
LSU EE 4755 Homework 2 Solution Due: 4 October 2024

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2024/hw02.v.html. The solution Verilog is in the assign-
ment directory.
For an htmlized version visit https://www.ece.lsu.edu/koppel/v/2024/hw02-sol.v.html.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if necessary), copy the assignment, and run the Verilog simulator on the un-
modified homework file, hw02.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Overview
In this assignment modules will be completed that compute a2s + b > c where inputs a and b are
real and inputs s and c are non-negative integers. Each module has an output gt, which should be
set to 1 if the comparison is true and 0 otherwise. There is also an output ssum which should be
set to a2s + b. What makes this interesting is that the sizes of all inputs are parameters, and that
in the instantiations tested the number of bits in the significands of a and b can be less than the
number of bits in c.

The floating point calculations and conversion(s) are to be done using Chipware modules.
Solving this assignment requires a straightforward application of Verilog techniques for instantiating
modules and wiring them together. It also requires an understanding of when and how to convert
numbers from floating-point to integer representations.

As of this writing two modules are to be completed, comp_fp and comp_int. In comp_fp the
greater-than comparison is to be done in floating point (using a Chipware module) and in comp_int

it is to be done using an integer comparison (using the > operator).

Testbench
To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up
account. The testbench will apply inputs to several instantiation of modules comp_fp and comp_int.
The instantiations differ on the number of bits used for the integer inputs and the format of the
floating-point output. The instantiation parameters are shown at the end of the testbench along
with a summary of the errors for that module. The end of the testbench output for an unmodified
assignment appears below:

Total comp_int exp=7, sig=6, wc= 6, s=0: Errors: 50000 ss, 31394 gt.

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2024/hw02.v.html
https://www.ece.lsu.edu/koppel/v/2024/hw02-sol.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

Total comp_int exp=7, sig=6, wc= 6, s>0: Errors: 50000 ss, 28962 gt.

Total comp_int exp=7, sig=7, wc=10, s=0: Errors: 50000 ss, 33366 gt.

Total comp_int exp=7, sig=7, wc=10, s>0: Errors: 50000 ss, 31052 gt.

Total comp_int exp=8, sig=5, wc=12, s=0: Errors: 50000 ss, 35958 gt.

Total comp_int exp=8, sig=5, wc=12, s>0: Errors: 50000 ss, 33117 gt.

Total comp_fp exp=7, sig=6, wc= 6, s=0: Errors: 50000 ss, 31310 gt.

Total comp_fp exp=7, sig=6, wc= 6, s>0: Errors: 50000 ss, 29113 gt.

Total comp_fp exp=7, sig=7, wc=10, s=0: Errors: 50000 ss, 33478 gt.

Total comp_fp exp=7, sig=7, wc=10, s>0: Errors: 50000 ss, 30957 gt.

Total comp_fp exp=8, sig=5, wc=12, s=0: Errors: 50000 ss, 35987 gt.

Total comp_fp exp=8, sig=5, wc=12, s>0: Errors: 50000 ss, 33073 gt.

TOOL: xrun(64) 24.03-s005: Exiting on Sep 29, 2024 at 14:00:48 CDT (total: 00:00:02)

Compilation finished at Sun Sep 29 14:00:48, duration 2.14 s

Each line starting with Total shows a tally of results. After Total the line shows the module
name, either comp_int or comp_fp, and three parameter values. The label exp shows the value of
parameter w_exp, which is the size of the exponent of the FP numbers; label sig shows the value
of parameter w_sig, which the size of the significand of inputs a and b, and wc shows the value of
parameter w_c, the number of bits in input c. The lines with label s=0 show the results of tests
in which module input s is set to zero, the lines with label s>0 show the results of tests in which
module input s can be non-zero. Tallies of errors are shown after Errors:, first of the ssum output
(scaled sum), and then for the gt output. In the unmodified assignment the ssum is unconnected,
and so its output is always wrong. Output gt is set to 1, which is mostly but not always wrong.

