
Name

Digital Design using HDLs

LSU EE 4755

Final Examination

Wednesday, 6 December 2017 15:00-17:00 CST

Alias

Problem 1 (15 pts)

Problem 2 (25 pts)

Problem 3 (20 pts)

Problem 4 (10 pts)

Problem 5 (30 pts)

Exam Total (100 pts)

Good Luck!

https://www.ece.lsu.edu/koppel/v/

Problem 1: [15 pts] The Verilog code below is the solution to Problem 1a of Homework 7. Below that is
the hardware for a slightly different pipelined multiplier. Modify the hardware to match the Verilog code.
Changes need to be made for each line commented DIFFERS.

Modify hardware to reflect Verilog.

module mult_fast_1a #(int w = 16, int m = 4)

(output uwire [2*w-1:0] prod,

output uwire out_avail, input uwire clk, in_valid, // DIFFERS

input uwire [w-1:0] plier, cand);

localparam int nstages = (w + m - 1) / m;

logic [2*w-1:0] pl_accum[0:nstages];

logic [w-1:0] pl_plier[0:nstages], pl_cand[0:nstages];

logic pl_occ[0:nstages]; // DIFFERS

assign prod = pl_accum[nstages];

assign out_avail = pl_occ[nstages]; // DIFFERS

always_ff @(posedge clk) begin

pl_occ[0] = in_valid; // DIFFERS

pl_accum[0] = 0; pl_plier[0] = plier; pl_cand[0] = cand;

for (int stage=0; stage<nstages; stage++) begin

pl_plier[stage+1] <= pl_plier[stage];

pl_accum[stage+1] <= pl_accum[stage] + (pl_plier[stage]

* pl_cand[stage][m-1:0] << stage*m); // DIFFERS

pl_cand[stage+1] <= pl_cand[stage] >> m; // DIFFERS

pl_occ[stage+1] <= pl_occ[stage]; // DIFFERS

end

end

endmodule

clk
2w

mult_fast_1a w=16, m=4

w

0

w

ls
b

m
s
b

4'b0

+

p
l_
a
c
c
u
m
[1
]

p
l_
p
li
e
r[
1
]

p
l_
c
a
n
d
[1
]

w

7:4

p
l_
a
c
c
u
m
[2
]

p
l_
p
li
e
r[
2
]

p
l_
c
a
n
d
[2
]

p
l_
a
c
c
u
m
[3
]

p
l_
p
li
e
r[
3
]

p
l_
c
a
n
d
[3
]

p
l_
a
c
c
u
m
[4
]

p
l_
p
li
e
r[
4
]

p
l_
c
a
n
d
[4
]

pl_accum[0]

pl_cand[0]

pl_plier[0]
plier

cand

prod

2w2w

w
×

w

+

w

3:0

×

w

ls
b

m
s
b

8'b0

+

w

11:8

2w

×

w

ls
b

m
s
b

12'b0

+

w

15:12

2w

×

2

Problem 2: [25 pts] Module oldest_find_plan_b, illustrated below, is based on an alternative solution

to Homework 7 Problem 1b. Below the hardware illustration is incomplete Verilog code for this module.
The Verilog code uses abbreviated names, such as ns, comments show the original names from the assign-
ment, such as nstages. Complete the module. Note: This problem can be solved without having ever seen

Homework 7, though not as quickly.

oldest_find_plan_b w, ns

ns+1

[w][ns+1]

0
=

ca[0]

0
=

ca[1]

0
=

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail�

ox

oc

ca

1+�lg ns⌉

Complete the module so that it matches the hardware above.

module oldest_find_plan_b

#(int w = 15, int ns = 3 /* nstages */)

(output logic [$clog2(ns):0] ox, // oldest_idx

output uwire avail, // out_avail

input uwire oc[0:ns], // pl_occ

input uwire [w-1:0] ca[0:ns]); // pl_cand

endmodule

3

Problem 3: [20 pts] Appearing below are two variations on the oldest index module from the previous
problem. The Plan A version is based on the code from the posted Homework 7 solution. The Plan B
module is slightly different.

(a) Compute the cost of each module based on the simple model after optimizing for constant values. Use
symbol w (for w) and n (for ns). Base the cost of an α-input, β-bit multiplexor on the tree (recursive)
implementation. Recall that the tree implementation consists of α− 1 two-input multiplexors arranged in a
tree.

