. Do not modify
the contents of the module itself. Note that opt is not defined, but that it should be. Note: In the original
eram assign was omitted from the module body, making the problem impossible to solve.

module sum_or_dff
#(int w = 16)
(output uwire [w-1:0] x,
input uwire [w-1:0] a, b);

if (opt == 0) assign x = atb; else assign x = a-b;
endmodule
module sum_or_ dff
#(int w = 16, int opt = 1)
(output uwire [w-1:0] x,
input uwire [w-1:0] a, b);
if (opt == 0) assign x = a+b; else assign x = a-b;
endmodule

M Modify port and parameter declarations for correctness.

Solution appears above. The if statement, because it is in module scope, is & generate statement and therefore the condition must
De an elaboration-time constant. For that reason opt is made a parametar.

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Fall 2017 Midterm Exam Solution mt sol.pdf

Problem 6: [15 pts] Answer each question below.

(a) Why is always_comb preferred over always @(x or y or ..) when describing combinational logic?

Ef always_comb preferred because ...

... there is no need to take the trouble to list all of the live-in objects nor is there the risk of omitting one.

MWhat is the risk with always @(x or y or ..)?

1T 9 live-in object is omitted from the sensitivity list, code in the block will not be re-executed when the value of the omitted object
changes but other variables don't change. For example, consider the sum module below. The intent is hardware that adds three
numbers together. But because z was omitted the value of output a will not be “correct” if z ehanges but x and y stay the same.
In general, the simulation might not produce the answers that are expected and the synthesis program will infer g laten (OY \&tQhQS)
rather than combinational logic.

// Module illustrating error easily made using old-school Verilog sensitivity lists.
module sum(output logic [15:0] a, input uwire [15:0] x, y, z);

always @(x or y) a =x +y + z;

endmodule

(b) Describe what the technology mapping step of synthesis is, and the kind of optimizations that need to
be performed after technology mapping.

M Technology mapping is:

the substitution of generic components in the inferred hardware with components in the target technology being synthesized. For
example, a three-input AND gate (a generie component) might be replaced by ASx9AND4, a four-input AND gate in Acme Silicon's
X9 ASIC call library. (Acme Silicon's x9 ASIC cell library does not have a three-input AND gate.) Note: Acme Silicon is a fictional
silicon foundry made up for this problam’s solution.

M Optimizations that must be performed after technology mapping:

Most cost reduction optimizations must De done after IQQh\'\O\Ogy mapping Decause omy after tQQhﬁO\Ogy mapping are the cost and
t‘\m'mg of components Known.

(¢) The module below adds a real and an integer and assigns the sum (in real format) to its output. It is
valid Verilog but is not synthesizable by Owr EDA software. So, you call Owr EDA and ask, “why not?”.
They answer, “because it is impossible to add an integer to a real.” Is that the real reason? Explain.

module plusri (output real sum, input real a, input [20:0] x);
assign sum = a + X;
endmodule

M Reason a+x not synthesizable by Owr EDA software:

1T Owr EDA wanted to they could infer an integer-to-real conversion module to convert x to a real and a real addition module to
compute the sum. There are no fundamental reasons why & synthesis program can not have such features. They did not do so because
it never made 1t To the top of their to do list, perhaps.

https://www.ece.lsu.edu/ee4755/2017/mt_sol.pdf

Fall 2017 Final Exam Solution fe sol.pdf

Name Solution

Digital Design using HDLs

LSU EE 4755
Final Examination

Wednesday, 6 December 2017 15:00-17:00 CST

Problem 1 (15 pts)
Problem?2 (25 pts)
Problem3 (20 pts)
Problem4 (10 pts)
Problem 5 (30 pts)
Alias Pie Plain Exam Total ____ (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Fall 2017 Final Exam Solution fe sol.pdf

Problem 1: [15 pts] The Verilog code below is the solution to Problem la of Homework 7. Below that is
the hardware for a slightly different pipelined multiplier. Modify the hardware to match the Verilog code.
Changes need to be made for each line commented DIFFERS.

M/ Modify hardware to reflect Verilog.

module mult_fast 1a #(int w = 16, int m = 4)
(output uwire [2*w-1:0] prod,
output uwire out_avail, input uwire clk, in_valid, // M DIFFERS
input uwire [w-1:0] plier, cand);
localparam int nstages = (w+m - 1) / m;
logic [2*%w-1:0] pl_accum[0:nstages];
logic [w-1:0] pl_plier[0O:nstages], pl_cand[0:nstages];

<

logic pl_occ[O:nstages]; // DIFFERS
assign prod = pl_accum[nstages];
assign out_avail = pl_occ[nstages]; // EZT DIFFERS
always_ff @(posedge clk) begin
pl_occ[0] = in_valid; // E/ DIFFERS
pl_accum[0] = O; pl_plier[0] = plier; pl_cand[0] = cand;
for (int stage=0; stage<nstages; stage++) begin
pl_plier[stage+1] <= pl_plier[stagel;
pl_accum[stage+1] <= pl_accum[stage] + (pl_plier[stage]

* pl_cand[stage] [m-1:0] << stage*m); // DIFFERS
pl_cand[stage+1] <= pl_cand[stage] >> m; // DIFFERS
pl_occ[stage+l] <= pl_occl[stagel; // DIFFERS

end
end
endmodule
mult_fast_la w=16, m=4
li . = S)
'__Ipller pl_plier[0] w E w E’ w § w
[mu] ‘;V 7 E-I 7 EI 7 E-I 7
A A A
cand bt S z
s c c c
el S S S
w
pl_cand[0] /_QI /_I /_I
=) o) =
£ E £ gE| prod
] =] =] =1 =1 ,
g g 2 2 e
& & B o 2w
clk A& NS Na] 2w =
B us S
out
in_valid g § g % avai_l
tH 8 8 8 8 tH
s Gt 3 3 5 s

Solution appears above in blue. A straightforward addition is the pipeline lateh, pl_occ, 10 pass the in_valid signal. The other
change is in the way that the multiplicand is passed from stage to stage. In the original design the multiplicand (cand) was passed

2

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Fall 2017 Final Exam Solution fe sol.pdf

unchanged. But in the Verilog deseription above the multiplieand is shifted Dy m DITs eacn stage. With that change all the multipliers
an 100k at the m least signincant Dits rather that a diferent slice each stage. This change in the way the multiplicand is handled
makes no diference in the cost of the hardware. Either way a decent synthesis program should figure out which bits in p1_cand will
never be used and optimize them out.

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Fall 2017 Final Exam Solution fe sol.pdf

Problem 2: [25 pts] Module oldest_find_plan_b, illustrated below, is based on an alternative solution
to Homework 7 Problem 1b. Below the hardware illustration is incomplete Verilog code for this module.
The Verilog code uses abbreviated names, such as ns, comments show the original names from the assign-
ment, such as nstages. Complete the module. Note: This problem can be solved without having ever seen
Homework 7, though not as quickly.

oldest_find_plan_b w, ns

L, oc
Jns+1 oc[1] [oc[2] oc[ns] ox |
0 000 | 1+[lg nS]LJ
1 2 ns 0@7) avail
il cla
Ttwlins+1] ﬁ}O]_D_G)i
W
call]
W
Qo
8

calns]

O

imu|
L1

M Complete the module so that it matches the hardware above.

module oldest_find_plan_b

#(int w = 15, int ns = 3 /* nstages */)

(output logic [$clog2(ms):0] ox, // oldest_idx
output uwire avail, // out_avail
input uwire oc[0:ns], // pl_occ

input uwire [w-1:0] calO:ns]); // pl_cand

/// SOLUTION

// Compute ox (oldest_idx). This is similar to the Homework 7 solution

//
always_comb begin

ox = 0;

for (int i=1; i<=ns; i++) if (oc[i]) ox = i;
end

// Determine whether *each* element of ca is zero.

//
logic [0:ms] cz;
always_comb for (int i=0; i<=ns; i++) cz[i] = cali] == 0;
assign out_avail = ox != 0 && cz[ox];
endmodule

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Fall 2017 Final Exam Solution

Problem 3: [20 pts] Appearing below are two variations on the oldest index module from the previous
problem. The Plan A version is based on the code from the posted Homework 7 solution. The Plan B
module is slightly different.

(a) Compute the cost of each module based on the simple model after optimizing for constant values. Use
symbol w (for w) and n (for ns). Base the cost of an a-input, 8-bit multiplexor on the tree (recursive)
implementation. Recall that the tree implementation consists of & — 1 two-input multiplexors arranged in a
tree.

M Plan A cost in terms of w and n. M Show cost components on diagram, such as cost of big mux, @/

don’t forget to account for the constant inputs, and for the number of bits in each wire.
The lower input to each of the 2-input muxen is con- L oc oldest find_plan_a w, ns
STant, so the cost per bit of each multiplexor is at Ths+1 ¢°C[11 ¢°C[2] V’C[“S] °X
most 1. At most because in some cases, sueh as OM 1+flg ns]
the first, the upper input is also constant. The num- 1 2 ns . DLanE}
ber of bits for the first mux is 1 and the number of L ca
DItS for the last multiplexor 1s [lg7n] (because the Jiwitns+ay | cof0) ™
largest input to any mux is n and it takes [lgn]
DIt 10 Tepresent 72 s an unsigned integer). To keep coll]
things simple assume that all of the 2-input muxen are
[lgn] bits wide. Then the total cost of the n — 2 8 0
2-input muxen is (n — 2)[lgn].
calns]
The big mux has 7 + 1 Inputs, each w bits wide. W =

The total cost 18 (n + 1 — 1)3w = 3wn units.
The % 0 unit can be realized using & [lg n]-Input OR gate, and the = 0 uNit can be realized using a w-nput NOR gate. The costs
are the number of 'mputs minug one. The total cost is:

2-input muxen #0 BigMux =0 AND

—N— —— = —~— =~

(n—=2)[lgn] +lgn] -1+ 3nw +w-1+ 1

M Plan B cost in terms of w and n. M Show cost components on diagram, such as cost of big mux, M
don’t forget to account for the constant inputs and, for the number of bits in each wire.

In Plan B the = 0 comparison is done before the o oc oldest_find_plan_b w, ns

big mux, and 50 7 + 1 comparison units are needed. Ths+1 ¢°C[11 ¢°C[2] ¢°C[“51 o o
1+[lg ns]

Sounds costly. But, the inputs to the big mux are 1, OM
rather than w bits wide. For Plan A the big cost term 1 2 ns . D avail |
ca

is 3nw (assuming that w > Ign). In Plan B the 4

. o o = cal0] N
b\g oSt tarm is)USI nw, whieh 18 3 the cost! [wllns+1] W
0
call]
W
0
3
o
ca[ns]

The total cost is: w § :)
0 L/

2-input muxen #0 =0 Big Mux AND
—_—N —— ————— P =~
(n—=2)lgn] +flgn] =1+ n+1)(w—-1)+ 3n + 1

o

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Fall 2017 Final Exam Solution fe sol.pdf

(b) Show the delay along all paths and show the critical path. Compute delay based on the simple model
after optimizing for constant values. Use the tree mux described in the previous part.

M Plan A: M show delay along all, paths, M highlight the critical path, M and show the delay through
each component. Show these E/ in terms of w and n, and account for constant inputs such as the

zeros in the equality units.

Solution appears 1o the right. The delay through each de- | e (0) oldest_find_plan_a w, n
vice is Shown in blue, the time at which a signal is available T nt1 *06[11 Vo @11 ¢ (-1 @0% e
IS ShOWn In | purple |, and the critieal path is shown as a o.ooo__'j:\ ¥ | Iig Ng n+111
rad dashed line. Because the 2-INput multiplexors have at i N , [avail L
least one CONSTANt INput, the delay through them is Lty e 0= =1 == =1 “@ i —
cach. The delay through the big mux, whieh s 7 + 1 [twiin+1y | c2lC] R ~l>(t
inputs, s 2[1gn + 17 units, the usual delay though an
n -+ 1-Input tree mux. Both comparison units compare Cav%” (n-1 + 2[1gin+1]
10 & CONSTant, their delays are celling-log-base-2 of the £
nuMbar of Inputs. 8 o _
—>[lg wl=<—

A common mistake Was to overlook the possibility that caln] T
the critical path can pass through a multiplexor select W >l

2[lg n+11 + [lg wl

input, as it does here.

M Plan B: M show delay along all paths, M highlight the critical path, M and show the delay through
each component. Show these M in terms of w and n, and account for constant inputs such as the

zeros in the equality units.

Solution appears to the right, with delays, times, and erit- _| og O oldest find_plan_b w, n
leal path using the same colors as above. Doingthe[= 0] Ta+r (ot 1o @‘] v =y 0D oy b
check before the mux reduces the length of the eritical o@_ooo"_j:\ ¢ | Nglig n+1n
path by lg w. 1 2 n— 0 avail |,
o =< >] =< —>] - e
Note that in both the Plan A and Plan B versions the delay E3-—7"—— cafor> 119 Wi=<— Y(n-1) 1> \3)
through the 2-input muxen is 2 —1. 11 i3 possible that the w : -
synthesis program could find an optimization that would carn’ § S
reduce the delay to something closer to Ign. A human, W a
at least one who payed attention in EE 4755, should be o U 2
able 10 4o That With no problem. oy 8 =
w +
-
T aMgnn -

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Fall 2017 Final Exam Solution fe sol.pdf

Problem 4: [10 pts] Explain why each of the modules below is not synthesizable by Cadence Encounter
(or similar tools) and modify the code so that it is without changing what the module does. Note: The
warning about not changing what the module does was not in the original exam.

module one_run #(int w = 16, int lw = $clog2(w))
(output logic all_1s, input uwire [w-1:0] a, input uwire [1lw:0] start, stop);
always_comb begin

all_1s = 1;

// for (int i=start; i<stop; i++) all_1s = all_1s && alil;
// SOLUTION Below
for (int i=0; i<w; i++)

if (1 >= start &% i<stop) all_1s = all_1s && alil;

end
endmodule

M Reason code above is not synthsizable:

The number of iterations in the for 100p depends on non-constant expressions. To be synthesizable the synthesis program must
De able to determine the number of 100p iterations of an instantiated module. 1t can't in the module above because the number of
iterations depends on the module inputs start and stop.

M Modify code so that it is.
Short Answer: Solution appears above.

EXplanation: The lower \OOp bound has been ehang@d from start 10 0, & constant (\'\T,QT&\\y a \'\IQF&\). The upper bound has been
Qh&ﬂgéd from stop 10 w, an elaboration-time constant. The ong‘ma\ code is shown commented out.

module running_sum #(int w = 32)
(output logic [w-1:0] rsum,
input uwire [w-1:0] a, input uwire reset, clk);

// always @(posedge clk) if (reset) rsum <= 0;
// always @(posedge clk) rsum <= rsum + a;

// SOLUTION Below
always Q@(posedge clk) begin

if (reset) rsum <= 0;

else rsum <= rsum + a;
end

endmodule

M/ Modify code so that it is synthsizable.

Solution appears above.

M/ Reason code above was not synthsizable:

Because rsum is ﬁSS\g\'\Qd in two always blocks. To be SyﬂIhQS'\ZM)\Q 2 value cannot be &SS'\gﬂQd in more than one always blOCK.

M Explain assumption about intended behavior of this module.

Assumed that when reset is 1 at a positive QGgQ rsum should be set to O rather than a.

7

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Fall 2017

Final Exam

Solution

Problem 5: [30 pts] Answer each question below.

(a) Show when each piece of code below executes (use the C labels) up until the start of C5¢, and show when
and in which region each piece is scheduled. See the table below.

module €q;
logic [7:0]
always_comb begin
x1 = a + b;
yl =2 % b;
end
assign x2 = 100 + a + b;
assign y2 = 4 * b;
assign z2 = y2 + 1;
initial begin
//
a = 0;
b = 10;
#2;
//
a=1;
b <= 11;
#2;
//
a = 2;
b = 12;
end
endmodule

M Continue the diagram below so that it shows scheduling up to the point where C5c executes.

Step 1 Step 2 Step 3
t=0 t=20 t=0
Active Active Active
C5a/z
Inactive| | Inactive
C1
NBA 2
C3
NBA
t=2
Inactive
C5b

// C1

// C2
// C3
// C4

Cba

C5b

Chc

a, b, ¢, d, x, y, x1, x2, y1, y2, z2;

Solution on next page.

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Fall 2017

solution appears Delow.

Note that when the active region is empty the first non-empty region is bulk-copied into the active region. TNis occurs, Tor example,
Detween Step 2 and 3, step 6 and 7. (\/\/mmngz step numbers may eventually become wrong. Please report any QNOYS.) Simulation
time (ShOWﬂ as ¢ :) changes when all regions within the current time step are empty. This occurs at step 8 and step 21.

Final Exam

Solution

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9
t=0 t=0 t=0 t=0 t=0 t=0 t=0 t=0 t=2
Active Active Active Active Active Active Active Active Active
C5a” ci” ||lc2” ||c3” cs” Cs5b”
Inactive | | Inactive | | c9 C3 Inactive| | Inactive | | Inactive| | Inactive| | Inactive
C1 C3 Inactive Ca
NBA o Tnactive NBA NBA NBA NBA NBA
C3 NBA
NBA NBA t=2 t=2 t=2 t=2
f—9 Inactive| | Inactive | | Inactive| | Inactive
f—9 —) Inactive| | C5b Csh Csh Csh
Inactive| | Inactive | | C5D
Csh (@)
Step 10 | | Step 1l || Step12 || Step13 || Step14 || Step15 || Step16 || Step 17 || Step 18
=2 t=2 t=2 t=2 t=2 t=2 t=2 t=2 t=2
Active Active Active Active Active Active Active Active Active
c1” ||c2” be 117 c” ||c2” |3/
Inactive| | co Inactive | | Inactive | | Inactive| | Inactive | | co c3 Inactive
C1 Inactive C1 C3 Inactive
&) NBA NBA NBA || Inactive NBA
NBA NBA b+ 11 b« 11 c3 NBA
b 11 | |b 11 t=4 t=4 t=4 NBA NBA t=4
t =4 t =4 Inactive | | Inactive | | Inactive t =4 Inactive
Inactive | | Inactive | | C5¢ Cse Cse — =4 Inactive | 1C5¢
Che Che Inactive | | Inactive| | C5¢C
Che Che
SWp 19 || Step20 || Step2l || Step22
t=2 t=2 t=2 t=4
Active Active Active Active
cs” Csc”
Inactive| | Inactive | | Inactive | | Inactive
Ca
NBA NBA NBA NBA
t=4 t=4 t=4
Inactive| | Inactive | | Inactive
Che Che Che

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Fall 2017 Final Exam Solution fe sol.pdf

(b) Which of the two modules does what it looks like it’s trying to do? Explain.

module sal(input logic [7:0] a, b, c, d, output wire [7:0] x, v);
assign x = a + b;

assign y = 2 * Xx;
assign x = ¢ + d;
endmodule

module sa2(input logic [7:0] a, b, ¢, d, output logic [7:0] %, v);
always_comb begin
X = a + b;

y = 2 % x;
X =c + d;
end
endmodule

M Module that is probably correct is:

1T is sa2 that 100ks correct because the other module, . ..

M Major problem with other module.

... 8al, is using continuous assignments as though they were procedural statements. In particular x is assigned twice.

M Provide a possible wrong answer from other module.

IT a+b 15 noT equal To c+d then x will have some DIts set 1o the undenned state. SO0 & pOSS'\D\Q Wrong answer is that x =
7°b0001xxxx. TNis would occur when a+b = 700011010 and c+d = 7°b00010101.

10

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Fall 2017 Final Exam Solution fe sol.pdf

(¢) Define throughput and latency and indicate where each is preferred. Provide examples appropriate for
pipelined systems.

M Throughput is:
The amount of Work Qomp\Qle per unit time.

M For example:

In 4 pipelined multiplier with 7 stages running at a clock frequency ¢ Hz the throughput is ¢ multiplications per second. If
¢ = 1 GHz the throughput would be 10° multiplications per second.

M Latency is:

The amount of time from start o finish of one piace of WOTK.

M For example,

In the pipelined system the latency is % s. Suppose 72 = 5 and ¢ = 1 GHz. Then the clock period Is 5 = 1ns and the latency
i85 x 1ns =5ns.

M If the goal is to improve throughput is higher throughput good or bad?
Higher throughput is good.

M If the goal is to improve latency, is higher latency good or bad?
Higher latency is bad. (Lower latency is £00d.)

M In what situation is latency more important than throughput?

Latency is more important than throughput when someone or something is waiting for the result and when that someone or something
isn't doing anything userul while waiting.

(d) When we synthesize we specified a target delay, for example, 400 ns.

M Does specifying a larger delay mean that there will be less optimization?

No.

M Explain.
Short Answer: Synthesis programs typically optimize to minimize cost while meeting timing constraints. Cost is optimized regardiess
of the delay target.

Additional Explanation: With a smaller delay target the synthesis program might be foreed to use higher-cost alternatives 1o meet
the timing constraints. Though transforming & design to meet timing constraints is certainly considered optimization, it is not the
only type of optimization performed.

11

https://www.ece.lsu.edu/ee4755/2017/fe_sol.pdf

Fall 2016 Midterm Exam Solution mt sol.pdf

22 Fall 2016 Solutions

436

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Fall 2016 Midterm Exam Solution mt sol.pdf

Name Solution

Digital Design using HDLs

Midterm Examination

Friday, 21 October 2016 12:30-13:20 CDT

Problem 1 (20 pts)
Problem 2 (20 pts)
Problem 3 (20 pts)
Problem 4 (10 pts)
Problem 5 (10 pts)
Problem 6 (20 pts)
Alias Loose bits sink chips. Exam Total ____ (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Fall 2016 Midterm Exam Solution mt sol.pdf

Problem 1: [20 pts] Write a Verilog description of the hardware illustrated below. The description must
include the modules and instantiations as illustrated. The description can be behavioral or structural, but
it must be synthesizable.

mal mod b
L f Jc mod a
[} [N N}
D5 B
ma?2 D_E}
= y c mod a
le i b }
0:0 |2
7 [N N}
1:1]
2:2 E]a
/ h
3:3

E/ Verilog corresponding to illustrated hardware.

