
LSU EE 4755 Homework 4 Due: 8 Nov 2024

Student Expectations
To solve this assignment students are expected to avail themselves of references provided in class
and on the Web site, such as for Verilog programming and synthesis examples, and to seek out any
additional help and resources that might be needed. (Of course this doesn’t mean asking someone
else to solve it for you.) It is the students’ responsibility to resolve frustrations and roadblocks
quickly. (If you get stuck just ask for help!)

This assignment cannot be solved by blindly pasting together parts of past assignments. Solv-
ing the assignment is a multi-step learning process that takes effort, but one that also provides the
satisfaction of progress and of developing skills and understanding.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problems start on next page.

1

https://www.ece.lsu.edu/koppel/v/

Problem 1: Appearing below is the base case from module pmatch_mark in the solution to Home-
work 3 Problem 2.

typedef enum logic [3:0]

{ Char_Blank = 0, Char_Dot = 1,

Char_Open = 2, Char_Close = 3,

Char_Open_Okay = 4, Char_Close_Okay = 5 } Char;

module pmatch_mark
#(int n = 5, wn = $clog2(n+1))

(output logic [wn-1:0] left_out_n_unmat_close, right_out_n_unmat_open,

output uwire [3:0] str_marked [0:n-1],

input uwire [wn-1:0] left_in_n_unmat_open, right_in_n_unmat_close,

input uwire [3:0] str [0:n-1]);

if (n == 1) begin

assign left_out_n_unmat_close = str[0] == Char_Close;

assign right_out_n_unmat_open = str[0] == Char_Open;

assign str_marked[0] =

str[0] == Char_Close && left_in_n_unmat_open ? Char_Close_Okay :

str[0] == Char_Open && right_in_n_unmat_close ? Char_Open_Okay :

str[0];

Show the hardware that will be inferred for the base case (n==1) shown above.

Show the hardware after optimization and for the default value of wn.

In the optimized hardware do not show comparison units, instead show the individual gates per-
forming the comparison, optimizing for constant values.

2

Problem 2: Appearing below are three variations on a module that will set its output to either
the input value, or a maximum value if the input is larger. The module will always be instantiated
with wl < wn. All of them are functionally equivalent, but were synthesized to different costs (by
Genus 23.12-s086.1 when similar code was used in the solution to Homework 3). Because they are
functionally equivalent a perfect synthesis program would synthesize each to the same hardware
(with equal costs).

module clamp_plan_a
#(int wl = 3, wn = 4) (output uwire [wl-1:0] x, input uwire [wn-1:0] a);

localparam logic [wl-1:0] nl_max = ~(wl)’(0); // Sequence of wl 1s.

assign x = a <= nl_max ? a : nl_max;

endmodule

module clamp_plan_b
#(int wl = 3, wn = 4) (output uwire [wl-1:0] x, input uwire [wn-1:0] a);

localparam logic [wl-1:0] nl_max = ~(wl)’(0); // Sequence of wl 1s.

assign x = a < nl_max ? a : nl_max;

endmodule

module clamp_plan_c
#(int wl = 3, wn = 4) (output uwire [wl-1:0] x, input uwire [wn-1:0] a);

localparam logic [wl-1:0] nl_max = ~(wl)’(0); // Sequence of wl 1s.

assign x = !a[wn-1:wl] ? a : nl_max;

endmodule

Show the optimized hardware for the low-cost version(s).

Find the simple-model cost of each after optimization. The costs should be in terms of wn and
wl.

Find the simple-model delay of each after optimization. The delays should be in terms of wn
and wl.

3

Problem 3: Appearing on the next page is a simplified solution to Homework 3, Problem 2. In
this module the number of bits in the connections carrying parentheses counts is hardcoded to 8.
Though the hardware is correct for n < 256 it is more costly and slower than it needs to be. But
for this problem it’s good enough.

Show the Homework 3, Problem 2 hardware that will be inferred for this module for n > 1
(the non-base case). That is, don’t show the hardware computing left_out_n_unmat_close and
right_out_n_unmat_open.

Show the inferred hardware at one level for n > 1.

Feel free to use abbreviations.

Don’t show the Homework 3 Problem 1 hardware (the last always comb).

Don’t confuse elaboration-time computation with hardware.

For reference, the hardware for the Homework 3 Problem 1 part of this module is shown below.

0
:n
_le

ft-1
s
tr

n

plt

n
_le

ft:n
-1

pmatch_a

prt

rt_close

rt_open

lt_close

lt_open

p
m
a
tch

_a
p
m
a
tch

_a
0

d
e
lta

lt_u
n
_c
lo
s
e

rt_u
n
_o
p
e
n+

<

−

w

w

w

ww
w-1

w-1
−

w-1

w-1

4

module pmatch_mark_big #(int n = 5, wn = 8)

(output logic [wn-1:0] left_out_n_unmat_close, right_out_n_unmat_open,

output uwire [3:0] str_marked [0:n-1],

input uwire [wn-1:0] left_in_n_unmat_open, right_in_n_unmat_close,

input uwire [3:0] str [0:n-1]);

if (n == 1) begin

assign left_out_n_unmat_close = str[0] == Char_Close;

assign right_out_n_unmat_open = str[0] == Char_Open;

assign str_marked[0] =

str[0] == Char_Close && left_in_n_unmat_open ? Char_Close_Okay :

str[0] == Char_Open && right_in_n_unmat_close ? Char_Open_Okay : str[0];

end else begin

localparam int n_left = n/2, n_right = n - n_left;

localparam int wl = 8, wr = 8; // Note: this is wasteful.

uwire [wl-1:0] lt_close, lt_open;

uwire [wr-1:0] rt_close, rt_open;

logic [wl-1:0] lt_matched_op, lt_matched_cl;

logic [wr-1:0] rt_matched_op, rt_matched_cl;

pmatch_mark_big #(n_left,wl) plt // Recursive Instantiation

(lt_close, lt_open, str_marked[0:n_left-1],

lt_matched_cl, lt_matched_op, str[0:n_left-1]);

pmatch_mark_big #(n_right,wr) prt // Recursive Instantiation

(rt_close, rt_open, str_marked[n_left:n-1],

rt_matched_cl, rt_matched_op, str[n_left:n-1]);

always_comb begin

logic signed [wn-1:0] more_op, more_cl;

lt_matched_cl = left_in_n_unmat_open;

rt_matched_op = right_in_n_unmat_close;

more_op = left_in_n_unmat_open - lt_close;

rt_matched_cl = more_op < 0 ? lt_open : more_op + lt_open;

more_cl = right_in_n_unmat_close - rt_open;

lt_matched_op = more_cl < 0 ? rt_close : more_cl + rt_close;

end

always_comb begin // Same as Homework 3 Problem 1

logic signed [wn-1:0] delta;

delta = lt_open - rt_close;

left_out_n_unmat_close = delta >= 0 ? lt_close : lt_close - delta;

right_out_n_unmat_open = delta < 0 ? rt_open : rt_open + delta;

end

end

endmodule

5

