
LSU EE 4755 Homework 4 Solution Due: 6 November 2023

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, how a part of the problem might be solved, etc.)
It is also acceptable to seek out digital design resources for help on Verilog, digital design, etc. It
is okay to make use of AI LLM tools such as ChatGPT to answer these questions. Just don’t trust
the answers. (Do not assume LLM output is correct. Treat LLM output the same way one might
treat legal advice given by a lawyer character in a movie: it may sound impressive, but it can range
from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Helpful Examples
See the simple model slides for material on computing cost and delay, and also for a list of some
sample problems. Also see 2022 Homework 3.

1

https://www.ece.lsu.edu/koppel/v/

Permutation Module
This assignment is based on the solution to Homework 3, the recursive permutation module perm,
and the solution to Midterm Exam Problem 1, the inferred hardware for the permutation module.
See Homework 3 for details on what the permutation module does. Appearing below is the Home-
work 3 solution with some comments removed. For the unabridged version visit
https://www.ece.lsu.edu/koppel/v/2023/hw03-sol.v.html.

module perm
#(int w = 8, n = 20, wd = $clog2(n))

(output uwire [w-1:0] pdata_out[n], output uwire [wd-1:0] pnum_out[n],

output uwire carry_out,

input uwire [w-1:0] pdata_in[n], input uwire [wd-1:0] pnum_in[n]);

if (n == 1) begin

assign pdata_out[0] = pdata_in[0];

assign carry_out = 1;

assign pnum_out[0] = 0;

end else begin

// Set pos to the position of the element to be moved.

uwire [wd-1:0] pos = n - 1 - pnum_in[n-1];

// Copy the element at position pos to position n-1 in the output.

assign pdata_out[n-1] = pdata_in[pos];

// Prepare an array of n-1 elements and set to ..

// .. the elements of pdata_in except for the element at pos.

uwire [w-1:0] prdata_in[n-1];

for (genvar i=0; i<n-1; i++)

assign prdata_in[i] = i < pos ? pdata_in[i] : pdata_in[i+1];

// Recursively instantiate perm.

uwire co;

perm #(w,n-1,wd) rp(pdata_out[0:n-2], pnum_out[0:n-2], co,

prdata_in, pnum_in[0:n-2]);

// Compute a tentative next value of digit n-1.

uwire [wd-1:0] dnext = pnum_in[n-1] + co;

// Determine whether there is a carry.

assign carry_out = dnext >= n;

// Set the next value of digit n-1 based on whether there is a carry.

assign pnum_out[n-1] = carry_out ? 0 : dnext;

end

endmodule

2

https://www.ece.lsu.edu/koppel/v/2023/hw03.pdf
https://www.ece.lsu.edu/koppel/v/2023/hw03-sol.v.html

Permutation Module Inferred Hardware
Midterm Exam Problem 1 asked for the inferred hardware for the perm module instantiated with
n=4. The solution appears below on the left. For this assignment the inferred hardware for a
non-specific value of n will be needed, that is shown on the right.

pdata_in[1]

 [2]

 [3]

p
d

a
ta

_in

pnum_in[0]

 [1]

 [2]

 [3]

p
n

u
m

_in

3 pos

2 <

1

0

p
d

a
ta

_in

perm
n=3

rp

p
n
u
m

_in

p
d

a
ta

_o
u
t

p
n
u
m

_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥4

perm n=4

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]
[2]

pnum_out[0]
[1]
[2]

[0]

[2]

[0]

[2]

[0]

[0]

[3]

[3]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[2]

[3]

 [0]

+

p
rd

a
ta

_in
[2

]

prdata_in[0]
pdata_in[1]

[2]

[n-1]

p
d

a
ta

_in

pnum_in[0]

[1]

[n-2]

[n-1]
p

n
u

m
_in

n
-1 pos

n
-2

<

1
0

p
d
a
ta
_in

perm
n=n-1

rp

p
n
u
m
_in

p
d
a
ta
_o
u
t

p
n
u
m
_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥
n

perm n

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]

[n-2]

pnum_out[0]
[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

p
rd
a
ta
_in

[n
-2
]

There’s no need to squint, the diagrams appear again in larger size at the end of this assignment.
Also, SVG source for these modules are at https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg
and https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg.