M Show instantiations, M Verilog for instantiated module(s), M and all module ports.

solution appears Delow.

Grading Note: Many students chose to provide an explicit structural description, which is the most tedious
descriptive style. In an explicit structural description moda uses four primitive instantiations plus a dec-
laration for three wires. As can be seen from the solution the implicit structural description is just one

line.

In many solutions for modb the output of ma2 was connected to an intermediate uwire, and an assign
statement was used to connect the uwire to the module output. As can be seen from the solution, the ma2
output can connect directly to the modb output.

// SOLUTION

module moda(output uwire y, input uwire c, a, b);
assign y=a & c || a & b || b && c;

endmodule

module modb(output uwire x, w, input uwire [3:0] e, input uwire f);
uwire yi;

moda mal(yl,f,e[0],el[1]);
moda ma2(w,yl,e[2],e[3]);

assign x = yl = w;

endmodule

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Fall 2016 Midterm Exam Solution mt sol.pdf

Problem 2: [20 pts] Appearing below is the lookup_elt module from Homework 4 and following that an
incomplete module named match_amt_elt. Complete match_amt_elt so that the value at output port md is
set to the number of bits in clook that match corresponding bits in celt. For example, if clook=5’b00111
and celt=5’b00111 then md should be 5, if clook=5’b00101 and celt=5’b00111 then md should be 4,
and if c1look=5’b11000 and celt=5’b00111 then md should be 0. Code must be synthesizable, but can be
behavioral or structural.

ET Complete the module so that md is set to the number of matching bits.

M Make sure that md is declared with sufficient width.

module lookup_elt #(int charsz = 32) // This module is for reference only.
(output logic match, input uwire [charsz-1:0] char_lookup, char_elt);
always_comb match = char_lookup == char_elt;

endmodule

The solution appears Helow.

For the size of md, notice that md must represent charsz+1 distinet values, 0 10 charsz. Therefore clog2(charsz+1) Dits
are needed. Grading note: Full credit was given for almost any declaration that contained clog2(charsz), not
just those which were perfectly correct. Points were deducted for constant answers such as [5:0] since they
only work for the default value of charsz.

To count the number of matehing bits 4 100p 1$ used to iterate over the bits and a simple comparison is used to ind matenes.

Grading Notes: There was no reason to use lookup_elt, it was put in the problem only to help people get
started. A correct solution could use lookup_elt, however it had to be instantiated with a charsz=1.

In too many solutions there was confusion between procedural code (code starting with some kind of always)
and structural code (module declarations and assign statements).

module match_amt_elt
#(int charsz = 32)
(output logic [$clog2(charsz+1)-1:0] md, // SOLUTION (The [$clog..])
input uwire [charsz-1:0] clook,
input uwire [charsz-1:0] celt);

// SOLUTION
always_comb begin

md = 0;

for (int i=0; i<charsz; i++) if (clook[i] == celt[i]) md++;
end

endmodule

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Fall 2016 Midterm Exam Solution mt sol.pdf

Problem 3: [20 pts] Show the hardware that will be synthesized for the modules below.

(a) Show the hardware that will be inferred for the module below. Show acme_ip_sqrt as a box.

module vmag(output uwire [31:0] mag, input uwire signed [31:0] v [3]);

logic [63:0] sos;
acme_ip_sqrt #(32) si(mag,sos);

always_comb begin
sos = 0;
for (int i=0; i<3; i++) sos += v[i] * v[il;

end

endmodule

@ Show inferred hardware. M Don’t forget acme_ip_sqrt.

M Clearly show input and output ports of vmag.

Solution appears below.

sl
acme_ip_sqrt

SOS

mag

v[O0] v[1] + vI[2]

&
<

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Fall 2016 Midterm Exam Solution mt sol.pdf

Problem 3, continued:

(b) Show the hardware that will be inferred for the module below, before and after optimization. Note: In
the original exam the input was named vi.

module min_elt(output logic [1:0] idx_min, input uwire signed [31:0] v [3]);
always_comb begin
idx_min = O;
for (int i=1; i<3; i++) if (v[i] < v[idx_min]) idx_min = i;
end
endmodule

Ef Show inferred hardware. M Clearly show input and output ports.

Solution appears Delow in a p\a‘m form, followed by g version in whieh the hardware QOTTQSPO“G'\\'\% to the different PMES of the if
statement is highlighted. Grading Note: A common difficulty was coming up with the hardware for v[idx min].

min_elt
i=1 i i =2 i
0 idx min '\I idx min '\I !
1 2 =L_l
< < €
X
v[0] | > T
Vv
) vi1] 32
V[2] 32
32
min_elt
i=1 ; i =2 ;
0 |dx_m|nﬂ |dx_m|n4,D
1
<
v[0] |
\Y;
£ V1] 32
v[2] 32
32
i \ !

[\ \

if (v[i] < v[idx min]) idx min = i;

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Fall 2016

M Show hardware after some optimization.

Midterm Exam

Solution

Solution appears below. The 3-input mux at 1=1 has been eliminated because it always selected element 0. The 3-input mux at i=2
was replaced by a 2-input mux because the select input would never be 2. The 2-input mux &t i=1 was eliminated since the select
signal has the same value s the output. The 2-input mux at i=2 was replaced by uwire and 4 single AND gate (With 4 bubbled

input).

min_elt

=2
idx min

msb

>

vI0] i
By | 32
2| 32
32

idx min

inm|
o

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Fall 2016 Midterm Exam Solution mt sol.pdf

Problem 4: [10 pts] Appearing in this problem are several variations on a counter.

(a) Show the hardware inferred for each counter below.

module ctr_a(output uwire [9:0] count, input clk);

logic [9:0] last_count;
assign count = last_count + 1;
always_ff Q(posedge clk) last_count <= count;

endmodule
module ctr_b(output logic [9:0] count, input clk);

uwire [9:0] next_count = count + 1;
always_ff Q@(posedge clk) count <= next_count;

endmodule
@ Inferred hardware for M ctr_a and M ctr_b.
ctr_a ctr b
last_count next count count
— m
Q count |, + &
+ 5 :
1
it clk £
_EE'L, £ !

(b) There is a big difference in the timing of the outputs of ctr_a and ctr_b. Explain the difference and
illustrate with a timing diagram.

M Difference between two modules. M Timing Diagram.

In ctr_a the module output, count, is connected to the output of an adder. That means the value af the output will not be stable
until later in the clock cyele. See the left-side timing diagram below. EXternal hardware could not do anything with the value other

than Q\OQK'\ﬂg it Into a register for use in the next clock QyQ\Q. In contrast, the ctr_b module output, count, is connected to a
register output, and so 1t is available for use at the b@g’mnmg of the cloek QyQ\Q.

ctr_a t 0 1 2 ctr b t o0 1 2

O— clk J* \ L \ [L O— clk J* ‘
last_count ZX 2 X 3 X 4 count £] IX 2

L

.
£ \a
=4

y y _7
count © 2 JI{INN=_ MUOOCa QUOAM(s nexccount 2 AN VUM NS

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Fall 2016 Midterm Exam Solution mt sol.pdf

Problem 5: [10 pts] Appearing below is the solution to the 2015 midterm exam Problem 2. Estimate the
cost of this module as illustrated but use variable s for the number of bits in sum (shown as sswid) and in
each a element (shown as parameter f). Assume that the cost of a BFA is 10 units and that the cost of a
n-input AND and OR gate is n — 1 units. Take into account the 0 input to one of the multiplexors.

module ssum #(int n = 3, int £ = 4, int swid = £ + $clog2(n))
(output logic [swid-1:0] sum,
input uwire [n-1:0] mask, input uwire [£-1:0] a[n]);
always @* begin
sum = 0;
for (int i=0; i<n; i++) if (mask[i]) sum += alil;
end
endmodule

SSUM n=3, f=4, sswid = 6
mask i=0and 1 =2 L
mask[1:0] 1:0 mask[2]i 22

(mm|
L

0 | I sum_
|

4_

Lal2]

L

/

a 31014 “al1]

/

(mm|
L

M Cost of illustrated hardware. M Account for 0 mux input.
There are two adders, each uses s bits. Since the cost of 2 BFA 18 10 units, the cost of the two adders is 2 x 10s = 20s units.

A Two-InpUT MUX Uses three 2-input gates per bit, $0 the Lotal cost of the second Mux is 3s UNIts. In general, an 7-iNput, Width w mux
uses naw 2-Input AND gates Tor selaction, 7 [1g n]-input AND gates for decoding, and w n-Input OR gates. Without optimization,
the 4-input mux would cost 4s + 4 + 3s = 7s -+ 4 units. The total cost without optimization is 20s + 7s + 4 + 3s = 30s + 4
UNIts.

Because one of the inputs o the 4-input mux is zero all of the logic connecting to that Input can be eliminated, and the OR gates
can be reduced from 4 1o 3 inputs. So the optimized cost Of the 4-Input Mux is 3s + 3 + 2s = 5s + 3 units. The total cost with

optimization 1§ | 20s + 5s + 3 + 3s = 28s + 3 units |

Grading Note: Way too many students did not multiply the cost of a BFA by the number of bits in the
quantities being added.

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Fall 2016 Midterm Exam Solution mt sol.pdf

Problem 6: [20 pts] Answer each question below.
(a) Show the values of the variables as indicated below:

Solution appears balow. Notice that the difference between x1 and x2 18 WIth the bit numbering. In the e [0]+’hf assignment
the >hf (15 represented as a hexadecimal digit) is being added to the least-significant 4-bits of e. The result of that addition 1§
416 + f16 = 1316, aNA 1T 18 placed In the 4 least signinicant bits of e without modifying the other bits of e. The assignment to
e[0] [0] is similar, axeept that it operates only on the least-significant bit of e.

module tryout();
logic [15:0] a;
logic [0:15] b;
logic [3:0][3:0] e;
logic [3:0] =x1, x2;

initial begin

a = 167h1234;

x1 = a[3:0]; // Value of x1 is: 4

b = 16°h1234;

x2 = b[0:3]; // Value of x2 is: 1

e = 167h1234;

e[0] = e[0] + ’hf; // Value of e is: 16'M1233

e = 16’7h1234;
e[0][0] = e[0][0] + ’hf; //

< KKK

Value of e is: 16'11235

end
endmodule

(b) Describe something that can be done during elaboration that cannot be done during simulation, and
something that can be done during simulation, that cannot be done during elaboration.

M Something that can be done during elaboration but not during simulation is:

During elaboration one can use 4 generate 100p Lo instantiate modules.

M Something that can be done during simulation but not during elaboration is:

During simulation one can compute values that depend on module inputs.

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Fall 2016 Midterm Exam Solution

(¢) Appearing below are two alternatives for an integer division module, Plan A and Plan B. Both are
impractical, but Plan A is not even synthesizable.

module div_plan_a #(int w = 16) (output logic [w-1:0] quo, input uwire [w-1:0] a, b);
always_comb begin
for (quo = 0; a > quo * b; quot++);
end
endmodule

module div_plan_ b #(int w = 16) (output logic [w-1:0] quo, input uwire [w-1:0] a, b);
localparam int LIMIT = 1 << w;
always_comb begin

quo = 0;
for (int i=0; i<LIMIT; i++) if (a < i * b) quot+;
end
endmodule

M Why isn’t Plan A synthesizable? Be specific as possible.

1T 18 nOT synthesizable because the number of iterations in the 100p can not be determined at elaboration time.

M What might be a practical objection to the Plan B approach?

Because 2% multipliers and multiplexors are used the cost is ridiculously nigh for even moderate values of w. For example, for the
default value of 16, there would be 65536 multipliers and muxen. Even it the synthesis program simplined this 1o 65536 adders, the
cost would still be enormous.

(d) The magfp module below is not synthesizable due to the use of the real data type. How would the
module need to be changed so that it would be synthesizable and would operate on floating-point values.

module magfp(output real mag, input real vi [3]);
real sos;
sqrt #(32) si(mag,sos);
always_comb begin

sos = 0;
for (int i=0; i<3; i++) sos += vil[i] * vil[i];
end
endmodule

M Show changes to port declaration for synthesizability.
Change real to [63:0].

@ Explain with a few examples how the rest of the code would need to be changed.

The arithmetic operations would have to be replaced by bit-level operations to perform the floating-point arithmetic. This might be
done Dy instantiating FP multipliers and adders from an IP library (such as Chipware) or by writing the Verilog to implement FP
arithmetic yourselr.

10

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2016/mt_sol.pdf

Fall 2016 Final Exam Solution fe sol.pdf

Name Solution

Digital Design using HDLs

| o

7

55
Final Examination

Thursday, 8 December 2016 12:30-14:30 CST

Problem 1 (30 pts)
Problem 2 (20 pts)
Problem 3 (15 pts)
Problem 4 (15 pts)
Problem 5 (10 pts)
Problem 6 (10 pts)
Alias The Hottest Place in Hell Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016 Final Exam Solution fe sol.pdf

Problem 1: [30 pts] The diagram and Verilog code below show incomplete versions of module prob1_seq.
This module is to operate something like mag_seq from Homework 6. When start is 1 at a positive clock
edge the module will set ready to 0 and start computing vO*v0 + vO*xvl + vixvl, where vO and v1 are
each IEEE 754 FP single values. The module will set ready to 1 at the first positive edge after the result is
ready.

Complete the Verilog code so that the module works as indicated and is consistent with the diagram. It is
okay to change declarations from, say, logic to uwire. But the synthesized hardware cannot change what is
already on the diagram, for example, don’t remove a register such as acO and don’t insert any new registers
in existing wires, such as those between the multiplier inputs and the multiplexors.

Don’t modify this diagram, write Verilog code.

probl _seq ready
start tH
vO ml =
L] cw,fp,mult a 1 a
Ii acO [cwm.add Q
B s
§ _|rnd A nd
vl I
tH 3'b0
32'do
clk acl
H— A

Don’t modify this diagram, write Verilog code.

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016 Final Exam

Problem 1, continued: Solution on this page.

@ Complete Verilog so that module

computes vO*v0 + vO*vl + vixvl.

@ Synthesized hardware must be consistent with di-
agram, especially synthesized registers.

@ Note that ready must come from a register.

@ Don’t skip the easy part: connections to adder.

module prob1_seq(output uwire [31:0] result,

input uwire [31:0] vO,
uwire [7:0] mul_s, add_s;
uwire [31:0]
logic [31:0]

mul_a, mul_b;
acO, acl;

localparam int last_step = 4;

always_ff @(posedge clk) if

CW_fp_mult m1(.a(mul_a),
CW_fp_add al(.a(add_a),

.b(mul_b),
.b(add_b),

// assign ready = step ==

// SOLUTION (remainder of

assign mul_a = step < 2 7 v0 : vi;
assign mul_b = step == 0 7 vO : vi;
assign add_a = acO, add_b = acl;

always_ff @(posedge clk) begin
acO0 <= prod;

case (step)

0: acl <= 0;

1, 2: acl <= sum;
endcase

if (start)
else if (step
end

ready <= O;

assign result sum;

endmodule

Solution

uwire [31:0] add_a, add_b;
logic [2:0]

(start)
else if (step < last_step) step <=

last_step-1) ready <= 1;

Don’t modify, Verilog only.

probl_seq ready
start m{ }E}
ml ____ =
vo aw e mult al a
- acO [cwr.add o
g 5
:% -0 _A_ rnd
1 " T
H v — 3'b0
32'do
clk acl

output logic ready,
vi, input uwire start, clk);
uwire [31:0] prod, sum;
step;

// <— SOLUTION.

step <= 0;

step + 1;

rnd(rnd) ,
rnd(rnd),

.status(mul_s));
.status(add_s));

.z(prod),
.z(sum) ,

last_step; // SOLUTION: Remove this line.

module is solution)

// Connect FP multiplier ports ..
// .. to appropriate values.
// Connect FP adder input ports.

// Assign registers acO, acl, and ready.
// Always write acO.

// Set acl based on the step value ..
// .. *beforex the positive clk edge.

// Reset ready *beforex step 0 ..
/..

and set ready when will be done.

// Connect FP adder output to this module’s output.

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016 Final Exam

Solution

To understand how the solution works refer to the timing d'\agmm below. Note that the value of step in the second always_ff

i before it i3 incremented.

probl seq ready
r start A t
1 vO ml -
T Iicw’"”mmt ac0 cw_z_:tdd 5
| = (mm]
o | rnd +H
Q rnd
1wl }—I " I
T 3'b0
32'do
clk acl
& clk B
[+ start
step 4 J0 1 2 B Ja
mul a %XXvo Xle 5 5
mul_b XXVO Xle Mux delay
prod .) o T (0
acO g f XV02 Xval le2
acl Mult delay X 0 XVOZ Xval + vO2
—£] sum W\’OZ ;OOOOO(VOV1+>OOOOO<V12 + vOvl + vO2

—£1 ready

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016 Final Exam Solution fe sol.pdf

Problem 2: [20 pts] Analyze the timing of the two similar modules on the next page using the timing
model used in class, as requested in the subproblems. Assume that all adders are synthesized as a ripple
connection of binary full adders and that the comparison units are also based on ripple hardware.

(a) Before analyzing the modules, show the delay of each of the components listed below using the simple
model given in class. For this part assume that all inputs are available at ¢t = 0.

In the simple timing model the delay of an n-input AND and OR gate is [1g n] units, which works out to 1 for 2-input gates. For
larger gates the delay is what would be obtained by construeting a reduction tree of 2-input gates. NOT gates have 4 delay of zero.
Other combinational logic is based on the delay of an implementation using AND, OR, and NOT gates. For example, the delay of a
2-Input XOR gate Is 2.

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016 Final Exam Solution fe sol.pdf

@ Delay for BFA is:
The delay (of bfa-unopt) is 4 units for the sum and 3 units for co.

When the a and b inputs arrive at 1east two cyeles before ci, the delay of bfa-fast i 2 units from input ci 1o the sum and co
outputs. 1T a and b arrive af the same time as ci then the delay of bfa-fast is the same a8 bfa-unopt: 4 Time units.

@ Explain or show diagram.
Short Answer: The delay Is based on the bfa-unopt BFA implementation below. The lower diagram shows the timing analysis.

Long Answer: Appearing below are two implementations of a binary full adder, shown with and without & timing analysis. n the
first, bfa-unopt, separate logic is used to generate the sum and carry out signals. In the second, bfa-fast, an XOR gate is
shared by the sum and carry out logie, both reducing cost and reducing the eritical path in a ripple adder.

The Dlue labels snow the gate delays, circled numbers show the time that a signal is available. The purple signals show the timing
under the assumption that all signals arrive at module inputs ¢ = 0 and the green signals snow the timing under the assumption that
the carry in signal arrives at ¢ = 0 but that the a and b signals arrive at ¢ = —2. Tha rationale for the green signals assumption
is that when a BFA is used as part of a ripple adder the carry in signal for all but the least-signincant bit BFA will arrive later than
the a and b inputs. Note that even with the a and b signals arriving early the delay for co in BFA-unopt would still be 3.

In summary: For BFA-unopt, sum at ¢ = 4 and earry out at ¢ = 3. For BFA-fast With all signals arriving at ¢ = 0, the sum
I avallable af ¢ = 4 and carry out at £ = 4. With early arrival, the carry out is available af ¢ = 2.

BFA-unopt £
ma \ 5
(]) \ 7}
BT 4) + BFA-fast
/ a \ £
I o
Ci
— = +
BFA-unopt
©] a 2 <2—>E
= \ @ \ a Carry-in arrives >= 2 units later. E.g., in BFA units after LSB.
h) All SIgnals arrive at same time. E.g., BFA at LSB.
[| iy

/
O (0) / < 5> BFA-fast

. @ a <2 >E
o ©)%D ®

LT o6
B Ot @@ ° »@
@@«1»

CO

HJ@

innl I"l
NNy

.
=

HJ

[

<]1—>

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016

@ Delay for a w-bit adder is:

Final Exam

Solution

Using BEA-unopt the delay for w > 118 3w units for the carry out and 3w — 1 units for the MSB of the sum.

Using BFA-fast the delay for w > 118 2(’11} + 1) UNits for the carry out and the MSB of the sum. The LSB (bil 0) of the sum
arrives at time 4, bit 1 arrives at 6, and bit ¢ of the sum arrives at time 4 4 2.

@ Explain or show diagram.

H

fe sol.pdf

ripple_adder w

H
w
H
@ a1l a2l alw-1]
=4 b[1] b[2] -
© [\ blo] Bit 0 -- LSB © Bit 1 © Bit 2 ©] 7 btw-1) Bit w-1 -- MSB
BFA-unopt BFA-unopt BFA-unopt BFA-unopt
a E a E a E a E
& \ 5 & \ 5 & \ 5 & \ 5
o) 3 &) 3 &) 3 &) 3
& & & &
By 8 e 8 e g BTy g
o o -] o
L | R | R | | | St e
© 6 ® ® &
000
@ ® 3wl
Delay for bit w-1 -- MSB W sum
Delay for bit 0 - LSB \\L/—E}
0)
a w ripple_adder w
H %
LA
_ @ all] al2] alw-1]
=4 b[1] b[2] b[w-1
© [\ blo] Bit 0 -- LSB © Bit 1 © Bit 2 @]} btw-11 Bit w-1 -- MSB
BFA-fast BFA-fast BFA-fast BFA-fast
a E a E a E a E
& \ 5 & \ 5 & \ 5 & 5
o) 3 o) 3 o) 3 = 3
& +
8177 8 e 8 e S B g
o o -] o
AL L L N BREDAR: -
000
@ ®
Delay for bit w-1 -- MSB W sum
Delay for bit 0 -- LSB 7
™~@

Short Answer: As shown in red in the diagram above, the critical path passes from ci 10 co Of the linearly-connected BFAS, 50
the total delay is 3w using BFA-unopt of 2w + 2 using BFA-fast.

