
LSU EE 4755 Homework 2 Due: 29 September 2023

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2023/hw02.v.html.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account (if necessary), copy the assignment, and run the Verilog simulator on the un-
modified homework file, hw02.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Homework Overview
In this assignment modules will be completed to compute the expression (1− b/c)/a. For example,
if the inputs to one of these modules are a = 10, b = 20, and c = 80, the output would be
(1−20/80)/10 = 0.075. The inputs are unsigned integers, but the output is floating point. Module
parameters provide the widths of the integer inputs and the significand and exponent size of the
floating-point output.

In Problem 1 module comp_p1 is to be completed so that the calculation is foolishly done in
the order given by the expression, (1 − b/c)/a. The floating point conversion and calculation are
to be done using Chipware modules. Solving it requires a straightforward application of Verilog
techniques for instantiating modules and wiring them together. It also requires an understanding
of when and how to convert numbers from integer to floating-point representations.

In Problem 2 module comp_p2 is to be completed so that the expression is computed much
more efficiently (not foolishly as in Problem 1). The expression (1 − b/c)/a is to be transformed
so that some of the computation can be done by integer arithmetic and in a way that requires less
computation precision.

In a correctly completed assignment the testbench will show that module comp_p2 has greater
accuracy, and the synthesis program will show that module comp_p2 is both faster and less expensive
than comp_p1. That is, by transforming (1− b/c)/a all factors of interest improve, there’s no cost/
performance tradeoff to balance! That’s why the method used by comp_p1 is foolish.

Testbench
To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up
account. The testbench will apply inputs to several instantiation of modules comp_p1 and comp_p2.
The instantiations differ on the number of bits used for the integer inputs and the format of the
floating-point output. The instantiation parameters are shown at the end of the testbench along
with a summary of the errors for that module. The output for an unmodified assignment is:

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2023/hw02.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

Total comp_p1 exp= 7, sig= 6, w= 4: 9258 errors. Err bits: avg 8.83, max 18

Total comp_p1 exp= 7, sig= 8, w= 4: 9207 errors. Err bits: avg 10.60, max 20

Total comp_p1 exp= 8, sig=10, w= 5: 9533 errors. Err bits: avg 13.60, max 25

Total comp_p1 exp= 8, sig=10, w=10: 9918 errors. Err bits: avg 18.49, max 38

Total comp_p1 exp= 8, sig=12, w=10: 9893 errors. Err bits: avg 20.38, max 39

Total comp_p2 exp= 7, sig= 6, w= 4: 9228 errors. Err bits: avg 9.06, max 18

Total comp_p2 exp= 7, sig= 8, w= 4: 9268 errors. Err bits: avg 10.91, max 20

Total comp_p2 exp= 8, sig=10, w= 5: 9529 errors. Err bits: avg 14.04, max 25

Total comp_p2 exp= 8, sig=10, w=10: 9906 errors. Err bits: avg 19.11, max 39

Total comp_p2 exp= 8, sig=12, w=10: 9903 errors. Err bits: avg 21.15, max 41

Total number of errors: 95643

The text exp= 7 shows the value of parameter w_exp, etc. To add or change instantiation
parameters search for the place where variable pset is assigned and edit the initialization of pset
(and change npsets if needed):

localparam int npsets = 5; // This MUST be set to the size of pset.

// { w_exp, w_sig, w_int }

localparam int pset[npsets][3] =

’{

{ 7, 6, 4 },

{ 7, 8, 4 },

{ 8, 10, 5 },

{ 8, 10, 10 },

{ 8, 12, 10 }};

The testbench will report on the correctness and accuracy of the output. The output of a
module does not need to exactly match a correct output to be considered correct, it just needs to
be close enough. Module comp_p2 is expected to be more accurate, so an output of comp_p2 can
be considered wrong even though the same output of comp_p2 is considered correct.

