
Name Solution

Digital Design Using HDLs

LSU EE 4755

Midterm Examination

Wednesday, 27 October 2021, 11:30-12:20 CDT

Alias
Vwl Shrtg

Problem 1 (25 pts)

Problem 2 (30 pts)

Problem 3 (10 pts)

Problem 4 (10 pts)

Problem 5 (15 pts)

Problem 6 (10 pts)

Exam Total (100 pts)

V (mRNA) ⇒ Re < 1 Good Luck!

https://www.ece.lsu.edu/koppel/v/


Problem 1: [25 pts] Appearing in this problem are two variations on hardware that selects one of four
inputs, i, based on the position of the least-significant 1 in a 4-bit quantity, fmt. This is similar to the
hardware needed in the solution to Homework 2, except that here i[3] can be selected.

module nn_sparse #( int w = 20 )

( output logic [w-1:0] o, input uwire [w-1:0] i[4], input uwire [3:0] fmt );

(a) Show the hardware that will be inferred for is0 and show that hardware after optimization.

uwire [w-1:0] is0 = fmt[0] ? i[0] : fmt[1] ? i[1] : fmt[2] ? i[2] : i[3];

� Show inferred hardware.

� Show optimized hardware. Hardware can be re-arranged to reduce delay.

� Use only basic logic gates and multiplexors.

Solution appears below. The unoptimized hardware follows the rules for inference of the conditional operator (?:). In the optimized

version the critical path is reduced by two units by rearranging the three multiplexors into a reduction tree and using an OR gate to

provide a control signal for the mux at the root.
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(b) Compute the cost and delay of the optimized hardware for is0 in terms of w. (That’s w, not its default
value.)

� In terms of w cost is:

Each multiplexor (optimized or not) cost 3w uc and the OR gate cost 1 uc. The total cost for the unoptimized version is 9w uc

and the total cost for the optimized version is [9w + 1] uc.

� In terms of w delay is:

The delay through a 2-input multiplexor is 2 ut. In the unoptimized version the critical path passes through three multiplexors, for

a delay of 6 ut. In the optimized version the critical path passes through just 2 muxen, for a delay of 4 ut.

Note that the delay is not a function of w. Be sure that you thoroughly understand why this is true.
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(c) Appearing below is an alternative design. Net is0b will have the same value as is0. Show the hardware
below before and after optimization. For isi0 do not show multiplexors after optimization. For is0b use
two-input multiplexors (as many as needed).

uwire [1:0] isi0 = fmt[0] ? 0 : fmt[1] ? 1 : fmt[2] ? 2 : 3;

uwire [w-1:0] is0b = i[isi0];

� Show inferred hardware.

The inferred hardware appears below. The logic computing isi0 is similar to the logic computing is0 in the previous part, except

that its inputs are constants rather than elements of i. The inferred logic for is0 here is a four-input multiplexor.
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� Show optimized hardware, optimize to reduce delay.

� Use basic logic gates and � no muxen for isi0 and � two-input muxen (plus other logic) for is0b.

The optimized logic computing isi0 appears below after several steps in the optimization process. At the last step the logic for

is0b is also shown, but that logic is not fully optimized. The optimization shown below is based on the Verilog code above. A

synthesis program that has not been provided with the limit on the values of fmt could do no better. (With knowledge that exactly

one bit of fmt will be 1 a synthesis program (or human) would optimize the two lines above into the logic given for the solution to

part (a) of this problem.)
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(d) Compute the cost and delay of the optimized hardware (from the previous part) in terms of w. (That’s
w, not its default value.)

� In terms of w cost is:

The cost of the logic in the last section of the illustration above the cost is [3+3×3w] uc. The cost would drop to [1+3×3w] uc

if the select signals to the first two multiplexors were connected as shown in the optimized solution to part (a).

� In terms of w delay is:

The delay of the hardware in the last section of the illustration above is [1 + 1 + 2 + 2] ut, with the critical path passing through

the logic generating isi0[0]. One cycle can be saved by switching the positions of isi0[0] and isi0[1] and correspondingly

rearrange the order of the i inputs to the first two multiplexors to i[0], i[2], i[1], i[3]. That would reduce the critical

path by 1.
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Problem 2: [30 pts] The next_dist4 hardware illustrated below consists of several duplicated pieces of
hardware, one of which is circled. Call the circled hardware an ami unit (for add-minimum).
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(a) Compute the cost and delay of the module using the simple model, and show the critical path on the
illustration. Assume that the adder and comparison units are based on ripple adders.