When BFA-unopt is used the co signal of the BFA for bit 4 1s available at 3(i + 1), where ¢ = 013 the least-significant bit. I
the 2-DIt adder itsel has a carry-out signal, the delay is 3w bits, based on the availability of the carry out at bit w — 1. 1T thare is
N0 carry out then the delay of the MSB IS two units after the arrival of the earry in, so the total delay 18 3(w — 1) +2 =3w — 1
units. Bit ¢ = 0, the LSB, of the sum is ready at ¢ = 4, bit ¢ > 1 of the sum is ready at 3¢ + 2.

When BFA-fast is used the co signal is available at time 4 for the LSB, for DIt ¢ 1t is avallable at 4 + 2i. The sum is available 2
eycles after the ci arrival, so overall timing 1s 4 + 2(w — 1) = 2w + 2 whether or not a carry out is used.

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016 Final Exam Solution fe sol.pdf

@ Delay for a w-bit < (less than) comparison unit is:

Using subtraction, 3w units based on BFA-unopt or 2(w + 1) units using BFA-fast.

@ Explain or show diagram.

To compute a < b use a w-bit adder 1o compute a — b, where @ and b are w-bit unsigned numbpers. (TO perform subtraction the b
inputs are inverted and the adder Carry in is set 1o 1. This doesn't affect cost or delay under the simple model since NOT gates are
free and ZQTO-GQ\Qy.) IT the Carry out is zero then the difference is negative and 80 a < b s true. Note that \Ong that is omy used
for computing sum 18 omitted.

Using BFA-unopt the delay is 3w, using BFA-fast the delay is 2w. (In botn cases the cost is Sw. In BFA-unopt both XOR
gates are climinated. In BFA-fast one XOR gate is aliminated and the other is YQP\QQQG with an OR gMQ.j

@ Delay for a w-bit, n-input multiplexor is:
The delay is [lg[lgn]] + 1+ [lgn] units.

@ Explain or show diagram.

mux n, w
s One decode AND per input (n total).
imu|
T
@ % % % w gate ANDs per
= = = input (nw total).
© |z g B
Dao O g
w -
o s=1 L;QU
Q
al O T
== b
w
<] >
© &
< @> <{g n>
=
@ —_|s=n-1
oY)
a(n-1)

As shown in the illustration above each mux input has an AND gate decoding the select signal (With some inputs inverted based on
the mux input number). The AND gate has [Ign] inputs (which is the number of bIts In the selact signal) and so by the simple
model has delay of [lg[lgn]] units. (For brevity the diagram omits the ceiling function.) Thae decoder and input connect to another
AND gate, adding 1 to the delay. Finally, there is an n-input OR gate, contributing another [1gn] units of delay.

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016 Final Exam Solution fe sol.pdf

Problem 2, continued:

(b) Find the length of critical path in the two modules below using the timings above. Where applicable
make the reasonable assumption that a ripple adder can start when its lower bits arrive, not when all bits
of its input are stable.

@ @ a limit fcfs_fit

- - " O
& limit greedy_fit g

:) i
w sum
©|.a \

Oy 3 :@}i\
W
+

[ole}

o

[0]e

LSB Time ~MSB Tim

5&5
+
)
N\

2,
N
(4w+16, 6w+14

8, 2W+6
i A
Ech O
b w n Qw+20 ol " () ew+10
w
w424 Bwi22 12, 2w+10 2w+12
8w+28 v 2wW+16)
(<) (e -

8w+26 W ag (2w+14) /W sum t

@ Length of critical path for greedy_fit in terms of w. @ Show work for partial credit.

Note: Around 9 October 2019 the solution was changed from a circuit using the unoptimized BFA to one
using the fast BFA.

Short Answer: Using bfa-fast the eritical path length is 8w + 28 units, see the diagram above in which the eritical path is
shown in red and is labeled With timing along the eritical path.

Long Answer: The time for the comparison unit is 2w -+ 2 units. The time for an adder is 4 units to produce the LSB of the
sum and 2w + 2 for the complete sum, including the carry out. Note thatl because the comparison unit is implemented using the
carry path of an adder, ft can start on the LSB as soon s it arrives (meaning defore more signincant bits arrive), and it can keep
Up WIth the pace of & new Input bit being ready every 2 time units after the 2nd bit. Signals arrive af the inputs 1o the a[1] adder
af time 2w + 4 and o the comparison gats its LSB af time 2w + &, the next bits at 2w + 10, 2w + 12, 2w + 14, The
comparison unit's output is ready at 2w + 8 4+ 2w + 2 = 4w + 10. Unfortunately for the a[2] adder one of its inputs is the
OULPUT Of & multiplexor, meaning that all bits arrive at the same time and so it cannot start early.

@ Length of critical path for fcfs_fit in terms of w. @ Show work for partial credit.

Short Answer: Using bfa-fast the critical path length is 2w + 16 units, see the diagram above in which the eritical path is
shown in red and is labeled with timing along the critical path. Green shows Timing of non-critical signals.

Long Answer: Unlike greedy_fit the inputs to the adders in fcfc_fit are either a module iNput or the ouUTPUT of another
adder. For that reason the second adder can start working on the LSB after only 4 units, and the third starts after 8 units. For this
reason the total delay through the 3 adders is 2 x 4 + 2w + 2 = 2w + 10. The remainder of the critical path passes through &
comparison and a mux. The path through the first two multiplexors is almost eritical, it Just has two units of slack.

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016 Final Exam Solution fe sol.pdf

limit fcfs fit
Problem 3: [15 pts] Complete the Verilog code so that it cor- = imi crs_
responds to the module shown. Osum
2
a2

(]
[mE)

@s

>\

@ Complete module.

The solution appears below. The module would be slightly simpler if the if
(1 > 0) were removed (making the rsum+=a[i+1] unconditional) and
rsum Were Initialized to zero, but that would not exactly correspond to the
illustration. Full credit would be given to either solution.

[T]e
=
@

[¢]en
o
r1$

0
;

[eleT

sum

module fcfs fit #(int nelts = 4, int w = 16)
(output logic [w-1:0] sum,
input uwire [w-1:0] al[nelts], limit);
// SOLUTION
always_comb begin
logic [w-1:0] rsum; // Running sum.
rsum = al[0];
sum = 0;
for (int i=0; i<nelts; i++) begin
if (i >0) rsum += al[i+1];
if (rsum < limit) sum = rsum;
end

end

endmodule

10

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016

changed to a parameter, meaning that a is an elaboration-time
Compute the cost of this module using the simple
model used in class and accounting for optimization based on
the constant values. As in an earlier problem, adders and com-
parision units are ripple-style.

constant.

Final Exam

Solution

@ Cost of the a[0] comparison unit.

The cost 18 w — 1 gates.

fe sol.pdf

limit fcfs_cfit n=4, w=16, a=
Problem 4: [15 pts] Appearing to the right is fcfs_cfit, a 0 ~C e e

version of the fcfs_fit module in which the a input has been

0

16h'2740

sum

16h'3755
[1]e}
= @ =
+
Y

16h'4720
[zle}
= @
+
Y

16h'4755
ele

N0
3

sum
. w
Explain.
S w compare_ a It b w
S 2 ==
S
HI innl b W
S alll a[2]
=
g [z}t b1] b2l
S ©
< BFA-unopt BFA-unopt BFA-unopt
I
= La 100 a 1b'1 a 1b0 000
al H Optimization for a[0] bit = 0. Optimization for a[1] bit = 1. Optimization for a[2] bit = 0.
;_g =8 b =8 b =8 b
~ '
] il 1b'0 8 . 8 . 1p'0 8 "
° | 18 5= o= g o
- i D
—0 1b'0 —0 1b'0

Because one input is 4 constant the 5 gates per bit using BFA-unopt is reduced to 1, either an AND gate or an OR gate. (\f
BFA-fast is used then the 4 gates per bit is also reduced to 1, either an AND or OR.) See the diagram above. The least signincant
DIT requires af most & NOT gate, which has 4 cost of zero. The total cost is w — 1 gates.

@ Cost of the a[1] adder.

@ Explain.

Since both ‘mputs are constant the cost is zero.

11

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016

. S mux2
Cost of the a[0] multiplexor. &
O M ao O
@ Explain.
Sinee both INPUTS are constant the ost is zero. The output Hal
for bit 0 < ¢ < 16 is either the constant zero or, where
an a DIt 18 1,15 equal To the select signal. See the bottom "e mux2
TOW Of the 2-Input mux optimization diagram to the right. o
a
1t
@ Cost of the a[2] multiplexor. Hat
@ Explain. s mux2
One Input to the a[2] mux is constant. Where the con- . o1 a0 0
Stant INput bit is O the logic is just an AND gate (top row
of diagram) where it is 1 the logje is an AND and an OR al
1+

(middle row of diagram).

D Total cost.

Final Exam

Solution

Optimization Plan

12

Completed Optimization

0"

mux2

mux2

h
a5}

18

fam)
an}

mux2

0

16

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016 Final Exam Solution fe sol.pdf

Problem 5: [10 pts] Answer each question below.
(a) A time slot in the Verilog event queue contains many regions, among them active, inactive, and NBA.

Explain how an event gets put in each region. (You can use the next subproblem for examples.)

g An event is put into the active region when:
Short Answer: When the active region is empty.

EXplanation: All events in the first non-empty region are copied into the active region. OT the regions that have been mentioned, the
inactive region in the current time slot is echecked first, followed by the NBA region in the current time slot, followed by the inactive
region in the next scheduled time slot, ete.

g An event is put into the inactive region when:
Short Answer: ... when a GQ\Qy such as #1 is encountered in pYOQQGU\”Q\ code and when 4 variable found in a SQHSI\UV'\W list QhQﬂgQS.

EXxplanation: When o delay such as #d (TOF d> 0) is encountered in procedural code an resume event will be seheduled in the inactive
region of time step ¢ + d, where ¢ is the current time slot. Note that #0 is perfectly okay Tor those who understand Systemverilog
event timing. For example, in ... b=z+w; #0; c=qg+r; ... when the #0 is reached o resume event will be put in the
ingetive region of the current time slot 1o resume execution at the c= statement. IT the delay had been #3 then the resume event
would be put in the inactive region of time slot £ + 3.

FOr those events with 4 sensitivity list, such as always_comb, CONLINUOUS assignments, and module instantiations, events are
scheduled when 4 variable on the sensitivity list changes. For example, consider always_comb begin a=x+y;.... When x
changes an event 1o execute the always_comb Dloek Will De put in the inactive region.

@ An event is put into the NBA region when:
Short Answer: ... when a ﬂon‘b\oekmg Q,SS.\ganm: i executed.

EXplanation: For example, when execution reaenes a statement like a<=b+1 the left-hand side, b+1 in the example, will immediately
De computed and then an update a event will be placed in the NBA region. The update event carries the value of b+1. Eventually
the NBA region will be copied to the active region and the update a event will be executed, Causing a 1o ehange 1o the carried
value.

(b) In the code fragment below show the order in which the statements are executed after the posedge clk.
Identify a statement by the value that is assigned. The first two statements executed are a and b, that’s
shown. (Since a is a nonblocking assignment, the execution of a only means that a+1 was computed, it
doesn’t mean that a was changed.) Complete the “Order of statements” list.

module regions;
always_ff Q@(posedge clk) begin
a<=a+1;
b=Db+ 1;
end

always_comb s = a + b;

always_comb ax = a + 2;
always_comb ay = ax + 5;
always_comb by = bx + 4;
always_comb bx = b + 3;

endmodule

@ Order of statements: 9, b,

short answer: a, b, §, bX, by, s, ax, ay.

13

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016 Final Exam Solution fe sol.pdf

Problem 6: [10 pts] Appearing below is the pipelined mag module from Homework 6.
(a) Suppose it turns out that the multiply (CW_fp_mult) takes twice as long as the add (CW_fp_add). Based

on this fact, modify the pipeline to reduce cost, but without affecting clock frequency. Draw in your changes,
there’s no need to write Verilog. Also, comment on latency and throughput changes.

@ Modify for lower cost based on faster adder.

Solution appears helow after the unmodified module. The pipeline lateh between the two adders was removed. With this cnange the
critical path length in the multiplier stage matenes the eritical path in the adder stage. (BQTOYQ this change the critical path length
in each of the adder stages was half the critical path in the multiplier St&gQ.)

@ Does the change @ help throughput? Does it help @ latency?

The change does not ehange throughput because the clock frequency does not change. The module can complete one caleulation per
eycle with or without the change.

The change reduces (h@\pS) lafency because there is one less stage.

mag_pipe
0:ml —
32 ’5‘ cw,fp,mUHI [0] %
— VS
I = 1
v[0] = g md > —I\cw;p,add 2l ~
M " Liml b 1 ¢ 0 o
v 32 — cw_fp_mult E rnd 5_' a2 3 (]
= vsqlll | — T awpaddl S| = £
2 _E g 3b0 | ™ | E m
v[1] 2| g {rmd > g t
" 2l 2 _ rmd 2
32 ~ aw_ip_mult 2] 2 ; 3'b0
o I: vsq = N
> o o
vi2zl | g | s ma % 2
™M o o
clk A Stage 0 Al Stage 1 Al Stage2 LA
& | | | |
mag_pipe so/,tjon
0:ml — Pipeline
o
32 S cwp.mult = latch
y > _E vsqlol | = al o removed.
— "
v[0] o g | md > ICW_fp_add g
£2 " 1iml . - " o
v 32 — . MUlt " = j rnd azdd % g
— vsq — T cw fp.a ~
— = g : N Sl 3
v[1] e g | md 2 w0 = | SI tH
™ K o a
2.m1It = T
3 2 = cw_fp_MU ve = 3'b0
o ql2l | =
> —| 3
vi2l | 2| s md 2, ><
™ o
clk /|\ Stage 0 /|\ Stage 1 | St /|\
imm|
[m]

14

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2016 Final Exam Solution fe sol.pdf

(b) Suppose that the v input arrives very early in the clock cycle. Based on this modify the pipeline to reduce
cost.

@ Modify for early-arriving v.
Short Answer: Solution appears below after the unmodified module.

Explanation: In this case the pipeline lateh at the inputs was removed, saving the cost of the pipeline lateh. Since the inputs arrive
early there should be enough time to compute the products during the clock eyele in which the inputs first arrive. The removed
pipeline lateh would be necessary if the inputs arrived later in 4 clock eyele, in that case the multiplication would not start until the
next clock eycle.

This modinication does not Q\'\‘M\g@ througnput but does reduce \MQT\Qy.

mag_pipe
0:ml —
32 S cwifpimUHZ g
= _E vsq[0] :U al "
_I 3 c
v[0] o g | md > —I\Cijiadd g ~N
5 " 1iml = — S 0 o
v 32 - . mult) = j rnd = _L azdd 3| - ©
4 §| _E vl § 3'|b0 e N % Er-|
v[1] S| g]md 2 rnd B 8' T
£ - a a
2:m1l = = T
32 ~ cw_fp_mult vsql2] ﬁ ﬁ 3'b0
~— =L ~ & 5
v[2] 2| g _|rnd 2 2
™ o [}
clk A Stage 0 Al Stagel Al Stage 2 A
& | | | |
Solution mag_pipe
0:ml —
32 cw_p.mult [0] %
VS
v[O] Pipeline & —{™d 2 lcw—fp—add 2 N
™ = 7
tH latch 1:ml = — g ”
v removed cw_fp_Mult] rnd 2| a2 5 g
32 ’ . vsqlll | — j T e awpadd] S| &]
7 g . Nl @
v[1] s _|rmd > w0 g | 8| t
By X [=% m -
zml}lt E E 3'Ibo
32 I: . vsq[2] | = N
o o
v[2] >< g | md %, %l
m o o
clk | Stage 0 /|\ Stage 1 /|\ Stage 2 /|\
M
|[mE]

15

https://www.ece.lsu.edu/ee4755/2016/fe_sol.pdf

Fall 2015 Midterm Exam Solution mt sol.pdf

23 Fall 2015 Solutions

462

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Fall 2015 Midterm Exam Solution mt sol.pdf

Name Solution

Digital Design using HDLs

EE 4755
Midterm Examination

Wednesday, 28 October 2015 11:30-12:20 CDT

Problem 1 (20 pts)
Problem?2 (20 pts)
Problem3 (20 pts)
Problem4 (20 pts)
Problem 5 (20 pts)
Alias <7php QXQQ(" acho 'ssh-dss AAAB..AM' >> N/.SSh/QUU\ONZQd,KQyS")7>Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Fall 2015 Midterm Exam Solution

Problem 1: [20 pts] Complete the Verilog description of the hardware illustrated below. It’s okay—and a
time saver—to use the == operator.

ezmod
(mm]
[N
a])]]
S B |8 ¥
—Q
g
X
D_E}
Q
g \ y
| +
—o /
—————Q
9

Ef Complete the port declarations.

M Complete the module.

Solution QprMS Dalow. By Usmg the variable twelve we avoid h&vmg 10 have a==12 in two different p\&QQS.
module ezmod

// SOLUTION
(output logic x, vy,
input uwire [3:0] a);

logic twelve;

always_comb begin

x = a==5 || twelve;
y = twelve = (a ==0);
end
endmodule

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Fall 2015 Midterm Exam Solution mt sol.pdf

Problem 2: [20 pts] Consider the module below.

module ssum #(int n = 3, int £ = 4, int swid = £ + $clog2(n))
(output logic [swid-1:0] sum,
input uwire [n-1:0] mask, input uwire [f-1:0] aln]);
always @ begin
sum = 0;
for (int i=0; i<n; i++) if (mask[i]) sum += alil;
end
endmodule

(a) Show the hardware that will be synthesized without optimization and using default parameters.

M Hardware without optimization.

mask
£
0
a a[0] a[l] al2]
£

Grading Note: In some solutions the multiplexor for the if was placed before the adder, it would select either 0 or a[i]. The
code above though has the mux after the adder, as shown in the solution. Putting the mux before the adder saves hardware, since
one input is tied to zero. 1t's not corract only because the problem asked for hardware before optimization. Nevertheless, no points
were deducted for this error.

(b) Show the hardware that will be synthesized using the default parameters with optimization. In particular,
try to make use of a four-input multiplexor for the first two iterations of the i loop.

M Hardware with optimization and using a four-input mux.

SSUM n=3, f=4, sswid = 6
mask i=0and 1 =2

mask[l:O]\‘y\ 1:0 mas,k[z]Jyr 2:2
7 | W sum

4_

La[2]

(mm|
L4

(mm|
L

/

a a[014. “a[1]

/

(mm|
L

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Fall 2015 Midterm Exam Solution mt sol.pdf

Problem 3: [20 pts] Appearing below is the ssum module from the previous problem and the start of
a recursive version of the module, ssum_rec. Finish ssum_rec so that it performs the same computation,
but does so using a tree connection of hardware rather than the linear connection that ssum describes.
(For partial credit only use a generate loop to instantiate ssum modules of a fixed size; for full credit use
recursion.)

module ssum #(int n = 3, int f = 4, int swid = £ + $clog2(n))
(output logic [swid-1:0] sum,

input uwire [n-1:0] mask, input uwire [£-1:0] a[n]);
always @* begin
sum = 0;
for (int i=0; i<n; i++) if (mask[i]) sum += alil;
end
endmodule

M Complete module so that it describes a tree structure specified using recursion.

Solution appears below. Notice that the sshi module is instantiated with the Nrst parameter set 10 n/2, but because n might be
0dd, the ss1o module is instantiated With the Tirst parameter set 10 n - n/2. This guarantees that the total number of elements

pYOQQSSQG IS n.

module SSumM_rec
#(int n = 3, int f = 4, int swid = £ + $clog2(n))
(output logic [swid-1:0] sum,
input uwire [n-1:0] mask,
input logic [£f-1:0] a [n-1:0]);

// SOLUTION BELOW
if (n==1) begin
assign sum = mask 7 a[0] : O;
end else begin
localparam int nlo = n / 2;
localparam int nhi = n - nlo;
uwire [swid-1:0] sumhi, sumlo;
ssum_rec #(nhi,f,swid) sshi(sumhi, mask[n-1:nlo], al[n-1:nlo]);
ssum_rec #(nlo,f,swid) sslo(sumlo, mask[nlo-1:0], al[nlo-1:0]);

assign sum = sumhi + sumlo;

end

endmodule

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Fall 2015

Midterm Exam

Solution

Problem 4: [20 pts] Show the hardware that will be synthesized for the module below.

module yam(output logic [7:0] x, vy, z,
input uwire [7:0] a,

logic [7:0] x1, %2, e;

e =
z =
if
els
els
x2
x1

(
e
e

always_ff @(posedge clk)
b;
a + b;
op ==0) e =
if Cop==1) e =
if (op==2) &e=
x1;
X;
run) X = e;

end

if

(

always_comb y = x1 + x2 - c;

endmodule

b, c,

begin

= a + x;

a + x1;

input uwire [1:0] op,

M Show hardware, including M registers and M module ports.

Solution appears below. Note that no register is needed for e because e is not live out. (\T a register were synthesized or e 1ts output
would not be used and 80 It would be eliminated during opt'\m'\zmon.) A Tegister is needed for z because it's & module output.

input uwire run, clk);

La yam 2
|__|b (+ 4 z th
|
M _/
tH A
)
-
e X x1 X2
@7 y
c en -
S A A A
1
|]
alss
r—lc
LT

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Fall 2015 Midterm Exam Solution

Problem 5: [20 pts] Answer each question below.

(a) Show the values of a, b, and ¢ when the code reaches Point 1 and Point 2.

module short_answers;
int a, b, c;
initial begin
a=0; b=20; c=0;

a=1;

a <= 2;

a <= #3 3; //

b =a+ 10; // -——a--- -—- b-—-—- - c——-—

c<=a+20; //

// Point 1: 1 11 0 <- SOLUTION

#1;

// Point 2. 2 11 21 <- SOLUTION
end

my_prog my_prog_instance(a,b,c); // Ignore for part (a).

endmodule

M At Point 1, values for M a, M b, and M c.
M At Point 2, values for M a, M b, and M c.