3

https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg
https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg

Problem 1: Compute the cost and delay of the following arithmetic hardware from the perm

module. Assume that ripple units are used for addition, subtraction, and comparison.

(a) Compute the cost and delay of the hardware computing pos = n - 1 - pnum_in[n-1] in terms
of wd, the value of parameter wd. Optimize for constants, including n.

� Cost of hardware in terms of wd. � Delay of hardware in terms of wd.

�Optimize for constants, don’t confuse elaboration-time computation with computation hardware.

The hardware is a subtractor with constant input n-1 and non-constant input pnum in[n-1]. The exact cost of an

adder would depend on the value of n-1, for example if n-1=0 the cost would be zero. But for a subtractor we set the

carry in to 1 and so with a constant input the cost is the cost of wd BHAs. So the cost is 4wd uc (see the midterm

exam solution for details). (The cost can be reduced to 3wd uc by splitting the XOR gate in each BHA.)

The delay is one unit per bit (because the delay from ci to co of a BHA is just one gate delay), for a total delay of wd ut .

(b) Compute the cost and delay of the hardware computing dnext = pnum_in[n-1] + co in terms
of wd, the value of parameter wd. Optimize for constants and for the size of co. Assume in this
problem that pnum_in and co arrive at t = 0.

� Cost of hardware in terms of wd. � Delay of hardware in terms of wd.

�Optimize considering the size of co. � Optimize for constants, don’t confuse elaboration-time
computation with computation hardware.

The dnext value is computed by adding a 1-bit value, co to pnum in[n-1]. So this is equivalent to an adder with a

constant input, 0, with the carry-in connected to co. The cost then will be 4wd uc (or 3wd uc) and the delay wd ut .

(c) Compute the cost and delay of the hardware described by these lines:

uwire [wd-1:0] dnext = pnum_in[n-1] + co;

assign carry_out = dnext >= n;

Assume in this problem that co and pnum_in arrive at t = 0. The cost, of course, includes the
cost of computing dnext in the previous part. The delay must be computed taking both lines into
account.

� Cost of hardware in terms of wd. � Delay of co in terms of wd.

�Optimize considering the size of co. � Optimize for constants, don’t confuse elaboration-time
computation with computation hardware.

The cost of the hardware to compute carry out is the cost of the hardware to compute dnext, 4wd uc, plus the cost

of the comparison module. A comparison module can be constructed from a subtractor with the difference bits eliminated.

For two non-constant w-bit inputs the cost would be 4w uc, but in this case one input is constant dropping the cost to

just wd uc. The total cost is [4wd + wd] uc . As with the subtractor, the carry chain delay is one gate per bit so the

delay of the comparison built using a ripple circuit is wd ut. Because the adder and the ripple circuit are cascadable the

total delay is [2 + wd] ut , where the 2 ut is the time for the adder to compute the first bit of the sum.

There are more problems on the next page.

4

Problem 2: In this problem consider the multiplexors with inputs connecting to pdata_in. (In
the diagram they are the multiplexors on the upper-left including the 2-input muxes the n-input
mux.) Call these the pdata multiplexors. In the solutions to the parts below use w for the value of
parameter w and wd for the value of parameter wd.

(a) Compute the cost of the pdata multiplexors for a module instantiated at size n = N including
only the hardware in the n=N instantiation, not in the recursive instantiations. The answer should
be in terms of N and w. Hint: this is easy.

� Cost of the pdata multiplexors at one level in terms of N , w, and (if needed) wd.

In all of the multiplexors the inputs are w bits each. There are N − 1 2-input multiplexors and one N -input mux.

