Name Solution

Digital Design Using HDLs

Midterm Examination

Wednesday, 23 October 2024, 11:30-12:20 CDT

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5

Alias The best pMI is the last part. Exam Total

Good Luck!

https://www.ece.lsu.edu/koppel/v/

Problem 1: [22 pts] Below is the Homework 3 Problem 1 solution with some object names shortened.

typedef enum logic [3:0] {Char_Blank=0, Char_Dot=1, Char_Open=2, Char_Close=3} Char;
module pmatch_a #(int n = 5, wn = $clog2(n+l))
(output logic [wn-1:0] 1t_un_close, rt_un_open, input uwire [3:0] str[0:n-1]);
if (n ==1) begin
assign lt_un_close = str[0] == Char_Close

-~

: 0
assign rt_un_open = str[0] == Char_Open 7 1 : O;
end else begin
localparam int n_left = n/2;
localparam int n_right = n - n_left;
localparam int wl = $clog2(n_left+l), wr
uwire [wl-1:0] 1t_close, lt_open;

$clog2(n_right+1);

uwire [wr-1:0] rt_close, rt_open;
pmatch_a #(n_left, wl) plt(lt_close, lt_open, str[0:n_left-1]);
pmatch_a #(n_right, wr) prt(rt_close, rt_open, strn_left:n-1]);

uwire logic signed [wn-1:0] delta = lt_open - rt_close;
assign lt_un_close = delta < 0 7 lt_close - delta : lt_close;
assign rt_un_open = delta >= 0 ? rt_open + delta : rt_open;
end
endmodule

(a) Show the hardware that will be inferred for the base case. Show hardware after optimization taking into
account constants.

M Show inferred hardware for base (n==1) case of the module above. MShow input and output ports.

M Optimize taking into account constant values of all kinds. @Don’t miss the Char definition above the
module. Don’t show a comparison unit such as E], instead show the gates from which it was made

and optimize them, taking into account the number of bits on each output port.

Solution appears below. The left-most version is without optimization, in the middle version the multiplexors have been optimized
10 Wwire, and in the rightmost version the comparison units have been optimized 1o AND gates.

Before Optimization Optimized Muxes Optimized Comparisons
pmatch_a (n=1) pmatch_a (n=1) pmatch_a (n=1)
3:3
! -3 1
It_un_ It un + +
Char Close © close Char Close close 00 ftun.
w - + | - " close
g 1 1 4 g
Wi iz, rt_un_ izl 3:3 rt_un_
i v open v ’ Oc open
& rt_un & 1 + o 1 +
iy n .
Char open © :D_ME} Char Open 0:0
1 1

pmatch _a
plt
o i}
5| © w-1 @
I_| 3 |It close
) s
1 (@]
== Jt_ppep
g L= wig
-+
prt
4 w-1 0
© /
S| 3 rt’ close
—_| @ -
(D —+
+ S w1 @
:IS IQ) t/ /
= M_OPeN A critical Path

Appearing above is hardware that will be inferred for the non-base case.

(b) Compute the cost of the hardware at this level (ignore what’s inside plt and prt) based on the simple
model using the bit widths from the diagram, such as w-1.

M Show the cost of each component except for hardware inside of plt and prt.

M Be sure to show the cost of the optimized comparison unit!

S0 Tar as computing cost here is concerned there are three Types of components. the mu\t‘xp\@xors, the comparison unit (‘m this Q&SQ),
and the adder and subtractors.

Multiplexors: The cost 0 & w-DIt MUX 18 3w 1. There are two multiplexors, so the]tom multiplexor cost is 6w uc |

Comparison: The comparison unit ehecks It delta Is negative. To do that Just eheck If the MOsT-SIgNIMCANT DIT (Sort of a sign
DIt 18 1. S0, the | comparison cost is zero |

Adder and subtractors: The cost of an x-Dit ripple adder is 9z u.. Note that an 2-Dit ripple unit has 2-dit inputs and, when one
includes the earry-out, computes an (2+1)-bit result. The unit that computes deltais w— 1 bits, and last this get 100 tedious, treat

the other subtractor and adder as having w-bit inputs. So, ’ the ripple units' combined cost 1§ 9(w — 1 + 2w) ue = 27w — 9 uc |

(¢) Compute the delay through the module starting from launch points 1t_close, 1t_open, rt_close, and

rt_open. The capture points are 1t_un_close and rt_un_open. Use the bit widths from the diagram, such
as w—1.

