
Name Formatted For Two-Sided Printing

Digital Design using HDLs

LSU EE 4755

Final Examination

Thursday, 12 December 2024 15:00-17:00 CST

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (20 pts)

Problem 4 (20 pts)

Problem 5 (20 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

https://www.ece.lsu.edu/koppel/v/

Problem 1: [20 pts] Module dot_seq_4 on the facing page is to compute the dot product of two vectors,
with four elements of each vector arriving at each cycle. Like dot_seq_2 from Homework 5, inputs first and
last mark the beginning and end of each vector. Unlike dot_seq_2 there are no ID ports. But, dot_seq_4
does has have a dim output. When dp is set to a dot product, dim should be set to the dimension (number
of elements) of the vectors used for that product. For example, vectors that arrive over two cycles will have
a dimension of 2 × 4 = 8.

The unsolved module lacks code related to in_id, but is otherwise similar to dot_seq_2, including the fact
that it only uses the two elements per cycle. Note: In the original exam dim was called len and was called
the length. The problem wording dealt with the number of elements and contained nothing to suggest that
len was to be set to the norm 2 of the vector.

Modify dot seq 4 so that it computes the correct dot product using all four elements arriving each cycle.

As with dot seq 2, the critical path should contain at most one arithmetic operation per cycle.

Modify dot seq 4 so that output dim is set to the dimension (number of elements) of the vector whose dot
product appears on dp.

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

module dot_seq_4 #(int w = 5, wi = 4)

(output logic [w-1:0] dp, output logic [wi-1:0] dim,

input uwire [w-1:0] a[4], b[4], input uwire reset, first, last, clk);

logic [w-1:0] pl_a[1:1][4], pl_b[1:1][4]; // Arriving vector elements.

logic [w-1:0] pl_prod[2:2][2]; // Vector products.

logic [w-1:0] pl_sum[3:3]; // Dot prod of 2-element segment.

logic [1:0] pl_fl[1:3]; // The first and last signals.

logic [w-1:0] acc_sum;

always_ff @(posedge clk) begin

// Stage 0

pl_a[1] <= a; // This copies both elements of a.

pl_b[1] <= b;

pl_fl[1] <= reset ? 2’b0 : {last,first};

// Stage 1

for (int i=0; i<2; i++) pl_prod[2][i] <= pl_a[1][i] * pl_b[1][i];

//

pl_fl[2] <= reset ? 2’d0 : pl_fl[1];

// Stage 2

pl_sum[3] <= pl_prod[2][0] + pl_prod[2][1];

//

pl_fl[3] <= reset ? 2’h0 : pl_fl[2];

// Stage 3

begin

automatic logic s3_first = pl_fl[3][0], s3_last = pl_fl[3][1];

automatic logic [w-1:0] s3_sum = s3_first ? pl_sum[3] : pl_sum[3] + acc_sum;

acc_sum <= s3_sum;

if (!reset && s3_last) dp <= s3_sum;

end

end

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

Problem 2: [20 pts] Appearing below is the solution to Homework 6, the dot_seq_2 module. For this
problem assume that the delay of a w-bit adder is 2w ut and that the delay of a multiplier with w-bit inputs
and w-bit output is 4w ut.

Show the arrival time at each wire, especially at the capture points. Be sure to account for constant
inputs.

Label the critical path. Indicate the length of the critical path.

Letting 1 ut = 1 ns and based on the answers above, what is the maximum possible clock frequency in GHz?
Your answer should be in terms of w. State any assumptions.

clk

2⨉w

a

fi
rs
t

dot_seq_2

enwi

in_id

reset

la
s
t

2⨉w

b

0

⨉

⨉

pl_a[1][0]

pl_b[1][0]

0

+

0
0

first_id

0
last_id

acc_sum

en

dp

acc_id

+

0:0

1:1

re
se
t

s3_first

reset

pl_id[3]pl_id[2]pl_id[1]

pl_prod[2][1]

pl_prod[2][0]

pl_sum[3]

s3_sum

pl_fl[2]pl_fl[1]

pl_id[3]

s3_last

pl_a[1][1]

pl_b[1][1]
s3_last

reset

0:0

1:1

p
l_
fl
[3
]

lsb

Stage 1 Stage 2 Stage 3

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

For 2-element vectors what is the latency and throughput of dot seq 2 (from the previous page)?
State any assumptions.

