
LSU EE 4755 Homework 4 Due: 6 November 2023

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, how a part of the problem might be solved, etc.)
It is also acceptable to seek out digital design resources for help on Verilog, digital design, etc. It
is okay to make use of AI LLM tools such as ChatGPT to answer these questions. Just don’t trust
the answers. (Do not assume LLM output is correct. Treat LLM output the same way one might
treat legal advice given by a lawyer character in a movie: it may sound impressive, but it can range
from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Helpful Examples
See the simple model slides for material on computing cost and delay, and also for a list of some
sample problems. Also see 2022 Homework 3.

1

https://www.ece.lsu.edu/koppel/v/

Permutation Module
This assignment is based on the solution to Homework 3, the recursive permutation module perm,
and the solution to Midterm Exam Problem 1, the inferred hardware for the permutation module.
See Homework 3 for details on what the permutation module does. Appearing below is the Home-
work 3 solution with some comments removed. For the unabridged version visit
https://www.ece.lsu.edu/koppel/v/2023/hw03-sol.v.html.

module perm
#(int w = 8, n = 20, wd = $clog2(n))

(output uwire [w-1:0] pdata_out[n], output uwire [wd-1:0] pnum_out[n],

output uwire carry_out,

input uwire [w-1:0] pdata_in[n], input uwire [wd-1:0] pnum_in[n]);

if (n == 1) begin

assign pdata_out[0] = pdata_in[0];

assign carry_out = 1;

assign pnum_out[0] = 0;

end else begin

// Set pos to the position of the element to be moved.

uwire [wd-1:0] pos = n - 1 - pnum_in[n-1];

// Copy the element at position pos to position n-1 in the output.

assign pdata_out[n-1] = pdata_in[pos];

// Prepare an array of n-1 elements and set to ..

// .. the elements of pdata_in except for the element at pos.

uwire [w-1:0] prdata_in[n-1];

for (genvar i=0; i<n-1; i++)

assign prdata_in[i] = i < pos ? pdata_in[i] : pdata_in[i+1];

// Recursively instantiate perm.

uwire co;

perm #(w,n-1,wd) rp(pdata_out[0:n-2], pnum_out[0:n-2], co,

prdata_in, pnum_in[0:n-2]);

// Compute a tentative next value of digit n-1.

uwire [wd-1:0] dnext = pnum_in[n-1] + co;

// Determine whether there is a carry.

assign carry_out = dnext >= n;

// Set the next value of digit n-1 based on whether there is a carry.

assign pnum_out[n-1] = carry_out ? 0 : dnext;

end

endmodule

2

https://www.ece.lsu.edu/koppel/v/2023/hw03.pdf
https://www.ece.lsu.edu/koppel/v/2023/hw03-sol.v.html

Permutation Module Inferred Hardware
Midterm Exam Problem 1 asked for the inferred hardware for the perm module instantiated with
n=4. The solution appears below on the left. For this assignment the inferred hardware for a
non-specific value of n will be needed, that is shown on the right.

pdata_in[1]

 [2]

 [3]

p
d

a
ta

_in

pnum_in[0]

 [1]

 [2]

 [3]

p
n

u
m

_in

3 pos

2 <

1

0

p
d

a
ta

_in

perm
n=3

rp

p
n
u
m

_in

p
d

a
ta

_o
u
t

p
n
u
m

_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥4

perm n=4

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]
[2]

pnum_out[0]
[1]
[2]

[0]

[2]

[0]

[2]

[0]

[0]

[3]

[3]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[2]

[3]

 [0]

+

p
rd

a
ta

_in
[2

]

prdata_in[0]
pdata_in[1]

[2]

[n-1]

p
d

a
ta

_in

pnum_in[0]

[1]

[n-2]

[n-1]
p

n
u

m
_in

n
-1 pos

n
-2

<

1
0

p
d
a
ta
_in

perm
n=n-1

rp

p
n
u
m
_in

p
d
a
ta
_o
u
t

p
n
u
m
_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥
n

perm n

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]

[n-2]

pnum_out[0]
[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

p
rd
a
ta
_in

[n
-2
]

There’s no need to squint, the diagrams appear again in larger size at the end of this assignment.
Also, SVG source for these modules are at https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg
and https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg.

3

https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg
https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg

Problem 1: Compute the cost and delay of the following arithmetic hardware from the perm

module. Assume that ripple units are used for addition, subtraction, and comparison.

(a) Compute the cost and delay of the hardware computing pos = n - 1 - pnum_in[n-1] in terms
of wd, the value of parameter wd. Optimize for constants, including n.

Cost of hardware in terms of wd. Delay of hardware in terms of wd.

Optimize for constants, don’t confuse elaboration-time computation with computation hardware.

