
Name Solution

Digital Design Using HDLs

LSU EE 4755

Midterm Examination

Wednesday, 19 October 2022, 11:30-12:20 CDT

Alias
Sentient?

Problem 1 (25 pts)

Problem 2 (31 pts)

Problem 3 (20 pts)

Problem 4 (12 pts)

Problem 5 (12 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/

Problem 1: [25 pts] Answer the following multiplexor questions.

(a) Complete module mux4 so that it implements a 4-input multiplexor using instantiations of the 2-input
multiplexor shown below. Do not use procedural code.

� Complete mux4 so that it implements a 4-input multiplexor � using mux2 instantiations.

� Do not use procedural code. � Do not change the ports or default parameters of mux4 or mux2.

� Don’t forget to declare any objects that are used.

The solution appears below. The first two muxen, m01 and m23, connect to the data inputs (a0-a3), two per mux. Note that both

of these muxen use s[0] as the select bit. The select connection of the third mux, m0123, connects to bit s[1].

module mux4
#(int w = 3)

(output uwire [w-1:0] x,

input uwire [1:0] s, input uwire [w-1:0] a0, a1, a2, a3);

// SOLUTION

//

uwire [w-1:0] a01, a23;

mux2 #(w) m01(a01, s[0], a0, a1);

mux2 #(w) m23(a23, s[0], a2, a3);

mux2 #(w) m0123(x, s[1], a01, a23);

endmodule

module mux2
#(int w = 6)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, a1);

assign x = s ? a1 : a0;

endmodule

2

(b) Module mux2_bad only works for w=1. Describe the problem and show the correct mux output and the
output of mux2_bad for w=4, s=0, a0=2, and a1=4.

module mux2_bad
#(int w = 4)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, a1);

assign x = !s && a0 || s && a1;

endmodule

� In mux2 (a correct mux) when w=4, s=0, a0=2, and a1=4, � output x= 2

� In mux2 bad when w=4, s=0, a0=2, and a1=4, � output x= 1

� Explain the problem when w is not 1.

The problem is that a0 and a1 are operands of a logical AND operator, &&, and so they will be converted to a Boolean (1-bit) type.

That changes both the 2 and 4 in the example to a 1. There would be no problem if a0 and a1 were already 1 bit.

(c) Complete module mux2_1r below so that it recursively implements a 2-input w-bit mux. All that remains
to be done is completing the connections to the two recursive instances, m1 and mr.

The solution is shown below. Note that instance m1 was declared with w=1 and mr was declared with w=w-1 as part of the problem.

So to complete the module instance m1 connects with one bit of each of x, a0, and a1. Here bit zero was chosen but any bit position

would do. Instance mr connects to the remaining w-1 bits of x, a0, and a1. The select signal is the same for both instances.

Note that there is no practical reason to recursively describe a 2-input multiplexor this way, or to recursively describe a 2-input

multiplexor at all.

module mux2_1r
#(int w = 5)

(output uwire [w-1:0] x,

input uwire s, input uwire [w-1:0] a0, a1);

if (w == 1) begin

assign x = !s && a0 || s && a1;

end else begin

// SOLUTION

mux2_1r #(1) m1(x[0], s, a0[0], a1[0]);

mux2_1r #(w-1) mr(x[w-1:1], s, a0[w-1:1], a1[w-1:1]);

end

endmodule

3

Problem 2: [31 pts] The val output of atoi_it_m_to_l is the value of the radix-r ASCII-represented
number appearing at its input, str, and output nd is the number of digits. Unlike the Homework 2 Problem
2 module, this module starts at the most-significant digit rather than the least-significant digit.

module atoi_it_m_to_l
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))

(output logic [wv-1:0] val,

output logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n:0];

uwire is_digit[n:0];

uwire [wd-1:0] ndi[n:0];

assign is_digit[n] = 0;

assign ndi[n] = 0;

assign vali[n] = 0;

assign nd = ndi[0];

assign val = vali[0];

localparam int wcv = $clog2(r);

for (genvar i=n-1; i>=0; i--) begin

// Find Value of Digit i

uwire [wcv-1:0] vald;

atoi1 #(r,wcv) a(vald, is_digit[i], str[i]);