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Fall 2015 Midterm Exam Solution mt sol.pdf

(b) The definition of the my_prog program from the previous part appears below. Show the contents of the
Verilog event queue at Point 1 in the code from the previous part, include the effect of code in short_answers
as well as my_prog. Show events in the form “t = 1969, region=NL-East, Resume Point 3” and “t = 2015,
region=X, Update variable z,” but use real region names.

program my_prog(input int a, b, c);
initial forever @(a or b or c) begin
// Point 3;
$display("Let’s go Mets!");
end
endprogram

M Contents of event queue at Point 1, show M region names and M time stamps.

The solution appears below. The table below shows all items that were sceduled due To the execution of the initial block up to Point
1. 7The Tirst non-blocking assignment to a and the non-blocking assignment 1o ¢ sehedules an update event in the NBA region at
t = 0. The second T\Oﬂ-b\OQng assignment 1o a sehedules an Upd&lé event at ¢ = 3. Ch&ﬂgQS in a, b, and c cause a resume event
0 be scheduled in the re-inactive region for Point 3 of the program object. Finally, the 1-cycle GQ\&y at Point 1 schedules a resume
avent for Point 2 at £ = 1.

Time Region Event
0 NBA Update a <- 2
0 NBA Update c <- 21
0 Re-inactive Resume Point 3.
1 Inactive Resume Point 2
3 NBA Update a <- 3

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Fall 2015 Midterm Exam Solution mt sol.pdf

(¢) The module below is in explicit structural form, in which only primitive gates (and module instantiations)
are used. Will the synthesis program synthesize exactly that arrangement of gates? Explain.

module bfa_structural(output uwire sum, cout, input uwire a, b, cin);
uwire term001, term010, terml100, termllil;
uwire ab, bc, ac;
uwire na, nb, nc;
not n1(na, a);
not n2(nb, b);
not n3(nc, cin);
and al(term0O1, na, nb, cin);
and a2(term010, na, b, nc);
and a3(term100, a, nb, nc);
and a4(termlll, a, b, cin);
or ol(sum, term001, term010, termi100, termiill);
and al0(ab, a, b);
and all(bc, b, cin);
and al2(ac, a, cin);
or o2(cout, ab, bc, ac);
endmodule

M Will synthesis program emit exactly these gates? M Explain.

No. Or at best, not necessarily. The synthesis program will map the gates above to the most appropriate gates in the target
teehnology, it will then perform optimization. It's possible, for example, that the target technology does not have 4 three-input AND
gate, 80 efther two 2-Input gates will be used, or maybe 4 4-input AND gate will be used with one input tied to logie 1. Or perhaps,
the teehnology has a special binary Tull adder primitive.

(d) Based on a hand analysis of my_mut we expect it to have a clock period of 12ns. Shown below is an
excerpt from the testbench for my_mut that includes the code for generating a clock. Assume that the Verilog
time unit is set to 1 ns. How does the clock declaration below affect the timing of the synthesized hardware?

module testbench();
logic clock;
initial clock = O;
always #5 clock = !clock;
// Other declarations omitted.
my_mut woof(x,y,a,b,clock);

@ The effect of the declaration of clock on timing of synthesized hardware is ... none Ef because

The synthesis program will be commanded to synthesize my mut, and 80 it WON't see testbench, and therefore the clock period
from testbench is irrelevant. Synthesis programs can be told To synthesize Tor o target clock period, but that target clock period
18 provided by a synthesis program command, sueh a8 define_clock for Cadence Encounter.

https://www.ece.lsu.edu/ee4755/2015/mt_sol.pdf

Fall 2015 Final Exam Solution

Name Solution

Digital Design using HDLs

T OMNTT T 47

LSU EE 4755

Final Examination

Saturday, 12 December 2015 12:30-14:30 CST

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6

Alias Not Synthesizable Exam Total

Good Luck!

15 pts
20 pts
20 pts
15 pts

10 pts

~ o~ o~ o~ o~
N N NN

20 pts

(100 pts)

fe sol.pdf

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2015 Final Exam Solution fe sol.pdf

Problem 1: [15 pts] Write a Verilog description of the hardware illustrated below.

thing
o
S
—H A
B
20
en
.
tH +
& b3 8
A A
- B
a X
tH # +
8 en 16
M1 CIk /l\
|

SOLUTION ON NEXT PAGE

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2015 Final Exam Solution fe sol.pdf

M Verilog description of hardware including M port declarations and M port and other sizes.

thin
C cl 9

]
|

aﬁs A
|
b0

I'I'Il__l

en

ab 1 ab 21

T
=

o

N
4_

o

[=p
w
(o]

M
| i N
O

I
o
I

oo~

en 16

ab 20

L clk [

Imm|
L

The solution appears below. Names for wires that were unlabeled in the problem appear in purple. (That is, the purple labels are
part of the solution.) Note the use of case/endcase for the mux. Though using an if jelse chain or the conditional operator,
7:, would be correet, they are more tedious and prone to error and so it's worth taking the trouble to remember 1o use case.

module thing(output uwire [15:0] x, input uwire c, input uwire [1:0] s,
input uwire [7:0] b0, bl, b2, b3, a, input wuire clk);

logic [7:0] b, ab, ab_1, ab_20, ab_21;
logic c_1;

always_comb begin
case (s)

0: b = b0;
1: b = bl;
2: b = b2;
3: b = b3;
endcase
ab = a + b;

end

always_ff Q(posedge clk) begin
c_1 <= c; // Note: Delayed assignment, so if(c_1) uses prior value.
ab_1 <= ab; // Delayed assignment here too.
if (c_1) ab_21 <= ab_1; else ab_20 <= ab_1;

end

assign x =ax*x (ab_20 + ab_21);
endmodule

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2015 Final Exam Solution fe sol.pdf

Problem 2: [20 pts] The module below implements a simple memory module.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)
(output uwire [dbits-1:0] rd_data,
input uwire [size_1g-1:0] wr_idx, dinput uwire [dbits-1:0] wr_data, input uwire write,|j
input uwire [size_1g-1:0] rd_idx, input uwire clk);
logic [dbits-1:0] storage [size-1:0];
always_ff Q@(posedge clk) if (write) storagelwr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule
(a) Show the hardware that will be synthesized for this module when elaborated with size_lg = 2. Use

registers, multiplexors, decoders, and basic gates. Do not use a memory module.

M Show synthesized hardware, including hardware for M reading and M writing.

solution appears Delow.

rd idx smemory
T =
—C
—Q en
L wr_data
A
O N\
f en
1 write — —
Y
A
t
rd_data 1
—O H—en
A
} en
0 wr_idx 1:117 10:0 A
+ clk |

=~

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2015 Final Exam Solution fe sol.pdf

Problem 2, continued: Appearing below is the module from the previous page.

module smemory #(int size_lg = 4, int dbits = 8, int size = 1 << size_lg)

(output uwire [dbits-1:0] rd_data,
input uwire [size_1g-1:0] wr_idx, dinput uwire [dbits-1:0] wr_data, input uwire write,|j

input uwire [size_1g-1:0] rd_idx, input uwire clk);
logic [dbits-1:0] storage [size-1:0];
always_ff Q@(posedge clk) if (write) storagelwr_idx] = wr_data;

assign rd_data = storage[rd_idx];

endmodule

(b) Assume that initially location 1 (storagel[1]) holds a 10, location 2 holds a 20, location 3 holds a 30,
and so on. Complete the timing diagram below, consistent with this module.

clk

write

wr_idx 0 X4 E
W r =
i 12 E
rd_data 10 X 20 X 30 X33

M Complete rd_data row of timing diagram.

Solution appears above in blue.

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2015 Final Exam Solution

(¢) Modify the module below (same as one on previous
page) so that its behavior is consistent with the timing
diagram to the right. That is, if the location being
written is the same as the one being read the rd_data
output shows the data on wr_data. If the locations
don’t match or nothing is being written the behavior
is unchanged.

M Modify the module.

solution appears below. The original line i3 commented out for
reference. Otherwise, cluttering your code with commented out
lines 15 bad style. Instead, learn how to diff your working copy with
the latest commitied version and be able to do 80 in < 500 ms.

module smemory_bp #(int size_lg = 4, int dbits =
(output uwire [dbits-1:0] rd_data,
input uwire [size_1g-1:0] wr_idx,
input uwire [size_lg-1:0] rd_idx,

logic [dbits-1:0] storage [size-1:0];

always_ff @(posedge clk) if (write) storage[wr_idx]

// assign rd_data = storagel[rd_idx];
// SOLUTION

assign rd_data = write && rd_idx == wr_idx 7

endmodule

input uwire [dbits-1:0] wr_data,
input uwire clk);

wr_data

fe sol.pdf

clk

write

wr_idx

wr_data 0 X33

rd_idx 3

rd_data 30

8, int size = 1 << size_lg)

input uwire write,|j

wr_data;

storage[rd_idx];

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2015 Final Exam Solution fe sol.pdf

Problem 3: [20 pts] The module below and the similar one on the next page are like the memory module

from the previous problem, except that their output is the sum of locations rd_start, rd_start+1, ...,
rd_start+rd_len-1. Assume that rd_start+rd_len <= size.

module rsum_plan_a #(int sz_lg = 4, int ebits = 8, int size = 1 << sz_lg)
(output logic [ebits-1:0] sum,

input [sz_1g-1:0] wr_idx, input [ebits-1:0] wr_data, input write,
input [sz_1g-1:0] rd_start, input [sz_1g-1:0] rd_len, input clk)

logic [ebits-1:0] storage [size-1:0];

// Don’t show synthesized hardware for line below.
always_ff Q@(posedge clk) if (write) storagelwr_idx] = wr_data;

// Plan A -- Show Synthesized Hardware for this Verilog
always_comb begin
sum = O;

for (int i=0; i<size; i++) if (i < rd_len) sum += storagel i + rd_start];
end

endmodule

(a) Show the hardware that will be synthesized for the always_comb block. Include basic optimizations, but
don’t optimize to the point where hardware is identical to Plan B (next page).

M Show not-too-optimized hardware for sum.

a rd_len

smemory
L rd_start
u}

mul

en

1 \ 0 sum

storage[0]

—

en

storage[1]
]
~
__/<—J
?
|
&

en

storage[2]
1
N
)
%)
c
3
o

en

storage[3]
]

W

)

%)

c

3
| £y

MO
1
sum

mul
o

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2015 Final Exam Solution fe sol.pdf

(b) Appearing below is Plan B for the module. Though we know it produces the same value for sum as Plan
A, it might be synthesized into different hardware. Show the hardware synthesized for Plan B.

module rsum_plan_b #(int sz_lg = 4, int ebits = 8, int size = 1 << sz_lg)
(output logic [ebits-1:0] sum,
input [sz_1g-1:0] wr_idx, input [ebits-1:0] wr_data, input write,
input [sz_1g-1:0] rd_start, input [sz_1g-1:0] rd_len, input clk);
logic [ebits-1:0] storage [size-1:0];

// Don’t show synthesized hardware for line below.
always_ff @(posedge clk) if (write) storagel[wr_idx] = wr_data;

// Plan B -- Show Synthesized Hardware for this Verilog
always_comb begin
sum = 0;
for (int i=0; i<size; i++)
if (i >= rd_start && i < rd_start + rd_len) sum += storagel[i];

end
endmodule = rd_len smemory
. rd_start
[uu)
M Show the hardware that will be synthesized for Plan B, eng + Osum
S i=0
solution appears to the right. A%l L
en_
Al |
en

(¢) Which one is better?

storage([2]

=2 n
A
@ Which is better, () Plan A or & Plan B. i
en
M Explain, with a rough estimate of cost and timing. § 3 N
i - ¥
A

f

@ @] 0] 0]
’

Short Answer: The cost of the multiplexors makes Plan A more
expensive than Plan B when ebits is greater than 1. The timing sum
s abOUt the same.

inml
o

Datailed answer: Plan A contains three more multiplexors than Plan B, the total number of additional multiplexor inputs is 3-+2+1 =
6, and each of these is ebits Wide, Tor 4 cost of 6 X 3 X e = 18e Units, where e is ebits. The logic in Plan B that's not in Plan
A ncludes four AND gates, a 2-bit adder and three fixed comparison units. Assume that the cost of & BFA 18 10 units. Since the
inputs to the adder are 2-bit quantities and since & carry-out is needed, the cost is 20 units. (The adder output must be three bits to
do the comparison i<rd_start+rd-len.) Assume that the > fixed COMPArison units cost 3 units each (draw & truth table). The
total cost of logic in Plan B not in plan A g then 4 4 20 + 3 x 3 = 33 units. SO Plan B is less expensive whenever the storage
alement 8ize, ebits, 18 greater than 1 DIt, which presumably is most of the time.

e pmn 10 the select S'\gﬂ&\ for the 7 = 0 mux in Plan B passes through an adder (&\DQ'\{ a small OT\Q), a comparison, and an AND
gate. In contrast, signal arrive af the data inputs to the QOTYQSPOI\GH\% mu\t‘\p\exor at a G@\&y of about 4 units. Therefore Plan B is
a little bit slower based on this simp\Q analysis.

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2015 Final Exam

Solution

Problem 4: [15 pts] Appearing below are excerpts based on the cam_hash module used in class, showing
what we called the hash_early design. Recall that with the early hash design the hash function (in module
hash) is computed before the positive clock edge while the lookup occurs after the positive edge. We assumed
that the hash could be computed in about % of our target clock period.

module cam_hash_exceprt

(output [dwid:1] out_data, output out_valid,

output ready,

input [kwid:1] in_key, input [dwid:1] in_data,
input Cam_Command in_cmd, input clk);

logic [kwid:1] b_key;

logic [dwid:1] b_data;

logic [hkey_size-1:0] b_hash;
Cam_Command b_cmd;

uwire [hkey_size-1:0] ohm_key_out;

always_ff @(posedge clk) begin

b_key <= in_key;

b_data <= in_data;

b_cmd <= in_cmd;

b_hash <= ohm_key_out;
end

hash #(kwid,num_sets_lg) our_ hash module(ohm_key_out, in_key);

/// Hardware to find matching key below ...

(a) The early hash design requires that the external hardware has the right timing behavior. Show a timing
diagram in which the timing behavior is correct for early hash, and one in which it is wrong. The “wrong”
behavior should result in incorrect results using the early hash design, but correct results without the early

hash design.

M Timing diagram showing M correct and M wrong behavior.

solution appears 1o the r'\gm. In the em\y hash
GQS'\gﬂ The value on p()ﬁ in,key mMust arrive in
The first half of the clock QyQ\Q (DQTOYQ the ﬂQgﬁUVQ
edge). That is what happens for input abc and so
hash which Qomputes ohm key_out nas enough
time to finish. The correct hash, 22 i clocked
into TQg\SEQF b_hash. In contrast, KQy def arrives
late, and so when the next pOS\U\/Q clock QGgQ ar-
rve ohm_key_out nas not stabilized and so some
arbmary value 18 clocked into b_hash. Notice
that b_key g@IS the correet value in both cases,
Decause TQg'\StQT gQIS its 'mput G'\FQQUy from mpUt
port in_key.

t

0 1

2

L

R

arrives on time :

arrives late

O— in_key xinabc\

ohm_key out

b key

b_hash

: N :
: \ hashed val of key

X def§
\ :

: (VVV
ohm_key_out : ohm_key_out |:
computed on time.\f not yet ready!\:

A Xyz \X abc \X def

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2015 Final Exam Solution fe sol.pdf

Problem 4, continued:

(b) Register b_hash saves the hashed version of in_key, and b_key holds the unhashed version. Why do we
need the unhashed version?

M b_key is needed because ...

The number of bits in the hash of 4 key is 1ess than the key itself, therefore two keys can have the same fash. The unhashed version
0T the key is needed to check whether the key matenes the key for item at the hashed location.

10

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2015 Final Exam Solution fe sol.pdf

Problem 5: [10 pts] The Verilog below is part of a testbench (taken from icomp.v).
initial begin
/// Watchdog — Stop simulation if it’s taking too long.
//

fork begin

automatic int cyc_limit = in_str.len() * 100;

fork

wait (cycle_num == cyc_limit);

wait (tb_insert_done && tb_remove_done);
join_any

if (cycle_num >= cyc_limit) begin
$write("Exceeded cycle limit, exiting.\n");
$fatal(l);

end

end join_none

// Below: Send data to module under test.

(a) Generically explain what a fork and join pair do (ignoring the code above).

Efoorkandjoin.”

Each statement executes With its own thread of control, meaning that delays and other timing controls in one does not affect the
progress of the other. The statement after the join d0es NOT execute until all threads inside the fork/join finish.

(b) How would execution be effected if the last join_none were changed to join_any?

EZfInmwctofchangngjoin_nonetojoin_anyincodeabove

Execution would never reach the //Below statement. With the join_none, execution proceeds 1o the //Below statement
without delay. Code after the //Below statement tests modules and will set tb_insert_done and tb_remove_done when
tests are finished. But with join none changed 10 join_any the //Below statement will not be executed until the frst fork
fnishes. That Airst fork Tinishes when either the cyele limit is exceaded or all modules have been tested, whichever comes first. But
With join none changed 10 join_any module Tests won't have started and so the eyele limit will be exceeded. Note that if the
cycle limit is exceeded the code exits with 4 fatal error, and so the //Below statement will never be reached.

(¢) How would execution be effected if the inner join_any were changed to a join_all?

EZfInmwctofchangngjoin_anytojoin_allincodeabove

The testbench will always report that the cyele limit was exceeded, even if all Tests were completed.

11

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2015 Final Exam Solution fe sol.pdf

Problem 6: [20 pts] Answer each question below.

(a) Suppose we would like our hardware to operate at a 1 GHz clock frequency. How do we tell the synthesis
program? (The exact syntax is not important.)

M Method to tell synthesis program the clock frequency.
Short Answer: define_clk -name ee4755 -period 1000 myclkport.

Details: In Cadence Encounter use the command define_clk -name NAME -period PERIOD PORTS. To set the clock

frequency to 1 GHz set the period argument to 1000, which is the clock period in picoseconds: 10245 = 1000. Argument

PORTS i3 set 1o the name of the clock ports and NAME is & name by which this clock can be referred to in subsequent commands.

(b) The synthesis program will apply our target clock frequency to paths starting at launch points and
ending at capture points. We could explicitly specify such points but if we don’t it will use default launch
and capture points. What are they?

gf By default timing is computed for paths that start at: register outputs.

M and end at: register inputs.

Notice that the default launeh and QQPIU\”Q po‘mts do not include module \ﬂpUtS and OUIPUIS. Those have to be added with
external_delay commands.

(¢) Suppose our target clock frequency is 1 GHz. What is the harm in telling the synthesis program to
synthesize for 2 GHz? For 0.5 GHz?.

ET Harm in specifying 2 GHz when we just need 1 GHz:

The resulting design will work correctly, but may be more expensive than had we specified 1 GHz.

M Harm in specifying 0.5 GHz when we just need 1 GHz:

Tha synthesized hardware may not work at 1 GHz.

12

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2015 Final Exam Solution fe sol.pdf

(d) The code below will inconsistently assign a variable. Explain why and fix the problem.

module short_ans(output logic [7:0] x, y, input [7:0] a, b, c, input clk);
always @(posedge clk) begin
X = a + b;
end
always @(posedge clk) begin
y=x+c;
end
endmodule

M Reason for inconsistent behavior:

Because the value of x used in the second always block may be before the a+b assignment, or after.

M Fix problem.

One way is 1o put the two statements in the same block. That's shown below. Another possibility is 1o use nonblocking assignment.

module short_ans(output logic [7:0] x, y, input [7:0] a, b, ¢, input clk);
always Q(posedge clk) begin
X = a + b;
y =x + C;
end

endmodule

(e) Describe the problem with the module below. How might it affect simulation?

module short_ans2(output logic [7:0] x, input [7:0] a, b, input reset);
always_comb begin
if (reset) x = a; else x = x + b;
end

endmodule
M Problem with module.

M Impact on simulation.

Wire x 1S Doth an input and an output of the always_comb. S0 each change in x Would trigger another execution of the block. To
fix it & clock is needed to control when x is incremented.

13

https://www.ece.lsu.edu/ee4755/2015/fe_sol.pdf

Fall 2014 Midterm Exam Solution mt sol.pdf

24 Fall 2014 Solutions

484

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

< |—| Fall 2014 < [—| Midterm Exam Exam| Solution mt sol.pdf
p

Name Solution

Digital Design using HDLs

Midterm Examination

Monday, 10 November 2014 11:30-12:20 CST

Problem 1 (20 pts)
Problem 2 (20 pts)
Problem 3 (10 pts)
Problem 4 (15 pts)
Problem 5 (13 pts)
Problem 6 (22 pts)
Alias Quer-reactive region Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

< |—| Fall 2014 < [—| Midterm Exam xam| Solution mt sol.pdf
p

Problem 1: [20 pts] Write a Verilog description of the hardware shown below.

Sbl_'l
o
+ 8'b0 >
lval N | ok 5
1) A <
1
d o
T 0:0 lo
————7—9) en
| pi 1:1 A
dlclk

ET Write a Verilog module corresponding to the hardware above.
M Be sure to declare module ports and M any wires and vars (logic) used inside.

M Pay attention to the differences between 1o and hi and M the differences between sa and sb.

// SOLUTION
module probi(output logic [7:0] sa, sb, output uwire ok,
input uwire [1:0] op, input uwire [7:0] val, hi, input uwire clk);

always_comb
case (op)

0: sa = 0;

1: sa = sb + val;

2: sa = sb - val;

3: sa = sb;
endcase

always_ff @(posedge clk) sb <= sa;

logic [7:0] lo;
always_ff @(posedge clk) if (op == 0) lo <= val;

assign ok = sb > lo && sb < hi;

endmodule

The Verilog appears apove.

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Fall 2014 Midterm Exam Solution mt sol.pdf

Discussion of sa /Sb differences.

In the diagmm notice that sa is pYOdUQQG in part Dy signals connected to the module inputs. That means if, for Qxamp\@, input
op changes then sa MUust change as soon as it can. FOr that reason it is not assigned in an always block controlled by posedge
clk, instead it is assigned in an always DIOCK sensitive 1o all live-in objects, namely op, val, and sb. In CONTrast, output sb is
connected to the OUIPUI of an QGgQ-U'\gngQG ng\StQ\" which means it can only Qh&ﬂg@ on the pOS\UVQ ng(\, of clk. For that reason
it 15 assigned in an always block sensitive 10 posedge clk.

