
LSU EE 4755 Homework 5 Solution Due: 22 November 2022

For instructions visit https://www.ece.lsu.edu/koppel/v/proc.html. For the complete
Verilog for this assignment without visiting the lab follow
https://www.ece.lsu.edu/koppel/v/2022/hw05.v.html.

Problem 0: Following instructions at https://www.ece.lsu.edu/koppel/v/proc.html, set up
your class account, copy the assignment, and run the Verilog simulator and synthesis program on
the unmodified homework file, hw05.v. Do this early enough so that minor problems (e.g., password
doesn’t work) are minor problems.

Assignment Background
As we should know the synthesis program, given a Verilog description of a module, writes a design
file with an optimized version of the module mapped to the chosen technology. For this assignment
the chosen technology is the same Oklahoma University ASIC process we’ve been using throughout
the semester.

An important skill for those writing Verilog descriptions is to estimate the cost and performance
of those synthesized modules. In this assignment we’ll look at how well the synthesis program
handles the different modules we considered for computing the floating-point expression v20 +v0v1 +
v21 . We will consider the combinational, sequential, and pipelined modules covered in class.

A synthesis script will be used to synthesize these modules, plus three arithmetic unit modules,
plus additional modules created for the solution to this problem. To complete the assignment the
output of the script must be understood and the synthesis script must be modified. The output of
the synthesis script is similar to the output of the scripts used in prior assignments, so it should be
familiar. Modifying the script will be something new, and might be a challenge for some of you. It
is okay to seek help modifying the script from classmates and others, though the solutions to the
problems themselves must be completed individually.

Modules
This assignment includes modules for the combinational, sequential, and pipelined implementations
of the multi-step computation. They are named ms_comb, ms_seq, and ms_pipe. For compari-
son the assignment also includes modules containing a single floating-point unit, they are named
try_mult, try_add, and try_sq (square).

Four additional modules are provided for experimentation, m1_func, m1_comb, m1_seq, and
m1_pipe. These modules initially perform the computation v0+v0v1+v21 , but they can be modified
to perform other computations. Module m1_func is used by the testbench to obtain a correct value,
so modify it first so that it computes the desired computation. Then modify the others that you
want to synthesize. (The synthesis program does not care whether a module passes the testbench,
but no conclusion can be drawn from the area and delay of module that does not work correctly.)

All of these modules have the same parameters and ports, though not every module uses every
port. For example, only ms_seq and ms_pipe are sequential so that the clk and reset ports on
the others serve no function. These unused ports will be eliminated during optimization so they
won’t affect cost or timing.

Module Parameters and Floating Point Format
The modules used in this assignment all have the same parameters, these parameters specify the
floating-point number format to be used. The first parameter, wsig, specifies the number of bits
in the significand (fractional part) of the floating point number. The default value is 23, which is
the same as an IEEE 754 single (C float). The second parameter, wexp, is the number of bits in
the exponent. The default value is 8, which matches an IEEE single. The third parameter, ieee,
specifies whether the IEEE floating-point format should be strictly followed. The default value

1

https://www.ece.lsu.edu/koppel/v/
https://www.ece.lsu.edu/koppel/v/proc.html
https://www.ece.lsu.edu/koppel/v/2022/hw05.v.html
https://www.ece.lsu.edu/koppel/v/proc.html

is 1, which means yes; a 0 means that special cases do not have to be handled correctly. These
include NaN (not a number) and subnormal values. The size of the floating point number using
these parameters is 1+wexp+wsig, the extra 1 is for the sign bit.

For this assignment all modules are instantiated with ieee=0. This is done to explore the
fuller range of optimization possibilities and also to reduce the time needed for synthesis.

The sample synthesis runs consider two formats, IEEE single in which wsig=23 and wexp=8,
and the ML-friendly BF16 (informally known as brain float) in which wsig=7 and wexp=8. The
advantage of BF16 for machine learning is that it is half the size of a single, and with a 7-bit
significand, requires half the energy for multiplication than the older 16-bit FP16 format. For us
the big advantage is that it takes less time to synthesize than a single.

