
LSU EE 4755 Homework 1 Due: 7 September 2023

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2023/hw01.v.html.

Collaboration Rules
Each student is expected to complete his or her own assignment. It is okay to work with other
students and to ask questions in order to get ideas on how to solve the problems or how to overcome
some obstacle (be it a question of Verilog syntax, interpreting error messages, how a part of the
problem might be solved, etc.) It is also acceptable to seek out digital design resources for help on
Verilog, digital design, etc. It is okay to make use of AI LLM tools such as ChatGPT and Copilot to
generate sample Verilog code. (Do not assume LLM output is correct. Treat LLM output the same
way one might treat legal advice given by a lawyer character in a movie: it may sound impressive,
but it can range from sage advice to utter nonsense.)

After availing oneself to these resources each student is expected to be able to complete the
assignment alone. Test questions will be based on homework questions and the assumed time
needed to complete the question will be for a student who had solved the homework assignment
on which it was based.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator on the unmodified homework
file, hw01.v. Do this early enough so that minor problems (e.g., password doesn’t work) are minor
problems.

Testbench
To compile your code and run the testbench press F9 in an Emacs buffer in a properly set up

account. The testbench will test 3 modules, minmax2p1 (n = 2), minmax4 (n = 4), and minmax8

(n = 8). Each module will be tested on 100 inputs. If a module’s output on a particular input
is incorrect, a message will be printed showing the incorrect and correct output. This output will
only be shown for the first few errors, but a tally will be shown near the end counting all errors.

In an unmodified assignment the testbench will generate output that includes the following
near the end:

Error n=8 max z != 8107 (correct)

Error n=8 min z != 907 (correct)

Error n=8 max z != 8156 (correct)

Error n=8 min z != 243 (correct)

Error n=8 max z != 6424 (correct)

Done with n=8, tests, 100 min 100 max errors found.

xmsim: *W,RNQUIE: Simulation is complete.

xcelium> exit

Total number of errors: 600

The z in the output above means that the minmax8 outputs (both min and max) were set to z,
meaning the output was not connected (z is often used to indicate high impedance). The output
of the testbench for a correctly completed assignment is:

Done with n=2, tests, 0 min 0 max errors found.

Done with n=4, tests, 0 min 0 max errors found.

Done with n=8, tests, 0 min 0 max errors found.

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2023/hw01.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

xmsim: *W,RNQUIE: Simulation is complete.

xcelium> exit

Total number of errors: 0

Helpful Examples
A good past assignment to look at is 2017 Homework 1. A question very similar to Problem 1 was
asked in 2018 Homework 1 Problem 1. So, do not look at 2018 Homework 1 until after you have
made a very serious attempt at Problem 1.

Problem 1: Module minmax2, shown below, sets output min to the smaller of its two inputs a0

and a1, and sets max to the larger of those two inputs:

module minmax2
#(int w = 10)

(output uwire [w-1:0] min, max, input uwire [w-1:0] a0, a1);

assign { min, max } = a0 <= a1 ? { a0, a1 } : { a1, a0 };

endmodule

Notice that minmax2 uses a continuous assignment statement. Complete module minmax2p1 so that
it does the same thing as minmax2, but without a continuous assignment and without procedural
code. Instead instantiate compare_lt and mux2 modules (shown below). Follow other guidelines
and requirements shown in the checkboxes in the Verilog file.

module compare_lt
#(int w = 31)

(output uwire lt, input uwire [w-1:0] a0, a1);

// Set lt to 0 if a1 < a0, set lt to 1 otherwise.

assign lt = a0 <= a1;

endmodule

module mux2
#(int w = 3)

(output uwire [w-1:0] x, input uwire s, input uwire [w-1:0] a0, a1);

assign x = s ? a1 : a0;

endmodule

There is another problem on the next page.

2

Problem 2: Modules minmax4 and minmax8 each have outputs min and max, which are to be
set to the smallest and largest values of their input. Input a to minmax4 is a 4-element array of
w-bit unsigned integers, and input a to minmax8 is an 8-element array. Complete these modules as
described below.

For this problem use modules minmax2, min2, and max2. Module min2, as one might guess,
sets its output to the smaller of its two inputs. Module max2 is similar. Assume that the combined
cost of a min2 and max2 module is greater than one minmax2 (but less than the cost of two minmax2

modules).

module min2 #(int w = 10)

(output uwire [w-1:0] min, input uwire [w-1:0] a0, a1);

assign min = a0 < a1 ? a0 : a1;

endmodule

module max2 #(int w = 10)

(output uwire [w-1:0] max, input uwire [w-1:0] a0, a1);

assign max = a0 < a1 ? a1 : a0;

endmodule

(a) Complete module minmax4 using instantiations of modules minmax2, and possibly min2 and
max2 as needed. Do not use assign statements or procedural code. Follow other guidelines shown
in the checklist in the code. Pay attention to the relative cost of the min2, max2, and minmax2

modules.

(b) Complete module minmax8 using instantiations of modules minmax4, and possibly minmax2,
min2, and max2 as needed. Do not use assign statements or procedural code. Follow other
guidelines shown in the checklist in the code. Pay attention to the relative cost of the min2, max2,
and minmax2 modules.

The code must by synthesizable. To synthesize your code issue the command genus -files

syn.tcl. If there are no errors, running this command will generate output that includes like the
following:

Module Name Area Delay Delay

Actual Target

minmax2p1_w8 15086 2.191 10.000 ns

minmax2_w8 15086 2.191 10.000 ns

minmax4_w8 49094 4.412 10.000 ns

minmax8_w8 117111 6.632 10.000 ns

minmax2p1_w8_1 19678 1.029 0.100 ns

minmax2_w8_1 19678 1.029 0.100 ns

minmax4_w8_1 75084 1.496 0.100 ns

minmax8_w8_1 214774 2.567 0.100 ns

3

	Problem 0
	Problem 1
	Problem 2
	Part char 97
	Part char 98