// Multiply (scale) the accumulated sum.

uwire [wv-1:0] valns;

mult_by_c #(.w_in(wv), .c(r), .w_out(wv)) mc(valns, vali[i+1]);

// Update accumulated value.

assign vali[i] = is_digit[i] ? valns + vald : 0;

// Update number of digits.

assign ndi[i] = !is_digit[i] ? 0 : is_digit[i+1] ? ndi[i+1] : i + 1;

end

endmodule

(a) Describe how the behavior of the module would change if the loop direction were changed as shown
below, but no other changes were made.

for (genvar i=0; i<n; i++) begin

� Change in behavior with ascending loop:

There will be no change in behavior. It may be more confusing to a human with the direction of the loop reversed, but the module does

exactly the same thing. To see that look at the line assigning ndi[i]. It is computed using ndi[i+1]. In a procedural language

the forward loop would not work because ndi[i+1] would not have been computed at iteration i when ndi[i] is written. But

this is Verilog and assign is a continuous assignment that re-executes whenever its live-in values change, is digit[i],

is digit[i+1], and ndi[i+1] in this case. All the generate loop is doing is describing hardware, each iteration describes one set

of hardware. When the hardware for assign ndi from iteration x+1 executes it writes ndi[x+1] which results in the assign

4

ndi for iteration x to execute because ndi[x+1] is in the sensitivity list for the assign.

(b) On the next (facing) page show the hardware that will be inferred for an instantiation of atoi_it_m_to_l
(descending loop version) with n=3 and r=10. Show each instantiation of atoi1 and mult_by_c as a box,
do not show their contents. The inferred hardware for atoi_it is shown for reference.

For reference, part of Homework 3 Problem 2 solution shown below.

str
0

atoi
.r(14)

str[0]

m_b_c
.c(1)

add

1

0
atoi

.r(14)

str[1]

m_b_c
.c(14)

add

2

0
atoi

.r(14)

str[2]

m_b_c
.c(196)

add

3

i=0 i=1 i=20

1
0
ndi[-1] ndi[0] ndi[1] ndi[2]

nd

val

is_valid[0] is_valid[1] is_valid[2]is_valid[-1]

vali[-1] vali[0]

vali[1]

atoi_it .r(14), .n(3)

valdr valdr valdrvald vald vald

vals vals vals

For reference, part of Homework 3 Problem 2 solution shown above.

� Show inferred hardware for atoi it m to l for n=3 and r=10.

� Show the hardware inferred for the operators, such as && and ?:.

� Do not confuse parameters and ports and omit hardware that does not belong, such as “hardware” to
compute values needed at elaboration time.

Solution appears below. Hardware that can easily be eliminated by optimization appears in gray.

atoi_it_m_to_l .r(10), .n(3)
str

nd

valis
_d

ig
it

[3
]

atoi
.r(10)

is_digit[2]

0 ndi[2]
2

m_b_c
.c(10)0

v
a
li[

3
]

add
0

0

atoi
.r(10)

is_digit[1]

0 ndi[1]

m_b_c
.c(10)

add
0

1

atoi
.r(10)

is_digit[0]

m_b_c
.c(10)

add
0

0 ndi[0]
3

n
d
i[

2
] i=2

v
a
li[2

]

i=1 i=0

v
a
li[1

]

v
a
li[0

]

0

5

(c) Module atoi_m_to_l will only show the value of numbers that are right-aligned in str, otherwise the
value will be shown as zero. For example, for input str="__123" the output would be val=123 and nd=3,
but for input str="_123_" the output would be val=0 (because the rightmost character is not a digit).
Modify the module so the val output is the value of the number regardless of its location. If there is more
than one number, say str="__12_345_", show the value of the rightmost number, 345 in this case.

� Modify so that val and nd are for numbers whether or not they are right-aligned.

� Do not use procedural code.

� Avoid costly or slow solutions.