The difference between the expected output and the output provided by your module is mea-
sured in error bits (EB). Zero error bits means the output exactly matches. When the exponents of
the module and expected output are the same the EB is the size (in bits) of a number that would
have to be added to one significand (treating it as an integer) to make it equal to the other. For
example, an EB of 1 means that a 1-bit number can be added to one significand to make it equal
to the other. An EB of 2 means that a two-bit number can be added. If the exponents differ by
more than one then the exponent difference is the EB. See routine conv::err_bits for details.

For Problem 2 an output with an EB less than 2 is considered correct. For Problem 1 a
per-input tolerance is computed and is used to determine if the output is correct. The testbench
keeps track of the average and maximum EB for each module, and these are shown at the end of
execution along with an error count. The output for a correct solution is:

Total comp_p1 exp= 7, sig= 6, w= 4: 0 errors. Err bits: avg 0.37, max 4

Total comp_p1 exp= 7, sig= 8, w= 4: 0 errors. Err bits: avg 0.40, max 4

Total comp_p1 exp= 8, sig=10, w= 5: 0 errors. Err bits: avg 0.48, max 5

Total comp_p1 exp= 8, sig=10, w=10: 0 errors. Err bits: avg 0.71, max 10

Total comp_p1 exp= 8, sig=12, w=10: 0 errors. Err bits: avg 0.71, max 9

Total comp_p2 exp= 7, sig= 6, w= 4: 0 errors. Err bits: avg 0.00, max 0

Total comp_p2 exp= 7, sig= 8, w= 4: 0 errors. Err bits: avg 0.00, max 0

Total comp_p2 exp= 8, sig=10, w= 5: 0 errors. Err bits: avg 0.00, max 0

Total comp_p2 exp= 8, sig=10, w=10: 0 errors. Err bits: avg 0.07, max 1

Total comp_p2 exp= 8, sig=12, w=10: 0 errors. Err bits: avg 0.04, max 1

2

Total number of errors: 0

Notice that both modules have zero errors, but that instances of comp_p2 are more accurate
(lower EB). The maximum error bits occurred for comp_p1 instantiated with a significand width
of 10 bits and an integer width of 10 bits. The average EB though is just 0.71, so those big 10-bit
errors don’t occur very often.

To help in debugging details of errors are shown. Here are the first two errors shown for
comp_p1 with the unmodified code:

Error p1 #(7,6,4) a= 1 b=13 c= 1: Err bits 8 (tol 2)

Output 2.0000e+00 != -1.2000e+01 (correct).

Output ’h00 * 2^(64-63) != ’h20 * 2^(66-63) (correct)

Error p1 #(7,6,4) a= 5 b=10 c= 5: Err bits 11 (tol 2)

Output 6.0000e+00 != -1.9922e-01 (correct).

Output ’h20 * 2^(65-63) != ’h26 * 2^(60-63) (correct)

The first list of each error shows the instantiation size (7,6,4), inputs (a=1, b=13,c=1), the
EB value, 8, and the tolerance, 2. The tolerance of 2 indicates that an EB of 2 or lower would
have been considered correct, but alas the EB is 8. The next two lines (starting with Output) show
the provided and correct output, in decimal (the first line) and in binary scientific notation (the
second line). These lines show for the first error that the expected correct output is -12, but the
provided output is 2. The second line shows the significand (in hex) and exponent of the provided
and correct output.

Details are not shown for every incorrect output. Instead, details are shown if the EB exceeds
the highest EB encountered for that module.

Helpful Examples
For this assignment Chipware modules are to be instantiated to perform floating-point computation
and integer/floating-point conversion. See 2017 Homework 2 for examples of how to instantiate
these modules to perform a computation and integer/floating-point conversion. In the 2017 assign-
ment all FP numbers were IEEE single 32-bit format. But in this (2023) assignment the formats
vary and so parameters must be used when instantiating the Chipware modules to specify the
exponent and significand length. In 2021 Homework 2 Chipware modules were instantiated with
non-default exponent and significand lengths. Also see 2022 Homework 5. That assignment uses
both combinational and sequential modules. (Sequential material has not yet been covered.) See
ms_comb in 2022 Homework 5 for a straightforward connection of FP modules (but without format
conversion).