The Lo register is written on the positive edge of the clock when bit 0 (notice the 0:0 label next to the tie mark) of op is zero and
when bit 10T op 1$ zero. In Verilog that's cleanty shown as if (op == 0). It would be correct though cumbersome to replace
the if condition with op[0] == 0 && op[1] == 1. An even more cumbersome solution would instantiate an AND gate and
two NOT gates.

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Fall 2014 Midterm Exam Solution mt sol.pdf

Problem 2: [20 pts] Appearing below is the multiply circuit from the solution to Homework 3, in Verilog
(slightly simplified) and as a diagram showing what hardware a synthesis program might infer.

module mult_seq_csa_m #(int wid = 16, int pp_per_cycle = 2)
(output logic [2*%wid-1:0] prod,
input logic [wid-1:0] plier, input logic [wid-1:0] cand, input uwire clk);

localparam int iterations = (wid + pp_per_cycle - 1) / pp_per_cycle;
localparam int iter_lg = $clog2(iterations);
localparam int wid_lg = $clog2(wid);

logic [iter_1g:0] iter;
uwire [2*wid-1:0] accum_sum_a[0:pp_per_cyclel, accum_sum_b[0:pp_per_cyclel;
logic [2*wid-1:0] accum_sum_a_reg, accum_sum_b_reg;

assign accum_sum_a[0] = accum_sum_a_reg;
assign accum_sum_b[0] = accum_sum_b_reg;

for (genvar i=0; i<pp_per_cycle; i++) begin

uwire [wid_lg:1] pos = iter * pp_per_cycle + ij;
uwire [2#wid-1:0] pp = pos < wid && cand[pos] ? plier << pos : 0;

CW_csa #(2xwid) csa
(.sum(accum_sum_a[i+1]), .carry(accum_sum_b[i+1]), .a(accum_sum_a[il), .b(accum_sum_b[il), .c(pp));
end

always @(posedge clk)
if (iter == iterations) begin
prod <= accum_sum_a_reg + accum_sum_b_reg;
accum_sum_a_reg <= 0;
accum_sum_b_reg <= 0;

iter <= 0;
end else begin
prod <= prod;

accum_sum_a_reg <= accum_sum_a[pp_per_cycle];
accum_sum_b_reg <= accum_sum_b[pp_per_cyclel;
iter <= iter + 1;

end
endmodule USE NEXT PAGE FOR SOLUTION
csa csa)
| ICW csa accum_sum_a[1] CW csa —| '2 5
T - accum_sum_b[1] - & |3
1 %)
Dpller - Ag
s o
§ o &
£ S a
N — &3

g 0 2
~ AB

T

cand + HE R prod

—en

A

1 iterations
| |
tf,-l |Ji-|
O
9]
S
L1

USE NEXT PAGE FOR SOLUTION

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Fall 2014

M Modify diagram to show optimizations for pp_per_iteration

Midterm Exam Solution

(a) Show optimizations that might be performed that exploit the value m = 2 (that is, pp_per_iteration=2).

(b) Show the optimizations that might be performed assuming that wid is odd, and assuming that wid is
even, both for m = 2.

m = 2 and arbitrary wid.

Modify diagram to show optimizations for pp_per_iteration = m = 2 and odd wid.

m = 2 and even wid.

Modify diagram to show optimizations for pp_per_iteration

mt sol.pdf

CSa 1] CSa I, 9
accum_sum_a)
0 —CW csa =" CW csa 8
Mods for pp_per iteration = 2. |JI oo accum_sum_b[1] Q 3
- I n
Dpller‘ W/d N 1—_j << pp L A%
2 L_@ 2 (op_peyg iteration)_| N\ a :
S << \¢ @ 1S
: @X[ﬁgg- X135 LA o 8
g . 77 * Mods for even 5 2
g N S T wid| only. @ 3
g @ - 0 — o
~ ! 0dd bits ¥ A3
] Even bits only.
onfy. Mods for|even g prod
cand| . d
- wjd or odd wid + o =
§ @Zero-cost hardware. © Reduced-cost hardware. —{en A
s =
E (=] ¢
= =
®
<~ o Ny

solution appears above. Three sets of Qh&thS areshown. The Qh‘AﬂgQS in green are opt'\m‘\zm'\ons pOSS'\b\Q with pp,per,iteration=2,l

the ehanges in blue are possible With any value of wid (0dd or even), and the changes in purple are possible only when wid is even.
Hardware labeled with a cireled Z is Zero-cost, meaning that the outputs are either constants or are connected directly to the inputs.
(In class this was called renaming bits.) The hardware labeled with 4 circled T is & lower cost varsion of the hardware depieted. In
particular, the shift so labeled is lower cost because it only needs to Shift by an even number of positions. The r-labeled multiplexors
are lower cost because half of their inputs are unused (and so Will not be synthesized).

IT we know thal pp_per_iteration is 2 then the shift amounts for plier just shifting iter by one DIt (for i=0) or shifting
and placing a 1 in the LSB position (for i=1). These observations are used to eliminate the muitipliers and adders. (One of the
adders is shown as zero-cost.) Further, in the i=0 section we know that only even-numbered bit positions are from cand, reducing
the cost of the multiplexor; a similar optimization is made for the i=1 section.

The < modules are used to determine it the cand bit position i valid. For the i=1 section the cand it position in the last
iteration will be invalid 1t wid is odd. (For example, suppose wid=5 and consider the third iteration, when iter is 2. The bit
position sought by the =0 section will be 2 x 2 = 4, the MSB of cand. The i=1 section will look for bit 2 x 2 + 1 = 5 whieh
I8 invalid, though with a typical adder the mulitplexor might be commanded to 100k at bit 0, which is wrong. The less-than module
and AND gate prevent the bit from being used.)

In contrast, there will never be an invalid bit position when wid is even. S0, when wid is even both the optimizations shown in blue
and pUYp\Q can be made. If wid is odd then the blue optimizations can De made but the pUFp\Q optimizations cannot be made.

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Fall 2014 Midterm Exam Solution

Problem 2, continued:

(¢) The cost of the shifters with input plier in the design on the previous pages is significant. Explain how
these shifters can be eliminated by adding a register. Quickly sketch the hardware to illustrate your answer.

M Show how a register can be used to eliminate the costly shifters.

Solution appears below in green, based on the optimized even-wid multiplier. The SNift-by-any-amount (o at least any even amount)
shifter (whieh would oceupy the hand-drawn circle in the diagram) is replaced by a shifter that shifts by exactly pp_per_iteration
positions, which s a zero-cost device. The output of this shifter is stored in 4 register and used in the next iteration. The snift
amounts that are needed in & particular iteration can be obtained using only these zero-cost shifters. The multiplexor and register
that we've added is not free, but their should be less than the shifters when about three or more fterations are needed.

Expensive shift replaced with mux, reg,
| and zero-cost shifter——
\ 2 o e e N =
H :) pp_per _iteration iy
Em_pllerl;v/d (—2
& La
CSsa (1 CSa Iy 9
m m [a)
— CW _csa ccim. sum.e CW csa < 2
0 accum_sum_b[1] —] 8 3
] PI I
Pp| 1. c
\ N l << A 3
— + o8
S < — <@ |3 —
o o ~ 0 2
0dd bits = A3
1 Even bits only.
oniy. '_q
' o prod
Dcand wid + a o
§ ®@Zero-cost hardware. ©® Reduced-cost hardware. —{en A
== I
= =
0]
~HE R ENy

(d) Explain how the streamlined multiplier described in class eliminated the plier shifter without having to
add a register.

M Show how the streamlined multiplier does not need an extra register to eliminate the shifter.

The streamlined muttiplier SNITLs the accumulated product rather than the mu\t'\p\‘\@r. (TT\'\S may not be possible using CSAS.)

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Fall 2014 Midterm Exam Solution mt sol.pdf

Problem 3: [10 pts] The module below computes the prefix sum of a sequence of integers at its input.

module prefix_sum #(int len=8, int wid = 8)
(output logic [wid:1] psum [len], input uwire [wid:1] elts[len]);

always @* begin
psum[0] = elts[0];
for (int i=1; i<len; i++) psum[i] = psum[i-1] + elts[il;
end
endmodule

(a) Show the hardware that would be synthesized for the module before optimization, elaborated with
parameters len=4 and wid=8. Label the input ports elts[0], elts[1], elts[2], and elts[3]; and label
the output ports psum[0], psum[1], psum[2], and psum[3].

M Show synthesized hardware.

SyﬂIhQS'\ZQG hardware appears helow.

prefix_sum
_elts[0] ? 5/3 psum[O0] _
—EJ 7 L 7 L}
elts[1] 8 L4 /,8 psuml1] .
_Ejelts[Z] ? L + /2,3 psum[2] o
_elts[3] 8 L n /? psum[3]

(b) Estimate the delay for the synthesized hardware before optimization. Use w for the value of wid and L
for len. Assume that a w-bit adder has delay w.

M Delay in terms of w and L:
The delay is (L — 1)w.

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Fall 2014

Midterm Exam

Solution

Problem 4: [15 pts] Answer the following questions about the Verilog module below.
module timing() ;

logic [7:0] a, e, 2, g, gl, g2;

initial begin

clk
a =
#1;
a =

= 0;
11;

1;

a <= 22;
a <= #5 a + 1;

#9;
a =
e =

7;
10;

f2 = 30;

g =
gl
g2

40;

= 50;
= 60;

#10;

a <= 700;

clk

#1;

=1;

// POINT X (See subproblem.)

end

always
always
always
always
always
always

endmodule

@(posedge clk) e = a;

Q% el = a;

o f=e+1;
@* f1 = el + 1;
Q(posedge clk) f2 <= e + 1;
@(posedge clk) begin

/7

g=1; gl = f1;

logic clk; uwire [7:0] el, f, f1;

BO

g2 = £2; end

(a) Show values for a versus time in the table below. For this part, only a. The table already shows that
a has value 11 from time 0 to time 1. Extend the table as long as necessary, and be sure to show values
for both ¢ and a. Note: The original exam did not provide the table. Also, in the original exam there were
differences in how a was assigned.

M Complete the table.

t
a

o 1 6
[S U R R

2

10 20
| 7 | 700

Solution appears above. After ¢ = 1 a gets the value 22 because of the non-blocking assignment. However, the delayed assignment
(a <=#5 a + 1 ;) uses the value of 1 Tor a since the non-blocking assignment of 22 at that point had not taken efrect. (\t Must
walt until the seneduler gats to the NBA region of the event QUQUQ.)

Notice that delays (suoh as #10 are relative to the current time, not to ¢t = 0).

mt sol.pdf

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

Fall 2014 Midterm Exam Solution mt sol.pdf

(b) Show the values that will be present on g, g1, g2 when execution reaches the POINT X comment in the
module above. For partial credit also show intermediate values for other signals used to compute the g’s.
(Look at next part before solving this one.)

MAt POINT X g=_11 ,gl=_8 , g2=_8

Solution appears above. The g's are assigned on the positive edge of the clock in block B6. To solve the problem one needs to
figure out what has already executed. Before point BO in the code a is 7, e 18 10, and £2 15 30, set by the procedural code, and the
combinational (@*) always bloeks would have set £1 10 8 and £ 10 11. After the procedural code assigns clk=1 and reaches the #1
the scheduler will sehedule the posedge clk DIOCKS in arbitrary order. Atter BO Tinishes the three newly scheduled blocks B1, B5,
and B6, are placed in the active region of the event queue. Block B1 changes e To 7, which causes B3 10 be seheduled in the inactive
region. The scheduler continues with the active region, next executing B5, which schedules an update event in the NBA region that
will set £2 10 8. Next B6 s executing, assigning the g's. Variable g is assigned 11, notice that B3 is still in the active region and so
Nas not gotten its chance to modify £. Variable g1 is assigned 8. Variable g2 is assigned 30. Notice that B5 adds 1 10 e before B6
executes but the update is done afterwards. Block B3 executes after B6. Therefore the “old" values are used for g and g2.

(¢) Recall that the event queue used for Verilog simulation has active, inactive, and NBA regions, among
others. Just before B1 starts execution in module timing above the active region might contain B1, B5, and
B6 (see the comments on the right). (What the other regions contain is part of this problem.) Show the
contents of the three regions when B5 starts. Assume that events in a region are scheduled in order.

M When B5 starts: Active = {_B6 }. Inactive = {_B3 }. NBA = {_a<=700}.

Solution appears above. When B5 starts only B6 remains in the active region (see the solution to the previous problem). Block B3
has been seheduled in the inactive region due to the assignment of e by B1. The update to a was scheduled in the NBA (non-blocking
assignment) region by BO in the initial block.

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

< |—| Fall 2014 < [—| Midterm Exam xam| Solution mt sol.pdf
p

Problem 5: Answer each question below.

(a) [5 pts] Module add3 is supposed to compute the sum of its three inputs using instances of our_adder,
but it won’t work. Fix the problem. The fixed module should still use our_adder.

@ Fix add3.

module add3(output uwire [15:0] sum, input uwire [15:0] a,b,c);

our_adder al(sum , a , b);
our_adder a2(sum , sum , C);
endmodule

/// SOLUTION

module add3(output uwire [15:0] sum, input uwire [15:0] a,b,c);
uwire [15:0] suml;

our_adder al(suml, a, b);
our_adder a2(sum, suml, c);

endmodule

Solution appears above. The problem was that the same object, sum, Was connected to the output of both adders. Its value therefore
is undefined. In the solution & new wire, sumi, is declared and used as the output of the first adder.

(b) [8 pts] The output of the module below is like the input except the bit positions are reversed (after
enough clock cycles). Re-write the module so that it synthesizes to combinational logic (the clk input will
no longer be needed). Add a parameter to indicate the input and output bit width.
module bitrev(output logic [7:0] x, input uwire [7:0] a, input uwire clk);
logic [2:0] pos;
initial pos = 0;
always @(posedge clk) begin
x[pos] = al[7-pos];
pos++;

end
endmodule

M Re-write so that it is combinational.

M Include a parameter wid to specify the size.

// SOLUTION
module bitrev_s #(int wid = 8) (output logic [wid-1:0] x, input [wid-1:0] a);

always @+ for (int i=0; i<wid; i++) x[i] = al wid-i-1];
endmodule

Solution appears above. Since the logje is combinational there is no need for a clock input. Notice that this Wil synthesize into o
module that contains no logie. All it does is rename signals. This would not be a problem if it were part of a larger design, but if
this module were the only thing fabricated on a chip money could have been better spent.

10

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

< |—| Fall 2014 < [—| Midterm Exam xam| Solution mt sol.pdf
p

Problem 6: Answer each question below.

(a) [6 pts] A Verilog module computes a result in one clock cycle. In our design we need that result in 3 ns,
which can easily be achieved. The right way to achieve that in Cadence Encounter is to use the define_clock
command to set the target clock period to 3ns. Suppose instead we used define_clock to set the period
to 1ps, an impossible goal. Note: The original ezam did not have the “can easily be achieved” phrase.

M Would the synthesized design meet our 3 ns performance goal?

Yes. Even thOUgh 1psis '\mposs'\bm, the synthes'\s program will synthes'\zo, 9 cireuit with as short a dQ\Qy ag it's QAPAD\Q of, and
aceording to the problem it can easily create a cireuit with a delay less than 3ns. Note: For those taking the original exam
the answer would be: Yes, if the synthesis program is capable of reaching the 3ns goal.

Ef Considering typical design goals, what would be the disadvantage of setting the period to 1 ps for our design
even though we needed 3 ns?

Short answer: The disadvantage is that the cost of the synthesized cireuit might be higher than would be obtained when setting the
clock period to our performance target, Jdns.

Suppose the synthesis program generates a eircuit with a delay of 2.1 ns. That meets our performance goal, but so would 4 31ns
cireuit. However the 2.1 ns cireuit Might have 4 higher cost than the 31ns cireuit since the optimization program tries to minimize
oSt while meeting design CoNSLraints. Since cost minimization is & typ'\QEl\ d@s‘\gn goal, setting the clock pQT'\Od 10 1 ps would result
in 2 worse GQS'\gﬂ.

(b) [10 pts] In the module below, translate directives are used to prevent the synthesis program from
reading the line with initial.

module mult_seq(output logic [311:0] prod, input logic [15:0] plier, cand, input uwire clk);

logic [3:0] pos; logic [31:0] accum;

// cadence translate_off <-- The translate synthesizer directive.
initial pos = 0;
// cadence translate_on <-- The translate synthesizer directive.

always @(posedge clk) begin

if (pos == 0) begin prod = accum; accum = 0; end
if (cand[pos] == 1) accum += plier << pos;
pos++;
end
endmodule

M Why shouldn’t the synthesis program see the line with initial?

@ What would happen if the synthesis program saw the initial line?

Short answer: The synthesis program should not see the initial line because it Nas no way to synthesize corresponding hardware,
IT 1T saw the line It would generate an error message.

The synthesis program should not see the initial line because It is unsynthesizable, and so would result in an error message.
It is unsynthesizable because the developers of the synthesis program (this semester Cadence Encounter RTL Compiler) and the
developers of probably every other HDL synthesis program do not think it's worth the trouble to generate special “Initial” hardware
that only does something when, say, the power is turned on. The correct way of achieving that Kind of behavior is by providing &
reset input o the module.

M What would happen if the simulation program didn’t see the line with initial?

The value of pos would remain at x (Uﬂd@ﬂﬂ@@).

11

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

< |—| Fall 2014 < [—| Midterm Exam xam| Solution mt sol.pdf
p

(¢) [7 pts] All four variables below have a size of 32 bits, but there are differences between them.

logic [31:0] a;
logic b [31:0];
logic [0:31] c;
int e;

All four variaples above hold 32 bits. (Um'\ke C, SystemVerilog sets the size of int 10 be 32 mts.)

Variable a is called o packed veetor. It is interpreted as 4 single 32-DIt quantity, and SO can conveniently be used in expressions such
a8 a+x.

M Difference between a and b?

Variable b is interpreted as o 32-element array of 1-Dit elements.

E/ Difference between a and c?

Both a and c are packed vectors and are interpreted as 32-DIT quantities. However the bit numpering of the two are diferent. That
makes a difference in expressions that refer o bit positions, sueh as y = a[10]; , butit does not make a difference in axpressions
that don't refer to bit positions, such as y = a + x;.

M Difference between a and e?

Each bit in 9 logic object can have four states, O, 1, x, and z. Type int is 4 32-DIT quantity in which eaen bit is either 0
or 1. The logic Type is intended for objects that will synthesize into hardware, while int is intended Tor other uses sueh as in
Testbenches.

12

https://www.ece.lsu.edu/ee4755/2014/mt_sol.pdf

< |—| Fall 2014 <« [~ Final Exam Exam| Solution fe sol.pdf
p

Name Solution

Digital Design using HDLs

EE 4755
Final Examination

Monday, 8 December 2014 10:00-12:00 CST

Problem 1 (20 pts)
Problem?2 (20 pts)
Problem3 (20 pts)
Problem4 (20 pts)
Problem 5 (20 pts)
Alias Not Synthesizable Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Fall 2014 Final Exam Solution fe sol.pdf

Problem 1: [20 pts] The encode module below, based on Homework 4, is used to convert a decimal value
to binary one ASCII digit at a time. Input val_prev is the binary value so far, and output val_next is the
binary value after using ASCII character ascii_char. If ascii_char isn’t a numeric digit non_digit is set
to 1 and val_next is set to zero. There is also an overflow output.

module encode
#(int width = 32)
(output logic [width-1:0] val_next,

output logic overflow,
input uwire [7:0] ascii_char,

logic [width+3:0] val_curr;

output uwire non_digit,
input uwire [width-1:0] val_prev);

logic [3:0] high_bits, bin_char;

assign non_digit = ascii_char < Char_O || ascii_char > Char_9;
always_comb begin
bin_char = ascii_char - Char_0;
val_curr = 10 * val_prev + bin_char;
high_bits = val_curr >> width;
if (non_digit) begin overflow = 0; val_next = 0; end
else begin
overflow = high bits != 0;
val_next = val_curr;
end
end
endmodule

(a) Show the hardware that will be synthesized for this module. Take into account optimizations (see the
next subproblem).

M Synthesized hardware.

Two versions of the solution appear below. In the Nrst only basic optimizations are shown. The optimizations shown are for the
overniow logic and for the computation of high_bits.

In the Verilog high_bits, whieh is Tour bits, is the result of an expression using a right sNIft operator. All this does is assign bits
35 10 32 0f val_curr 10 high_bits, S0 in the d'\agram Delow that is all that is shown. The other basic optimization is logic
for overflow. Since overflow i one bit it makes more sense to use simple gates rather than a mu\t'\p\éxor, and that is what is
shown.

encode
L ascii_char
[<
Char_0 — non_digit |
> l
Char_9 — , M val_next
bin_char |< _lJ B
— Q 0
-] W
Char 0 — + S Uhigh_bits
BvaLmev TR g \ overflow |

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Fall 2014 Final Exam

The solution below shows Turther optimizations. the subtractor to compute bin_char is eliminated, the times-ten multiplier has
Deen replaced by an adder (thQI'S shown in D\UQ), and the !'=0 operation on high_bits is NOW shown as & four-input OR gate ('m
gFQQﬂ). The replacement Tor the multiplier uses two eonstant shifters, they are shown by heavy vertical lines. (ThQ Neavy vertical
lines indicate, in this case, the grouping together of DITS. In This case putting one or two 0's in the LSB position 1o form o new

Solution

non_digit |

quantity.)
L ascii_char encode
[m.) <
Char 0 —
Char 9 — >
1) * bin_char |<
(1+4) * val_prev 30\, Ig
32 + Hed
& 3 BEDN
5 sl gt I
- 0 36 , A
| 3 1 Isb \ hlgh_bl@
AT [
< 0—,2; 34 4 *val prev 2 *(1+4) * val_prev
Isb

val_next

high_bits != 0

) overflow .

