
Name Formatted For Two-Sided Printing

Digital Design using HDLs

LSU EE 4755

Final Examination

Thursday, 7 December 2023 15:00-17:00 CST

Alias

Problem 1 (28 pts)

Problem 2 (25 pts)

Problem 3 (27 pts)

Problem 4 (20 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

https://www.ece.lsu.edu/koppel/v/


Problem 1: [28 pts] Appearing below is the solution to Homework 5.

(a) On the facing page show the inferred hardware for an instantiation with n=4.

(b) Explain why the cost of the hardware corresponding to the line n_match += match is much lower than
one would expect for hardware performing wc-bit addition.

The n match += match is much less expensive because:

module uniq_vector_seq
#( int we = 10, n = 4, wc = $clog2(n+1) )

( output logic [n-1:0] uniq_bvec, output logic [wc-1:0] n_match,

input uwire [we-1:0] element, input uwire start, clk );

logic [we-1:0] elements [n-1:0];

logic [n-1:0] occ_bvec;

logic [wc-1:0] uniq_at [n-1:0];

always_ff @( posedge clk ) begin

automatic logic [wc-1:0] match_pos = n;

n_match = 1;

for ( int i=n-1; i>=1; i-- ) begin

automatic logic next_occ_bvec = !start && occ_bvec[i-1];

automatic logic match = next_occ_bvec && element == elements[i-1];

n_match += match;

if ( match ) match_pos = i;

elements[i] <= elements[i-1];

occ_bvec[i] <= next_occ_bvec;

uniq_at[i] <= match ? n : uniq_at[i-1];

uniq_bvec[i] <= !next_occ_bvec || !match && i >= uniq_at[i-1];

end

elements[0] <= element;

occ_bvec[0] <= 1;

uniq_at[0] <= n - match_pos;

uniq_bvec[0] <= match_pos == n;

end

endmodule

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e



Show inferred hardware for n=4.

Do not confuse ports with parameters. Do not confuse elaboration-time computation with computation
hardware.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3



Problem 2: [25 pts] Illustrated on the facing page is a diagram showing inferred hardware similar to the
word_count module from last year’s final exam. An important difference is that it is shown for n_avg_of=n,
not the specific value of 4. Assume that n is a power of 2.

In terms of n, wl, wn, and v show simple-model arrival times at each wire and show a critical path.

Account for cascaded ripple units constant inputs, and remember that n can be any power of 2, not
neccesarily 4.

In terms of n, wl, wn, and v compute the simple-model cost of the Plan B hardware, assuming n is a power
of 2. Account for constant inputs.

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e



clk

8

1 +

1 +

nwords

lsum

lword

+

1

wl+v-1:v

0 lavg

⩾

n (n_avg_of)

w
o
rd
_cla

ssify

n
w
d

n
w
p

n
w
s

char

reset

–

word_start

word_part

word_ended

lw
o
rd

word_count (n_avg_of=n, v=lg(n_avg_of))wc

lre¢[0]

lre¢[1]

lre¢[n-1]

en

en

en

en

1
tail

v-1
:v-1

0
:0

+
en

nwd

lr
e
¢
[t
a
il]

ta
il

Plan B
Hardware

wl

wl

wn

v

0

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5



Problem 3: [27 pts] The two modules below look for a match of input target in an n-element array elts

but only check elements 0 to i_limit-1. Output n_match is the number of matching elements and match_i

is the lowest i for which elts[i]==target and i<i_limit, or n if there is no match. (These modules could
be used in the uniq_vector module.) Module fmatch_comb is complete and works correctly.

(a) Module fmatch_rec has some code for a recursive implementation. Complete it so that it performs the
same calculation as fmatch_comb.

Complete fmatch rec so that it computes the same values as fmatch comb.