For 8-element vectors what is the latency and throughput of dot seq 2 (from the previous page)?
State any assumptions.

clk

2⨉w

a
fi
rs
t

dot_seq_2_merge

enwi

in_id

reset

la
s
t

2⨉w

b

0

⨉

⨉

pl_a[1][0]

pl_b[1][0]

0

+

0
first_id

0
last_id

acc_sum

en

dp

acc_id

+

0:0

1:1

re
se
t

s3_first

reset

pl_id[3]pl_id[2]pl_id[1]

pl_prod[2][1]

pl_prod[2][0]

pl_sum[3]

s3_sum

pl_fl[2]pl_fl[1]

pl_id[3]

s3_last

pl_a[1][1]

pl_b[1][1]
s3_last

reset

0:0

1:1

p
l_
fl
[3
]

lsb

Stage 1 Stage 2 Former Stage 3Module dot_seq_2_merge, to the right, was con-
structed by merging stages 2 and 3.

What is the critical path length of dot seq 2 merge?

For two-element vectors what are the latency
and throughput of dot seq 2 merge?

clk

2⨉w

a

fi
rs
t

dot_seq_2_split

enwi

in_id

reset

la
s
t

2⨉w

b

0 0

+

0
0

first_id

0
last_id

acc_sum

en

dp

acc_id

+

0:0

1:1

re
se
t

s3_first

reset

pl_id[3]pl_id[2]pl_id[1]

pl_prod[2][1]

pl_prod[2][0]

pl_sum[3]

s3_sum

pl_fl[2]

pl_id[3]

s3_last

s3_last

reset

0:0

1:1

p
l_
fl
[3
]

lsb

Stage 1a Stage 2 Stage 3

⨉ ⨉

⨉ ⨉

Stage 1b

0

Module dot_seq_2_split was constructed by split-
ting each multiplier into two parts of delay 2w ut

each, and putting the two parts into separate stages.

What is the critical path length of dot seq 2 split?

For two-element vectors what are the latency
and throughput of dot seq 2 split?

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

Problem 3: [20 pts] Appearing on the facing page is a recursively described module that finds the minimum
of n items.

(a) Let t2 denote the delay of the min_2 module (not shown).

In terms of n and t2 what is the delay of the unmodified (two recursive instances) min t?

(b) Modify min_t so that in the recursive case it instantiates three (instead of two) recursive instances.

Modify min t so that it instantiates three recursive instances and other changes needed for the three instances.

Use only min 2 to compare items. There is no min 3, don’t try to write one.

Don’t assume that n is a power of 3.

(c) Let t2 denote the delay of the min_2 module.

In terms of n and t2 what is the delay of the modified (three recursive instances) min t?

Compared to two recursive instances, does having three recursive instances in min t © reduce delay,

© increase delay, or © makes little or no difference to delay? Justify mathematically, in terms of n
or using a specific number.

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

module min_t #(int w = 4, int n = 8)

(output uwire [w-1:0] elt_min, input uwire [w-1:0] elts [n-1:0]);

if (n == 1) begin

assign elt_min = elts[0];

end else begin

localparam int n_hi = n / 2;

localparam int n_lo = n - n_hi;

uwire [w-1:0] elt_lo, elt_hi;

min_t #(w,n_hi) mhi(elt_lo, elts[n-1 : n_lo]);

min_t #(w,n_lo) mlo(elt_hi, elts[n_lo-1 : 0]);

min_2 #(w) m2(elt_min, elt_lo, elt_hi);

end

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

Problem 4: [20 pts] Show the hardware that will be synthesized for the module below for wa=3, wb=2

(three iterations of the loop).

module rmatch #(int wa = 3, wb = 2, wm = $clog2(wa+1))

(output logic [wm-1:0] m, pos,

input uwire [wm-1:0] m0, input uwire [wa-1:0] a, input uwire [wb-1:0] b,

input uwire clk);

logic [wa-1:0] a_cpy, as;

logic [wm-1:0] m0_cpy;

logic [wb-1:0] b_cpy;

always_ff @(posedge clk) begin

a_cpy <= a;

b_cpy <= b;

m0_cpy <= m0;

as = a_cpy;

pos = 0;

for (int i=0; i<wa; i++) begin

if (as[wb-1:0] == b_cpy) begin

if (m == m0_cpy) pos = i;

m++;

end

as = { as[wa-2:0], as[wa-1] };

end

end

endmodule

Show synthesized hardware. Show module ports. Do not confused elaboration-time computation
with hardware.

