
Course Information � Instructor Information

EE 4755—Digital Design Using Hardware Description Languages

URL: https://www.ece.lsu.edu/v

Instructor Information

David M. Koppelman, Room 3316R P. F. Taylor Hall

+1 225 578-5482.

koppel@ece.lsu.edu, https://www.ece.lsu.edu/koppel

Tentative office hours: M-F 14:00-15:00 (Fall 2023).

-1 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -1

https://www.ece.lsu.edu/v
mailto:koppel@ece.lsu.edu
https://www.ece.lsu.edu/koppel

Course Information � Instructor Information

Syllabus URL

The syllabus is available via: https://www.ece.lsu.edu/koppel/v/v.html.

For those who prefer QR codes:

-2 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -2

https://www.ece.lsu.edu/koppel/v/v.html

Course Information � Prerequisites

Prerequisites

Formal Prerequisite

EE 3755 (Computer Organization).

Informal Prerequisites (What you really need to know.)

C/C++ (The computer language.)

Digital hardware design: Should be able to answer these:

Is a ripple adder something to get excited about?

Does clocking a register hurt the register?

Your part of the design carries the critical path: your fault or your forté?

-3 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -3

Course Information � Prerequisites

Digital hardware design: Should have been able to answer these:

Is a ripple adder something to get excited about?

Yes!, a ripple adder is inexpensive and it’s fast enough.

No!, a ripple adder is too slow to meet specs.

Does clocking a register hurt the register?

Clocking is the operation that causes the register to remember its inputs.

That’s what registers are for, so I certainly hope it doesn’t hurt.

-4 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -4

Course Information � Prerequisites

Your part of the design carries the critical path: your fault or your forté?

The critical path is the path that takes longest, so

Fault: it takes longest because I didn’t do a good job. :-(

Forté: I’m the best, that’s why they chose me to work on it. It would have taken longer with anyone
else.

-5 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -5

Course Information � Graded Material

Graded Material

Midterm Exam, 35%

Fifty minutes, open notes.

Final Exam, 35%

Yes, it’s cumulative.

Homework/Projects, 30%

Written and computer assignments.

Lowest grade or unsubmitted assignment dropped.

-6 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -6

Electronic Design Automation (EDA) Overview � EDA Definitions

Electronic Design Automation (EDA) Overview

EDA Definitions

Electronic Design Automation (EDA):

The use of software to automate electronic (digital and analog) design.

Hardware Description Language:

A language used to describe hardware and to exercise, test, and verify the hardware.

Examples: SystemVerilog, Verilog, VHDL, SystemC.

Hardware Description:

Something written in an HDL with the goal of modeling or fabricating (synthesizing) hardware.

It’s analogous to a procedure or program in a conventional language . . .

. . . but nothing like it at all!

-7 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -7

Electronic Design Automation (EDA) Overview � Quick Examples of Hardware Descriptions. � Binary Full Adder (BFA)

Quick Examples of Hardware Descriptions.

For each, will show

A diagram.

The description in SystemVerilog.

The Example Description Items

A Binary Full Adder (BFA)

Adds three 1-bit quantities, a, b, ci, to compute sum and co (carry out).

Input: three 1-bit quantities, a, b, ci.

Output: one 2-bit quantity with bits co (MSB) and sum (LSB).

-8 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -8

Electronic Design Automation (EDA) Overview � Quick Examples of Hardware Descriptions. � Binary Full Adder (BFA)

Description of a binary full adder:

a

b

ci c
o

s
u
m

BFA

Operation: co, sum = a + b + ci .

module bfa(output uwire sum, co, input uwire a, b, ci);

assign sum = a ^ b ^ ci; // Note "^" is the exclusive or operator.

assign co = a & b | a & ci | b & ci;

endmodule

-9 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -9

Electronic Design Automation (EDA) Overview � Quick Examples of Hardware Descriptions. � Batcher Odd/Even Merge

A Batcher Odd/Even Merge Module

Used to merge together two sorted sequences.

A component in some advanced hardware designs.

Input: Two n-element, w-bits-per-element, sorted sequences, a and b.

Output: One 2n-element sorted sequence, x.

