
LSU EE 4755 Homework 6 Solution Due: 10 October 2018

Problem 1: Use the simple model to compute the cost and delay (critical path length) of the
inferred hardware for module behav_merge from Homework 5. This module has two inputs, a and
b, each of which is an n-element sorted sequence of w-bit unsigned integer values. Output x is a
2n-element array of w-bit quantities. The module assigns elements of a and b to x so that x itself
is a sorted sequence of the elements from a and b.

Show the cost and delay of behav_merge in terms of n and w. The Homework 5 module
appears below. Use the tree implementation of multiplexors for cost and delay. (See the simple
model notes.) Make reasonable optimizations, such as using the same multiplexor for a[ia] and
a[ia++]. Avoid tedious optimizations such as varying the number of bits in ia and ib.

Solution on next page.

1

https://www.ece.lsu.edu/koppel/v/

module behav_merge

#(int n = 4, int w = 8)

(output logic [w-1:0] x[2*n], input uwire [w-1:0] a[n], b[n]);

logic [$clog2(n+1)-1:0] ia, ib;

always_comb begin

ia = 0; ib = 0;

for (int i = 0; i < 2*n; i++)

x[i] = ib == n || ia < n && a[ia] <= b[ib] ? a[ia++] : b[ib++];

end

endmodule behav_merge, n, w
a

b

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

1 1

+ +

=

0

1

00 11

x[i]

a[0]

a[1]

b[0]

b[1]

ibia

n

n

=

1 1

+ +

=

0

1

0

ibia

0 11

x[i+1]

x

w

lg n

w

lg n

The inferred hardware appears above. The problem did not explicitly ask for the inferred hardware, but cost and
delay could not be found without it. The diagram shows the hardware resulting from two for loop iterations, for outputs
i and i+1. The cost is dominated by the cost of the multiplexors implementing a[ia] and b[ib]. Each of these
muxen, before optimization, has n inputs of w bits, for a cost of 3w(n− 1) uc each. Since there are 2n iterations, the
total cost of the a and b multiplexors will be 2n× 2× 3w(n− 1) uc ≈ 12wn2 uc. That’s expensive. The cost will
be less than that because the muxen for iteration i < n only need i inputs. But accounting for that would not even cut
the cost in half.

The muxen producing the value of x[i] cost 3w uc each for a total cost of 6wn uc. The muxen passing ia and
ib (incremented or not) cost 3 lg n uc each for a total cost of 12n lgn uc.

Magnitude comparison units (≤) of w bits have a cost of 4w uc and a delay of 2w + 1ut, so the total cost

of these units is 8wn uc. The = n limit units test whether ia and ib have reached their maximum value, n. In
general an ω-bit comparison unit cost 4ω − 1 uc but in this case one input is a constant, and so the first column of

2

XOR gates is converted into either NOT gates or wire, and so the cost is reduced to ω − 1 uc. For behav merge

ω → ⌈lg(n + 1)⌉ ≈ lg n. There are two limit units per iteration, for a total of 4n units and so their total cost is
4n lgn uc.

The adders to increment ia and ib operate on lg n-bit quantities. Unoptimized and based on a ripple imple-
mentation they would cost 9 lg n uc. But since one input is the constant 1 the ripple adder can be built using binary
half-adders, at a cost of 3 uc per bit, for a cost of 3 lg n uc. There are 4n adders for a total cost of 12n lgn uc.

The cost of everything is:

2n
[

2× big mux
︷ ︸︸ ︷

6w(n− 1) +

x mux
︷︸︸︷

3w +

iab muxen
︷ ︸︸ ︷

6 lgn +

≤
︷︸︸︷

4w +

2× = n

︷ ︸︸ ︷

2 lg n +

2× +1
︷ ︸︸ ︷

6 lg n
]
uc

= 2n
[
6wn+ w + 14 lg n

]
uc

The critical path is shown as a red dashed line. (The critical path also passes through ib, that’s omitted for
clarity and because those two paths are the same length.) Assuming a tree implementation for the mux and a ripple
implementation for the comparison, each section has a critical path length of ((2 lg n) + 2w + 1 + 1 + 2) ut. The
total critical path length is 2n[(2 lg n) + 2w + 1 + 1 + 2] ut ≈ (4n lg n + 4nw) ut. That’s long. Even if the
comparison used a tree-like design with a lgw delay the critical path through the merge unit would still be very long, at
least compared to the Batcher odd/even merger.

Problem 2: As was probably mentioned, a proper n-element Batcher odd/even merge module is
constructed from n

2
⌈lgn⌉ sort2 modules, and the critical path length through a merge module is

⌈lgn⌉ sort2 delays.
If the previous problem was solved correctly then the cost and critical path length of be-

hav_merge should be much larger than a Batcher merge. But the behavioral code in behav_merge

has a run time of O(2n) running as an ordinary program, and consumes O(2n) memory, both
of which are optimal for an algorithm that must operate on all of 2n items. In fact, recursively
applied code based on behav_merge can sort a sequence in O(n lgn) time, which is the best one
can normally get in many cases.

What is it about the hardware realization of behav_merge that makes it so much less efficient
than the software realization? Your answer should consider how much hardware is being used at
each moment in time.

In the hardware version a piece of hardware is needed for each of the 2n outputs. That can’t be avoided because

this is combinational logic. So, for example, there are 2n ≤ comparison units, whereas in the execution of the software
version there might be one ALU with just one comparison unit which gets used 2n times. This kind of efficiency could
be realized with sequential logic.

3