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

Problem 5: [20 pts] Answer each question below.

(a) Show the values of the variables where indicated.

module short;
int a, b, c, d, e, f;

initial begin

a = 1; b = 2; c = 3; d = 4; e = 5; f = 6;

a <= b;

b <= a;

e <= c + 10;

f <= e + 100;

c = d;

d = a;

// a = b = c = d = e = f =

#1;

// a = b = c = d = e = f =

end

endmodule

(b) The module below computes x and y correctly, but one of them is computed in a way that has at least
two advantages in avoiding human coding errors.

module to_err_is_human(output logic [7:0] x, y, input uwire [7:0] a, b, c);

always @(a or b or c) begin

x = a + b + c;

end

always_comb begin

y = a + b + c;

end

endmodule

Which is computed in the preferred way © x or © y?

Describe two human coding errors that can be avoided using the preferred method.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

(c) The first module below, dot_product_correct, is indeed correct. The other two won’t even compile.
All are supposed to compute a dot product of either floating-point or integer elements.

Explain the major error on the on the three lines commented Explain compile error. There should
be three different errors, if a line has more than one error pick one not shared with the other two.

Assume that FP hardware has larger delay than integer arithmetic hardware. If a module is used with
use fp set to 0 does that mean the module is faster? Explain, including the interpretation of the word
“faster.”

Assume that FP hardware has higher cost than hardware computing integer arithmetic. If a module is used
with use fp set to 0 does that mean the module cost less? Explain.

10 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

module dot_product_correct #(int n = 7, w_sig = 20, w_exp = 8, w = w_sig + w_exp + 1)

(output logic [w-1:0] dp,

input uwire [w-1:0] a[n], b[n], input uwire use_fp, input uwire clk);

logic [w-1:0] acc;

uwire [w-1:0] akk[n:0];

assign akk[0] = 0;

for (genvar i=0; i<n; i++)

fp_madd #(w_sig,w_exp) ma(akk[i+1], a[i], b[i], akk[i]);

always_ff @(posedge clk) begin

acc = 0;

for (int i=0; i<n; i++) acc += a[i] * b[i];

dp <= use_fp ? akk[n] : acc;

end

endmodule

module dot_product_b #(int n = 7, w_sig = 20, w_exp = 8, w = w_sig + w_exp + 1)

(output logic [w-1:0] dp,

input uwire [w-1:0] a[n], b[n], input uwire use_fp, input uwire clk);

logic [w-1:0] acc;

uwire [w-1:0] akk;

assign akk = 0;

for (genvar i=0; i<n; i++)

fp_madd #(w_sig,w_exp) ma(akk, a[i], b[i], akk); // Explain compile error.

always_ff @(posedge clk)

if (use_fp) begin

#1; // <--- Explain compile error.

dp <= akk;

end else begin

acc = 0;

for (int i=0; i<n; i++) acc += a[i] * b[i];

dp <= acc;

end

endmodule

module dot_product_c #(int n = 7, w_sig = 20, w_exp = 8, w = w_sig + w_exp + 1)

(output logic [w-1:0] dp,

input uwire [w-1:0] a[n], b[n], input uwire use_fp, input uwire clk);

logic [w-1:0] acc;

always_ff @(posedge clk) begin

acc = 0;

for (int i=0; i<n; i++)

if (use_fp)

fp_madd #(w_sig,w_exp) ma(acc, a[i], b[i], acc); // Explain compile error.

else

acc += a[i] * b[i];

dp <= acc;

end

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

	Problem 1
	Problem 2
	Problem 3
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

	Problem 4
	Problem 5
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