-10 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -10

Electronic Design Automation (EDA) Overview � Quick Examples of Hardware Descriptions. � Batcher Odd/Even Merge

Description of a Batcher Odd/Even merge module:

b

x

a

a

b

x

lo
batcher_merge

a0, a2, a4, ..

b1, b3, b5, ..

b0, b2, b4, ..

a1, a3, a5, ..

batcher_merge

a
0

, a
1

, a
2

, ..
b
0

, b
1

, b
2

, ..

x0

x1

a0

a1

s
o
rt2

x0

x1

a0

a1

s
o
rt2

x0

x1

x2

x3

y

a

b

x

hi
batcher_merge

z

Even elements.Even elements.

Even elements.

Odd elements.

Odd elements.

y0

z0

y1

z1

module batcher_merge #(int n = 4, int w = 8)

(output uwire [w-1:0] x[2*n],

input uwire [w-1:0] a[n], b[n]);

uwire [w-1:0] xlo[n], xhi[n];

if (n == 1) begin

assign xlo[0] = a[0], xhi[0] = b[0];

end else begin

localparam int nh = n/2;

uwire [w-1:0] ae[nh], ao[nh], be[nh], bo[nh];

for (genvar i=0; i<nh; i++)

assign ae[i] = a[2*i], ao[i] = a[2*i+1], be[i] = b[2*i], bo[i] = b[2*i+1],

batcher_merge #(nh,w) mlo(xlo, ae, bo);

batcher_merge #(nh,w) mhi(xhi, ao, be);

end

for (genvar i=0; i<n; i++)

sort2 #(w) s2(x[2*i], x[2*i+1], xlo[i], xhi[i]);

endmodule

-11 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -11

Electronic Design Automation (EDA) Overview � Quick Examples of Hardware Descriptions. � Quick Examples’ Takeaways

Quick Examples’ Takeaways

A reminder (or first impression) of what a Verilog module looks like.

Correspondence between a digital logic diagram and a Verilog description.

Ability to compactly describe moderate-complexity designs such as the Batcher Odd/Even Merge module.

-12 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -12

Electronic Design Automation (EDA) Overview � More Definitions

More Definitions

Simulation:

Execution of some code which determines the state of some modeled system over time.

Most HDLs are both simulation languages and structural description languages.

Design Target:

The technology in which a design is to be implemented.

The design target is often some type of FPGA or ASIC (application-specific IC).

Synthesis [of a hardware description]:

Conversion of the description into chosen design target.

Synthesis is a multi-step process, steps include inference [of logic from procedural code] and routing.

-13 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -13

Electronic Design Automation (EDA) Overview � More Definitions

Usage of Terminology

“I wrote a hardware description of my new machine learning accelerator in the SystemVerilog
hardware description language. I then simulated it using the electronic design automation
tools provided by Cadence, and it worked the first time! [Don’t believe him.] Then, for a
design target I chose an ASIC from a silicon foundry that my friend works at. She gave me
a 70% discount. [Probably exaggerated.] I performed synthesis of my hardware description,
some post-synthesis simulation to verify the timing of my design, and finally proceeded to
tape-out. I sent the resulting design files to the foundry and got my chips back in two weeks.”

-14 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -14

Electronic Design Automation (EDA) Overview � More Definitions

Electronic Design Automation (EDA) (Longer Definition)

Electronic design in which

a hardware description is written in a hardware description language

possibly consisting of components from a vendor’s IP library

the functionality of the description is verified by simulation

the formal correctness, testability, and compliance of a description is evaluated by software

and the description is converted to a manufactureable form using synthesis tools.

-15 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -15

Electronic Design Automation (EDA) Overview � Hardware Description Languages

Hardware Description Languages

Hardware Description Language:

A language used for describing the structure of hardware and how the hardware should behave. Examples
include SystemVerilog and VHDL.

Kinds of Digital Hardware Built Using HDL’s:

Anything worth selling.

-16 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -16

Electronic Design Automation (EDA) Overview � Hardware Description Languages

Some Popular Hardware Description Languages

Verilog and SystemVerilog

(Verilog was replaced by SystemVerilog in 2009.)

C-Like and C++-Like Syntax

Originated in industry in 1984, now IEEE standard.

VHDL

Ada-Like Syntax

Originated as a DoD project, now an IEEE standard.

-17 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -17

Electronic Design Automation (EDA) Overview � Hardware Description Languages

SystemC

A C++ Class Library. Descriptions are exactly C++ syntax.

Often used with high-level synthesis tools.