Testbench
The testbench exercises the six modules, ms_comb, ms_seq, ms_pipe, m1_comb, m1_seq, and m1_pipe

instantiated with a significand size of 7 and 23. They should all initially pass. As with other test-
benchs in this class, a line will be printed for the first few module errors, and a tally will be provided
for each module and size. The testbench uses ms_func to determine the correct output of the ms

modules and m1_func to determine the correct output of the m1 modules. When modifying the m1

modules be sure to also modify m1_func so that the testbench can show you whether your modified
modules do what you think they are doing.

The Synthesis Script
As with past assignments, the modules in the assignment file should be synthesized using the script
syn.tcl. Unlike other assignments, this script will have to be modified.

The synthesis script itself is written in TCL (Tool Control Language, the abbreviation is pro-
nounced tickle) a scripting language chosen by Cadence for scripting their EDA software. (Nowa-
days Python would be used. If it were up to me it would be Perl. But it’s TCL.) Documentation for
TCL can be found at https://tmml.sourceforge.net/doc/tcl/. This describes TCL, not the
functionality needed to run Genus or other tools. For Genus-specific commands see the synthesis
documentation linked to https://www.ece.lsu.edu/koppel/v/ref.html.

For this assignment it should not be necessary to use new Genus commands, just to change
which modules are synthesized and which parameters to instantiate with. For that, one needs only
a rudimentary knowledge of TCL, perhaps what can be learned just by looking at syn.tcl.

The synthesis script starts by setting some script variables, using the TCL set command, and
by setting Genus attributes, using the Genus set_db command:

set verilog_source hw05.v

set syn_level "high"

set spew_file "spew.log"

set report_file "syn-report.log"

set_db syn_global_effort $syn_level

set rpt_chan [open $report_file w]

puts "Synthesizing at effort level \"$syn_level\"\n"

As one might guess syn_level is the amount of effort used for synthesis. Possible values are
none, low, medium, and high. These initial lines are followed by the definition of a TCL procedure
syn_mod, which emits the commands needed to synthesize a module, followed by commands to
retrieve the area and delay of the synthesized module. A line of text is written showing the area
and delay. It should not be necessary to modify syn_mod for this assignment.

Module syn_mod is called in a loop nest near the end of the file:

List of combinational modules.

2

https://tmml.sourceforge.net/doc/tcl/
https://www.ece.lsu.edu/koppel/v/ref.html

set mods_comb { ms_comb try_mult try_add try_sq }

set delay_targets { 100 0.1 }

set mods { try_mult try_add try_sq }

set mods { ms_comb ms_seq ms_pipe try_mult try_add try_sq }

set wsigs { 7 14 23 }

foreach delay_target $delay_targets {

foreach ws $wsigs {

foreach mod $mods {

syn_mod $mod $delay_target " $ws 8 0 "

}

}

}

The loop nest above synthesizes each of the modules listed in mods (that’s the inner loop). Each
of these six modules is synthesized for each significand size found in wsigs. These modules are
synthesized with each delay constraint in delay_target. For the code above there would be a total
of 2 × 6 × 3 synthesis runs. That would probably take hours.

The first set line writes variable mods_comb with a list of combinational modules. This variable
must be updated with any new combinational modules that you use. Variable mods is set twice,
first to a list of the arithmetic modules, then those are replaced with a list of the arithmetic modules
and our multi-step modules. (Because of the second assignment the first assignment has no effect.)
If one wanted to only synthesize the arithmetic modules one would comment out the second mods

line. There is no need to use a loop nest. It is possible to write a syn_mod call for each synthesis,
for example:

set delay_targets { 100 }

set wsigs { 7 14 23 }

syn_mod try_mult 5 "7 8 0"

syn_mod try_mult 5 "7 6 0"

Exit before the loop nest.

close $rpt_chan

quit

foreach delay_target $delay_targets {}

The example above does two synthesis runs. The 5 is the delay target and the quoted part are
the parameters. (The parameters must be quoted so that they are read as a single argument to
syn_mod.) In the example above, try_mult is synthesized with two exponent sizes, 8 bits and 6
bits, both are synthesized with a delay target of 5 ns.