� Cost in terms of w:

The module consists for four adders, three comparison units and 3 multiplexors. Each of these devices operate on w bits. Based on

the slides describing the simple model, the cost of a w-bit ripple adder is 9w uc, the cost of a w-bit comparison unit is 4w uc, and

the cost of a w-bit 2-input multiplexor is 3w. The total cost is [4× 9w + 3× 4w + 3× 3w] uc = 57w uc .

� Show critical path. � Delay in terms of w:

� Account for any cascading ripple units.

The critical path appears on the illustration as a red dashed line.

The start of the path passes through an adder and a comparison unit. In isolation the delay of an adder is 2(w + 1) ut and the

delay of a comparison unit is slightly less, [2w + 1] ut according to the simple model slides. But because the output of the adder

(actually two adders) connects to the comparison unit the cascaded delay can be used, which is [4 + 2(w + 1)] ut = [2w + 6] ut.

Because of the multiplexors cascading delays cannot be used for the other two comparison units. That is because their upper inputs

don’t arrive until the mux select signal stabilizes. So the remaining delay is that of three 2-input muxen and two w-bit comparison

units: [3× 2 + 2× (2w + 1)] ut = [4w + 8] ut. The total delay is [2w + 6 + 4w + 8] ut = [6w + 14] ut .
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(b) Appearing below are two incomplete modules, one is an ami module the other is the next_dist4 module.
Complete these modules to match the diagram using as many ami modules as needed. The ami module can
use procedural or implicit structural code. The next_dist4 module must instantiate and use ami modules
but can contain procedural or implicit structural code.

� Complete the ami module so that it matches the circled hardware.

� Complete the next dist4 module using as many ami modules as needed.

� Don’t forget to �declare any intermediate objects that are used.

� Noting that there are four adders and the width of each wire is w, � declare and use parameters appro-
priately.

module ami #( int w = 22 ) /// SOLUTION

( output uwire [w-1:0] s_out,

input uwire [w-1:0] L, d, s_in );

// Compute sum ..

//

uwire [w-1:0] sum = L + d;

//

// .. and connect it to s_out if it’s smaller than input value, s_in.

//

assign s_out = sum < s_in ? sum : s_in;

endmodule

module next_dist4 #( int w = 12 ) /// SOLUTION

( output uwire [w-1:0] e,

input uwire [w-1:0] L[4], d[4] );

// Compute first sum. This does not need a comparison, so don’t use ami.

//

uwire [w-1:0] e0 = L[0] + d[0];

// Interconnections between ami instances.

//

uwire [w-1:0] e1, e2;

// Instantiate three ami modules and interconnect them properly.

//

ami #(w) a1( e1, L[1], d[1], e0 );

ami #(w) a2( e2, L[2], d[2], e1 );

ami #(w) a3( e, L[3], d[3], e2 );

endmodule
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(c) Incomplete module next_dist is a generalization of next_dist4 to n elements per input. The module
includes a generate loop. Use that loop to instantiate ami modules so that it performs the correct calculation.
Keep the loop simple, don’t try to fix the delay problem.

� Complete module, taking advantage of the generate loop.

� Be sure to instantiate ami modules, �connect the first ami correctly, �and don’t leave e unconnected.

module next_dist /// SOLUTION

#( int n = 20, w = 12 )

( output uwire [w-1:0] e,

input uwire [w-1:0] L[n], d[n] );

localparam logic [w-1:0] mv = ~w’(0);

uwire [w-1:0] ee[n-1:-1];

assign ee[-1] = mv;

assign e = ee[n-1];

for ( genvar i=0; i<n; i++ ) begin

ami #(w) a( ee[i], L[i], d[i], ee[i-1] );

end

endmodule
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Problem 3: [10 pts] Consider the with_assign module below.

module with_assign #( int w = 10 )

( output uwire [w-1:0] g, input uwire [w-1:0] b, c );

uwire [w-1:0] a, f;

// Sensit. Execution Time

// List And Scheduled Lines

assign g = f | c; // Line 1 f,c x x x

assign f = a * c; // Line 2 a,c x ->(L1) x ->(L1)

assign a = b + c; // Line 3 b,c x ->(L2)

// ----- ----- ---

// Active Active Active

// List List List

endmodule

(a) Why might the module confuse or annoy humans?

� with assign could be confusing because:

The dataflow order (order of dependencies) is from bottom to top but humans expect to read these things from top to bottom. (Line

2 depends on Line 3, Line 1 depends on Line 2.) That would be annoying.

