
LSU EE 4755 Homework 4 Solution Due: 8 Nov 2024

Student Expectations
To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for Verilog programming and synthesis examples, and to seek out any
additional help and resources that might be needed. (Of course this doesn’t mean asking someone
else to solve it for you.) It is the students’ responsibility to resolve frustrations and roadblocks
quickly. (If you get stuck just ask for help!)

This assignment cannot be solved by blindly pasting together parts of past assignments. Solv-
ing the assignment is a multi-step learning process that takes effort, but one that also provides the
satisfaction of progress and of developing skills and understanding.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problems start on next page.

1

https://www.ece.lsu.edu/koppel/v/

Problem 1: Appearing below is the base case from module pmatch_mark in the solution to Home-
work 3 Problem 2.

typedef enum logic [3:0]

{ Char_Blank = 0, Char_Dot = 1,

Char_Open = 2, Char_Close = 3,

Char_Open_Okay = 4, Char_Close_Okay = 5 } Char;

module pmatch_mark
#(int n = 5, wn = $clog2(n+1))

(output logic [wn-1:0] left_out_n_unmat_close, right_out_n_unmat_open,

output uwire [3:0] str_marked [0:n-1],

input uwire [wn-1:0] left_in_n_unmat_open, right_in_n_unmat_close,

input uwire [3:0] str [0:n-1]);

if (n == 1) begin

assign left_out_n_unmat_close = str[0] == Char_Close;

assign right_out_n_unmat_open = str[0] == Char_Open;

assign str_marked[0] =

str[0] == Char_Close && left_in_n_unmat_open ? Char_Close_Okay :

str[0] == Char_Open && right_in_n_unmat_close ? Char_Open_Okay :

str[0];

� Show the hardware that will be inferred for the base case (n==1) shown above.

� Show the hardware after optimization and � for the default value of wn.

� In the optimized hardware do not show comparison units, instead show the individual gates per-
forming the comparison, � optimizing for constant values.

4
⨉
1

pmatch_mark (n=1)

lt_un_close

rt_un_open

str

0:0

3:3

0:0

3:3

left_in_un_open

right_in_un_close

1

1

str[0]==
Char_Close

s
tr_m

a
rk

e
d

Char_Close_Okay
Char_Open_Okay

4⨉1

1

1

str[0]==
Char_Open

4
4

Solution appears to the right with some abbreviated

connection names. As in the midterm exam the equal-

ity comparisons have been optimized into AND gates.

Notice that because n = 1 input str has a single 4-bit

element and so str[0] refers to all of str which is

four bits and carries a single Char. Because the default

value of wn is to be used and n=1 is given we know that

wn = dlg(n+1)e = dlg(2)e = 1. That means the

left in un open (a.k.a. left in n unmat open)

is one bit and so it can be directly connected to an

AND gate input. If wn > 1 then an OR gate would

be needed before the AND gate. Final exam short
answer question?

2

Problem 2: Appearing below are three variations on a module that will set its output to either
the input value, or a maximum value if the input is larger. The module will always be instantiated
with wl < wn. All of them are functionally equivalent, but were synthesized to different costs (by
Genus 23.12-s086.1 when similar code was used in the solution to Homework 3). Because they are
functionally equivalent a perfect synthesis program would synthesize each to the same hardware
(with equal costs).

module clamp_plan_a
#(int wl = 3, wn = 4) (output uwire [wl-1:0] x, input uwire [wn-1:0] a);

localparam logic [wl-1:0] nl_max = ~(wl)’(0); // Sequence of wl 1s.

assign x = a <= nl_max ? a : nl_max;

endmodule

module clamp_plan_b
#(int wl = 3, wn = 4) (output uwire [wl-1:0] x, input uwire [wn-1:0] a);

localparam logic [wl-1:0] nl_max = ~(wl)’(0); // Sequence of wl 1s.

assign x = a < nl_max ? a : nl_max;

endmodule

module clamp_plan_c
#(int wl = 3, wn = 4) (output uwire [wl-1:0] x, input uwire [wn-1:0] a);

localparam logic [wl-1:0] nl_max = ~(wl)’(0); // Sequence of wl 1s.

assign x = !a[wn-1:wl] ? a : nl_max;

endmodule

clamp_plan_a, clamp_plan_c

x

a

wl

wn
wl:wl

wn-1:wn-1 a > nl_max

nl_max
wl

wl-1:0

clamp_plan_b

x

a

wl

wn
wl:wl

wn-1:wn-1

nl_max wl
wl-1:0

wl-1:wl-1

0:0
a[wl-1:0] ≠ nl_max

a ≤ nl_max

a < nl_max

C
ritica

l P
a
th

 (if w
l>

w
n
-w

l)

Critical Path

� Show the optimized hardware for the low-cost ver-
sion(s).

Solution appears to the right. Because nl max is wl bits

and wl > wn it is possible to determine that a > nl max

by checking if any of the bits in positions wn-1:wl are 1.

If so, a > nl max, otherwise a <= nl max. The Plan

C hardware explicitly uses this optimization, and is shown to

the right. For Plan A the solution is based on the assumption

that the synthesis program figures out the optimization. The

hardware is more complicated for Plan B because to compute

a<nl max the hardware needs to compute a<=nl max (the

AND gate) and a!=nl max (the OR gate). The Plan B

solution is based on a synthesis program that can optimize

the comparison this way, but one that can’t figure out that

there was no need to check for the a!=nl max case because

if a==nl max either multiplexor input can be used.