(b) Compute the cost and delay of the hardware computing dnext = pnum_in[n-1] + co in terms
of wd, the value of parameter wd. Optimize for constants and for the size of co. Assume in this
problem that pnum_in and co arrive at t = 0.

Cost of hardware in terms of wd. Delay of hardware in terms of wd.

Optimize considering the size of co. Optimize for constants, don’t confuse elaboration-time
computation with computation hardware.

(c) Compute the cost and delay of the hardware described by these lines:

uwire [wd-1:0] dnext = pnum_in[n-1] + co;

assign carry_out = dnext >= n;

Assume in this problem that co and pnum_in arrive at t = 0. The cost, of course, includes the
cost of computing dnext in the previous part. The delay must be computed taking both lines into
account.

Cost of hardware in terms of wd. Delay of co in terms of wd.

Optimize considering the size of co. Optimize for constants, don’t confuse elaboration-time
computation with computation hardware.

There are more problems on the next page.

4

Problem 2: In this problem consider the multiplexors with inputs connecting to pdata_in. (In
the diagram they are the multiplexors on the upper-left including the 2-input muxes the n-input
mux.) Call these the pdata multiplexors. In the solutions to the parts below use w for the value of
parameter w and wd for the value of parameter wd.

(a) Compute the cost of the pdata multiplexors for a module instantiated at size n = N including
only the hardware in the n=N instantiation, not in the recursive instantiations. The answer should
be in terms of N and w. Hint: this is easy.

Cost of the pdata multiplexors at one level in terms of N , w, and (if needed) wd.

(b) This is important. Expect to expend brain energy. Don’t skip. Compute the total cost of the
pdata multiplexors for an instantiation at size n = N including the recursive instantiations all the
way down. The answer should be in terms of N and w.

Cost of the pdata multiplexors including recursive instantiations in terms of N , w, and (if needed)
wd.

Problem 3: In this problem compute delays for pdata_out and pnum_out. In the solutions use d
for the value of parameter wd. This is also important and even more interesting. Expect to expend
brain energy. Don’t skip.

(a) Assume that the delay of the subtractors computing pos is lgwd, where wd is the value of
parameter wd. (Note that lgwd is not an answer to Problem 1.) Further, suppose the delay of
the less-than units providing a select signal to the 2-input pdata multiplexors is zero. Using these
assumptions compute the delay of the first and last elements of pdata_out for an instantiation at
n=N and show the critical path. The delay should be in terms of N and wd. To solve this problem
it might be helpful to draw two instantiation levels to help find the critical path.

Delay of pdata out[0] in terms of N and wd accounting for recursive instantiations. Show
critical path.

Delay of pdata out[N-1] in terms of N and wd accounting for recursive instantiations. Show
critical path.

5

SVG source for the module below is at
https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg.

pdata_in[1]

 [2]

 [3]

p
d

a
ta

_in

pnum_in[0]

 [1]

 [2]

 [3]

p
n

u
m

_in
3 pos

2 <

1

0
p

d
a
ta

_in

perm
n=3

rp

p
n
u
m

_in

p
d

a
ta

_o
u
t

p
n
u
m

_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥4

perm n=4

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]
[2]

pnum_out[0]
[1]
[2]

[0]

[2]

[0]

[2]

[0]

[0]

[3]

[3]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[2]

[3]

 [0]

+

p
rd

a
ta

_in
[2

]

prdata_in[0]

6

https://www.ece.lsu.edu/koppel/v/2023/mt-p1-sol.svg

SVG source for the module below is at
https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg.

pdata_in[1]

[2]

[n-1]

p
d

a
ta

_in

pnum_in[0]

[1]

[n-2]

[n-1]

p
n

u
m

_in

n
-1 pos

n
-2

<

1
0

p
d
a
ta
_in

perm
n=n-1

rp

p
n
u
m
_in

p
d
a
ta
_o
u
t

p
n
u
m
_o
u
t

carry_out

p
d

a
ta

_o
u

t
p

n
u

m
_o

u
t

<

<

−

0

≥
n

perm n

c
a
rry

_o
u

t

d
n
e
x
t

pdata_in[pos]

pdata_out[0]
[1]

[n-2]

pnum_out[0]
[1]

[n-2]

[0]

[n-2]

[0]

[0]

[n-1]

[n-1]

pnum_in[n-1]

[1]

[0]

[1]

[2]

[n-2]

[n-1]

[0]

+

[n-2]

[0]

[n-2]

p
rd
a
ta
_in

[n
-2
]

7

https://www.ece.lsu.edu/koppel/v/2023/hw04-perm-gen.svg

	Problem 1
	Part char 97
	Part char 98
	Part char 99

	Problem 2
	Part char 97
	Part char 98

	Problem 3
	Part char 97