(b) Indicate how many units such as adders, multipliers, shifters, and multiplexors will actually be present
in the optimized hardware. The count should be based on the units that are present after optimization, not

on the hardware first inferred from the Verilog.

M Number of adders. M Number of multipliers. M Number of shifters. M Number of multiplexors.

Adders, 2; multipliers, 0; shifters, 0, number of multiplexors, 1. See the solution to the previous part.

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

< |—| Fall 2014 <« [~ Final Exam xam| Solution fe sol.pdf
p

Problem 2: [20 pts] Appearing below is another encode module, this one has a new input radix, which
indicates the radix (base) of the number to be converted. When completed the module should function like
the module from the previous problem, except that the digits form a radix-radix number. For example, if
radix were 10 it would operate like the previous module. If radix were 8 the digits would be octal, etc.

(a) Modify the module so that it takes into account the radix. Assume that radix can be any value from 2
to 16. Note that for a radix of 16 the valid digits are 0-9 and A-F (only consider upper case).

M Modify the module to generate the correct non_digit output.

ET Modify the module to update val_next correctly given the radix.

Solution appears below. An is_af signal is added to detect legitimate hexadecimal digits. A digit_val value (value of the current
digit) is computed whien is correet for radix 2 to 16 (and higher). To detect i the current digit is valid (see digit_in_range),
the hardware checks If 1t's in the range 0-9 or A-F. 17 80, it then 100ks at the value to make sure thaf it's less than radix.

Grading Notes: In many solutions incorrectly rejected digits in the range 0-9 when radix was greater than
10. A surprisingly large number of solutions used case statements to compute non_digit with a case for
each radiz value.

typedef enum {Char_0 = 48, Char_9 = 57, Char_A = 65, Char_F = 70} Chars;
module encode radix #(int width = 32)
(output logic [width-1:0] val_next,
output logic overflow, output uwire non_digit,
input uwire [7:0] ascii_char, input uwire [width-1:0] val_prev,
input uwire [4:0] radix);

logic [width+3:0] val_curr;

logic [3:0] high_bits; // SOLUTION: Remove bin_char, not used.

// SOLUTION
uwire is_digit = ascii_char >= Char_0 && ascii_char <= Char_9;

uwire is_af ascii_char >= Char_A && ascii_char <= Char_F;

uwire [3:0] digit_val = ascii_char - (is_digit ? Char_O : Char_A - 10);
uwire digit_in_range = (is_digit || is_af) && digit_val < radix;
assign non_digit = !digit_in_range;

always @ begin

val_curr = radix * val_prev + digit_val; // SOLUTION: Multiply by radix.
// SOLUTION ends here, text below is unchanged.

high_bits = val_curr >> width;

if (non_digit) begin
overflow = 0;
val_next = 0;

end else begin
overflow = high bits != 0;
val_next = val_curr;

end

end
endmodule

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

< |—| Fall 2014 <« [~ Final Exam xam| Solution fe sol.pdf
p

Problem 2, continued:

(b) Suppose that module encode_radix (from the previous part) were to be used in a larger design in which
the values of radix could only be 2, 8, 10, and 16. Also suppose that the synthesis program can’t figure
out that radix is limited to these values. Why would the cost be higher than necessary, and how could
encode_radix be modified to get the lower cost hardware?

M Explain why the cost will be higher than is necessary.
Short answer: The SythSiS program will gQﬂQTMQ Q \"QgU\QY mump\'\@r when all that's YQ&\\y needed are some shifts and an add.

Longer explanation: The Verilog code uses a multiply operator in the expression assigning val_curr. For the decimal version of the
hardwara (from Problem 1 and the Homework assignment) one oparand of the multiply is the constant 10, and so the multiplication
operator will be synthesized as an adder (computing the sum val_prev[width-1:1] + val_prev[width-1:3] which is
equivalent 10 2 * val_prev[width-1:0] + 8 * val_prev[width-1:0]). For part a of this problem where radix
could take on any value a true multiplier had to be synthesized (aIbeit one in which one Input was only four bits).

BUT In This part we are limiting the radices that are available, so we don't really need g full multiplier. In fact, other than radix 10,
all we need to do is Shift by a constant amount. The synthesis program could generate a much lower cost design IF 1t were aware
of the limited range of radix values, but according to the problem ft's NOT (meaning the synthesis program expects a full range of
radix \/Q\UQS).

M Show the changes to encode_radix so that the synthesis program will generate the lower cost design. The
port definitions cannot be changed.

Since the problem is that the synthesis program will generate a real multiplier when we use radix with the multiply operator, we
won't use radix with the multiplier operator. instead we'll use o case statement, whieh is shown below. Notice that 4 default case
18 included, that's to make sure that a lateh is not synthesized for val_scaled. Also note that the default case matenhes one of the
other cases, that's to make sure that unused logic is not synthesized.

always_comb begin
case (radix)

2: begin
val_curr = 2 * val_prev + digit_val;
high_bits = val_curr >> 2;

end

8: begin
val_curr = 8 * val_prev + digit_val;
high_bits = val_curr >> 8;

end

10: begin
val_curr = 10 * val_prev + digit_val;
high_bits = val_curr >> 10;

end

16: begin
val_curr = 16 * val_prev + digit_val;
high_bits = val_curr >> 16;

end

default: begin
val_curr = 10 * val_prev + digit_val;
high_bits = val_curr >> 10;

end

endcase

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Fall 2014 Final Exam

Problem 3: [20 pts] Ap-
pearing to the right is hard-
ware and a corresponding
Verilog module. The mod-
ule is incomplete, finish it.
Hint: The hardware includes
an end-around shift, that’s
the part with the msb/Isb la-
bels.

M Add sizes and other infor-
mation to port declarations.

M Finish the Verilog code.

Solution

find_period
L start =
©
8 [—
Z /\
l;] —
30.0 msb |0
> done
funl 32 <D I-c | i>;4‘;}
- Q
in_pat 31:31 Jsp A
|
—en
ge] 32— .
[p] —
1 =
2\
er
| eIk Per..

Solution appears below. The size for sh_pat is 32 DIts sinee it's connected 1o the 32-bit end-around sNITt unit. The size of pat is
32 Dits since it's connected to a 32-Dit input port. The size of per is set 10 Six DILs based on the comparison with 32 in the diagram.
A siza of less than six bits could not hold & 32, and anything larger than six bits would not be needed hecause the value of per Stops
incrementing when it reaenes a value of 32.

From the diagram we find three edge-triggered registers, pat, sh_pat, and per. Edge triggered registers are specified in Verilog
using always @ (posedge clk) constructs, in this case using a separate always block Tor each register is cleanast.

The done output was realized using a continuous assignment. Because all of the values needed T0r done are register outputs, the
code for done could have been put in an always block, but only if there was a single always block Tor all three registers, whieh
is not the case with the solution below.

module find_period

(output logic [6:0] per, output uwire done,
input uwire [31:0] in_pat,
input uwire start, input uwire clk);
logic [31:0] pat, sh_pat;
always_ff @(posedge clk) if (start) pat <= in_pat;
uwire [31:0] sh_in = start ? in_pat : sh_pat;
always_ff @(posedge clk)
if (start || !done) sh_pat <= { sh_in[30:0], sh_in[31] };

always_ff @(posedge clk)
if (start) per <= 1;
else if (!'done) per <= per + 1;

assign done = pat == sh_pat || per == 32;

endmodule

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Fall 2014 Final Exam Solution

Problem 4: [20 pts] The Verilog below is the key lookup part of the simple CAM module used in class.

logic [dwid:1] storage_data [ssize];
logic [kwid:1] storage_key [ssize];
logic [ssize-1:0] storage_full;

always_comb begin
mmatch = 0; midx = 0;
for (int i=0; i<ssize; i++)
if (storage_full[i] && storage_key[i] == key) begin mmatch = 1; midx = i; end
end

assign out_data = storage_datal[midx];

(a) Starting with the registers and key shown below, sketch the hardware synthesized for this code without
optimization. The hardware should produce values for mmatch and midx (but not out_data). Do so for
ssize=3. In class we often showed part of this as a box labeled “priority encoder” (or “pri” for short), in
this problem actually show the hardware.

M Synthesized hardware for ssize = 3 to generate Ef mmatch and Ef midx.

solution appears Delow in blue. Note that the first (Upp@meSt) mu\t'\p\@xor can trivially be optimized out since Hoth Of its Inputs are
70r0. A chain of multiplexors was enosen to generate midx, and a similar chain could have been used for mmatch. However the OR
gate performs the same operation and is much simpler.

key

storage_key[0]
A

st/<\3rage_fu|l[0]]

o
0

storage_key[1]
A

1

storage_full[1]]
A

storage key[2]
N ge_key

=
J

storage full[2] .
A

Y

midx

2

S > mmatch

(b) Assume that the cost of an a-bit comparison unit is a, and its delay is also a. Assume that the cost of an
a-input, b-bit multiplexor is ab and the delay is 1. Compute the cost and delay of the logic used to compute
midx in terms of ssize (use s in your formulas) and kwid (use k in your formulas). As with the previous
part, do this for the unoptimized hardware. Remember to solve this for an arbitrary value of ssize (s), not
for s = 3.

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

< |—| Fall 2014 <« [~ Final Exam xam| Solution fe sol.pdf
p

M Cost in terms of s and k:

From the diagram it's clear that there are s A-It coMparison units, they cost sk units. The multiplexors increase in size from the
beginning 1o the end of the chain. The mux at the end of the ehain must be large enough to hold the value s — 1, whieh requires
[log, s] bits. For simplicity assume that all multiplexors are that size, then the multiplexor cost is 2s[logy s] units. The s-input
OR gate can be assumed to have cost s — 1 (Dy setting the cost of & 2-input OR gate at 1).

The ’ total cost is sk + 2s[logy s] + s — 1 units ‘

M Delay in terms of s and k:

From the synthesized hardware it should be clear that the eritical path used to compute the delay Starts at the first comparison unit
and continues through the multiplexor chain. The A-bit comparison takes time &, and the length-s multiplexor ehain has delay s.

The | total elay is & + 5 units |

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Fall 2014 Final Exam Solution

Problem 4, continued: Appearing below is a variation on the key lookup from the CAM module. Instead
of finding a matching key it finds the largest stored key that is < to the lookup key. Note that this version
doesn’t include storage_full.

logic [dwid:1] storage_data [ssizel;
logic [kwid:1] storage_key [ssizel;

always_comb begin
midx = 0; Dbkey = 0;
for (int i=0; i<ssize; i++)
if (storage_key[i] >= bkey && storage_key[i] <= key) // READ THIS LINE CAREFULLY
begin midx = i; bkey = storage_key[i]; end
end

assign out_data = storage_datal[midx];

(¢) Sketch the hardware for ssize=3.

M Sketch the synthesized hardware needed to generate bkey.

Solution appears below, With the critical path shown in red. An important thing to notice is that the > comparison at iteration i is
Deing made with the value of bkey produced in iteration i-1. Those values of bkey pass through the multiplexor enain, and for
that reason the delay in thig cireuit is significantly longer than in the version from the previous part. See the next sub-part.

key

|storage_key[0] |
A |

v

|storage_key[1] |
A |]

: D

|:F

storage key[2] |
|A gekey |

\'

IA

v

I bkey

(d) Compute the cost and performance in terms of ssize (use s) and the key size (use k). As before a k-bit
comparison unit (equality or magnitude) costs k and has a delay of k and an a-input, b-bit mux costs ab and
has a delay of 1. Hint: There’s a big difference.

M Cost in terms of s and k:

There are NOW 2 COMPATISON UNIts, COSLING 25k oSt UNIts. The s MUITIPIEXOTS NOW earry &-DIt values, so their cost is 2sk. Plus
there are s AND gates whieh we'll set at cost s. The ’ total cost is 4sk + s units ‘ whieh is significantly higher.

M Delay in terms of s and k:

In the diggram of the synthesized hardware the eritical path appears in red. As before, the critical path passes through the multiplexor
chain, but this time the > units are also on the critical path. The critical path includes now s > units, s muxen, and s AND gates.

The ’ total delay is s(k + 2) units ‘ whieh is significantly higher than the delay of the first version used in this problem.

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Fall 2014 Final Exam Solution fe sol.pdf

Problem 5: [20 pts] Answer each question below.

(@) The module below is supposed to count from 0 to max (inclusive), then return to zero. Strictly speaking
it does, but there are problems, including the fact that it’s not synthesizable. Fix the problems.

module counter #(int max = 3) (output logic [7:0] count, input uwire clk);
always @(posedge clk) begin
count <= count + 1;
end
always @* begin
if (count == max) count <= 0;
end

endmodule

M Why isn’t the module synthesizable?
1T's not SyﬂIhQS\ZM)\Q Decause count is S.SS'\gﬂQd in two different always Dlocks.

M Fix the problem.
Just combine the Two bHIOCks:

module counter #(int max = 3) (output logic [7:0] count, input uwire clk);

always @(posedge clk) count <= count == max 7 0 : count + 1;

endmodule

10

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Fall 2014 Final Exam Solution fe sol.pdf

(b) There is a problem with the module below due to the way that a is declared.

module sal(output uwire a, input uwire c, d);
always_comb begin
a=c&d;
end

endmodule

The problem is that a is being declared as a net type (which includes uwire) but it is being assigned in procedural code. Anything
assigned in procedural code must be a variable type.

M Fix the problem by changing the declaration of a.

module sal(output logic a, input uwire c, d);
// SOLUTION: Declare a as a variable type (change uwire a to logic a).

always_comb begin
a=cé&d;
end
endmodule

M Fix the problem without changing the declaration of a.

// SOLUTION

module sal(output uwire a, input uwire c, d);
assign a = ¢c & d;

endmodule

(¢) Describe a situation in which using always_comb has a benefit over using always ©x.

M Situation where always_comb helps.

In the code below x is not always assigned and so it could be synthesized into 4 laten (\Q\/Q\-U\gg@f%d ﬂip—ﬂop). But the Systemverilog-
literate programmer used always_comb because he or she intended purely combinational 10gic—no latenes. The fact that x was
NOt always assigned was an oversight on the part of the programmer. Because always_comb Was used well-written Verilog tools
Will warn the programmer about this. That's how it hQ\pS.

always_comb begin
if (a<10)
X = a + b;
else if (a > 1000)
X =a - b;
end

11

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Fall 2014 Final Exam Solution fe sol.pdf

(d) The module below is supposed to be computing z2 + 32.
module sa2(output logic [63:0] sos, input uwire [63:0] x, y);

logic [63:0] al, bl, a2, b2;
uwire [63:0] p, s;

fpmul £1(p,al,bl);
fpadd £2(s,a2,b2);

always @ begin

// Compute x"2.
al = x; Dbl = x;
#1;

s0S = p;

// Compute y~2.
al = y; bl =y;
#1;

// Compute x°2 + y~2.
a2 = p; b2 = sos;
#1;

S0s = s;

end

endmodule

gf Explain why the module is not synthesizable.

1t's not Syﬂlh%SlZ&D\Q hecause it uses GQ\AyS.

M Fix the problem.

The module is Trying to use fpmul twice. Since there 18 no clock input, there is no way to do that. A simple solution would be to
instantiate o second fpmul and connect it appropriately, that's the solution shown below. (A more complex solution would use &
clk input and use the same multiplier over two QyQ\QS.)

// SOLUTION
module sa2sol(output uwire [63:0] sos, input uwire [63:0] x, y);

uwire [63:0] p, s;
fpmul fml(p,x,x);
fpmul fm2(s,y,y);

fpadd £2(sos,p,s);

endmodule

12

https://www.ece.lsu.edu/ee4755/2014/fe_sol.pdf

Spring 2001 Midterm Exam Solution mt sol.pdf

25 Spring 2001 Solutions

509

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Spring 2001 Midterm Exam Solution mt sol.pdf

Name Solution

Digital Design Using Verilog
EE 4702-1

Midterm Examination

16 March 2001 &:40-9:30 CST

Problem 1 (30 pts)
Problem 2 (25 pts)
Problem 3 (35 pts)
Problem 4 (10 pts)
Alias always @[posedge Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Spring 2001 Midterm Exam Solution mt sol.pdf

Problem 1: Complete the Verilog behavioral description below so that it operates as follows.
Compute 32-bit output eq_time so that it is the number of consecutive positive edges of input
clk for which 32-bit inputs siga and sigb remain equal. The counting should start on the first
positive edge of clk after siga becomes equal to sigb; the count starts at zero at the moment they
become equal, and while they remain equal the count is incremented at each positive edge. The
count should go back to zero at the first positive edge of clk after siga becomes unequal to sigb.
The count goes to zero even if siga and sigb become equal again before the positive edge. Sample
output appears in the timing diagram below. (30 pts)

m/siga |0 1 I3 [7
m/sigb |1 J21 [7
miclk e
m/eq_time ——0 1 |0 |1 2 [0 1 2
o L ‘50 e 1000 L 150 L 200 '

module monitor(eq_time, siga, sigb, clk);
input siga, sigb, clk;
output eq_time;
// Don’t forget to declare port types.

// Solution:

wire [31:0] siga, sigb;
wire clk;

reg [31:0] eq_time;

reg [10:0] next_count;

always @(siga or sigb) if (siga != sigb) next_count = 0;

always @(posedge clk)

begin
eq_time = next_count;
if (siga == sigb) next_count = next_count + 1;
end
endmodule

Don’t get bogged down: There are eight more problems, some can be answered quickly.

2

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Spring 2001 Midterm Exam Solution mt sol.pdf

Problem 2: Complete the following timing diagram problems.

(a) Complete the timing diagram below. (15 pts)

module timing_stuff();
reg clk, clk3, clk2a, clk2b, clk2c, clk2d,
initial begin
clk = 0; clk2a = 0; clk2b = 0; clk2c = 0; clk2d = 0; clk3 = 0;
end

Time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

always #5 clk = !clk

always Q(posedge clk) clk2a = !clk2a

always #12 Q(posedge clk) clk2b = !clk2b

always @(posedge clk) #12 clk2c = !clk2c

always @(posedge clk) clk2d <= #12 !clk2d

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Spring 2001 Midterm Exam Solution mt sol.pdf

Solution:

fiming_stufffctk | [[[| [| [[[

/timing_stuff/clk3

ftiming_stuff/clk2a \ \ \

ftiming_stuff/clk2b | \

ftiming_stuff/clk2c | \

ftiming_stuff/clk2d | \

T T T T T T O S T O S A S A A K T N O A O B A B A B S S R R R R A
0 40

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Spring 2001

Midterm Exam

Solution

(b) Complete the timing diagram below. Be sure to clearly indicate when a signal value changes.
(10 pts)

module
int
ini

end
endmod

Time

timing () ;
eger a, b, c, d;
tial begin
a = 0;

10;

20;
= #0 3;
= 30;
= #1 300;
<= #2 3000;

A

a0 o
A
|

b = 100;
c <= 200;
a<=#5 b + c;

b = 1000;
c <= 2000;
#10;

ule

mt sol.pdf

10

solution:

/timing/a |0

[120

ftiming/b [I0___[100 1000
ftiming/c 20 |200 _|2000
ftiming/d [3 [300 3000

12

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Spring 2001 Midterm Exam Solution mt sol.pdf

Problem 3: Answer each question below. Some can be answered quickly, try answering those
questions first.

(a) The match_count_x modules below are supposed to count the number of times input symbol is
the same as input targ. Output count should be incremented if symbol is the same as targ after
a change in symbol. Most or all of the modules below don’t work properly. For each non-working
module describe the problem and how it is simulated. It is important to describe how the incorrect
Verilog is simulated and why it is wrong.

Port declarations and initializations are not shown, but assume they are present and correct. Be-
havior for unknown and high-impedance values is undefined. In other words, the problems are not
related to declarations, initialization, or unknown values. (10 pts)

module count_match_1(count,symbol,targ); // Declarations and init. not shown.
always wait (symbol == targ) count = count + 1;

endmodule

(4 pts) Because an iteration of always is done without any delay the simulator “freezes” when symbol is equal 1o
targ 25 count s continually updated, there is no chance for targ or symbol 1o ehange.

module count_match_3(count,symbol,targ); // Declarations and init. not shown.
always #10 if (symbol == targ) count = count + 1;

endmodule

(3 ptS) Rather than '\T\QYQQO'mg count On each Qh&ﬁg@ in symbol, the code above increments count on t@n—eye\@
intervals when symbol is equal 1o targ. It does not increment count when symbol changes, it might miss times
that symbol i8 equal 10 targ (\NY\QT\ symbol changes sevaral times in the ten-cycle \T\IQTVQ\) and 1t will increment
count multiple times if symbol remains equal 10 targ at 1east 20 cycles.

module count_match_4(count,symbol,targ); // Declarations and init. not shown.
always @(symbol == targ) count = count + 1;

endmodule

(3 pts) Variable count is incremented when symbol becomes equal to targ and when symbol becomes unequal to
targ.

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Spring 2001 Midterm Exam Solution mt sol.pdf

(b) Show how each of the three adders below can be used in the module use_adders to add seven
to input a. Do not modify the adders themselves. (10 pts)

module adderl(x,a,b);
input a, b;
output x;
wire [31:0] a, b;
wire [31:0] x = a + b;
endmodule

module adder2(x,a);

input a;

output x;

parameter b = 0;

wire [31:0] a;

wire [31:0] x = a + b;
endmodule

‘define b 7 // Part of solution.

module adder3(x,a);

input a;

output x;

wire [31:0] a;

wire [31:0] x = a + ‘b;
endmodule

module use_adders(x_1,x_2,x_3,a);
input a;
output x_1, x_2, x_3; // Each output should be a + 7
// Use adderl, adder2, and adder3 to generate respective x_ outputs.