(b) The module makes extra work for simulators too. Suppose that the input values to with_assign, b and
c, change at t = 10. About how many times will each line below execute in a worst-case scenario? The
following sentence was not in the original exam: Use sensitivity lists to justify your answer.

� About how many times does each line execute? � Explain with sensitivity lists.

See the work in the comments above for this discussion. At t = 10 because b and c change Lines 1-3 are all put first in the inactive

list, then in the active list for execution. As a result of their execution Line 1 and Line 2 are placed in the inactive list. That becomes

the active list when the first one shown is empty. The execution of Lines 2 causes Line 1 to be scheduled a third time. So in total,

Line 1 executes 3 times, Line 2 executes twice and Line 3 once.

(c) Complete the sans_assign routine below so that it does the same thing as with_assign but is less
confusing and less work for simulators.

� Complete routine below. (Yes, it’s easy but not trivial.)

module sans_assign #( int w = 10 )

( output logic [w-1:0] g, input uwire [w-1:0] b, c );

logic [w-1:0] a, f; // SOLUTION: Change to logic. Also g.

always_comb begin

// SOLUTION: Put lines in dataflow order.

a = b + c; // Line 3

f = a * c; // Line 2

g = f | c; // Line 1

end

endmodule
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� Why does sans assign make less work for the simulator than with assign? Explain using sensitivity lists.

The sensitivity list of the always comb consists of just b and c. Objects a, f, and g are not in the sensitivity list (because their

values when begin is reached are not used). The always comb block will only be scheduled for execution when b or c changes.

So for the t = 10 scenario the block—and each line—is executed just once.
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Problem 4: [10 pts] Appearing below is an ordinary multiplier, followed by a multiplier that is näıvely
designed to take advantage of special cases (first operand is 0 or 1), followed by a module that instantiates
both.

module mult #( int w = 32 )

( output logic [w-1:0] p, input uwire [w-1:0] a, b );

always_comb p = a * b;

endmodule

module mult_1a #( int w = 32 )

( output logic [w-1:0] p, input uwire [w-1:0] a, b );

always_comb begin

if ( a == 0 ) p = 0;

else if ( a == 1 ) p = b;

else p = a * b;

end

endmodule

module nm #( int w = 32, logic [w-1:0] c = 12 )

( output uwire [w-1:0] prods[4], input uwire [w-1:0] a[4], b[4] );

mult #(w) m1 ( prods[0], a[0], b[0] );

mult #(w) m2 ( prods[1], c, b[1] );

mult_1a #(w) ma1( prods[2], a[0], b[0] );

mult_1a #(w) ma2( prods[3], c, b[1] );

endmodule

� Explain why m1 will be faster (lower delay) than ma1, even when possible values of a[0] include 0, 1, and
other values. Assume good synthesis programs.

The critical path of mult goes through just a multiplier. The critical path of mult 1a goes through a multiplier and a multiplexor,

and so the critical path is longer. The fact that the output is available sooner for the two special cases does not change the critical

path.

� How will the cost and performance of m2 and ma2 compare (to each other) using good synthesis programs?
That is, � which should be chosen when delay is the only concern and, � which of the two should be
chosen when cost is the only concern. The answer should not depend on any particular value of c.

In m2 and ma2 the a input is a constant. The synthesis program will then be able to determine, for mult 1a, which part of the

if/else chain executes and synthesize only for that. If a=3 then it will be the a*b part, and so the two modules are identical. In

both m2 and ma2 the synthesis program can see that the a input is a constant and will optimize the multiplier appropriately. That

means if a=1 ma2 will have no advantage.

11



Problem 5: [15 pts] Answer the following questions about Verilog syntax and semantics.

(a) Appearing below are four variations on a multiplier with a constant input. Most have errors that would
prevent them from compiling. For each indicate whether there is an error, and if so, what the error is and a
minimal fix.

� Module is © correct or �© has the following error and fix:

The assignment statements, such as p=0;, in the module below are an error in a module context.

module mult_2a #( int w = 32, logic [w-1:0] a = 12 )

( output uwire [w-1:0] p, input uwire [w-1:0] b );

if ( a == 0 ) p = 0;

else if ( a == 1 ) p = b;

else p = a * b;

endmodule

One solution is to switch to a continuous assignment (an assign statement), that has been done below.

module mult_2a #( int w = 32, logic [w-1:0] a = 12 ) /// SOLUTION

( output uwire [w-1:0] p, input uwire [w-1:0] b );

if ( a == 0 ) assign p = 0; // SOLUTION: Use assign.