The cost of a 2-input mux is 3w uc, and there are N − 1 of them so their cost is 3w(N − 1) uc. The cost of an

N -input, w-bit mux is 3w(N − 1) uc, which interestingly is the same as the total cost of the 2-input multiplexors. The

total cost is 6w(N − 1) uc .

(b) This is important. Expect to expend brain energy. Don’t skip. Compute the total cost of the
pdata multiplexors for an instantiation at size n = N including the recursive instantiations all the
way down. The answer should be in terms of N and w.

� Cost of the pdata multiplexors including recursive instantiations in terms of N , w, and (if needed)
wd.

The cost at level n, based on the previous part (but using lower-case n) is 6w(n − 1) uc. The cost of the n = 1
instantiation is zero because all that module does is connect its inputs to its outputs. So the total cost of instantiations

from N to 2, which we’ll call C(N), is
∑N

n=2 6w(n− 1) uc. Proceeding step by step for the benefit of those who are

rusty, even on one of the more storied finite sums

C(N) =

N∑
n=2

6w(n− 1) uc

= 6w uc

N∑
n=2

(n− 1)

= 6w uc

N−1∑
n=1

n

= 6w uc
N(N − 1)

2

= 3wN(N − 1) uc

For those scanning for boxes, the total cost is 3wN(N − 1) uc .

5

https://www.americanscientist.org/article/gausss-day-of-reckoning

Problem 3: In this problem compute delays for pdata_out and pnum_out. In the solutions use d
for the value of parameter wd. This is also important and even more interesting. Expect to expend
brain energy. Don’t skip.

(a) Assume that the delay of the subtractors computing pos is lgwd, where wd is the value of
parameter wd. (Note that lgwd is not an answer to Problem 1.) Further, suppose the delay of
the less-than units providing a select signal to the 2-input pdata multiplexors is zero. Using these
assumptions compute the delay of the first and last elements of pdata_out for an instantiation at
n=N and show the critical path. The delay should be in terms of N and wd. To solve this problem
it might be helpful to draw two instantiation levels to help find the critical path.

� Delay of pdata out[0] in terms of N and wd accounting for recursive instantiations. � Show
critical path.

� Delay of pdata out[N-1] in terms of N and wd accounting for recursive instantiations. � Show
critical path.

The easier of these to solve is pdata out[N-1] because its value is computed without using data from a recursive

instance. As everyone reading this should know or at least learn now and not forget, the delay of an N -input multiplexor

is 2dlgNe ut. For this problem we were to assume that the subtractor computing pos has a delay of lgwd. We can

safely assume that the inputs to the n = N instance arrive at t = 0, and so pos (the output of the subtractor) arrives

at t = lgwd. Therefore the delay of pdata out[N-1] is [lg(wd) + 2dlgNe] ut . The delays, arrival times, and

critical path are shown in the diagram below.

pdata_in[1]

[2]

[n-1]

pdata_in

pnum_in[0]

[1]

[n-2]

[n-1]

pnum
_in

n-
1 pos

n-
2

<

1
0

pdata_in

perm
n=N-1

rp

pnum
_in

pdata_out
pnum

_out

carry_out

pdata_out
pnum

_out

<

<

−

0

≥
n

perm n=N

carry_out

dnext

pdata_in[pos]

pdata_out[0]
[1]

[n-2]

pnum_out[0]
[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

prdata_in[n-2]

0

lg wd

lg wd

lg wd

lg wd + 2lg N0

2lg N

lg wd + 2lg N

6

To compute the delay of output pdata out[0] we need to find the path it will take through the recursive instantiations.

The illustration below shows the top-level instantiation, for n=N and one level down, for n=N-1. To understand the

solution it is important that you pay attention to the arrival times of signals, shown in circled purple numbers and

expressions. For the top-level instantiation the arrival time of all inputs is at t = 0. But, for the n = N−1 instantiation

notice that some signals arrive at t = 0, such as pnum in, while pdata in arrives later, at t = [lg(wd) + 2] ut.