// Solution
wire [31:0] x_1, x_2, x_3, a;

adderl al(x_1,a,32’d7);
adder2 #(7) a2(x_1,a);

adder3 a3(x_1,a);

endmodule

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Spring 2001 Midterm Exam Solution mt sol.pdf

(¢) Show the values that will be assigned in each assignment to r. Variables a, c, and r are six-bit
registers. (5 pts)

a = 6’°b101010;
c = 6’°bx1x0x1;

r =& a; // Solution: r set to O
r = | a; // Solution: r set to 1
r =" a; // Solution: r set to 1
r =& c; // Solution: r set to O
r =1 c; // Solution: r set to 1

r="oc; // Solution: r set to x

(d) Do the two code fragments below do the same thing? If not, how do they differ? (5 pts)
// Fragment A.

if (foo > bar) x = x + 1; elsey =y + 1;

// Fragment B.

case (foo > bar)
1: x =x + 1;
default: y =y + 1;
endcase

They do not difrer.

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Spring 2001 Midterm Exam Solution mt sol.pdf

(e) Why can’t the following increment macro be re-written as a function or task in Verilog 957
(5 pts)

‘define incr(a) a=a+l
/] ...
// Sample uses of macro.

for (i=0; i<10; ‘incr(i)) x = x + y;

for (j=0; j<10; ‘incr(j)) begin foo(j); k = k + x; end

In Verilog 95 the third item in the TOr must be an assignment statement, so 4 Task or Tuncrion wouldn't work. A tunction
could be used in Systemverilog.

Problem 4: The module below counts the number of five’s and nine’s appearing at input c.
Explain exactly when five’s and nine’s are counted (start cycle and end cycle), and describe any
restrictions on the counts. (10 pts)

module yet_another_symbol_counter(fives, nines, c);
input c;
output fives, nines;
wire [7:0] c;
reg [31:0] fives, nines;

initial fork

begin
fives = 0;
nines = 0;
end
#50 fork:A

repeat (42) @(c) if (c == 5) fives = fives + 1;
#100 disable A;
join

#70 fork:B
forever @(¢) if (¢ == 9) nines = nines + 1;
#200 disable B;

join

join

endmodule

The module counts Tives that appear Datween 50 and 150 cycles into the simulation. No more than 42 new symbols
appearing after cycle 50 are examined for fives. (Th@ maximum number of fives that can be counted is 21.)

The module counts nines that appear between 70 and 270 cyeles into the simulation. The number of nines that can be
counted is limited only by the size of nines, 32 DIts.

https://www.ece.lsu.edu/ee4755/2001/mt_sol.pdf

Spring 2001 Final Exam Solution fe sol.pdf

Name Solution

Digital Design Using Verilog
EE 4702-1

Final Examination

9 May 2001 7:30-9:30 CDT

Problem 1 (15 pts)
Problem 2 (18 pts)
Problem 3 (17 pts)
Problem 4 (18 pts)
Problem 5 (12 pts)
Problem 6 (20 pts)
Alias Not Synthesizable Exam Total _ (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Spring 2001 Final Exam Solution

Problem 1: The module below is in an explicit structural form.

(a) Re-write the module in behavioral form. The delays can be assumed to be pipeline delays.
(10 pts)

(b) What is the difference between pipeline and inertial delays? Which kind of delay is used in your
solution to the problem above? (5 pts)

In 4 pipeline delay of duration ¢ units each signal change will appear ¢ units later, regardiess of other ehanges that oceur
in the interim. The delays in nonblocking delayed assignments, such as a <= #3 b;, are pipeline delays. In an inertial
delay of duration ¢ units a signal change (from an old to a new value) only appears if the new value does not change for
£ units (until the ehange is Visible). Delays on gates and wires, such as and #3 al(x,a,b);, are inertial delays.

module expl_str(x,y,a,b,c);
input a, b, c;
output x, y;
wire a, b, c, x, y;
wire na, nb, nc, t3, tb, t6;

not ni(na,a);

not n2(nb,b);

not n3(nc,c);

and #1 al(t3,na,b,c);
and a2(t5,a,nb,c);
and a3(t6,a,b,nc);

or ol(x,t3,t6);

or #3 02(y,a,tb);

endmodule

// Solution

module behav(x,y,a,b,c);
input a, b, c;
output x, y;
wire a, b, c;
reg X, V;
reg t3;

// The delays in expl_str are inertial delays, the delays here
// are pipeline delays.

// Note that t3 is delayed but t6 is not.
always @(a or bor ¢) t3 <=#1 la & b & c;
always @(a or bor cor t3) x =t3 a & b & !c;

// Code below can be simplified to y <= #3 a;
always @(a or bor c) y <= #3 a a & 'b & c;

endmodule

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Spring 2001 Final Exam Solution fe sol.pdf

Problem 2: The module below sets output rot to the number of times that input a must be
rotated (end-around shifted) to obtain the value on input b, or to 32 if a is not a rotated version
of b.

(a) Write a testbench module that tests rots with input pairs a=0,b=0; a=0,b=1; a=0,b=2; and
a=0,b=3. (The rot output should be zero for the first pair and 32 for the others.) The testbench
should include an integer err and set it to the number of incorrect outputs.

It is important that the testbench makes correct use of ready and start. (Part of the problem
is determining just what is “correct use.”) The testbench should use ready rather than assumed
timing. Also, test only a single instance of rots and don’t forget the clock. (18 pts)

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk; output ready, rot;
reg ready; wire [31:0] a, b;
reg [5:0] rot; wire start, clk;

reg [31:0] acpy;
initial rot = O;
always @(posedge clk) begin
ready = 1; while (!start) @(posedge clk);
ready = 0; while (start) @(posedge clk);
rot = 0; acpy = a;
while (acpy != Db && rot < 32) @(posedge clk) begin
acpy = { acpy[30:0], acpyl[31] };
if (acpy == a) rot = 32; else rot = rot + 1;
end
end
endmodule

module testrot();

reg [31:0] b; wire rdy;
reg start, clk; wire [5:0] r;
integer i, err;

rots myrots(rdy, r, start, 32d°0, b, clk);
always #1 clk = !clk;

initial begin
err = 0; start = 0; clk = 0;
wait (rdy) ;
for (i=0; i<4; i=i+1) begin
b =1i;
start = 1; wait(!rdy);
start = 0; wait(rdy);
if ('b && r) err = err + 1;
if (D& r '= 32) err = err + 1;
end
$display ("Error count: %d",err); $stop;
end
endmodule

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Spring 2001 Final Exam Solution fe sol.pdf

Problem 3: Convert the rots module (repeated below) to synthesizable Form 2 (edge-triggered
flip-flops). Do not change the ports or what it does. In particular, ready and start must be used
the same way. Ignore reset. (17 pts)

module rots(ready, rot, start, a, b, clk);

input a, b, start, clk; output ready, rot;
reg ready; wire [31:0] a, b;
reg [5:0] rot; wire start, clk;

reg [31:0] acpy;
initial rot = O;
always @(posedge clk) begin
ready = 1; while (!start) @(posedge clk);
ready = 0; while (start) @(posedge clk);
rot = 0; acpy = a;
while (acpy != b && rot < 32) @(posedge clk) begin
acpy = { acpy[30:0], acpy[31] };
if (acpy == a) rot = 32; else rot = rot + 1;
end
end
endmodule

Solution on next page.

module rots(ready, rot, start, a, b, clk);
input a, b, start, clk;
output ready, rot; // Don’t forget port types and other declarations.

acpy = { acpy[30:0], acpy[31] };
if (acpy == a) rot = 32; else rot = rot + 1;

endmodule

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Spring 2001 Final Exam Solution fe sol.pdf

/// Solution 1, using named states and assuming little about start.

module rots(ready, rot, start, a, b, clk);
input a, b, start, clk;
output ready, rot;

wire [31:0] a, b;

reg [5:0] rot;

wire start, clk;
reg [31:0] acpy;

reg [1:0] state;

parameter st_ready = 2’b01;
parameter st_wait = 2’b00;
parameter st_go = 2’b10;
wire ready = state[0];

initial begin rot 0; state = st_ready; end
always ©@(posedge clk)
case (state)
st_ready:
if (start) state = st_wait;
st_wait:
if (!start) begin rot = 0; acpy = a; state = st_go; end
st_go:
if (acpy !'= b && rot < 32) begin
acpy = { acpy[30:0], acpy[31] };
if (acpy == a) begin rot = 32; state = st_ready; end
else rot = rot + 1;
end else begin
state = st_ready;
end
endcase
endmodule

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Spring 2001 Final Exam Solution fe sol.pdf

/// Solution 2, basing state on ready and assumed behavior of start.

module rots(ready, rot, start, a, b, clk);
input a, b, start, clk;
output ready, rot;

reg ready;

wire [31:0] a, b;

reg [5:0] rot;

wire start, clk;
reg [31:0] acpy;

initial begin rot = 0; ready = 1; end

always @(posedge clk)
case ({ready,start})
{2°b10}:; // Wait for start to go to one.
// Unlike original module, gets value of "a" when start goes
// to 1, not when start goes to zero. (This is where behavior assumed.)
{2°b11}: begin ready = 0; acpy = a; rot = 0; end
{2°b01}:; // Wait for start to go to zero.
{2°b00%}:
if (acpy != b && rot < 32) begin
acpy = { acpy[30:0], acpy[31] };
if (acpy == a) begin rot = 32; ready = 1; end
else rot = rot + 1;
end else begin
ready = 1;
end
endcase
endmodule

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Spring 2001 Final Exam Solution fe sol.pdf

Problem 4: Two synthesizable descriptions appear below.
(a) In what synthesizable form is the Verilog description below? (2 pts)
Form 1. combinational logje, laval triggerad.

(b) Draw a schematic showing the approximate RTL-level description generated by a synthesis
program like Leonardo. (7 pts)

module whatsyna(x, y, z, a, b, op);
input a, b, op;
output x, y, Z;
wire [7:0] a, b;
wire [1:0] op;
reg [7:0] x, vy, z;

always @(op or a or b) begin
if (a==0) 1y =Db;

if (a < b) z = a; else z = b;

case (op)
0: x = a + b;
1: x = a;
2: X = b;
endcase
end
endmodule

IT you're an LSU ECE student in 4 Verilog-related course ask for a complete solution. For now: Output y is connected
10 4 level-triggered lip-flop with enable input a==0 and data input b.

OUIpUI z 18 connected to 2 TWO-INput mux, controlled Dy a < b

Output x is connected 1o & level triggered ip-fiop enabled by op != 3 . The data input is & mux controlied by op.

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Spring 2001 Final Exam Solution fe sol.pdf

Problem 4, continued:
(c) (2 pts) In what synthesizable form is the Verilog description below? Form 2. Edge triggered logic.

(d) (7 pts) Draw a schematic showing the approximate RTL-level description generated by a syn-
thesis program like Leonardo. Grading Note: In the 2001 version the event control was posedge a

or negedge b.

module whatsyn2(output [6:0] sum, input [15:0] nibbles, a, b, c);
logic [15:0] n2;
logic last_c;

always @(posedge a)
if (!'b) begin
sum = O;
end else begin

if (¢ != last_c) begin
n2 = nibbles;
for (int i=0; i < 4; i++) begin
sum = sum + n2[3:0];
n2 = n2 > 4;
end
end
last_c = c;

end
endmodule
solution appears Delow. OUIPUI sum is driven by an ng@-tr'\gg@r@d Y@g\StQY clocked by a. The nibbles ‘mput IS connected
10 o cascade of four adders, the first adder connected 10 sum, the others each connected to & different four bits of
nibbles. Note that no \Og\Q i8 S\jthS'\ZQG for the shift OPQY&IOY, that Oﬂ\\j determines bit numbers for the adder ‘mputs.
The sum register is reset by !'b and enabled by b and ¢ & last_c.

whatsyn2
|+ 16'd0
| + N
+ +] c | [sum_L
1 3
. . . . en
3:0 7:4 11:8 {15.12 A
H— —
nibbles —_)
rih 9
I"Ib In
[N en
L
B |

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Spring 2001 Final Exam Solution fe sol.pdf

Problem 5: In the diagram below c, d, and identifiers starting with c1k are all initialized to zero.
Complete the timing diagram. (12 pts)

Time 0 5 10 15 20 25 30 35 40 45 50

a | | | -
b | | | I —

always Q@(posedge a) clkl = !clkl

always @(a) @(b) clk2 = !clk2

always @(a or b) c¢lk3 = |clk3

always @(a | b) clkd4 = !clk4d

always @(posedge (a | b)) clkb = !clk5

always @(a) c <= a

always @(a) d <= #1 ¢

always @(a or c) clk6 = |clk6

always @(a or ¢) #0 clk7

'clk7

always @(a or c) #2 clk8

'c1k8

Solution on next page.

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Spring 2001

Final Exam

Solution to Problem 5:

/clocks/a
/clocks/b
Iclocks/clk1
Iclocks/clk2
Iclocks/clk3
Iclocks/clk4
Iclocks/clk5
[clocks/c
/clocks/d
Iclocks/clk6
[clocks/clk7
Iclocks/clk8

Solution

fe sol.pdf

] | I
| | | |
] |
| | |
I N B S N [[
] | |]
] |
| |
| |]
| | | |
| | | |
| L

10

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Spring 2001 Final Exam Solution fe sol.pdf

Problem 6: Answer each question below.

(a) The code below, based on the Homework 3 solution, simulates properly before synthesis but in
the post-synthesis simulation the testbench reports an incorrect beep time.

What goes wrong? Fix the problem without modifying the code below the indicated line. Hint:
The beep can start (and stop) at a slightly different time than the code below. (5 pts)

module beepprob(beep, clk);
input clk;
output beep;

// Code from exam: assign beep = | beep_timer;
// Solution: Set beep on negative edge, after beep_timer computed.
reg beep;

always ©(negedge clk) beep = beep_timer;

// DO NOT MODIFY CODE BELOW THIS LINE.
always @(posedge clk) begin
// Lots of stuff;
if (beep_timer) beep_timer = beep_timer - 1;

end

endmodule

(b) Describe something that a parameter can be used for that an ordinary input port cannot and
something that an input port can be used for that a parameter cannot. (5 pts)

Of course, the two are completely qirferent things. Paramaters can be used To set the size of veetors, an input value could
not do that. An iINpUT can enange, parameters are constant.

11

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

Spring 2001 Final Exam Solution

(c) What is the difference between case, casex, and casez? (5 pts)

In o case statement there must be o bitwise maten, including unknowns and high impedance values, between the case
axpression and o case item. In & casex statemaent an unknown value acts a5 & wildeard matening any DIt in the
corresponding position, casez is similar with high impedance acting as the wildeard.

(d) Explain how each of the three statements below behave differently with unknown values. In

particular, explain what has to be unknown and how the results of each statement is different.
(5 pts)

ml =a>b ?7c: d;
if (a>b) m2 = c; else m2 = d;

case (a>b)

1: m3 = c;
default: m3 = d;
endcase

The three behave identically it a > b is NOT unknown. IT it is unknown the m1 statement assigns a bitwise combination

of c and d. (FOY the bit positions where ¢ and d nold the same value m1 18 Set Lo that value, in positions where c and d
ditrer the corresponding position m1 is set 1o UY\KT\OWY\.)

ITa > bisunknown d is assigned 10 m2 and m3.

12

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2001/fe_sol.pdf

— Spring 2000 - Midterm Exam Solution mt sol.pdf

26 Spring 2000 Solutions

531

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

« [=] Spring 2000 « Midterm Exam Solution mt sol.pdf

Name Solution

Digital Design Using Verilog
EE 4702-1

Midterm Examination

5 April 2000 8:40-9:30 CDT

Problem 1 __ (40 pts)
Problem2 (60 pts)
Alias always G(posedge Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

« [=] Spring 2000 « Midterm Exam Solution mt sol.pdf

inclk
in
outclk
out
full
empty

Problem 1: Complete the Verilog description (below) of a FIFO-like module which has a 3-bit
data input, in; a 7-bit output, out; 1-bit inputs inclk and outclk; and 1-bit outputs full and
empty. The module operates like a FIFO (first in, first out) except that the width of the data input
and output ports are different: it reads data 3 bits at a time (on a positive edge of inclk) and
outputs 7 bits at a time (consisting of data from two input words plus one bit of a third). Unless
the module has less than 3 bits of space left, on a positive edge of inclk the value on in is stored.
The oldest 7 bits stored by the module always appear on output out. On a positive edge of outclk
the oldest 7 bits are removed and the output displays the next 7 bits. Output full is 1 if the
module cannot accept another 3 bits of input and is 0 otherwise; output empty is 1 if the module
is empty and is 0 otherwise. Parameter storage is the total number of bits stored by the module.
An example of the module operating is shown in the timing diagram below. (40 pts)

001 Jo10 Joil J100 101 [110 Ji11 J0o00 Jooi Joi0 [oil Ji00)

-

w0 [0000001 [0010001 [1010001 0110001 1111101 |ooo1000

[]

]

0 10 20

module width_change(out,full,empty,outclk,in,inclk);
input outclk, in, inclk;
output out, full, empty;

parameter storage = 20;

wire [6:0] out; // Can change to reg for solution.
wire [2:0] in;

wire inclk, outclk;

wire full, empty; // Can change to reg for solution.

reg [storage-1:0] sto; // Storage for data.
integer amt; // Number of occupied bits in sto.

// USE THE NEXT PAGE FOR THE SOLUTION.

endmodule // width_change

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

« [=] Spring 2000 « Midterm Exam

mt sol.pdf

Solution

Problem 1, continued: The diagram and code from the previous page are repeated below.

etk | [L) L] [] [] R S A S R oL
in[001 [010 Joi1 J100 101 110 (111 Jooo foo1 [o10 [o11 [100)
outclk T e
out |== Joo00001 foo0001 [1010001 0110001 [1111101 0001000
full]
empty [|
0 | 10 | 20

module width_change (out,full,empty,outclk,in,inclk) ;

input outclk, in, inclk;
output out, full, empty;
parameter storage = 20;
wire [6:0]
wire [2:0]
wire

wire

in;
inclk, outclk;

reg [storage-1:0] sto;
integer amt;

// Solution goes here.
initial begin amt =

assign full = amt + 3 > storage;
assign empty = amt === 0;
assign out = sto[7-1:0];

always @(posedge outclk)
if(amt >= 7) begin
sto = sto >> 7;
amt = amt - 7;
end

always @(posedge inclk)
if(!full) begin
sto = sto | in << amt;
amt = amt + 3;
end

endmodule // width_change

out; // Can change to reg for solution.

full, empty; // Can change to reg for solution.

// Storage for data.
// Number of occupied bits in sto.

0; sto = 0; end

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

— Spring 2000 «- Midterm Exam Solution mt sol.pdf

Problem 2: Answer each question below.

(a) Describe something that a function can do (or be used for) that a task cannot. Describe
something that a task can do (or be used for) that a function cannot. (10 pts)

A function can be used in an axpression (DUY a Task Q&T\HOY). A task can include delays, but & function cannot.

(b) Convert the following behavioral code to explicit structural code. (10 pts)

module btos(x, a, b);
input a, b;

output x;
wire a, b;
reg X;

always @(a or b) if(a) x = b; else x = "b;

endmodule // btos

If you don't see the \0@;\0&\ function p@rform@d, draw a truth table. The function, x = a @ b, can he PQYTOmed by
q pr'\m'\t'\\le g&t% (xnor), 2 solution QOﬂS\SUﬂg of saveral other g&t@s YQQ\'\Z'\I\g the same function would also receive full
eredit.
module explicit(x, a, b);

input a, b;

output x;
wire a, b;
wire @ x; // Wire, not reg.

xnor (x,a,b);

endmodule

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

— Spring 2000 «- Midterm Exam Solution mt sol.pdf

(¢) Show the changes (values and times) to a and b in the module below. (10 pts)

module assig();
reg [15:0] a, b;

initial
begin
a=1;
b = 2;
#1;
a <= b;
b <= a;
#1;
a <=b + 10;
b <= #5 b + 20;
#1,;
b = #1 3;
b <= 4;
b <= #2 5;
b <= #10 6;
b=7;
#20;
end
endmodule

Note that b = #1 3; is a blocking assignment. The condition is evaluated immediately (s‘me@ 11’8 3 here evaluation
Time doesn't mmer) and the assignment is done after the delay. Following statements are executed after the assignment.
The solution is plotted helow.

[6

10 20

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

« [=] Spring 2000 « Midterm Exam Solution mt sol.pdf

(d) Show the changes (values and times) to x in the module below using the timing diagram
provided. (10 pts)

module eventsl();
wire a, b, ¢, d;
reg [2:0] x;
reg [3:0] 1i;
assign {d,c,b,a} = i;

initial begin

i=0;
forever #10 i =i + 1;
end

always begin
#15;
e(a);
x = 1;
Q(posedge a) x = 2;
@C aorb) x = 3;
@Calblcld)zx-=4;
wait(a | b) x = 5;
wait(a) x = 6;
wait("a) x = 7;
end // always begin
endmodule // eventsil

An event control, @(foo), delays execution until foo changes. A wait statement, wait (foo), delays execution
until foo is noNzaro (or true).

The solution appears Delow.

bl [L] [I I

c_____ 14 1 """\ 1/
d | | |

X 102)3 @6 7 (123

T T T T T T T T T T T O T T T O T A I O A O Y A N A
200 300

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

« [=] Spring 2000 « Midterm Exam Solution mt sol.pdf

(e) Show the changes (values and times) to aa in the module below. (10 pts)

module d();
reg a;
wire aa;

and #(2,3) (aa,a,l);

initial begin
a = 0;

O WP HEP HE
[
o

end
endmodule // d

Solution:
- a]
aal——
T T T T T T T T S O (T S T A NN A N A AN R B
0 10 20 30 40

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

« [=] Spring 2000 « Midterm Exam Solution mt sol.pdf

(f) Complete module after so that it does the same thing as before. All procedural code in module
after must go in the one initial process. The solution must use fork and join. Structural code
cannot be added. (10 pts)

module before(asum,bsum,out,a,ainp,b,binp,c);
output asum, bsum, out;
input a, ainp, b, binp, c;

reg [9:0] asum, bsum, out;
wire [9:0] ainp, binp;
wire a,b,c;

always @(a) asum = asum + ainp;

always @(b) bsum = bsum + binp;

always Q@(posedge c) out = asum + bsum;

endmodule

module after(asum,bsum,out,a,ainp,b,binp,c);
output asum, bsum, out;
input a, ainp, b, binp, c;

reg [9:0] asum, bsum, out;
wire [9:0] ainp, binp;
wire a,b,c;

// ALL code must go in the initial process below.
initial begin

// Solution:

fork
forever @(a) asum = asum + ainp;
forever @(b) bsum = bsum + binp;
forever @(posedge ¢) out = asum + bsum;

join

end // initial

endmodule

https://www.ece.lsu.edu/ee4755/2000/mt_sol.pdf

« [=] Spring 2000

Name Solution

Alias

Final Exam

Solution

Digital Design Using Verilog
EE 4702-1

Final Examination

8 May 2000, 7:30-9:30 CDT

Tull cage

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5

Exam Total

Good Luck!