Further up, the testbench shows some examples of incorrect output:

Starting comp_int tests iwth exp=7, sig=6, wc=6

Error in #(7,6,6) a=-17.50, s=0, b=0.04, c=3. ss 0.0000e+00 != -1.7464e+01 (correct)

Error in #(7,6,6) a=-17.50, s=0, b=0.04, c=3. gt 1 != 0 (correct) -20.4644

Error in #(7,6,6) a=-0.80, s=0, b=18.25, c=12. ss 0.0000e+00 != 1.7445e+01 (correct)

Error in #(7,6,6) a=12.62, s=0, b=13.62, c=0. ss 0.0000e+00 != 2.6250e+01 (correct)

Error in #(7,6,6) a=-3.62, s=0, b=3.72, c=0. ss 0.0000e+00 != 9.3750e-02 (correct)

In the sample above the first Error line indicates that the module output was 0.0000e+00 (that’s
what a z would look like) but −1.7464× 101 = −17.464 = -1.7454e+01 was expected. The second
Error line indicates that the gt output was 1 but should have been 0. The -20.4544 is the correct
difference between c = 3 and −17.5 + 0.04 = −17.46, indicating that it was not even close. Note
that the number of digits past the decimal point is limited and so the full number is not shown.
About the first five errors of each type will be shown.

Whether or not there are errors, at least one pair of lines is printed for each test. That output
is preceded by the word Sample if the output is correct. Appearing below is the beginning and end
of the output for correct modules:

Starting comp_int tests iwth exp=7, sig=6, wc=6

Sample in #(7,6,6) a=-17.50, s=0, b=0.04, c=3. ss -1.7500e+01 == -1.7464e+01 (cor-

rect)

Sample in #(7,6,6) a=-17.50, s=0, b=0.04, c=3. gt 0 == 0 (correct) -20.4644

Finished comp_int tests exp=7, sig=6, wc=6, s=0. Errors: 0 ss, 0 gt

Finished comp_int tests exp=7, sig=6, wc=6, s>0. Errors: 0 ss, 0 gt

[snip]

2

Total comp_int exp=7, sig=6, wc= 6, s=0: Errors: 0 ss, 0 gt.

Total comp_int exp=7, sig=6, wc= 6, s>0: Errors: 0 ss, 0 gt.

Total comp_int exp=7, sig=7, wc=10, s=0: Errors: 0 ss, 0 gt.

Total comp_int exp=7, sig=7, wc=10, s>0: Errors: 0 ss, 0 gt.

Total comp_int exp=8, sig=5, wc=12, s=0: Errors: 0 ss, 0 gt.

Total comp_int exp=8, sig=5, wc=12, s>0: Errors: 0 ss, 0 gt.

Total comp_fp exp=7, sig=6, wc= 6, s=0: Errors: 0 ss, 0 gt.

Total comp_fp exp=7, sig=6, wc= 6, s>0: Errors: 0 ss, 0 gt.

Total comp_fp exp=7, sig=7, wc=10, s=0: Errors: 0 ss, 0 gt.

Total comp_fp exp=7, sig=7, wc=10, s>0: Errors: 0 ss, 0 gt.

Total comp_fp exp=8, sig=5, wc=12, s=0: Errors: 0 ss, 0 gt.

Total comp_fp exp=8, sig=5, wc=12, s>0: Errors: 0 ss, 0 gt.

To add or change instantiation parameters search for the place where variable pset is assigned
and edit the initialization of pset (and change npsets if needed):

localparam int npsets = 5; // This MUST be set to the size of pset.

// { w_exp, w_sig, wc_int }

localparam int pset[npsets][3] =

’{

{ 7, 6, 4 },

{ 7, 7, 10 },

{ 8, 5, 12 }};

The testbench will report on the correctness and accuracy of the output.

References and Helpful Examples
For this assignment Chipware modules are to be instantiated to perform floating-point computation
and floating-point/integer conversion. A link to the Genus ChipWare IP Components Guide can
be found on the course references page. The IEEE 754 floating point standard is described in the
types lecture code, be sure to scroll down to reach it.