3

Problem 1: Module comp_p1 has three w_int-bit integer inputs, a, b, and c, and a wfp-bit
floating-point output, h. The module has three parameters, w_int, w_exp, and w_sig. (A fourth
parameter, wfp is set to 1+w_exp+w_sig and its value should not be changed.) Complete module
comp_p1 so that h is set to the value of (1 − b/c)/a. The module inputs, a, b, and c are unsigned
integers but the calculation must be done in floating-point in this problem. Output h is a floating-
point number with a w_exp-bit exponent, a w_sig-bit significand, and one sign bit. The format of
h is the same as the format used by the Chipware modules.

In the unmodified code comp_p1 computes h = a + 1, which is clearly wrong but it does
show a quick example of how to convert a to floating point, how to get a FP constant, and how to
instantiate a Chipware adder.

Complete comp_p1 so that it foolishly computes h based on the calculation order in the ex-

pression 1−b/c
a . (The foolishness is avoided in Problem 2.) That is, first compute x1 = b/c, then

compute x2 = 1 − x1, and finally compute h = x2/a.
Use Chipware modules for the floating-point arithmetic and for conversions between integer

and floating-point representations. Pay attention to cost.
A correct solution should show zero errors, but the average bit error can be 0.5 and the

maximum bit error can be larger than 5. Lower error rate and lower cost and lower delay will be
possible in Problem 2.

Use Chipware modules for floating-point computation.

Use procedural or implicit structural code for any integer computation.

Pay attention to cost: The significand size of the floating-point units can be at most w sig+1 bits.
To achieve this one must provide parameter inputs to the Chipware modules.

Pay attention to cost: don’t use more bits than are needed.

The modules must be synthesizable.

To synthesize your code issue the command genus -files syn.tcl. Synthesis should take two
or three minutes. If there are no errors, running this command will generate output that includes
like the following:

Synthesizing at effort level "high"

Module Name Area Delay Delay Synth

Actual Target Time

comp_p1_w4_w_exp7_w_sig6 183394 31.57 900.0 ns 66 s

comp_p2_w4_w_exp7_w_sig6 129109 18.07 900.0 ns 36 s

Problem 2: Expression 1−b/c
a might be easy for a human to read, but it does not describe the

best way to compute the value with finite-precision computations on non-zero cost hardware. One
place accuracy is lost is computing 1 − b

c when b/c ≈ 1. Furthermore all computation must be

done in floating-point. Fortunately it is easy to transform 1−b/c
a to eliminate the 1 − b

c calculation
and also to put it in a form where some computation can be done using integer arithmetic. One
possible way of transforming the expression is to multiply by 1. Not just any 1 of course, but c

c . A
few further manipulations should bring it to a form that can be more easily computed.

Module comp_p2 has the same ports and parameters as comp_p1. Complete comp_p2 so that it

computes 1−b/c
a much more efficiently, following the guidelines described above. When transforming

the expression keep in mind that integer addition and subtraction is less costly than floating-point

4

subtraction and division (floating-point or integer) is much more costly (time and area) than other
operations.

Module comp_p2 should use a mix of integer and floating-point computation. Pay attention to
precision, especially for integer arithmetic where the result of a computation can require more bits
than the operands. (If you don’t remember try looking it up.)

The testbench applies a stricter test to the output of comp_p2, which affects the expected
output for inputs in which b ≈ c.

Use Chipware modules for floating-point computation.

Use procedural or implicit structural code for integer computation.

Pay attention to cost: The significand size of the floating-point units can be at most w sig+1 bits.
To achieve this one must provide parameter inputs to the Chipware modules.

Pay attention to cost: don’t use more bits than are needed.

The modules must be synthesizable. (Use the same synthesis command as used in Problem 1.)

5

	Problem 0
	Problem 1
	Problem 2

