Introduction \gg Motivation
Simple Cost and Performance Model
Motivation
When designing things need to estimate cost and performance.
When running synthesis need to know if results are good or bad.

Simple Models Goals
Choose between design alternatives.
Plan A is better than Plan B based on the simple model.
Characterize a particular design approach.
Based on the simple model the cost of a module of size n is $\propto n^{2} \log n$.

The models will be used throughout the semester.

Simple Model Non-Goals
The simple model ...
... is not suitable for approximating post-synthesis cost and performance.

Practice Problems

Problems based on the material in these slides.
2019 Homework 3. (Analysis of a shift/add module and a recursive multiply module.)
2016 Final Exam Problem 2b and Problem 4 (greedy and fcfs fit).
2017 Final Exam Problem 3. (Two variations on a module.)

The Simple Cost Model
Simple Model Base Costs
2-input AND gate: $1 \mathrm{u}_{\mathrm{c}}$. (One unit of cost.)
2-input OR gate: $1 u_{c}$.
NOT gate: $0 u_{c}$. (Zero cost.)

Simple Model Derived Costs-Basic Gates

Based on equivalent circuit using gates above.
Cost of n-input OR gate: $(n-1) \mathrm{u}_{\mathrm{c}}$.
Cost of n-input AND gate: $(n-1) \mathrm{u}_{\mathrm{c}}$.
Cost of a 2-input XOR gate: $3 \mathrm{u}_{\mathrm{c}}$.

Model Definition \gg Simple Cost Model \gg Derived Costs

Simple Model Derived Costs—Flip Flops

Cost of an edge-triggered flip-flop is $7 \mathrm{u}_{\mathrm{c}}$.
Cost of an edge-triggered enable flip-flop is $10 \mathrm{u}_{\mathrm{c}}$.
Cost of a w-bit edge-triggered register is $7 w \mathrm{u}_{\mathrm{c}}$.
Cost of a w-bit edge-triggered register with enable is $10 w \mathrm{u}_{\mathrm{c}}$.

	register
	en
$\frac{1}{w}$	D Q

Examples
A 2-input AND gate: cost is $1 u_{c}$.
A 10 -input OR gate: cost is $9 \mathrm{u}_{\mathrm{c}}$.
A 1-input OR gate: cost is $0 u_{c}$. Yes, it's free!

: cost is $1+1=2 \mathrm{u}_{\mathrm{c}}$.

: cost is $3+3+1=7 \mathrm{u}_{\mathrm{c}}$.

The Simple Performance Model

The Simple Performance Model Base Delays

2-input AND gate: $1 u_{t}$ (One time unit.)
2-input OR gate: $1 u_{t}$.
NOT gate: $0 u_{t}$.

The Simple Performance Model Derived Delays

Based on equivalent circuit using gates above.
Delay of a 2-input XOR gate: $2 \mathrm{u}_{\mathrm{t}}$.

Delay of n-input $O R$ gate: $\lceil\lg n\rceil u_{t}$.
Delay of n-input AND gate: $\lceil\lg n\rceil \mathrm{u}_{\mathrm{t}}$.
Delay of an edge-triggered flip-flop is $6 u_{\mathrm{t}}$.

Multiplexors

Cost, $3 \mathrm{u}_{\mathrm{c}}$. Delay, $2 \mathrm{u}_{\mathrm{t}}$.

A 2-input, w-bit mux:
This is equivalent to w copies of the mux above.
Cost, $3 w u_{\mathrm{c}}$. Delay, $2 \mathrm{u}_{\mathrm{t}}$.

Constructed from 2-input multiplexors.
Illustration is for $n=8$.
The path from the selected input ...
\ldots is through $\lceil\lg n\rceil 2$-input muxen ...
\ldots. through 3 for illustrated size, $n=8$.
The number of muxen connected to select bit $i . .$.
\ldots is $n / 2^{i+1}$ for $0 \geq i<\lceil\lg n\rceil \ldots$
... for illustrated size 2 muxen connect to bit 1 .
Cost Computation
Total number of 2-input muxen ...
$\ldots \sum_{i=0}^{\lg n-1} n / 2^{i+1}=n-1 \ldots$
... for illustrated mux, 7 2-input muxen.

Total cost: $3 w(n-1)$. Total Delay: $2\lceil\lg n\rceil$.

Equality Comparison
Equality Comparison ($\mathrm{a}==\mathrm{b}$)
Output is 1 iff w-bit inputs are equal.
Assume w is a power of 2 .
Cost Computation
XOR Gates: $3 w$.