� A correct solution only requires a few changes.

Solution appears in the Verilog on the next page.

In the original code, if is digit[i] was false then the value and length were set to zero. But now since there can be non-digit

characters to the right of the number we can’t set these to zero. So the first case in the expressions assigning vali[i] and ndi[i]

pass the value and length along when is digit[i] is false.

If both is digit[i] and is digit[i+1] are true then a number is continuing at position i. For vali[i] we need to add

on the scaled number from the left (valns) and the current digit, vald. If is digit[i] is true but is digit[i+1] is false

then vali is just the value of the current digit, vald. Unlike in the original hardware we can’t rely on valns being zero for this

case.

In the original hardware the value of i+1 was used for ndi[i] at the left-most digit. That won’t work here because there could be

non-digit characters to the right of the number, so we can’t use the position of the first non-digit character to compute the length.

Instead, when a number is continuing, both is digit[i] and is digit[i+1] are true, the hardware adds 1 to the previous

value of the length (ndi[i+1]).

6

module atoi_it_m_to_l
#(int r = 11, n = 5, wv = $clog2(r**n), wd = $clog2(n+1))

(output logic [wv-1:0] val,

output logic [wd-1:0] nd,

input uwire [7:0] str [n-1:0]);

uwire [wv-1:0] vali[n:0];

uwire is_digit[n:0];

uwire [wd-1:0] ndi[n:0];

assign is_digit[n] = 0;

assign ndi[n] = 0;

assign vali[n] = 0;

assign nd = ndi[0];

assign val = vali[0];

localparam int wcv = $clog2(r);

for (genvar i=n-1; i>=0; i--) begin

// Find Value of Digit i

uwire [wcv-1:0] vald;

atoi1 #(r,wcv) a(vald, is_digit[i], str[i]);

// Multiply (scale) the accumulated sum.

uwire [wv-1:0] valns;

mult_by_c #(.w_in(wv), .c(r), .w_out(wv)) mc(valns, vali[i+1]);

// Update accumulated value.

// assign vali[i] = is_digit[i] ? valns + vald : 0;

/// SOLUTION
assign vali[i] =

!is_digit[i] ? vali[i+1] :

is_digit[i+1] ? valns + vald : vald;

// Update number of digits.

// assign ndi[i] = !is_digit[i] ? 0 : is_digit[i+1] ? ndi[i+1] : i + 1;

/// SOLUTION
assign ndi[i] =

!is_digit[i] ? ndi[i+1] :

is_digit[i+1] ? ndi[i+1] + 1 : 1;

end

endmodule

7

Problem 3: [20 pts] Illustrated below is the hardware for one of the atoi modules from Homework 3.
The delays for the add, atoi1, and mult_by_c modules are shown in blue. For atoi the delay of the value
(valdr) output is zero and the delay of the is_digit (lower) output is 3.

(a) Based on the illustrated delays and using the simple model find the delay at each output, val and nd,
and show the critical path to each.

� Use the simple model and indicated delays to find the delay at outputs val and nd.

� Show the critical path to both val and nd.

� Take into account constant values.

Solution appears below. Note that the delay of a 2-input mux with one constant input is 1, and the delay with two constant inputs

is zero.

str

0
atoi

.r(10)st
r[

0
]

1

0
atoi

.r(10)st
r[

1
]

m_b_c
.c(10)

add

2

0
atoi

.r(10)st
r[

2
]

m_b_c
.c(100)

add

3
0
ndi[-1] ndi[0] ndi[1]

ndi[2]
nd

val

is_valid[0] is_valid[1]

is_valid[2]

vali[0]
vali[1]

atoi_it .r(10), .n(3)

valdr valdr valdrv
a
ld

v
a
ld

v
a
ld

vals

vals

0

16

20

16

20

3

0 0

3 3

0

3

10 1

11

1 1

1

3

4

4

4

5

5

5

25

41

6

6

26

57

3

63

(b) Modify the design to reduce the delay at val by moving multiplexors. The modification is simple though
will increase cost. Show your modification either on the diagram or in the Verilog code below.