M Show the arrival time at each wire from launch to capture.

M Take into account cascaded ripple units and Mand the optimized comparison unit.

The timing appears on the diagram above. Also shown, though not asked for, is the eritical path (in red). For arrival time at the
oUTpUTs of the Tipple UNits two times are shown: the time of the least-signifieant bit and the time of the most-signifeant bit. For
example, the LSB of delta is arrives at 4 ug and the MSB arrives at 2w uy. For clarity the unit, uy, is omitted from the diagram.
The comparison unit just passes the MSB of delta (it does not add any additional delay).

Problem 2: [18 pts] Appearing below is an alternative solution to Homework 3 Problem 1. The only
difference is the last few lines.

module pmatch_b #(int n = 5, wn = $clog2(n+l))
(output logic [wn-1:0] 1t_un_close, rt_un_open,
input uwire [3:0] str[0:n-1]);
if (n==1) begin
assign lt_un_close = str[0] == Char_Close 7 1 : 0;
assign rt_un_open = str[0] == Char_Open ?

—
o

end else begin
localparam int n_left = n/2;
localparam int n_right = n - n_left;
localparam int wl = $clog2(n_left+l), wr
uwire [wl-1:0] 1t_close, lt_open;

$clog2(n_right+1);

uwire [wr-1:0] rt_close, rt_open;

pmatch_b #(n_left, wl) plt(lt_close, lt_open, str[0:n_left-1]);
pmatch_b #(n_right, wr) prt(rt_close, rt_open, strln_left:n-1]);
uwire logic signed [wn-1:0] delta = lt_open - rt_close;

// Lines above are identical to pmatch_a.

uwire [wn-1:0] delta.n = delta < 0 7?7 delta : O;
uwire [wn-1:0] delta_p = delta >= 0 7 delta : 0;
assign lt_un_close = lt_close - delta_n;
assign rt_un_open = rt_open + delta_p;

end
endmodule

(@) Show the hardware that will be inferred for pmatch_b. For your convenience the hardware for pmatch_a
is shown in the upper right. Note: In the original exam the condition for delta_n was delta <= 0 and the
condition for delta_p was delta > 0. Though the hardware computed the correct result, the comparison
would have been more expensive since it would have had to check for a zero condition, not just negative.

M Show inferred hardware on the facing page.

Solution appears on the facing page. One major difference is that the addition and subtraction are done afterihe multiplexors. Also
notice that each multiplexor has & constant input, zero. Finally, notice that the output of the comparison unit for delta<o can be
used Tor the line needing delta>=0 since one or the other is true.

(b) Compute the simple-model cost of the hardware.

M Write next to components that cost the same as corresponding components in pmatch_a and com-

pute the cost of other components after optimization.

The Costs are shown in the diagram in green. The only signincant difference is the multiplexors. Because each has a constant input
the cost of each is NOW w u, (U\Q multiplexors in pmatch_a ¢ost 3w u, Q&Qh).

(¢) Compare the critical path lengths.

M Will the critical path in pmatch_a be much different than the one in pmatch b? MExplain.