-18 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -18

Electronic Design Automation (EDA) Overview � History of Verilog and SystemVerilog

History of Verilog and SystemVerilog

Verilog developed by Gateway Design Automation in 1984, later bought by Cadence.

Became an IEEE standard 1995: IEEE 1364-1995.

Major update in 2001: IEEE 1364-2001.

Minor update in 2005.

Also in 2005, related language SystemVerilog was standardized as IEEE 1800-2005.

In 2009 Verilog and SystemVerilog merged: IEEE 1800-2009.

Minor updates in 2013 and 2017: IEEE 1800-2012, IEEE 1800-2017.

-19 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -19

Electronic Design Automation (EDA) Overview � VHSIC Hardware Description Language (VHDL)

VHSIC Hardware Description Language (VHDL)

Ada-like syntax. (Ada is a DoD-developed language for large embedded systems.)

Developed as part of U.S. Department of Defense (DoD) VHSIC program in 1983

Became IEEE standard 1076 in 1987.

Some believe that VHDL is harder to learn than Verilog.

At most one or two lectures on VHDL.

-20 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -20

Electronic Design Automation (EDA) Overview � VHSIC Hardware Description Language (VHDL)

Verilog vs. VHDL

There is an advocate community for each language.

Good News: Many tools support both.

That said, SystemVerilog covered in this course.

-21 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -21

Design Flow

Design Flow

Design Flow:

The steps used to produce a design, from initial design entry to the generation of the final manufacureable
form. Describes which programs will be used, when they will be used, and how they will be used.

EDA tool vendors usually provide design flows that show how their products can be used.

Companies develop design flows that are used to produce their designs.

A simple design flow is described below.

-22 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -22

Design Flow � Informal Design Flow

Informal Design Flow

♦ Enter design. (Use your favorite text editor and HDL.)

♦ Enter testbench for design.

The testbench checks correctness.

This is very important—you never want to say “I thought it worked.”

-23 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -23

Design Flow � Informal Design Flow

♦ Run simulation to verify correctness.

♦ Use waveform viewer and other tools to find bugs. (If any.)

♦ Run synthesis program.

Synthesis reports indicate area and timing.

Not satisfied? Go to Step 1.

Otherwise, tape out, download to FPGA, etc.

-24 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -24

Design Flow � Informal Design Flow Demonstration

Informal Design Flow Demonstration

Demonstration: look at different possible logical right shifter designs.

amt

dout

right_shift

din

8
b
'0
0
1
1
1
0
0
0

8
b
'0
0
0
0
1
1
1
0

3d'2
Logical Right Shift

Inputs: amount, amt; unshifted value, din.

Output: shifted value, dout.

Parameter: w, number of bits.

-25 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -25

Design Flow � Informal Design Flow Demonstration

What makes the shifter interesting.

It’s used in many applications.

It’s easy to describe behaviorally (by what it does).

A näıve implementation costs 3w2 gates.

A good implementation costs 6w lgw gates.

Should we rely on the synthesis program to get it right?

-26 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -26

Design Flow � Simple Design Flow � Summary of Steps

Simple Design Flow

Three easy steps (not counting step zero).

Used to describe the major steps in a typical design flow.

List of Steps in Simple Design Flow

Simple Flow Step 0: Goal Determination.

Simple Flow Step 1: Design Capture

Simple Flow Step 2: Behavioral Verification

Simple Flow Step 3: Synthesis and Timing Verification

-27 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -27

Design Flow � Simple Design Flow � Simple Flow Step 0:

Simple Flow Step 0:

Start with: an idea for a new chip.

Goal: a box full of the new chips.

-28 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -28

Design Flow � Simple Design Flow � Simple Flow Step 1: Design Capture

Simple Flow Step 1: Design Capture

Using the back of an envelope or some other suitable medium . . .

. . . develop a rough draft of the design.

Using a text editor . . .

. . . write a Verilog description of the design.

Using a text editor . . .

. . . write a Verilog description of a testbench used to test the design.

The testbench generates inputs for the design and verifies the design’s outputs.

-29 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -29

Design Flow � Simple Design Flow � Simple Flow Step 2: Behavioral Verification

Simple Flow Step 2: Behavioral Verification

Using a simulator and waveform viewer . . .

. . . check if design passes testbench tests . . .

. . . and if not, debug.