See 2023 Homework 2 for examples of how to instantiate these modules to perform a compu-
tation and for integer/floating-point conversion. A copy of the solution to the 2023 assignment is
included in the 2024 assignment directory. As in this (2024) assignment the floating-point formats
in the 2023 assignment vary and so parameters must be used when instantiating the Chipware
modules to specify the exponent and significand length. In 2021 Homework 2 Chipware modules
were instantiated with non-default exponent and significand lengths. Also see 2022 Homework 5.
That assignment uses both combinational and sequential modules. (Sequential material has not yet
been covered.) See ms_comb in 2022 Homework 5 for a straightforward connection of FP modules
(but without format conversion).

3

https://www.ece.lsu.edu/koppel/v/ref.html
https://www.ece.lsu.edu/koppel/v/2024/l020-types.v.html

Problem 1: Module comp_fp has two floating-point (FP) inputs, a and b, two integer inputs s

and c, one-bit output gt, and a FP output ssum; it also has integer parameters w_c, w_s, w_exp,
w_sig and w_sig2. (The remaining parameters, w_fp and w_fp2, are set to the full size of the two
FP formats used, don’t change them.) Inputs a and b carry values in a custom IEEE 754 FP format
with a w_exp-bit exponent and a w_sig-bit significand. The total size of each of these inputs is
1+w_exp+w_sig bits. (The custom format is recognized by the Chipware modules.) The value on
input c is a w_c-bit unsigned integer. The value on output ssum is expected to be a IEEE-format
FP number with a w_exp-bit exponent and w_sig2-bit significand.

The output ssum (scaled sum) is to be set to a2s+b and output gt is to be set to 1 if a2s+b > c
and 0 otherwise.

For this problem one should review the IEEE 754 notes, plus the use of the Verilog concate-
nation (like {2’b11,a,4’d0}), shift (a<<2), and bit slice (a[6:1]) operators.

After each subproblem there is a description of how the part was solved. Then the complete solved module is shown.

(a) Modify comp_fp so that it computes a2s without using Chipware modules. The value does not
have to be assigned to any particular object, but it should be used to compute a2s + b. To solve
this subproblem one must understand the IEEE 754 format. A correct solution requires just a line
or two of Verilog code. (Just one line if overflow is ignored, which is okay.)

� Compute a2s without Chipware modules.

To compute a2s for a 6= 0 all we need to do is add s to the exponent. For a = 0 we would leave the value unchanged.

The significand is w sig bits, so to add s to the exponent use expression: a + (s << w sig) if a 6= 0 and 0

otherwise.

Note that for the value v = f × 2e with 1 ≤ f < 2 in a representation with a we-bit exponent (w exp using the

module parameter names) the quantity in the exponent field is e + ebias, where ebias = 2we−1 − 1. When s is added

to the exponent field there is no need to subtract the bias first and then add it again. It is sufficient to just add s. The

problem stated that overflow could be ignored.

The line performing the multiplication a2s appears below:

uwire [w_fp-1:0] a_sc = a ? a + (s << w_sig) : a;

(b) Modify comp_fp so that ssum is set to a2s + b. (For partial credit, or to get started quickly
set ssum to a + b. If this is done correctly the testbench s=0 tests should show zero ss errors.)
Compute the sum using Chipware modules and the value of a2s from the previous part.

Note that a and b have a w_sig-bit significand, but the sum should have a w_sig2-bit signif-
icand. So, the significands of a2s and b must be lengthened (assume that w_sig2 > w_sig). See
the description of the IEEE 754 format. Please don’t look for a module to do this for you.

� Convert a2s and b into FP types with a w sig2-bit significand.

Note that a and b carry values in a FP representation. All we need to do is widen the significand from w sig bits to

w sig2 bits. These new bits will be in the least-significant position. The problem did not state what they should be,

but a good bet is zero so that the representations of 1.5 and 1.25 don’t change. A quick way to do the conversion is to

just shift the quantities w sig2-w sig bits to the left.

uwire [w_fp2-1:0] a_cw = a_sc << w_sig2 - w_sig;

uwire [w_fp2-1:0] b_cw = b << w_sig2 - w_sig;

� Using the value from the previous part, set ssum to a2s + b.

4

All one has to do is instantiate a ChipWare adder. Examples were shown in the reference assignment 2023 Homework 2.

See the code following the parts below.

(c) Modify comp_fp so that gt is correctly set using a floating-point comparison. Don’t forget that
input c carries an unsigned integer so that to do a FP comparison c will need to be converted.