Reduction tree of AND gates: $\sum_{i=1}^{\lg w} w / 2^{i}=w-1$.

Total Cost: $4 w-1 \approx 4 w$.

Delay Computation
XOR Gates: 2.

Reduction Tree: $\lg w$.
Total Delay: $2+\lg w \approx \lg w$.

Binary Full Adder Constructions

Prerequisite

If necessary, review material on binary half and full adders and ripple adders.
For example, Brown and Vranesic 3rd Edition Section 3.2.

You should either remember the circuits for BFAs and BHAs ...
... or be able to effortlessly derive them using a truth table.

Material in this Section

Binary Full Adder (BFA)

Ripple Adder
Magnitude (Greater Than, Less Than, etc.)
Cascaded Ripple Units

Binary Full Adder Implementation

Fast BFA
Cost Computation
Two XOR, 3 AND: $2 \times 3+3=9 \mathrm{u}_{\mathrm{c}}$

Fast BFA

Delay: Any input to any output.

See Path I and. .
... purple labels in diagram.
Delay: $4 u_{t}$

Delay: ci to co.
This delay is useful when a and b arrive earlier than ci.

See Path II and green labels in diagram.

Delay: $2 u_{t}$
w-Bit Ripple Adder

Cost Computation: Cost of w BFAs: $9 w \mathrm{u}_{\mathrm{c}}$
Delay Computation
See critical path (in red) in diagram.
Delay: $2(w+1) \approx 2 w$.

Binary Full Adder Constructions \gg Ripple Subtractor
w-Bit Ripple Subtractor

Cost and delay are slightly less due to constant carry in.

Integer Magnitude Comparison
For comparisons like $a<b$.
Implementation:
Compute $a-b$ and check whether result negative.

If carry out of MSB is 0 then $a-b<0$ and so $a<b$ is true

Omit sum hardware in BFA, and replace remaining XOR with an OR.

See the illustration on the next page.

Integer Magnitude Comparison Construction

Cost and Delay of Integer Magnitude Comparison

Cost Computation
Each modified BFA now costs $4 u_{c}$.
Total cost: $4 w \mathrm{u}_{\mathrm{c}}$

Delay Computation
Delay is 3 for first bit, 2 for remaining bits.
Total delay: $[2 w+1] \mathrm{u}_{\mathrm{t}} \approx 2 w \mathrm{u}_{\mathrm{t}}$.

Cascaded Ripple Units

For computations using ripple units...
\ldots such as $a+b+e$, and $(a+b)<e$, etc.
Cost Computation
Cost is sum of costs of each ripple unit.
For example, $a+b+c$ is two ripple adders, cost is $18 w u_{c} \ldots$
$\ldots(a+b)<e$ is a ripple adder plus a magnitude comparison: $[9 w+4 w] \mathrm{u}_{\mathrm{c}}=13 w \mathrm{u}_{\mathrm{c}}$.

Delay Computation:

Consider $(a+b)+e$.
Naïve analysis: wait for $a+b$ to finish, then start $+e$.
But, LSB of $a+b$ available after only $4 u_{t} \ldots$
\ldots bit i is available after $(4+2 i) u_{t} \ldots$
\ldots.. so the $+e$ computation can start after $4 u_{\mathrm{t}}$.
Delay for two ripple units is $[4+2(w+1)] u_{t}$.
Delay for bit i at output of n ripple units is $[4(n-1)+2(i+2)] u_{\mathrm{t}}$.
Delay for n ripple units is $[4(n-1)+2(w+1)] u_{t}$.

Cost and Performance with Constant Inputs
Constant Inputs
Input values which never change.
Cost and delay are radically different when an input never changes.
In Verilog, this might be an elaboration-time constant ...
... or other expressions that never change.

Multiplexor Constant-Input Optimizations

Sample Mux Optimizations

Costs:

From top to bottom: $1 u_{c}, 1 u_{c}, 0 u_{c}$.

Delays:

From top to bottom: $1 u_{t}, 1 u_{t}, 0 u_{t}$.

Comparison Unit Constant-Input Optimization

Consider $\mathrm{a}==\mathrm{b}$ where...
... a is an input...
\ldots and b is a constant, $8 \mathrm{~b}{ }^{\prime} 1011001$.

Cost for w-bit comparison to constant: $[w-1] \mathrm{u}_{\mathrm{c}}$.
Delay for w-bit comparison to constant: $\lceil\lg w\rceil \mathbf{u}_{\mathrm{t}}$.