� Modify to reduce the delay at val by moving multiplexors.

� Do not change what the module does.

The solution appears below, with the moved mux shown in orange. By moving the mux to the output of the m b c module it can

start at t = 0 rather than waiting for the mux select signal to arrive.

str

0
atoi

.r(10)st
r[

0
]

1

0

atoi
.r(10)st

r[
1

]

m_b_c
.c(10)

add

2

0
atoi

.r(10)st
r[

2
]

m_b_c
.c(100)

add

3
0
ndi[-1] ndi[0] ndi[1]

ndi[2]
nd

val

is_valid[0]
is_valid[1] is_valid[2]

vali[0]
vali[1]

atoi_it .r(10), .n(3)

valdr

v
a
ld

r valdrv
a
ld

v
a
ld

v
a
ld

vals

vals

0

16

20

16

20

3

0 0

3 3

0

3

10 1

1

1

1 1

1

3

4

4

4

3 5

5

5

21

37

6

6

26

53

3

6

0
20

8

Problem 4: [12 pts] Answer each question below.

(a) The module below will not compile because of the way the module connections are declared. Fix the
problem by changing the declarations.

� Change declaration to fix problem.

The solution appears below. Since x is assigned proceduraly it must be declared logic, which make it a var kind rather than a

net kind.

module yucx2
#(int w = 5)

(output logic [w-1:0] x, // SOLUTION: Change port from uwire to logic.

input uwire [1:0] s, input uwire [w-1:0] a0, a1);

always_comb begin

x = a0;

if (s != 0) x = a1;

end

endmodule

(b) The mv output of findmax is supposed to be set to the value of the largest of the three inputs. Assuming
it compiles and simulates, it still won’t work. Identify the problem.

� Why won’t mv be set to the maximum of a0, a1, a2?

Because mv is only initialized once, at the beginning of simulation whereas a0, a1, and a2 can change any time.

� Provide an example that illustrates the incorrect behavior.

At t = 10 the inputs are a0=4, a1=7, a2=3. The output will be mv=7. Later at t = 10 inputs are a0=3, a1=2, a2=0. The

output will still be mv=7 because there is no way for mv to be set to a smaller value.

module findmax
#(int w = 5)

(output logic [w-1:0] mv,

input uwire [w-1:0] a0, a1, a2);

initial mv = 0;

always_comb if (mv < a0) mv = a0;

always_comb if (mv < a1) mv = a1;

always_comb if (mv < a2) mv = a2;

endmodule

module findmax
#(int w = 5)

(output logic [w-1:0] mv, input uwire [w-1:0] a0, a1, a2);

always_comb begin // SOLUTION: Possible fix. (Not the best.)

mv = 0; // mv is initialized whenever the a’s change.

if (mv < a0) mv = a0;

if (mv < a1) mv = a1;

if (mv < a2) mv = a2;

end

endmodule

9

Problem 5: [12 pts] Answer each question below.

(a) Type logic is an example of a four-state type. Name those four states and describe what the non-numeric
ones are used for.

� Name the four logic states.

They are 0, 1, x, and z.

� Describe what the non-numeric ones signify.

State x for var types can mean uninitialized. For both var and uwire it can mean an ambiguous results. For net kinds (such as

uwire) it can mean a bit is driven by more than one driver. State z for net types means it is not being driven (in a high impedance

state).

(b) Most synthesis programs will not synthesize a module that includes a delay, such as the one below. Why
not?

module madd
#(int w)

(output logic [w-1:0] w,

input uwire [w-1:0] a, b, c);

always_comb begin

w = a * b;

#5; // Allow enough time for multiplication to finish.

w = w + a;

end

endmodule

� Why isn’t a delay synthesizeable?

Though it would be possible for a synthesis program and technology target to provide for delays, it would not be very useful, especially

in digital logic design. In the module above the output of the multiplier connects to the input of the adder. A delay has no role to

play, since the inferred hardware is just a bunch of connected gates. There is no way to, and no need to, tell the gates that their

input values have arrived and so now its time to start working.

10