� Set gt.

� Use Chipware modules for floating-point computation and floating-point/integer conversion.

� Use procedural or implicit structural (assign) code for any integer computation.

� Pay attention to cost: don’t use more bits than are needed.

� The modules must be synthesizable.

One needs to first convert c to a floating point value, and then use a comparison unit to compare it to ssum. The

comparison unit has many output ports, the only one we need is agtb, the others are left unconnected.

module comp_fp
#(int w_c = 5, w_s = 2, w_exp = 5, w_sig = 5, w_sig2 = 6,

int w_fp = 1 + w_exp + w_sig, w_fp2 = 1 + w_exp + w_sig2)

(output uwire gt, output uwire [w_fp2-1:0] ssum,

input uwire [w_fp-1:0] a, b,

input uwire [w_s-1:0] s, input uwire [w_c-1:0] c);

// First, compute a2^s by just adding s to the exponent.

uwire [w_fp-1:0] a_sc = a ? a + (s << w_sig) : a;

// Convert a_sc and b from FP numbers with w_sig-bit significands to

// FP numbers with w_sig2-bit significands by just shifting them over.

uwire [w_fp2-1:0] a_cw = a_sc << w_sig2 - w_sig;

uwire [w_fp2-1:0] b_cw = b << w_sig2 - w_sig;

// Add the now-widened a2^s to b.

CW_fp_add #(.sig_width(w_sig2), .exp_width(w_exp))

d2(.z(ssum), .a(a_cw), .b(b_cw), .status(), .rnd(Rnd_to_near_up));

// Convert c to FP

uwire [w_fp2:1] cf;

CW_fp_i2flt #(.sig_width(w_sig2), .exp_width(w_exp), .isize(w_c), .isign(0))

coa(.z(cf), .a(c), .status(), .rnd(Rnd_to_even));

// Compare ssum to c

CW_fp_cmp #(.sig_width(w_sig2), .exp_width(w_exp))

cmp(.agtb(gt), .a(ssum), .b(cf),

.zctr(1’b0), .altb(), .aeqb(), .unordered(),

.z0(), .z1(), .status0(), .status1());

// Note that most of the outputs are unconnected. Hardware

// for the unconnected outputs will be eliminated.

endmodule

5

Problem 2: Module comp_int has the same connections as comp_fp and its outputs should be
set to the same values.

(a) Modify comp_int so that it computes ssum using an instantiation of comp_fp. The ssum output
of the comp_fp instance should connect to the ssum output of comp_int. Don’t use the gt output
of comp_fp so that the synthesis program doesn’t synthesize comp_fp hardware for gt.

� Compute ssum using an instance of comp fp �with the gt output unconnected.

That’s just a straightforward instantiation. See the solution code further below.

(b) Modify comp_int so that gt is correctly set using an integer comparison. That is, instead of
converting c, convert ssum. For maximum credit convert ssum into an integer of as few bits as
possible. Don’t forget that c is unsigned but ssum is signed.

� Compute gt using an integer comparison.

� Try to use as few bits as possible.

The value in c is w c bits, so to do the comparison as integers one only really needs to convert ssum to a w c-bit unsigned

integer. The ChipWare CW fp flt2i however always converts to a signed integer, so we need to perform a w c+1-bit

conversion. The maximum representable value is then 2wc − 1. What if ssum is larger than that, which is easily

possible? No problem, just use the status output of CW fp flt2i to check for an overflow. If there’s an overflow then

a2s + b > c. As can be determined by reading the ChipWare documentation, there is a overflow when status[6]=1.

Another special case that needs to be checked is when ssum is negative. If it’s negative then a2s + b > c is definitely

false. The complete module is shown below.

module comp_int
#(int w_c = 5, w_s = 2, w_exp = 5, w_sig = 5, w_sig2 = 6,

int w_fp = 1 + w_exp + w_sig, w_fp2 = 1 + w_exp + w_sig2)

(output uwire gt, output uwire [w_fp2-1:0] ssum,

input uwire [w_fp-1:0] a, b,

input uwire [w_s-1:0] s, input uwire [w_c-1:0] c);

// Instantiate comp_fp, but leave the gt output unconnected to anything.

uwire gtx; // Don’t connect this to anything!

comp_fp #(.w_c(w_c),.w_s(w_s),.w_exp(w_exp),.w_sig(w_sig),.w_sig2(w_sig2))

fp(gtx,ssum,a,b,s,c);

// Since gtx is not used the hardware that would connect to gtx isn’t synthesized.