Don’t forget to show the bit ranges of elts in the connections to the recursive instantiations.

module fmatch_comb
#( int n = 22, w = 12, wn = $clog2(n+1) )

( output logic [wn-1:0] n_match, match_i,

input uwire [w-1:0] elts[n-1:0], target, input uwire [wn-1:0] i_limit );

// Do not modify this module. It is correct.

always_comb begin

n_match = 0;

match_i = n;

for ( int i=n-1; i>=0; i-- ) if ( i < i_limit && elts[i] == target ) begin

n_match++;

match_i = i;

end

end

endmodule

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e



module fmatch_rec
#( int n = 22, w = 12, wn = $clog2(n+1) )

( output uwire [wn-1:0] n_match, match_i,

input uwire [w-1:0] elts[n-1:0], target, input uwire [wn-1:0] i_limit );

if ( n == 1 ) begin

// Do not modify the n==1 code, it works.

uwire match = i_limit != 0 && elts[0] == target;

assign n_match = match;

assign match_i = match ? 0 : 1;

end else begin

localparam int nlo =

localparam int nhi =

localparam int wnr = $clog2(nhi);

uwire [wnr-1:0] nm_lo, nm_hi, mi_lo, mi_hi;

uwire [wnr-1:0] il_lo =

uwire [wnr-1:0] il_hi =

fmatch_rec #(nlo,w,wnr) ilo( nm_lo, mi_lo, elts[ ], target, il_lo );

// Show elts’ bit ranges ↑↑↓↓

fmatch_rec #(nhi,w,wnr) ihi( nm_hi, mi_hi, elts[ ], target, il_hi )

assign n_match =

assign match_i =

end

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7



Problem 4: [20 pts] Answer each question below.

(a) Consider two technology targets, FabFab A1000, an ASIC, and LÜTeq FXL9000, an FPGA. Floating-
point multipliers are available on the A1000 and the FXL9000 targets.

On one of these targets a design can have as many multipliers as will fit on the chip. Which target is it?
Explain.

On the other target there is a fixed number of FP multipliers, say 5. Does that mean a design that needs 7
FP multipliers can’t use the target? Explain. The number of needed multipliers can’t be reduced.

(b) The output of the module below will be lt=1 for inputs a=100, b=40, amt=20, indicating that 100+40 <
20, which is wrong of course. It works correctly for a=100, b=40, amt=5, meaning the output is lt=0.

module less_than( output uwire lt, input uwire [6:0] a, b, amt );

assign lt = a + b < amt;

endmodule

Why is the output wrong?

What is the largest value of amt for which the module output is correct when the other inputs are a=100,

b=40?

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e



(c) The hw output of the module below is supposed to be set to the number of 1s in input vec at the positive
edge of the clock. Due to a beginner’s Verilog error it does not work.

module pop #( int n = 5, wn = $clog2(n+1) )

( output logic [wn-1:0] hw, input uwire [n-1:0] vec, input uwire clk );

always_ff @( posedge clk ) begin

hw <= 0;

for ( int i=0; i<n; i++ ) hw <= hw + vec[i];

end

endmodule

Describe the problem. Describe how it’s possible that hw can be greater than n with this error. Fix
the problem.

(d) Consider the population module below.

module pop_comb #( int n = 5, wn = $clog2(n+1) )

( output logic [wn-1:0] hw, input uwire [n-1:0] vec );

always_comb begin

hw = 0;

for ( int i=0; i<n; i++ ) hw = hw + vec[i];

end

endmodule

The loop above is procedural. Re-write the module below so that it is a generate loop. The array s should
come in handy.

module pop_comb #( int n = 5, wn = $clog2(n+1) )

( output uwire [wn-1:0] hw, input uwire [n-1:0] vec );

uwire [wn-1:0] s [n-1:0];

endmodule

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9


	Problem 1
	Part a
	Part b

	Problem 2
	Problem 3
	Part a

	Problem 4
	Part a
	Part b
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a

	Problem 1
	Part a
	Part b

	Problem 2
	Problem 3
	Part a

	Problem 4
	Part a
	Part b
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a