Waveform viewer is sort of a virtual logic analyzer, can view signals on any part of design.

Simulator output includes messages generated by behavioral code . . .

. . . including “pass” or “fail” message produced by testbench.

Using text editor . . .

. . . fix bugs, and tune performance.

-30 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -30

Design Flow � Simple Design Flow � Simple Flow Step 3: Synthesis and Timing Verification

Simple Flow Step 3: Synthesis and Timing Verification

Using synthesis programs . . .

. . . generate design database.

Design database has information needed to fabricate the chip . . .

. . . and to perform simulations with accurate timing.

Simulate using design database to verify that timing is acceptable . . .

. . . if timing is not acceptable edit the Verilog structural description and repeat steps above.

Using the Internet, E-mail design database and credit card number to fab.

After a few weeks, get parts back in mail.

-31 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -31

Material and Tools in This Course � Topics Covered in This Course

Material and Tools in This Course

Topics Covered in This Course

• Coding in SystemVerilog.

• Writing descriptions of common digital devices.

• Using simulation, waveform viewers and similar tools.

• Estimation of cost and delay.

• Writing testbench code.

• Relationship between HDL and synthesized hardware..

• Using synthesis tools.

-32 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -32

Material and Tools in This Course � Tools Used in This Course � Tools and Tool Vendors

Tools Used in This Course

Tools and Tool Vendors

EDA (Electronic Design Automation) Tools

Programs to support design automation.

These include SystemVerilog simulators, synthesis programs, design rule checkers, etc., etc., etc.

Major EDA Vendors

◦ Synopsis

◦ Cadence Design Systems

◦ Mentor Graphics

-33 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -33

Material and Tools in This Course � Tools Used in This Course � Tool Set Vendor

Course Will Use Products of Cadence Design Systems

ECE is a member of Cadence’s University Software Program.

Software would normally cost well over 100 k$. . .

. . . which helps explain why you can’t have your own copies (unless you’re rich).

-34 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -34

Material and Tools in This Course � Tools Used in This Course � Simulation Tools

For Simulation: Cadence Xcelium Simulator Package

A collection of programs including:

◦ xmvlog – Verilog simulator.

◦ simvision – Waveform viewer (to view sim results).

◦ xrun – Convenient front end to other programs.

-35 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -35

Material and Tools in This Course � Tools Used in This Course � Synthesis Tools

For Synthesis: Genus Synthesis

◦ genus – Front end for synthesis tools.

-36 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -36

Design Capture

Design Capture

Design Capture:

Entering a design in electronic form.

Start: Idea in engineer’s head, scribbles on back of envelope.

Finish: Design in electronic form readable by some EDA tools.

-37 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -37

Design Capture � Design Capture Methods

Design Capture Methods

◦ Schematic Capture

Enter design using GUI (graphical user interface) schematic editor.

Fun and easy for beginners but tedious for all but small designs.

◦ Finite-State Machine Editors

Programs meant for designing FSM, to be part of larger design.

◦ Hardware Description Languages

Like any programming language . . .

. . . design entered using standard or specialized text editor.

-38 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -38

Synthesis Design Targets � Definition

Synthesis Design Targets

Design Target:

The type of device to be manufactured or programmed. Synthesis programs generate output for a particular
design target.

-39 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -39

Synthesis Design Targets � Field-Programmable Gate Arrays (FPGAs)

Design Targets

◦ Application-Specific Integrated Circuit (ASIC)

A fully custom chip.

Usually the fastest design target, can have the most components.

◦ Field-Programmable Gate Array (FPGA)

A chip full of logic whose connection and function can be programmed and later re-programmed.

Many FPGA vendors provide EDA tools for their products.

-40 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -40

Synthesis Design Targets � Gate Arrays

◦ Programmable Logic Array (PLA)

Chip that can be programmed (once) to implement a logic function.

Usually programmed at the factory.

PLAs might be used in prototypes or when only a few parts are needed.

◦ Gate Array

A chip full of gates manufactured in two steps:

First generic layers containing gates are fabricated . . .

. . . but gates are not connected to each other.

Later, metal layers connecting gates are added.

-41 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -41

Synthesis Design Targets � Gate Arrays

Designer using gate arrays specifies only metal layer.

Since gates fabricated in advance time is saved.

-42 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -42

Synthesis � Start With

Synthesis

Goal: Convert an HDL description into working hardware.

