
Name Formatted For 2-Sided Printing

Digital Design Using HDLs

LSU EE 4755

Midterm Examination

Friday, 27 October 2023, 11:30-12:20 CDT

Alias

Problem 1 (30 pts)

Problem 2 (25 pts)

Problem 3 (30 pts)

Problem 4 (15 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

https://www.ece.lsu.edu/koppel/v/

Problem 1: [30 pts] Appearing below is the permutation module from the solution to Homework 3.
Using the illustration of the ports show the inferred hardware for an instantiation with n=4. Show the n=4

instantiation but not what is inside the n=3 recursive instantiation.

module perm
#(int w = 8, n = 20, wd = $clog2(n))

(output uwire [w-1:0] pdata_out[n], output uwire [wd-1:0] pnum_out[n],

output uwire carry_out,

input uwire [w-1:0] pdata_in[n], input uwire [wd-1:0] pnum_in[n]);

if (n == 1) begin

assign pdata_out[0] = pdata_in[0];

assign carry_out = 1;

assign pnum_out[0] = 0;

end else begin

uwire [wd-1:0] pos = n - 1 - pnum_in[n-1];

assign pdata_out[n-1] = pdata_in[pos];

uwire [w-1:0] prdata_in[n-1];

for (genvar i=0; i<n-1; i++)

assign prdata_in[i] = i < pos ? pdata_in[i] : pdata_in[i+1];

uwire co;

perm #(w,n-1,wd) rp(pdata_out[0:n-2], pnum_out[0:n-2], co,

prdata_in, pnum_in[0:n-2]);

uwire [wd-1:0] dnext = pnum_in[n-1] + co;

assign carry_out = dnext >= n;

assign pnum_out[n-1] = carry_out ? 0 : dnext;

end

endmodule

pdata_in[0]

[1]

[2]

[3]

p
d
a
ta
_in

pnum_in[0]

[1]

[2]

[3]

p
n
u
m
_in

2

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

Show inferred hardware for n=4. Be sure to use the illustrated module ports and to show the
recursively instantiated module (but not its contents).

Show hardware, do not confuse elaboration-time computation with computation hardware.

p
d
a
ta
_o
u
t

pdata_out[0]

[1]

[2]

[3]

p
n
u
m
_o
u
t

pnum_out[0]

[1]

[2]

[3]

carry_out

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

Problem 2: [25 pts] A ripple adder to compute a + b is to be used in situations where a is a constant.

(a) Find the cost and delay of a BFA with input a constant (for use in the ripple adder). A BFA is shown
for your convenience.

Show the BFA(s) optimized for input a constant.

Use a truth table to find optimizations not revealed by constant pushing: in a correct solution the delay
does not depend upon a.

Show simple-model cost of this(these) module(s) and show simple-model delay(s) of this(these) module(s).

a

b

ci c
o

s
u
m

BFA

(b) On the facing page show the optimized hardware, cost, LSB delay, and MSB delay of a w-bit ripple adder

for computing a + b + cin, where cin is a carry-in bit (cin in the diagram) and a is a constant. (See the
check box items for details.) Use the illustration on the facing page as a starting point.

Show the hardware optimized for a constant a and a non-constant cin.

Compute the simple-model cost of this hardware in terms of w.

Compute the simple-model delay of the LSB of the sum.

Compute the simple-model delay of the MSB of the sum in terms of w and show the critical path.

Don’t forget that a is a constant.

4

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

a

b

ci c
o

s
u

m

BFA

cin

a

b

w

w

a[w-1]

Bit 0 -- LSB Bit 1 Bit 2 Bit w-1 -- MSB
b[w-1]

sum

ripple_adder w

a[2]

b[2]

a[1]

b[1]

a
[0
]

b[0]

w

a

b

ci c
o

s
u

m

BFA
a

b

ci c
o

s
u

m

BFA
a

b

ci c
o

s
u

m

BFA

(c) If cin were removed (or set to zero) the cost and delay of the optimized adder would depend on a.
Explain why, and illustrate with the example of a=2.

How are cost and delay dependent on a when cin removed? Explain using the example a=2.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

Problem 3: [30 pts] Answer the following Verilog questions.

(a) The module below makes extensive use of multidimensional arrays.

module mda(input uwire [2:1] c [5:1], input uwire [7:1][2:1] a [5:1][3:1]);

// Add dimension(s) to the declaration of e so that the assignment is correct.

//

uwire e = c[1];

// Add dimension(s) to the declaration of b so that the assignment is correct.

//

uwire b = a[1];

logic g [7:0];

logic [7:0] h;

initial begin

// Which is correct, © the assignment to g or © the assignment to h. Explain.

g = 1;

h = 1;

end

endmodule

What is the size of c, in bits? What is the size of a, in bits?

(b) The module below does not compile.

module more_stuff #(int n = 20) (output uwire [31:0] sum, input uwire [31:0] a [n]);

logic [31:0] acc;

always_comb begin

acc = a[0];

for (int i=1; i<n; i++)

my_fixed_adder a1(acc, acc, a[i]);

end

assign sum = acc;

endmodule

Describe the major problem. DO NOT try to fix the problem.

6

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

(c) The module below is supposed to set x = a2 + b2.

module wrong_way(output logic [31:0] x, input uwire [15:0] a, b);

logic [31:0] asq;

uwire [31:0] bsq = b * b;

initial asq = a * a;

always_comb x = asq + bsq;

endmodule

Explain the problem. Using sample inputs show the expected output and the actual output.

Fix the problem.

(d) The module below does not compile.

module my_adder(output uwire [31:0] s, input uwire [31:0] a, b);

always_comb s = a + b;

endmodule

Why won’t module above compile? Fix problem by changing declarations.

(e) The module below compiles but does not provide the expected outputs, pa = a2, pb = b2, and p = a2 +b2.

module incorrect_way(output logic [31:0] pa,pb,p, input uwire [15:0] a, b);

wire [31:0] sq;

assign sq = a * a;

always_comb pa = sq;

assign sq = b * b;

always_comb pb = sq;

always_comb p = pa + pb;

endmodule

What will be the values of outputs pa, pb, and p?

Describe the problem. Fix it.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

Problem 4: [15 pts] Answer each question below.

(a) A company has two teams, A (very good) and C (slackers) working on modules and a testbench for an
important product. Describe the following consequences:

The A team works on the modules and the C team works on the testbench. A possible bad outcome is:

The A team works on the testbench and the C team works on the modules. A possible bad outcome is:

(b) In typical use when running simulation a testbench generates inputs for a module-under-test and the
outputs are checked by the testbench to see whether they are correct. After running synthesis we learn how
fast the module is. If simulation is computing the module outputs why can’t it tell us how fast the module
is?

Synthesis can provide timing information and simulation can’t because:

(c) A gadget can be built using an ASIC or an FPGA. Describe which is more appropriate for each situation
below.

The gadget must be working within a month. © ASIC or © FPGA. Explain.

Per-gadget cost must be under $1000. Only ten will be made. © ASIC or © FPGA. Explain.

Per-gadget cost must be under $100. Ten thousand will be made. © ASIC or © FPGA. Explain.

8

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