Yes, the eritical paths will be very different. In the diagram the arrival times are circled and the eritical path is shown as a red
dashed line. Because there is & multiplexor With & late-arriving select signal between the initial subtraction and the subsequent add
or subtract, the ripple units are no longer caseaded. That means the least significant bit does not arrive at the adder and subtractor
until [2w 4 1] ug (due to the multiplexor select signal not stabilizing until 2w ug). As & result pmatch b takes nearly twice as
long.

pmatch_b
- plt .
C W- w
2| 5 —— At
ol g |t close o
o = c
i 1t_open =
7] o 7 : (2}
)
prt
n w-1
3 / Iosgame same (0) +
rt c
SEREE w L .
® 7 :
F_P |9 rt_open 2 om | |2
>} o 7 ’
1 W_l H '5
e —] | delta p |: 0
OC | - @ 3
ost: w 7— 1
_/ (4w+3)
same

T-U3| U:0

S 43S

T-u:ys u

pmatch_a

plt
w-1
kel
3 | It close
Q
a
> | It _open
| Q
L _Iw-l @
=
[))
prt w
w-1
e}
3 | rt close
o
I% w-1
2 _Irt open

uado un M
3so|d> un 3|

Problem 3: [20 pts] Appearing below are some of the dot modules from the solution to Homework 1. On
the facing page is incomplete module dotn. Complete dotn so that it describes hardware that computes the
dot product of n-element vectors recursively, where n is the parameter. That is, dotn must instantiate dotn
and should instantiate mult and add where needed.

module mult #(int w = 5) (output uwire [w-1:0] p, input uwire [w-1:0] a, b);
assign p = a * b;
endmodule

module add #(int w = 5) (output uwire [w-1:0] s, input uwire [w-1:0] a, b);
assign s = a + b;
endmodule

module dot2 #(int w = 5)
(output uwire [w-1:0] dp, input uwire [w-1:0] a[1:0], b[1:0]);
// Computes dp = a[0] * b[0] + a[1] = b[1];
uwire [w-1:0] pO, pil;
mult #(w) mo(p0, a[0], b[0]);
mult #(w) m1i(pl, al1]l, b[1]);
add #(w) ad(dp, pO, pl);
endmodule

module dot3 #(int w = 5)
(output uwire [w-1:0] dp, input uwire [w-1:0] a[2:0], b[2:0]);
// Computes dp = al[0] * b[0] + a[1] * b[1] + a[2] * b[2];
uwire [w-1:0] pO, p2;
dot2 #(w) 40(p0, al1:0], b[1:0]);
mult #(w) m2(p2, al[2], b[2]);
add #(w) a2(dp, pO, p2);
endmodule

M Complete dotn so that it describes tree-structured hardware computing an n-element dot product. The tree
depth should be [lgn].

M Instantiate mult for multiplication and add for addition, and of course dotn for a dot product of a smaller
vector.

@(To keep things easy all wires are w bits.

The solution appears below. Note that the multiplication is performed in the base case and that the adds are done in the recursive
instances

module dotn
#(int w =5, n = 4)
(output uwire [w-1:0] dp,
input uwire [w-1:0] a[n-1:0], b[n-1:0]);

// SOLUTION
if (n ==1) begin

// Base Case: Just multiply.

//
mult #(w) m(dp, al0], b[0]);

end else begin

// Recursive Case: Split inputs between recursive instances ..
//

localparam int nlo = n/2;

localparam int nhi = n - nlo;

uwire [w-1:0] dplo, dphi;

dotn #(w,nlo) dlo(dplo, a[nlo-1:0], b[nlo-1:0]);

dotn #(w,nhi) dhi(dphi, al[n-1:nlo], b[n-1:nlo]);

//
// .. and add their outputs ..
//
add #(w) a(dp, dplo, dphi);
end
endmodule

Problem 4: [10 pts] Appearing below is the logarithmic shifter presented in class, followed by a version
that’s supposed to be better (but isn’t). The hoped-for improvement is due to instantiating the exact number
of multiplexors (muxw2) needed, rather than enough for the maximum shift amount.

module shift_right_logarithmic #(int w = 16, lgw = $clog2(w))
(output uwire [w-1:0] shifted,
input uwire [w-1:0] un, input uwire [lgw-1:0] amt);
// This module is correct.
uwire [w-1:0] s[lgw:-1];
assign s[-1] = un;
for (genvar i=0; i<lgw; i++)
muxw2 #(w) st(s[i], amt[i]l, s[i-1], s[i-1] >> (1 << i));
assign shifted = s[lgw-1];
endmodule

module shift_right_logarithmic_better_maybe #(int w = 16, lgw = $clog2(w))
(output uwire [w-1:0] shifted,
input uwire [w-1:0] un, input uwire [lgw-1:0] amt);
uwire [w-1:0] s[lgw:-1];
assign s[-1] = un;

