Name Formatted For Two-Sided Printing

Staple This Side

Digital Design using HDLs

Final Examination

Thursday, 7 December 2023 15:00-17:00 CST

Problem 1 (28 pts)
Problem 2 (25 pts)
Problem 3 (27 pts)
Problem 4 (20 pts)
Alias Exam Total _ (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/

Problem 1: [28 pts] Appearing below is the solution to Homework 5.
(a) On the facing page show the inferred hardware for an instantiation with n=4.

(b) Explain why the cost of the hardware corresponding to the line n_match += match is much lower than
one would expect for hardware performing wc-bit addition.

[:] The n_match += match is much less expensive because:

module unig_vector_seq
#(int we = 10, n = 4, wc = $clog2(n+l))
(output logic [n-1:0] uniqg_bvec, output logic [wc-1:0] n_match,
input uwire [we-1:0] element, input uwire start, clk);

logic [we-1:0] elements [n-1:0];
logic [n-1:0] occ_bvec;

logic [wc-1:0] unig_at [n-1:0];
always_ff @(posedge clk) begin

automatic logic [wc-1:0] match_pos = n;
n_match = 1;

for (int i=n-1; i>=1; i--) begin

automatic logic next_occ_bvec = !start &% occ_bvec[i-1];

automatic logic match = next_occ_bvec && element == elements[i-1];
n_match += match;
if (match) match_pos = i;

elements[i] <= elements[i-1];
occ_bvec[i] <= next_occ_bvec;

uniq_at[i] <= match ? n : uniq_at[i-1];
uniq_bvec[i] <= !next_occ_bvec || !match && i >= uniq_at[i-1];

end

elements[0] <= element;

occ_bvec[0] <= 1;

uniq_at[0] <= n - match_pos;

uniq_bvec[0] <= match_pos == n;
end

endmodule

Staple This Side

Staple This Side

Staple This Side

Staple This Side

D Show inferred hardware for n=4.

D] Do not confuse ports with parameters. D] Do not confuse elaboration-time computation with computation

hardware.

Problem 2: [25 pts] Illustrated on the facing page is a diagram showing inferred hardware similar to the
word_count module from last year’s final exam. An important difference is that it is shown for n_avg_of=n,
not the specific value of 4. Assume that n is a power of 2.

I:] In terms of n, wl, wn, and v show simple-model arrival times at each wire and D show a critical path.

[J] Account for cascaded ripple units [_] constant inputs, and [_] remember that n can be any power of 2, not
neccesarily 4.

I:] In terms of n, wl, wn, and v compute the simple-model cost of the Plan B hardware, assuming n is a power
of 2. [] Account for constant inputs.

Staple This Side

Staple This Side

Staple This Side

Staple This Side

WC word count (n_avg of=n, v=Ig(n_avg of))

word_start

=
L

L

word_part

(|

word_ended

L

=

L

AJisse|d piom

dmu

_char
17

(|

i

PIOM|

RO

=

L

_reset

|

i

L
o}
A
SMU
@\

pmMmu

Plan B

t Hardware

0
Isum

Ire¢[0]

Ire¢[1]

ocoo

coo

ocoo

3— en Ire¢[n-1]

|ooo

clo A

T TS

=
L] en o

=

ya

7

U e

7

wl+v-1:v

n (n_avg_of)

nwords

=

L

L

wn

Problem 3: [27 pts] The two modules below look for a match of input target in an n-element array elts
but only check elements 0 to i_limit-1. Output n_match is the number of matching elements and match_i
is the lowest i for which elts[i]==target and i<i_limit, or n if there is no match. (These modules could
be used in the uniq_vector module.) Module fmatch_comb is complete and works correctly.

(a) Module fmatch_rec has some code for a recursive implementation. Complete it so that it performs the
same calculation as fmatch_comb.

D Complete fmatch_rec so that it computes the same values as fmatch_comb.