else if ( a == 1 ) assign p = b;

else assign p = a * b;

endmodule
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� Module is © correct or �© has the following error and fix:

A procedural assign is being used on a net kind (uwire in this case). So, unlike mult 2a, the kind of assignment statement is

correct here since the assignment occurs in procedural code. The problem is kind of object being assigned.

module mult_2b #( int w = 32, logic [w-1:0] a = 12 )

( output uwire [w-1:0] p, input uwire [w-1:0] b );

always_comb begin

if ( a == 0 ) p = 0;

else if ( a == 1 ) p = b;

else p = a * b;

end

endmodule

A simple fix is to change p to a var. Note that uwire is short for uwire logic and that logic is short for var logic.

module mult_2b #( int w = 32, logic [w-1:0] a = 12 )

( output logic [w-1:0] p, input uwire [w-1:0] b );

// SOLUTION: Change p from "uwire logic" to "var logic".

always_comb begin

if ( a == 0 ) p = 0;

else if ( a == 1 ) p = b;

else p = a * b;

end

endmodule
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� Module is © correct or �© has the following error and fix:

The if in the code below is a generate if, and its condition, b==0, is not an elaboration-time constant. (The expression b==0 is

not an elaboration-time constant because b is a module input.)

module mult_2c #( int w = 32, logic [w-1:0] a = 12 )

( output uwire [w-1:0] p, input uwire [w-1:0] b );

if ( b == 0 ) p = 0;

else if ( b == 1 ) p = a;

else p = a * b;

endmodule

A fix is to make the code procedural by wrapping it in an always block and making p a var.

Note: Changing b to a in the if condition is NOT an appropriate fix because it changes what the module does.

module mult_2c #( int w = 32, logic [w-1:0] a = 12 )

( output logic [w-1:0] p, input uwire [w-1:0] b );

always_comb /// SOLUTION: Change generate if to procedural if.

if ( b == 0 ) p = 0;

else if ( b == 1 ) p = a;

else p = a * b;

endmodule

� Module is �© correct or © has the following error and fix:

module mult_2d #( int w = 32, logic [w-1:0] a = 12 )

( output uwire [w-1:0] p, input uwire [w-1:0] b );

if ( a == 0 ) assign p = 0;

else if ( a == 1 ) assign p = b;

else assign p = a * b;

endmodule
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(b) Show the values of b and c where requested below.

The solution appears below. The difference between a, b, and c are in how the bits are numbered. That only impacts the use of the

indexing (bit select) operator, [i]. It does not affect assignments and other references to the objects. For that reason b and c on

the first assignment are the same as a. However, the second assignment of b refers to the bits, so they are reversed.

module assortment;
logic [15:0] a;

logic [0:15] b;

logic [16:1] c;

initial begin

a = 16’h1234;

b = a;

c = a;

// � Show value of b and c after line above executes:

// SOLUTION:

// b = 16’h1234

// c = 16’h1234

#1; // Not really needed.

for ( int i=0; i<16; i++ ) b[i] = a[i];

// � Show value of b after line above executes:

// SOLUTION

// b = 16’h2c48

// = 16’b_0010_1100_0100_1000

//

// Note that:

// a = 16’b_0001_0010_0011_0100

end

endmodule
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Problem 6: [10 pts] Answer the following synthesis questions.

(a) Cadence Genus defines the following three synthesis steps: syn_gen (generic), syn_map (mapped, or
technology mapping), and syn_opt (optimized). Answer the following questions about technology mapping.

� Explain what happens during technology mapping.

In technology mapping generic gates (say, a 3-input AND gate) are replaced by gates in the target technology. The replacement can

also happen at a higher level, so a generic adder module would be replaced by an adder in the target technology, if such a thing is

provided.

� Even if optimization were done before technology mapping why is it important optimize after technology
mapping?

The optimization would be on generic gates, which might be available at any size. The target technology might have gates with, say,

2, 4, or 6 inputs, but not 3 or 5 inputs. So another round of optimization might find a way to use those wasted inputs. Also, after

technology mapping the delay of gates are known, and so delay optimization can occur.

(b) What is the big disadvantage of setting the delay target too low when performing synthesis? (The small
disadvantage is that it takes a longer time to run.)

� Disadvantage of setting delay target too low during synthesis:

With a very large delay target the optimization program can minimize cost. As the delay is lowered the optimization will have to

substitute higher-cost alternatives to meet the delay target. (For example, substituting a carry lookahead adder for a ripple adder.)

Making the delay smaller than it needs to be can result in costs higher than they need to be.
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