// Use exactly the number of stages needed!!!
uwire [lgw-1:0] lg_amt; // LINE ADDED
my_clog2 #(lgw) me(lg_amt, amt); // LINE ADDED. Set lg_amt = $clog2(amt) = [lgamt];

for (genvar i=0; i<lg_amt; i++) // LINE DIFFERS
muxw? #(w) st(s[i], amt[i]l, s[i-1]1, sl[i-1]1 >> (1 << i));
assign shifted = s[lg_amt-1]; // LINE DIFFERS
endmodule

M Why won’t the Verilog above compile?

The Verilog won't compile because the for 100p is & generate 100p and its stop condition, i<lg_amt, i8 NOT an elaboration-time
constant expression due 1o 1g_amt being & module output (()T the mc instance of the my_clog?2 modu\e). The 100p would have to
De o generate 100p because it is in module scope and because the iterator is declared genvar.

M Is it possible to fix the Verilog error in such a way that cost is lower with smaller shift amounts? MExplain.

No. The cost is determined by the amount of hardware needed to synthesize the module. Onee the module is synthesized, manufac-
tured, and shipped to & customar its cost (m@an'mg the amount of hMGWMQj can't cnange. TNis isn't HOgwarts, we're muggles (QI
least | am).

M Is it possible to fix the Verilog error in such a way that the delay reported by a synthesis program is lower?
9 Explain.

No, because the delay reported by the synthesis program will be based on the critical path, whieh is the longest path.

M Is it possible to fix the Verilog error in such a way that the delay actually is lower? MExplain.

1T you must have 4 snorter delay Tor a lower shift amount that is possible but (1) it won't be muceh of an improvement below galactic
sizes and (2) the logie outside the module will have 1o be designed 1o take advantage of the lower delay with sorter shift amounts.
50, Though the answer 1o This question is yes, as 4 practical matter the answer is still no.

Problem 5: [30 pts] Answer the following Verilog questions.

(a) The module below uses multidimensional arrays.

// 2 1 3 4 1 2
module mdg(input uwire [2:1] ¢ [5:1], input uwire [7:1]1[2:1] a [5:11[3:1]);
// Add dimension(s) to the declaration of e so that the assignment is correct.
//
// SOLUTION
uwire [2:1] e [5:1] = c;

// @ Add dimension(s) to the declaration of b so that the assignment is correct.

//
// SOLUTION
uwire [2:1] b = a[1][1][1];

logic g [7:0];
logic [7:0] h;

initial begin
// Which is correct,

Q only the assignment to g, Q only the assignment to h, or ® both are correct.

Explain.
gl1l = h[1];
h[1] = gl1];
end
endmodule

M What is the size of c, in bits? MWhat is the size of a, in bits?
The 8ize of object ¢ is 2 x 5 = 10 bits. The size of object als 7 X 2 x & x 3 = 210 bits.

Explanation for multiple-choice question about g and h. It is true that g 1s an unpacked array and h is a packed array and the two
kinds of array work dirferently. But in this case both g[1] and h[1] refer to 1-bit quantities, and so assigning one to the othar 1
no problem. (Possible final-exam question: ask about h[1:0] and g[1:071.)

(b) In the module below indicate whether each code fragment is correct.

module kinds #(logic [31:0] pg = 123)
(output uwire [31:0] 00, input uwire [31:0] ik);

// @Is the line below correct? ® Yes ONO Ij If not, explain.

localparam logic [31:0] z02 = pg + 4755;

// @Is the line below correct? O Yes ®No @If not, explain.

localparam logic [31:0] z03 = ik;

A localparam can onty be assigned an elaboration-time CONSLANT eXpression (’mo\udmg literals and elaboration-time C()T\SIMWS). Since
ik is & module input it eannot be an elaboration-time constant.