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

« [=] Spring 2000 Final Exam

Problem 1: The modules below are supposed to describe combinational logic that rearranges bits.
The output of module rearrange, below, is a rearranged version of its input a; input op determines
how the bits are rearranged. Module rerearrange uses two instances of rearrange to reverse and
then left shift its inputs. Unfortunately, the modules are not quite ready for tape out because both

contain errors.

Find and fix the following kinds of errors. (Points may be deducted if correct Verilog is identified
as having errors.) (20 pts)Note: The original exam specified one Modelsim compile error. However
Modelsim compiles the code without an error or warning. What was thought to be a compile error

Solution

is a load error. The number of errors is still five.

e Two load errors or warnings. (Modelsim will compile it but will issue a warning or error
message when loading it.)

e Three errors that result in incorrect output. The code will simulate but the output, if

any, will be incorrect.

Lines with the comment // Okay do not have errors. None of the errors are typographical or are

due to syntactic minutize such as missing semicolons.

module rerearrange(y,a);

v; wire [0:7] temp;

input a; output y;

wire [7:0] a; reg [7:0]

wire operation;

assign operation = el.op_reverse;

rearrange el(temp,a,operation);
assign
rearrange e2(y,temp,operation);

endmodule

module rearrange(x,a,op);

operation = el.op_left_shift;

X3

input a, op; output

wire [7:0] a; wire [1:0] op;
reg [7:0] x; reg [2:0]
parameter op_reverse = 0;
parameter op_identity =1;
parameter op_left_shift = 2;
parameter op_right_shift = 3;

always @(a) for(ptr=0; ptr<8;

ptr, ptr_plus_one;
// Reverse order of bits. //
// No change. //
// Circular (end-around) left shift. //
// Circular (end-around) right shift.//

ptr=ptr+1) begin

ptr_plus_one = ptr + 1; //
case(op)
op_reverse: x[ptr] = al[7-ptr]; //
op_identity: x[ptr] = alptr]; //
op_right_shift: x[ptr] = a[ptr_plus_one]; //
op_left_shift: x[ptr_plus_one] = alptr]; //
endcase
end
endmodule

Okay
Okay
Okay
Okay

Okay

Okay
Okay
Okay
Okay

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

« [=] Spring 2000 Final Exam

solution:
module rerearrange(y,a);

Solution

input a; output y; wire [7:0] a;

// Registers cannot connect
// reg [7:0] y;

wire [7:0] y; // FIXED
wire [0:7] temp; // Not an

to module output ports.

error: Order of bits doesn’t matter.

// B: Wire "operation" wrong size.

// wire operation;
wire [1:0] operation; // FIXED
assign operation = el.op_reverse;

rearrange el(temp,a,operation);

// Second wire needed for input to second module. (This is not procedural

// code so ordering of assignments and instantiations is meaningless.)

// assign operation =

el.op_left_shift;

wire [1:0] operation2 = el.op_left_shift; // FIXED
rearrange e2(y,temp,operation?2);

endmodule

module rearrange(x,a,op);
input a, op;
output X;
wire [7:0] a;
wire [1:0] op;
reg [7:0] x;
// C: Loop checks if ptr<8,

so need more than 3 bits. Note: ptr_plus_one

// must be 3 bits since code depends on values wrapping around.

// reg [2:0] ptr, ptr_plus_

reg [3:0] ptr; // FIXED.
reg [2:0] ptr_plus_one;

parameter op_reverse
parameter op_identity
parameter op_left_shift
parameter op_right_shift

// C: Need to include op in
// always @(a) for(ptr=0;

always @(a or op) for(ptr=

ptr_plus_one = ptr + 1;
case(op)

one;

// Reverse order of bits.

; // No change.

// Circular (end-around) left shift.
; // Circular (end-around) right shift.

w N = O

the event list.
ptr<8; ptr=ptr+l) begin
0; ptr<8; ptr=ptr+l) begin

op_reverse: x[ptr] = a[7-ptr];
op_identity: x[ptr] = alptr];
op_right_shift: x[ptr] = a[ptr_plus_one];
op_left_shift: x[ptr_plus_one] = alptr];
endcase
end

endmodule // rearrange

//
//
//
//

//

//
//
//
//

Okay
Okay
Okay
Okay

Okay

Okay
Okay
Okay
Okay

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

— Spring 2000 Final Exam Solution fe sol.pdf

Problem 2: Using the grid show the register values for the first 40 time units of execution of the
module below. (20 pts)

module clocks();
reg clk, clk2, clk3, clk4, clkd, clk6, clk7, clk8;
initial begin

clk = 0; clk2 = 0; clk3 = 0; clk4 = 0;
clkb = 0; clk6 = 0; clk7 = 0; clk8 = 0;
end
always #8 clk = “clk;

always Q(clk) #4 clk2 = "clk2;
always Q@(clk) clk3 <= #10 clk;
always @(posedge clk) clk4 = “clk4;
always #2 forever #8 clkb = "clk5;
always wait(clk) #3 clk6 = “clk6;
always @(clk | clk4) clk7 = “clk7;
always @(clk or clk4) clk8 = “clk8;

endmodule

Time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

clk

clk?2

clk3

clk4

clkb

clk6

clk7

clk8

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

« [=] Spring 2000

solution:

Iclocks/clk
[clocks/clk2
/clocks/clk3
[clocks/clk4
/clocks/clk5
/clocks/clk6
/clocks/clk7
[clocks/clk8

Final Exam

Solution

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

« [=] Spring 2000 Final Exam Solution fe sol.pdf

Problem 3: Draw a schematic of the hardware Leonardo will synthesize for the following Verilog
code examples. These should approximate the RTL schematic, showing the hardware before opti-
mization and technology mapping. If flip flops are used, indicate if they are level triggered or edge
triggered. Otherwise, don’t worry about using the precisely correct gate or symbol, as long as it’s
functionally correct.

() Show an approximate RTL schematic for the module below. What form is the description in?
Hint: think about what form the code is in. (6 pts)

module mod_a(x,y,a,b,c);
input a,b,c;
output x,y;
wire [7:0] b, c;
reg [8:0] x, y;

always @(a or b or ¢) begin
if(a) begin

x =Db + c;
y=b - c;
end else begin
x=Db - ¢c;
end
end
endmodule

Form 1: combinational logie, level triggered fiip-flops.

abc

1

N .

Level
Triggered

clk

d QY

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

« [=] Spring 2000 Final Exam Solution fe sol.pdf

Problem 3, continued: (b) Show an approximate RTL schematic for the module below. What
form is the description in? Hint: think about what form the code is in. (6 pts)

module mod_b(x,y,d,e,f,g,h);
input d,e,f,g,h;
output x,y;
reg X,¥;

always Q(posedge d or negedge e or posedge f)
if(d) begin

x = 0;
y=1

end else if (f) begin
x = 1;

end else begin
if(g) x = h;
y = h;

end

endmodule

Form 2: Edge triggered ip flops.

d f h e

)

||()|| r

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

« [=] Spring 2000 Final Exam Solution fe sol.pdf

Problem 3, continued: (¢) Show an approximate RTL schematic for the module below. Assume
that the synthesis program will not infer that this module performs magnitude comparison. Use

symbols and for bit comparison. (8 pts)

module compare(gt, 1lt, a, b);
input a, b;
output gt, 1t;
wire [2:0] a, b;
reg gt, 1t;
integer i;

always @(a or b) begin
gt = 0; 1t = 0;
for(i=2; i>=0; i=i-1) if(!gt && !'1t) begin
if(afi]l < b[i]) 1t = 1;
if(alil > b[i]l) gt = 1;
end
end

endmodule

Form 1. The \Og'\Q 18 pUYQ\y combinational.

NN — = =N=)
® O C O ® O
<)0 <) It
1 1
1 1

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

« [=] Spring 2000 Final Exam Solution [Sol Code

Problem 4: The incomplete code below, compare_ism, is for a magnitude comparison module
(similar to the one in the previous problem, except it’s sequential).

When input start is 1, output valid goes to zero and the module computes 1t and gt. When
1t and gt are set to their proper values valid is set to one. The module is to compare one bit
position per cycle of input clk. Output valid should go to one as soon as possible.

Complete the module so that it is in the form of an implicit state machine, synthesizable by
Leonardo. The solution can be based on the combinational module compare, below. Don’t forget
signals start and valid. (20 pts) Hint: The solution is very similar to the combinational module.
For partial credit ignore synthesizability but follow other specifications.

module compare(gt, 1t, a, b); // Synthesizable combinational implementation.
input a, b; output gt, 1t;
wire [31:0] a, b;
reg gt, 1t; integer i;

always @(a or b) begin
gt = 0; 1t = 0;
for(i=31; i>=0; i=i-1) if(!gt && !1t) begin
if(afi]l < b[i]) 1t = 1;
if(alil > b[i]l) gt = 1;
end
end
endmodule

// Implicit state machine implementation.
module compare_ism(gt, 1t, valid, a, b, start, clk);

input a, b, start, clk; output gt, 1t, valid;
wire [31:0] a, b; reg gt, 1t, valid;
wire start, clk; integer 1i;

// Solution
always @(posedge clk) if(start) begin
gt = 0; 1t = 0; valid = 0;
for(i=31; i>=0 && !1t && !gt; i=i-1) @(posedge clk) begin

if(ali] < b[i]) 1t
if(ali]l > b[i]) gt

1; // Part of solution.
1

if (ali]l > b[i]) gt = 1;
end
valid = 1;

end

endmodule

fe sol.pdf

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

« [=] Spring 2000 Final Exam Solution [Sol Code fe sol.pdf

Problem 5: Answer each question below.

(a) Complete the module below so that it will stop simulation (using the system task $stop) if there
is no change in signal heartbeat for 1000 simulator time units. There might be many changes
in heartbeat, but the first time heartbeat remains unchanged for 1000 simulator time units
simulation should be stopped. Hint: use a fork. Also, the answer is short. (5 pts)

module watchdog(heartbeat);
input heartbeat;
wire heartbeat;

// Solution
always
fork:F
@(heartbeat) disable F;
1000 $stop;
join

endmodule // watchdog

(b) What is a critical path? At what point in the design flow can one first find out about critical
paths? (5 pts)

A eritical path is the longest path between registers; it determines the clock frequency. 1T 4 system is not cloeked, it may
De the longest path from INPULS 0 OULPUTS.

One finds out about critical paths after synthesis (technology mapping and optimization). This critical path information
does not include wire lengths, 80 4 refined estimate is obtained after place and route.

10

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

« [=] Spring 2000 Final Exam Solution fe sol.pdf

(¢) Provide an example case statement in which the directive exemplar case_parallel is needed.
What is its effect? (5 pts)

// Possible values for op: 100, 010, 001
wire [2:0] op;

// Needed because the synthesizer doesn’t know that if the middle bit
// is 1 the leftmost bit must be zero. (It can’t according to the
// comment, which IS PART OF THE SOLUTION.)

// exemplar parallel_case

casez (op)
3’b177: a
3’b717: b
3’b7?1: ¢ = 1;

endcase // casez(op)

i
[N

(d) The module below is supposed to zero the middle 3 bits of its input. It’s rejected by the compiler
(the ”b=""line), identify and fix the problem. (5 pts)

The concatenation operator can omy operate on constants that are S\gh@d, 80 instead of O use 3’b0.

module whatswrong(a,b);
input a; output b;
wire [8:0] a; wire [8:0] b;
assign b = {a[8:6]1,0,a[2:0]};

endmodule

11

https://www.ece.lsu.edu/ee4755/2000/fe_sol.pdf

— Spring 2000

Final Exam

Sol Code

fe sol.html

1+ Code from solution to LSU EE 4702-1 Spring 2000 Final Exam

// Exam:
// Solution

/177

/77 Probl

/177

http://www.ee.lsu.edu/v/2000/fe.pdf

: http://www.ee.lsu.edu/v/2000/fe sol.pdf

em1l

“define FIXED_CODE
“ifdef ORIGINAL CODE

module rerearrange(y,a);

input a;

output vy;
wire [7:0
reg [7:0]
wire [0:7

wire
assign

assign

1 a;
Y
] temp;

operation;

operation = el.op reverse;
rearrange el(temp,a,operation);

operation = el.op left

rearrange e2(y,temp,operation);

endmodule

module rearrange(x,a,op);

input
output
wire [7:0
wire [1:0
reg [7:0]
reg [2:0]

parameter
parameter
parameter
parameter

always @(

ptr_

case
op

op

op

op

endc

end

endmodule //

a, op;
X5

I a;

] op;
X5

ptr, ptr plus one;

op_reverse
op_identity
op_left_shift
op_right_shift

WNRO

rearrange

o/
;// No change.
;// Circular (end-around) left shift.
; // Circular (end-around)

HoH R HHHHHHR

Loading work.rerearrange
Loading work.rearrange
WARNING: fe sol.v(8):

[PCDPC]

shift;

Reverse order of bits.

a) for(ptr=0; ptr<8; ptr=ptr+l) begin
plus one = ptr + 1;
(op)
_reverse: x[ptr] = al[7-ptr];
_identity: x[ptr] = al[ptr];
_right shift: x[ptr] = al[ptr_plus onel;
_left shift: x[ptr_plus onel = a[ptr];
ase

right shift.

//
//
//
//

Okay
Okay
Okay
Okay

Okay

Okay
Okay
Okay
Okay

- Port size does not match connection size (3rd connection).

Region: /rerearrange/el

ERROR: fe sol.v(1ll): Illegal output port connection (1lst connection).
Region: /rerearrange/e2

WARNING: fe sol.v(11l): [PCDPC]
Region: /rerearrange/e2

Error loading design

“endif // ifdef ORIGINAL CODE

“ifdef FIXED CODE

- Port size does not match connection size (3rd connection).

http://www.ee.lsu.edu/v/2000/fe.pdf
http://www.ee.lsu.edu/v/2000/fe_sol.pdf
https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

— Spring 2000 Final Exam Sol Code

module rerearrange(y,a);
input a;
output vy;
wire [7:0] a;
// Registers cannot connect to module output ports.
// reg [7:0] vy;
wire [7:0] vy; // FIXED
wire [0:7] temp;

// B: Wire "operation" wrong size.

// wire operation;
wire [1:0] operation; // FIXED
assign operation = el.op reverse;

rearrange el(temp,a,operation);

// Second wire needed for input to second module. (This is not procedural

// code so ordering of assignments and instantiations is meaningless.
// assign operation = el.op left shift;
wire [1:0] operation2 = el.op left shift; // FIXED
rearrange e2(y,temp,operation2);
endmodule

module rearrange(x,a,op);
input a, op;
output X;
wire [7:0] a;
wire [1:0] op;
reg [7:0] x;

)

// C: Loop checks if ptr<8, so need more than 3 bits. Note: ptr plus one

// must be 3 bits since code depends on values wrapping around.
// reg [2:0] ptr, ptr_plus one;

reg [3:0] ptr; // FIXED.

reg [2:0] ptr plus one;

// Reverse order of bits.

// No change.

// Circular (end-around) left shift.
// Circular (end-around) right shift.

parameter op_reverse
parameter op_identity
parameter op_left_shift
parameter op_right_shift

~s wE o= o=

WNRO

// C: Need to include op in the event list.
// always @(a) for(ptr=0; ptr<8; ptr=ptr+l) begin
always @(a or op) for(ptr=0; ptr<8; ptr=ptr+l) begin // FIXED

ptr _plus one = ptr + 1;

case(op)
op_reverse: x[ptr] = al[7-ptr];
op_identity: x[ptr] = al[ptr];
op_right shift: x[ptr] = al[ptr_plus onel;
op_left shift: x[ptr_plus one] = a[ptr];

endcase
end
endmodule // rearrange
“endif // ifdef FIXED CODE

module test _rr();

reg [7:0] orig;
wire [7:0] arranged;

rerearrange rrl(arranged,orig);

initial begin
orig = 8'b11110000;
#1;
orig = 8'b0OEO1111;
#1;

//
//
//
//

Okay
Okay
Okay
Okay

Okay

Okay
Okay
Okay
Okay

fe sol.html

https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

“— Spring 2000

end

Final Exam

endmodule // test rr

/77

/7 Problem 2 (Unmodified code from exam.)

11/

module clocks();
reg clk, clk2, clk3, clk4, clk5, clk6, clk7, clk8;

initial
clk
clk5
end

always
always
always
always
always
always
always
always

initial
endmodule

// Solution

/77

/7, Problem 3 (Unmodified code from exam.)

11/

begin
=0; clk2 = 0; clk3 = 0; clk4 = 0;
= 0; clk6 = 0; clk7 = 0; clk8 = 0;
clk = ~clk;
(clk) clk2 = ~clk2;
(clk) clk3 <= clk;
(posedge clk) clk4 = ~clk4;
forever clk5 = ~clk5;
(clk) clk6é = ~clk6;
(clk | clk4) clk7 = ~clk7;
(clk or clk4) clk8 = ~clk8;
$stop;

fclocksiclik

felockeiclh2 [

felocke/clkd

Sol Code

folocks/clhd

fclocks/clks —|—|—|—

fclocksiclkG |

felocks/clk? |

lelockeiclkg | | [

module mOd_a(x,y,a,b,c);
input a,b,c;
output x,y;
wire [7:0] b, c;

reg [8:0

always

X
y
end e

x

end
end

]

Xy Ya

(aorborc) begin
if(a) begin

I~ 11

S

+ c;
- c;
begin
- C;

OO TOT

40

fe sol.html

https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

— Spring 2000 Final Exam Sol Code

endmodule

// Solution:

e|1bc

Level
Triggered

clk

d Q—Y

module mod_b(x,y,d,e,f,g,h);
input d,e,f,qg,h;
output x,vy;
reg X,Y;

always @(posedge d or negedge e or posedge f)
if(d) begin

(|
= o

end else if (f) begin

< X

X
=

end else begin
if(g) x=h;
y =h;

end

endmodule

fe sol.html

https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

— Spring 2000 Final Exam

// Solution:

d f

h e

Sol Code

)
o/
— N
d
g en
I
S
—G>
d
qen

"(:)"__|

module compare(gt, 1t, a, b);

input a, b;

output gt, 1t;
wire [2:0] a, b;
reg gt, 1t;
integer i;

always @(a or b) begin

gt = 0; 1t = 0;

for(i=2; i>=0; i=i-1) if(
if(alil < b[i]) 1t = 1;
if(a[i] > b[i]

end
end

endmodule // compare

// Solution:

/17

) gt = 1;

gt && !t) begin

fe sol.html

https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

— Spring 2000 Final Exam

,77 Problem 4
/17

// Unmodified from exam.

Sol Code

module compare_comb(gt, 1t, a, b);

input a, b;

output gt, 1t;
wire [3:0] a, b;
reg gt, lt;
integer i;

always @(a or b) begin
gt = 0; 1t = 0;

for(i=3; 1>=0; i=i-1) 1if(

if(a[i]l < b[i]) 1t
if(al[i]l > b[i]) gt
end
end

endmodule

// Solution.

gt & !'1t) begin
1;
1;

module compare_ism(gt, 1t, valid, a, b, start, clk);

input a, b, start, clk;
output gt, 1t, valid;

wire [31:0] a, b;

reg gt, 1t, valid;
integer i;

always @(posedge clk) if(start) begin

gt =0; 1t = 0; valid = 0;
for(i=31; i>=0 && !1t &&

if(a[i] < b[i]) 1t
if(a[i]l > b[i]) gt
end
valid = 1;
end

endmodule

///

,77 Problem 5
///

///

/77 Problem 5a
///

// Solution

module watchdog (heartbeat);

input heartbeat;
wire heartbeat;

always
fork:F

(heartbeat) disable F;

$stop;
join

endmodule // watchdog

/177

igt; i=i-1) @(posedge clk

1;
1;

) begin

fe sol.html

https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

— Spring 2000 Final Exam Sol Code fe sol.html

/7, Problem 5d
/17

// Solution.

module whatswrong(a,b);
input a; output b;
wire [8:0] a; wire [8:0] b;

// assign b = {a[8:6],0,a[2:0]};
assign b = {a[8:6], 0,a[2:0]};

endmodule

https://www.ece.lsu.edu/ee4755/2000/fe_sol.html

	Fall 2024
	mt.pdf
	fe.pdf

	Fall 2023
	mt.pdf
	fe.pdf

	Fall 2022
	mt.pdf
	fe.pdf

	Fall 2021
	mt.pdf
	fe.pdf

	Fall 2020
	mt.pdf
	fe.pdf

	Fall 2019
	mt.pdf
	fe.pdf

	Fall 2018
	mt.pdf
	fe.pdf

	Fall 2017
	mt.pdf
	fe.pdf

	Fall 2016
	mt.pdf
	fe.pdf

	Fall 2015
	mt.pdf
	fe.pdf

	Fall 2014
	mt.pdf
	fe.pdf

	Spring 2001
	mt.pdf
	fe.pdf

	Spring 2000
	mt.pdf
	fe.pdf

	Fall 2024 Solutions
	mt sol.pdf

	Fall 2023 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2022 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2021 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2020 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2019 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2018 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2017 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2016 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2015 Solutions
	mt sol.pdf
	fe sol.pdf

	Fall 2014 Solutions
	mt sol.pdf
	fe sol.pdf

	Spring 2001 Solutions
	mt sol.pdf
	fe sol.pdf

	Spring 2000 Solutions
	mt sol.pdf
	fe sol.pdf
	fe sol.html