Plan A cost in terms of w and n. Show cost components on diagram, such as cost of big mux,
don’t forget to account for the constant inputs, and for the number of bits in each wire.

oldest_�nd_plan_a w, ns

ns+1

[w][ns+1]

0

ca[0]

ca[1]

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail≠

ox

oc

ca

1+⌈lg ns⌉

=

Plan B cost in terms of w and n. Show cost components on diagram, such as cost of big mux,
don’t forget to account for the constant inputs and, for the number of bits in each wire.

oldest_find_plan_b w, ns

ns+1

[w][ns+1]

0
=

ca[0]

0
=

ca[1]

0
=

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail≠

ox

oc

ca

1+⌈lg ns⌉

4

(b) Show the delay along all paths and show the critical path. Compute delay based on the simple model
after optimizing for constant values. Use the tree mux described in the previous part.

Plan A: show delay along all paths, highlight the critical path, and show the delay through
each component. Show these in terms of w and n, and account for constant inputs such as the
zeros in the equality units.

oldest_find_plan_a w, ns

ns+1

[w][ns+1]

0

ca[0]

ca[1]

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail≠

ox

oc

ca

1+⌈lg ns⌉

=

Plan B: show delay along all paths, highlight the critical path, and show the delay through
each component. Show these in terms of w and n, and account for constant inputs such as the
zeros in the equality units.

oldest_find_plan_b w, ns

ns+1

[w][ns+1]

0
=

ca[0]

0
=

ca[1]

0
=

ca[ns]

0

1 2 ns

w

w

w

oc[1] oc[2] oc[ns]

0
avail≠

ox

oc

ca

1+⌈lg ns⌉

5

Problem 4: [10 pts] Explain why each of the modules below is not synthesizable by Cadence Encounter
(or similar tools) and modify the code so that it is without changing what the module does. Note: The

warning about not changing what the module does was not in the original exam.

module one_run #(int w = 16, int lw = $clog2(w))

(output logic all_1s, input uwire [w-1:0] a, input uwire [lw:0] start, stop);

always_comb begin

all_1s = 1;

for (int i=start; i<stop; i++)

all_1s = all_1s && a[i];

end

endmodule

Reason code above is not synthsizable:

Modify code so that it is.

module running_sum #(int w = 32)

(output logic [w-1:0] rsum,

input uwire [w-1:0] a, input uwire reset, clk);

always @(posedge clk) begin

if (reset) rsum <= 0;

end

always @(posedge clk) begin

rsum <= rsum + a;

end

endmodule

Modify code so that it is synthsizable.

Reason code above was not synthsizable:

Explain assumption about intended behavior of this module.

6

Problem 5: [30 pts] Answer each question below.

(a) Show when each piece of code below executes (use the C labels) up until the start of C5c, and show when

and in which region each piece is scheduled. See the table below.

module eq;

logic [7:0] a, b, c, d, x, y, x1, x2, y1, y2, z2;

always_comb begin // C1

x1 = a + b;

y1 = 2 * b;

end

assign x2 = 100 + a + b; // C2

assign y2 = 4 * b; // C3

assign z2 = y2 + 1; // C4

initial begin

// C5a

a = 0;

b = 10;

#2;

// C5b

a = 1;

b <= 11;

#2;

// C5c

a = 2;

b = 12;

end

endmodule

Continue the diagram below so that it shows scheduling up to the point where C5c executes.

Step 1

t = 0
Active

C5a
ր

Inactive

NBA

Step 2

t = 0
Active

Inactive

C1

C2

C3
NBA

t = 2
Inactive

C5b

Step 3

t = 0
Active

7

(b) Which of the two modules does what it looks like it’s trying to do? Explain.

module sa1(input logic [7:0] a, b, c, d, output wire [7:0] x, y);

assign x = a + b;

assign y = 2 * x;

assign x = c + d;

endmodule

module sa2(input logic [7:0] a, b, c, d, output logic [7:0] x, y);

always_comb begin

x = a + b;

y = 2 * x;

x = c + d;

end

endmodule

Module that is probably correct is:

Major problem with other module.

Provide a possible wrong answer from other module.

8

(c) Define throughput and latency and indicate where each is preferred. Provide examples appropriate for
pipelined systems.

Throughput is:

For example:

Latency is:

For example,

If the goal is to improve throughput is higher throughput good or bad?

If the goal is to improve latency, is higher latency good or bad?

In what situation is latency more important than throughput?

(d) When we synthesize we specified a target delay, for example, 400 ns.

Does specifying a larger delay mean that there will be less optimization?

Explain.

9