// @Are the lines below correct? O Yes ® No @If not, explain.

localparam logic [31:0] z04;
assign z04 = pg;

Though pg is an elaporation time constant, it must be assigned 1o z04 in the declaration statement (U\Q statement starting starting
with 1ocalpara.m). Put another way every localparam declaration must include the constant value.

// @Are the lines below correct? O Yes ® No le not, explain.

uwire [31:0] z10 = pg;
assign z10 = ik;

Object z10 is declared uwire. A uwire must have oxactly one driver. Both lines above are drivers, which is one too many. To
keep the assign line one would need to remove =pg from the uwire declaration (DUI keep the TQS'C).

// @Is the line below correct? ® Yes ONO D If not, explain.

uwire [31:0] z13 = ik;

endmodule

10

(¢) When we run a synthesis program we specify a delay target. In class we often synthesize twice, once with
a delay target of 100ns and a second time with a target of 0.1ns. What is the harm in specifying a delay
target lower (faster) than one needs? Isn’t faster better?

M Harm in setting delay target too low is:
Short answer: The harm is SythS'\ZQG nardware that's more Q()SUy than it would have been with the correct dQ\&y.

The delay target should be set £o the delay thaf's needed by & design. For example, the design team may have decided that they
would like & 2.5 GHz clock Trequency and so they would set the delay target €o ﬁ = 400 ps. The synthesis program will
optimize delay until the 400 ps target is mat, and then optimize cost. Typically the lower the delay, the more the hardware will eost.

In Scenario A the team needs 400 ps but the Person running the synthesis program specified a target of 200 ps and didn't tell
anyone. \When the more-costly-than-they-need-to-he manufactured components are used in & product they are clocked af 400 ps,
Wasting their potential. The compatition might have a less expensive product that runs af the same speed.

In Scenario B the team needs 400 ps, the person running the synthesis program specifes 4 target of 200 ps, and told the team. So
the design is run at 200 ps. Though the hardware runs faster, it's of no beneflt because the toaster makes great t0ast With either
component. There's no point in sampling the image sensors any faster to 20 Hz to make good toast.

(d) A 32-bit signed integer, say 4, is converted into a 32-bit IEEE 754 floating-point format (8-bit exponent,
23-bit significand) and then back into a 32-bit integer, j.

M Is it guaranteed that i = j for all —23! <4 < 231? MEXplain based on the FP representation.

No. The signinicand is only 23 bits, meaning the fraction is 24 bits (counting the implicit 1). Consider two integers 253,969,77019 =
£23,456a16 and 253,969,77119 = f23,456b16. Each is seven hexadecimal digits and so would need at least 28 bits 1o represent.
To represent these in the FP format the signincand would be set to the most signinicant 24 bits, f2,345616 (Including the implieit
1), omitting the least-signincant hex digit a or b. (The exponent would be sef to 154 for both numbers.) Since the two numbers have
identical FP representations converting them back to integers will yiald the same number, £23,457016.

Appearing below is the complete FP representation of 253,969,770, = f23,456a16 and f23,456b16 = 253,969,771 in
32-Dit (single, which is the format deseribed in the problem) and 64-bit (double, 4 higher-precision format) formats. Notice that the
fractions (F) of the numbers' single representations are the same, but the fractions of their double representations are diferent.

Value 253969770.0000000000000000 == 2.539698e+08

Single: 44723457 1299330135
S 0 E Ox9a = 154 F 0x723457
Double: 412e468ad4000000 4732797820489170944

S 0 E Ox4la = 1050 F 0xe468ad4000000

Value 253969771.0000000000000000 == 2.539698e+08

Single: 44723457 1299330135
S 0 E Ox9a = 154 F 0x723457
Double: 412e468ad6000000 4732797820522725376

S 0 E Ox4la = 1050 F e468ad6000000

11

	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

