
LSU EE 4755 Homework 1 Solution Due: 8 September 2017

Start working on the solutions to the problems below on paper, but complete them using the

computers in the lab. For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For

the complete Verilog for this assignment without visiting the lab visit

https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html.

Problem 1: Appearing below, and in hw01.v, is a Verilog description of a 2-input multiplexer,
mux2, and a partially completed description of a 4-input mux, mux4, along with a diagram showing
how a four-input mux can be made using three two-input multiplexers. Complete mux4 as described
in the diagram.

It is important that mux4 instantiate three mux2 modules. Other correct 4-input multiplexer
implementations will not receive credit. Also, don’t forget to set the parameters correctly when
instantiating modules.

1:10:0

select

a0

a1

a2

a3

x

module mux2

#(int w = 16)

(output uwire [w-1:0] x,

input uwire s,

input uwire [w-1:0] a, b);

assign x = s == 0 ? a : b;

endmodule

module mux4

#(int w = 6)

(output uwire [w-1:0] x,

input uwire [1:0] s,

input uwire [w-1:0] a[3:0]);

/// SOLUTION

//

// Notice that wires and modules are named based upon the select

// bits for which they connect to the output.

//

uwire [w-1:0] x0x, x1x;

mux2 #(w) m0x(x0x, s[0], a[0], a[1]);

mux2 #(w) m1x(x1x, s[0], a[2], a[3]);

mux2 #(w) mxx(x, s[1], x0x, x1x);

endmodule

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html

Problem 2: Appearing below is a mux8 module. Complete mux8 so that it implements an 8-input
multiplexer using two mux4 modules and one mux2 module. Notice that the data input to mux8

is an 8-element array of w-bit quantities. To see how to extract a subrange of an array (called a
part select in Verilog) see the testbench module. Solve this problem by generalizing the technique
appearing in the previous problem.

Credit will only be given for mux8 modules that instantiate two mux4 modules and a mux2

module. Yes, assign x = a[s]; is correct and the best way to do it in other situations, but the
goal here is to learn about instantiation.

module mux8

#(int w = 5)

(output uwire [w-1:0] x,

input uwire [2:0] s,

input uwire [w-1:0] a[7:0]);

/// SOLUTION

uwire [w-1:0] x0xx, x1xx;

mux4 #(w) m0xx(x0xx, s[1:0], a[3:0]);

mux4 #(w) m1xx(x1xx, s[1:0], a[7:4]);

mux2 #(w) m(x, s[2], x0xx, x1xx);

endmodule

Appearing below is the start of the testbench code. To see the complete testbench and other
modules follow https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html.

module testbench();

localparam int w = 10;

localparam int n_in_max = 8;

localparam int n_mut = 3;

uwire [w-1:0] x[n_mut];

logic [2:0] s;

logic [w-1:0] a[n_in_max-1:0];

mux2 #(w) mm2(x[0], s[0], a[0], a[1]);

mux4 #(w) mm4(x[1], s[1:0], a[3:0]);

mux8 #(w) mm8(x[2], s[2:0], a[7:0]);

initial begin

automatic int n_test = 0;

automatic int n_err = 0;

2

https://www.ece.lsu.edu/koppel/v/2017/hw01.v.html