// Convert ssum to a (w_c+1)-bit number.

uwire [w_c:0] sumi;

uwire [7:0] sumi_status;

CW_fp_flt2i #(.isize(w_c+1), .sig_width(w_sig2), .exp_width(w_exp)) ftoi

(.status(sumi_status), .z(sumi), .a(ssum), .rnd(Rnd_to_plus_inf));

// Since c is w_c bits it is wasteful to use more than w_c bits for

// ssumi, except for the one extra bit used for the sign.

uwire ssum_positive = !ssum[w_fp2-1], ssum_overflow = sumi_status[6];

assign gt = ssum_positive && (ssum_overflow || sumi > c);

// Note: If ssum_overflow is true then ssum can’t fit in w_c bits and so ssum > c.

endmodule

6

Problem 3: Predict which version will be less expensive, comp_fp or comp_int. Then run the
synthesis program to see which cost less.

Use the command genus -files syn.tcl to run synthesis. Be sure to correct any errors that
prevent synthesis.

� Predict which will be less costly.

Both modules have identical hardware for computing ssum, the only difference is in computing gt. Remember that in

comp int the gt output of the comp fp instantiation is left unconnected. That means whatever hardware comp fp

would have used to compute gt is not synthesized when instantiated in comp int.

So, in comp fp the comparison hardware consists of: conversion of a w c-bit integer to a float, and a floating-point

comparison of two numbers with w sig2-bit significands.

In comp int a FP value with a w sig2-bit significand is converted into a w c-bit value. The problem says nothing

about the relative size of w c and w sig2 (and nobody asked), but a look at the testbench reveals they are the same

and so one might as well assume that. In comp int the comparison is done as an integer.

The FP comparison in comp fp has to compare both the exponents and significands. That requires examining a total

of w sig2 + w exp bits. The corresponding comparison in comp int need only look at w c bits, plus a sign bit and

overflow bit. That favors comp int.

What about the relative costs of conversion? Converting in either direction requires a shifter, which would be 3wdlgwe uc.

Here w is the significand or integer size, which is about the same in both cases. Converting to FP requires a count-leading-

zeros operation to determine the exponent.

Based on this I’d call it a coin toss. It would be reasonable for a student to assume that it was not necessary to

work out a tight estimate of the conversion units’ cost in advance. And since it’s a pre-synthesis guess there was

no expectation of running experiments to see just how much those conversion units cost. So, based on all of this,

I would say that comp int should be less costly .

� Run synthesis to find out which really is.

Appearing below are the synthesis results:

Module Name Area Delay Delay Synth

Actual Target Time

comp_int_w_c6_w_s6_w_exp7_w_sig6_w_sig27

148989 23.33 900.0 ns 17 s

comp_fp_w_c6_w_s6_w_exp7_w_sig6_w_sig27

140689 20.42 900.0 ns 13 s

comp_int_w_c12_w_s6_w_exp7_w_sig6_w_sig213

244127 30.05 900.0 ns 19 s

comp_fp_w_c12_w_s6_w_exp7_w_sig6_w_sig213

210213 26.19 900.0 ns 17 s

Remember that the cost is shown under Area and the critical path length is under Delay Actual. The Synth

Time column shows the amount of time it took to run synthesis for that module, which has no bearing on the synthesized

hardware itself.

Looking at the data above I see that ooops, I was wrong. At both sizes the integer units were less costly. This is also true

with the synthesis effort levels set to high. (They were medium in the synthesis script.)

The FP delay is also lower. I’m tempted to run further experiments to determine why. But perhaps I’ll leave that for a

future assignment.

7

	Problem 0
	Problem 1
	Part char 97
	Part char 98
	Part char 99

	Problem 2
	Part char 97
	Part char 98

	Problem 3