Solution continued on next page.

3

� Find the simple-model cost of each after optimization. The costs should be � in terms of wn and
wl.

Plan A and Plan C: Multiplexor (one constant input): wl uc, OR gate [wn − wl − 1] uc.

Plan B: Multiplexor (one constant input): wl uc, “big” AND gate [wn −wl − 1] uc, OR gate wl uc, little AND gate

1 uc. Note that the big AND gate might just have one input so not only would it not be big, but it would not be an AND

gate at all, just a NOT gate.

� Find the simple-model delay of each after optimization. The delays should be � in terms of wn
and wl.

Plan A and Plan C: Delay of OR gate, dlg(wn − wl)e ut. Delay of mux, 1 ut. Critical path, shown in red on the

diagram, is through both so the critical path delay is [dlg(wn − wl)e+ 1] ut.

Plan B: Delay of “big” AND gate, dlg(wn −wl)e ut. Delay of OR gate dlg(wl)e ut. Delay of AND gate 1 ut, delay

of mux, 1 ut. Assuming wl > wn − wl the critical path, shown on red in the diagram, is through the OR gate, little

AND gate and mux for a total delay of [dlg(wl)e+ 1 + 1] ut. Notice that the critical path length is much larger in Plan

B under the reasonable assumption that wl > wn − wl.

4

Problem 3: Appearing on the next page is a simplified solution to Homework 3, Problem 2. In
this module the number of bits in the connections carrying parentheses counts is hardcoded to 8.
Though the hardware is correct for n < 256 it is more costly and slower than it needs to be. But
for this problem it’s good enough.

Show the Homework 3, Problem 2 hardware that will be inferred for this module for n > 1
(the non-base case). That is, don’t show the hardware computing left_out_n_unmat_close and
right_out_n_unmat_open.

� Show the inferred hardware at one level for n > 1.

� Feel free to use abbreviations.

� Don’t show the Homework 3 Problem 1 hardware (the last always comb).

�Don’t confuse elaboration-time computation with hardware.

Solution appears below. Note that the condition more op<0 can be evaluated by just looking at the most-significant bit,

7 in this case.

To help understand the circuit try tracing the critical path. To do that consider two cases: the root (the top-level

instantiation of pmatch mark big) and a lower-level instantiation (but not the base case). In the root assume that

left in un open and right in un close are available at t = 0.

4
⨉
n

pmatch_mark_big (wn=8)

str

left_in_un_open

rig
h

t_in
_u

n
_c

lo
s
e

s
tr_m

a
rk

e
d

4⨉n

rt_open

rt_close

− more_op

lt_close

lt_open +

+−

pmatch_
mark_big

pmatch_
mark_big

plt

prt

lt_m_cl

lt_m_op

rt_m
_cl

rt_m
_o
p

4⨉n_left
4
⨉
n
_rig

h
t

msb

lsb

more_cl

7:7

more_op < 0

7:7

1

0

1

0

more_cl < 0

4⨉n_left

4⨉n_right

0:n_left-1
n
_le

ft:n
-1

wn

wn

5

module pmatch_mark_big #(int n = 5, wn = 8)

(output logic [wn-1:0] left_out_n_unmat_close, right_out_n_unmat_open,

output uwire [3:0] str_marked [0:n-1],

input uwire [wn-1:0] left_in_n_unmat_open, right_in_n_unmat_close,

input uwire [3:0] str [0:n-1]);

if (n == 1) begin

assign left_out_n_unmat_close = str[0] == Char_Close;

assign right_out_n_unmat_open = str[0] == Char_Open;

assign str_marked[0] =

str[0] == Char_Close && left_in_n_unmat_open ? Char_Close_Okay :

str[0] == Char_Open && right_in_n_unmat_close ? Char_Open_Okay : str[0];

end else begin

localparam int n_left = n/2, n_right = n - n_left;

localparam int wl = 8, wr = 8; // Note: this is wasteful.

uwire [wl-1:0] lt_close, lt_open;

uwire [wr-1:0] rt_close, rt_open;

logic [wl-1:0] lt_matched_op, lt_matched_cl;

logic [wr-1:0] rt_matched_op, rt_matched_cl;

pmatch_mark_big #(n_left,wl) plt // Recursive Instantiation

(lt_close, lt_open, str_marked[0:n_left-1],

lt_matched_cl, lt_matched_op, str[0:n_left-1]);

pmatch_mark_big #(n_right,wr) prt // Recursive Instantiation

(rt_close, rt_open, str_marked[n_left:n-1],

rt_matched_cl, rt_matched_op, str[n_left:n-1]);

always_comb begin

logic signed [wn-1:0] more_op, more_cl;

lt_matched_cl = left_in_n_unmat_open;

rt_matched_op = right_in_n_unmat_close;

more_op = left_in_n_unmat_open - lt_close;

rt_matched_cl = more_op < 0 ? lt_open : more_op + lt_open;

more_cl = right_in_n_unmat_close - rt_open;

lt_matched_op = more_cl < 0 ? rt_close : more_cl + rt_close;

end

always_comb begin // Same as Homework 3 Problem 1

logic signed [wn-1:0] delta;

delta = lt_open - rt_close;

left_out_n_unmat_close = delta >= 0 ? lt_close : lt_close - delta;

right_out_n_unmat_open = delta < 0 ? rt_open : rt_open + delta;

end

end

endmodule

6

