EE 4755-Digital Design Using Hardware Description Languages
Final Exam Review
When / Where
Thursday, 7 December 2023 15:00 (3 PM) CST

Conditions
Closed Book, Closed Notes
Bring one sheet of notes (both sides), $216 \mathrm{~mm} \times 280 \mathrm{~mm}$.
No use of communication devices.

Format
Several problems, short-answer questions.

Resources

Lecture "slides" and code used in class: https://www.ece.lsu.edu/koppel/v/ln.html
Problem Sets

Synthesis: https://www.ece.lsu.edu/koppel/v/guides/pset-syn-seq-main.pdf

Solved tests and homework:. https://www.ece.lsu.edu/koppel/v/prev.html

It is important that homework solutions be studied.

Study Recommendations
Study this semester's homework assignments and solutions. Similar problems will appear on the exam.
Solve Old Problems-memorizing solutions is not the same as solving.
Following and understanding solutions is not the same as solving.
Use the solutions for brief hints and to check your own solutions.

Previous Exams
Be sure to look at previous midterm and final exams, but note any differences in coverage.

Course Material Areas

Verilog
The System Verilog language, including structural and behavioral code.

Synthesis

How hardware is inferred, mapped, and optimized from Verilog.

Digital Design

The functioning of the circuits covered in class.

How to design digital circuits.
How to compute cost and delay using the simple model.
Sequential Circuit Design
Pipelined Circuit Design
Combinational v. Sequential v. Pipelined Designs

Tools

Understand what simulation and synthesis tools do.

Specific Circuits

Combinational and Sequential Shifters
Pipelined add-accumulate. (add_accum)

Understand the timing issues from 2019 Homework 6 module.

Multipliers

Understand the recursive constructions.

Objects

See https://www.ece.lsu.edu/v/2023/1020-types.v.html.
Object Kinds: variable v. net kind of objects.
Key difference:. .
... variables are assigned, nets are driven (connected to something).

Data Types
Four-State Integer Types
Two-State Integer Types
Floating-Point Types
String Type

Integer Data Types
Four-State Integer Types: logic, integer, time.
Two-State Integer Types: int, bit, byte, shortint, longint.
Integer qualifiers: signed, unsigned.

Real Data Types
Real Types: real, shortreal.
Reïnterpretation: \$realtobits, \$bitstoreal, etc..

Arrays

Packed v. Unpacked Arrays

```
uwire [7:0] e_pluribus_unum; // Packed
uwire plain_array [7:0]; // Unpacked
```

Element and bit numbering:

```
uwire [7:0] color; // Bit O is LSB.
uwire [0:7] colour; // Bit 0 is MSB.
```

Static, Dynamic, and Associative arrays.

Modules

Port and parameter declaration.

Module and primitive instantiation.

Object declarations

Continuous assign.
Procedural code.

Generate statements.

Object Kinds

var kind. (The default for logic, int, etc.)
Net kinds: uwire, wire, and other stuff we don't use in class.

Parameters

Part of module declaration: \#(int w=16, int size=10).
localparam.

Procedural Code

Where procedural code can be placed.

Execution of initial, always, always_comb, and always_ff.
Delays (e.g., \#5).
Event controls (e.g., @(posedge clk)).
Blocking v. non-blocking assignment.

Elaboration and Generate Statements
https://www.ece.lsu.edu/v/2023/1025-gen-elab.v.htm1
Where generate statements can be placed.
Elaboration-time constants.
Describing hardware using iteration. (E.g., ripple_w)
Describing hardware using recursion. (E.g., min_t)

Verilog-Key Skills
Given a design in one form, write design in another:
Explicit Structural
Implicit Structural
Synthesizable Behavioral
Logic Diagram

Use generate statements to interconnect modules.

Synthesis Key Skills

Given Verilog code:
Show inferred hardware (before optimization).
Show expected optimizations.

Logic Design Skills
Cost and Delay Computation
https://www.ece.1su.edu/v/2023/1sli-simple-model.pdf
Compute Cost using Simple Model
Compute Delay using Simple Model

Sequential Logic Topics

Registers

Write Verilog needed to specify a register.
Determine what registers will be inferred for some Verilog.

Timing

Show a timing diagram for sequential code.
Understand timing of examples given in class:
Counters from slides: count_thd, etc.
Multipliers: mult_linear_clk, mult_seq.

Synthesis Topics

Synthesis Topics

Understand what is done during inference, optimization, technology mapping
https://www.ece.lsu.edu/v/2023/1014-syn-general.v.html.

Inference of combinational logic.
https://www.ece.lsu.edu/v/2023/1015-syn-comb-str.v.html.
https://www.ece.lsu.edu/v/2023/1045-syn-comb-behav.v.html

Inference of registers.
https://www.ece.lsu.edu/v/2023/lsli-syn-seq.pdf

Optimization of combinational logic.

Use of timing constraints in synthesis.

Digital Design Topics
Common Components
Multiplexor
Binary Full Adder, Ripple Adder
Integer Equality and Magnitude Comparison

Common Component Skills
Show how to implement using basic gates.
Know how to optimize for special cases (a constant input, etc.).

Cost and Delay Estimation
Simple Cost Model
https://www.ece.lsu.edu/v/2023/lsli-simple-model.pdf
Cost of n-input AND and OR gates are $(n-1) u_{c}$.
Inverters (NOT gates) are free!
Delay of n-input gate is $\lceil\lg n\rceil \mathrm{u}_{\mathrm{t}}$.
Cost of a 1-bit edge-triggered register is $7 \mathrm{u}_{\mathrm{c}} \ldots$
\ldots and delay is $6 u_{c}$.
Critical path does not pass through registers.

Tools

Synthesis (Genus Synthesis).
read_hdl, elaborate
define_clock
syn_gen
syn_map
syn_opt
report area, timing