E] Don’t forget to show the bit ranges of elts in the connections to the recursive instantiations.

module fmatch_comb
#(int n = 22, w = 12, wn = $clog2(n+l))
(output logic [wn-1:0] n_match, match_i,
input uwire [w-1:0] elts[n-1:0], target, input uwire [wn-1:0] i_limit);

// Do not modify this module. It is correct.
always_comb begin

n_match 0;
match_i n;

for (int i=n-1; i>=0; i--) if (i < i_limit && elts[i] == target) begin
n_match++;
match_i = 1i;
end
end
endmodule

Staple This Side

Staple This Side

Staple This Side

Staple This Side

module fmatch rec
#(int n = 22, w = 12, wn = $clog2(n+l))
(output uwire [wn-1:0] n_match, match_i,
input uwire [w-1:0] elts[n-1:0], target, input uwire [wn-1:0] i_limit);

if (n ==1) begin
// Do not modify the n==1 code, it works.
uwire match = i_limit != O && elts[0] == target;
assign n_match = match;

assign match_i = match ? 0 : 1;

end else begin

localparam int nlo

localparam int nhi

localparam int wnr = $clog2(nhi);
uwire [wnr-1:0] nm_lo, nm_hi, mi_lo, mi_hi;

uwire [wnr-1:0] il_lo

uwire [wnr-1:0] il_hi

fmatch_rec #(nlo,w,wnr) ilo(nm_lo, mi_lo, elts[1, target, il_lo);
// [] Show elts’ bit ranges 11ll
fmatch_rec #(nhi,w,wnr) ihi(nm_hi, mi_hi, elts[1, target, il_hi)

assign n_match

assign match_i

end

endmodule

Problem 4: [20 pts] Answer each question below.

(a) Consider two technology targets, FabFab A1000, an ASIC, and LUTeq FXL9000, an FPGA. Floating-
point multipliers are available on the A1000 and the FXI1.9000 targets.

D On one of these targets a design can have as many multipliers as will fit on the chip. Which target is it?
D Explain.

[] On the other target there is a fixed number of FP multipliers, say 5. Does that mean a design that needs 7
FP multipliers can’t use the target? [| Explain. E] The number of needed multipliers can’t be reduced.

(b) The output of the module below will be 1t=1 for inputs a=100, b=40, amt=20, indicating that 100+40 <
20, which is wrong of course. It works correctly for a=100, b=40, amt=5, meaning the output is 1t=0.

module less_than(output uwire 1t, input uwire [6:0] a, b, amt);
assign 1t = a + b < amt;
endmodule

D Why is the output wrong?

I:] What is the largest value of amt for which the module output is correct when the other inputs are a=100,
b=407

Staple This Side

Staple This Side

Staple This Side

Staple This Side

(¢) The hw output of the module below is supposed to be set to the number of 1s in input vec at the positive
edge of the clock. Due to a beginner’s Verilog error it does not work.

module pop #(int n = 5, wn = $clog2(n+l))
(output logic [wn-1:0] hw, input uwire [n-1:0] vec, input uwire clk);

always_ff @(posedge clk) begin

hw <= 0;
for (int i=0; i<n; i++) hw <= hw + vec[i];

end
endmodule

I:] Describe the problem. I:] Describe how it’s possible that hw can be greater than n with this error. I:] Fix
the problem.

(d) Consider the population module below.

module pop_comb #(int n = 5, wn = $clog2(n+l))
(output logic [wn-1:0] hw, dinput uwire [n-1:0] vec);
always_comb begin
hw = 0;
for (int i=0; i<n; i++) hw = hw + vecl[i];

end
endmodule

I:] The loop above is procedural. Re-write the module below so that it is a generate loop. The array s should
come in handy.

module pop_comb #(int n = 5, wn = $clog2(n+l))
(output uwire [wn-1:0] hw, input uwire [n-1:0] vec);

uwire [wn-1:0] s [n-1:0];

endmodule

	Problem 1
	Part a
	Part b

	Problem 2
	Problem 3
	Part a

	Problem 4
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

	Problem 1
	Part a
	Part b

	Problem 2
	Problem 3
	Part a

	Problem 4
	Part a
	Part b
	Part grrcount =subprobno
elax advance grrcount by-97
elax a
	Part grrcount =subprobno
elax advance grrcount by-97
elax a