Start With:

Behavioral or Structural Description

Functionality has been verified by simulation.

Behavioral description (if used) follows synthesizebility rules specified for synthesis program.

Choice of Design Target

Type of target: FPGA, ASIC, etc.

Manufacturer and family.

-43 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -43

Synthesis � Major Synthesis Steps

Major Synthesis Steps (Summary)

Synthesis of technology-independent gate-level description.

Map gates and modules to technology-specific versions.

Place and route.

-44 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -44

Synthesis � Major Synthesis Steps

Major Synthesis Steps (Details)

Synthesis of technology-independent gate-level description.

Synthesis program infers registers and minimizes logic.

Registers aren’t explicitly declared (even though it will appear otherwise) . . .

. . . so synthesis program must determine (infer) where they are needed.

Because (most) synthesis programs minimize combinational logic . . .

. . . descriptions should be written for clarity.

Output of this step is purely structural code . . .

. . . consisting of gates and standard modules (e.g., for arithmetic), and library modules.

Based on output, designer might tweak design or give hints to synthesis program.

-45 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -45

Synthesis � Major Synthesis Steps

Place and Route

Placement is the determination of the physical location of a part.

Routing is the determination of paths for wires interconnecting parts.

Output of place-and-route step:

Timing information (since technology and wire lengths are known) which may be . . .

. . . backannotated (written into) the original behavioral description.

Behavioral descriptions re-simulated to see if they meet timing criteria.

For FPGAs, code to program the devices.

For ASICS and gate arrays, . . .

. . . a design database to tape-out and send to a fab.

-46 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -46

Synthesis � Major Synthesis Steps

Fabrication facilities apply additional steps, not covered here.

-47 EE 4755 Lecture Transparency. Formatted 9:53, 24 August 2023 from lsli01-TeXize. -47

	Course Information
	Instructor Information
	Prerequisites
	Graded Material

	Electronic Design Automation (EDA) Overview
	EDA Definitions
	Quick Examples of Hardware Descriptions.
	Binary Full Adder (BFA)
	Batcher Odd/Even Merge
	Quick Examples' Takeaways

	More Definitions
	Hardware Description Languages
	History of Verilog and SystemVerilog
	VHSIC Hardware Description Language (VHDL)

	Design Flow
	Informal Design Flow
	Informal Design Flow Demonstration
	Simple Design Flow
	Summary of Steps
	Simple Flow Step 0:
	Simple Flow Step 1: Design Capture
	Simple Flow Step 2: Behavioral Verification
	Simple Flow Step 3: Synthesis and Timing Verification

	Material and Tools in This Course
	Topics Covered in This Course
	Tools Used in This Course
	Tools and Tool Vendors
	Tool Set Vendor
	Simulation Tools
	Synthesis Tools

	Design Capture
	Design Capture Methods

	Synthesis Design Targets
	Definition
	Application-Specific Integrated Circuits
	Field-Programmable Gate Arrays (FPGAs)
	Programmable Logic Arrays
	Gate Arrays

	Synthesis
	Start With
	Major Synthesis Steps

	Course Information
	Instructor Information
	Prerequisites
	Graded Material

	Electronic Design Automation (EDA) Overview
	EDA Definitions
	Quick Examples of Hardware Descriptions.
	Binary Full Adder (BFA)
	Batcher Odd/Even Merge
	Quick Examples' Takeaways

	More Definitions
	Hardware Description Languages
	History of Verilog and SystemVerilog
	VHSIC Hardware Description Language (VHDL)

	Design Flow
	Informal Design Flow
	Informal Design Flow Demonstration
	Simple Design Flow
	Summary of Steps
	Simple Flow Step 0:
	Simple Flow Step 1: Design Capture
	Simple Flow Step 2: Behavioral Verification
	Simple Flow Step 3: Synthesis and Timing Verification

	Material and Tools in This Course
	Topics Covered in This Course
	Tools Used in This Course
	Tools and Tool Vendors
	Tool Set Vendor
	Simulation Tools
	Synthesis Tools

	Design Capture
	Design Capture Methods

	Synthesis Design Targets
	Definition
	Application-Specific Integrated Circuits
	Field-Programmable Gate Arrays (FPGAs)
	Programmable Logic Arrays
	Gate Arrays

	Synthesis
	Start With
	Major Synthesis Steps