(The time unit, ut, is not shown on the illustrations.) The fact that pnum in to the n = N − 1 instantiation arrives

at t = 0 means that the select signals to the 2-input multiplexors arrives at t = lgwd at all instantiations. The

pdata in inputs are different. At n = N they arrive at t = 0, while for n = N − 1 they arrive at [lg(wd) + 2] ut.

In the n = N − 1 instance consider the 2-input multiplexors. Whereas at n = N the data inputs arrived before the

select signal, at n = N − 1 the data inputs arrive after the select signal. That means that the arrival time at the

outputs of the 2-input multiplexors at n = N − 1 is at [lg(wd) + 2 + 2] ut = [lg(wd) + 4] ut. Each further level

down adds just 2 units of delay. At level n input pdata in[n-1] does not go through the recursive instantiation.

But input pdata in[0] goes all the way down to n = 1, and at each level before n = 1 another 2 units are added.

(The delay, remember, at n = 1 is zero.) Therefore the total delay down to n = 1 is [lg(wd) + 2(N − 1)] ut. The

pdata out output of the recursive instance connects directly to the pdata out of the containing instance, and so no

further delay is added. Therefore the total delay is [lg(wd) + 2(N − 1)] ut .

pdata_in[1]

[2]

[n-1]

pdata_in
pnum_in[0]

[1]

[n-2]

[n-1]

pnum
_in

n-
1 pos

n-
2

<

1
0

rp

carry_out

pdata_out
pnum

_out

<

<

−

0

≥
n

perm n=N

carry_out

dnext

pdata_in[pos]

pdata_out[0]

[1]

[n-2]

pnum_out[0]

[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

prdata_in[n-2]
pdata_in[1]

[2]

[n-1]

pdata_in

pnum_in[0]

[1]

[n-2]

[n-1]

pn
u

m
_in

n-
1

pos

n-
2

<

1
0

pdata_in

perm n=N-2
rp

pnum
_in

pdata_out
pnum

_out

carry_out

pdata_ou
t

pn
u

m
_ou

t

<

<

−

0

≥
n

perm n=N-1

carry_ou
t

dnext

pdata_in[pos]

pdata_out[0]

[1]

[n-2]

pnum_out[0]

[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

prdata_in[n-2]

2
2

0

0

0

0

0

lg wd

lg wd

lg wd

lg wd

0

lg wd

7

SVG source for the module below is at
https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg.

pdata_in[1]

 [2]

 [3]

p
d

a
ta

_in

pnum_in[0]

 [1]

 [2]

 [3]

p
n

u
m

_in
3 pos

2 <

1

0
p

d
a
ta

_in

perm
n=3

rp

p
n
u
m

_in

p
d

a
ta

_o
u
t

p
n
u
m

_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥4

perm n=4

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]
[2]

pnum_out[0]
[1]
[2]

[0]

[2]

[0]

[2]

[0]

[0]

[3]

[3]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[2]

[3]

 [0]

+

p
rd

a
ta

_in
[2

]

prdata_in[0]

8

https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg

SVG source for the module below is at
https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg.

pdata_in[1]

[2]

[n-1]

p
d

a
ta

_in

pnum_in[0]

[1]

[n-2]

[n-1]

p
n

u
m

_in

n
-1 pos

n
-2

<

1
0

p
d
a
ta
_in

perm
n=n-1

rp

p
n
u
m
_in

p
d
a
ta
_o
u
t

p
n
u
m
_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥
n

perm n

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]

[n-2]

pnum_out[0]
[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

p
rd
a
ta
_in

[n
-2
]

9

https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg

	Problem 1
	Part char 97
	Part char 98
	Part char 99

	Problem 2
	Part char 97
	Part char 98

	Problem 3
	Part char 97