To synthesize a new module (for example, one you wrote) add the name to one of the mod

lists, or just use the name on a direct call to syn_mod as in the example above. Iff the module is
combinational add the module to mods_comb. Not adding a combinational module to mods_comb

will result in an error. Adding a sequential module to mods_comb will result in incorrect timing.

Synthesis Script Output
The synthesis script syn.tcl is run using the command genus -files syn.tcl. The run starts
with a substantial amount of header output, including warnings, copyright information, and system
information. Some is shown below:

[cyc.ece.lsu.edu] % genus -files syn.tcl

3

2022/11/13 16:52:05 WARNING This OS does not appear to be a Cadence supported Linux configuration.

2022/11/13 16:52:05 For more info, please run CheckSysConf in <cdsRoot/tools.lnx86/bin/checkSysConf <productId>

TMPDIR is being set to /tmp/genus_temp_566634_cyc.ece.lsu.edu_koppel_nvftYI

Cadence Genus(TM) Synthesis Solution.

Copyright 2022 Cadence Design Systems, Inc. All rights reserved worldwide.

Cadence and the Cadence logo are registered trademarks and Genus is a trademark

of Cadence Design Systems, Inc. in the United States and other countries.

[16:52:12.338826] Configured Lic search path (21.01-s002): /apps/linux/cadence/share/license/license.dat:/opt/pgi/license.dat

The output of the script proper (as opposed to Genus, the synthesis program) starts with an
announcement of the synthesis effort level followed by a table of synthesis results:

Synthesizing at effort level "high"

Module Name Area Delay Delay Synth

Actual Target Time

ms_comb_wsig7_wexp8_ieee0 600190 12.219 0.1 ns 423 s

ms_seq_wsig7_wexp8_ieee0 445400 5.754 0.1 ns 236 s

ms_pipe_wsig7_wexp8_ieee0 797327 5.678 0.1 ns 309 s

ms_comb_wsig14_wexp8_ieee0 1363980 14.391 0.1 ns 707 s

Each line of the table shows the result of one synthesis run. The Module Name column shows
the name of the module followed by the parameter values used in its instantiation. In the sample
above three different modules are synthesized, ms_comb, ms_seq, and ms_pipe. Module ms_comb is
synthesized once with significand of 7 bits and once with a significand of 14 bits.

The Area column shows the area given by the Genus report area command. The units are
relative to the OSU technology. The Delay Actual column shows the length of critical path through
the module in units of nanoseconds. The Delay Target column shows the delay constraint that the
synthesis program was set to meet. In the example above the constraint is 0.1 ns, which means the
critical path can be no longer than 0.1 ns. This constraint was intentionally set to an impossibly
low value, to determine the minimum delay that the synthesis program could achieve. Normally
the delay constraint is set to something achievable, perhaps 4 ns in the example above, and the
synthesis program would generate the least expensive design that meets the delay constraint. The
Synth Time column shows the wall-clock (elapsed) time needed to perform the synthesis. The
wall-clock time is shown to help plan the synthesis runs, it does not directly affect or describe the
design itself.

4

Problem 1: In class we considered three ways of implementing multi_step, the modules that
computed v20 + v0v1 + v21 : A combinational version, a sequential version, and a pipelined version.
Appearing below are the results from synthesizing these three modules, named ms_comb, ms_seq,
and ms_pipe, followed by results of synthesizing modules consisting only of the Chipware floating-
point multiplier, adder, and a multiplier with the same value used for both operands. These are
synthesized with a large delay constraint, meaning that the cost has been minimized.

Module Name Area Delay Delay Synth

Actual Target Time

ms_comb_wsig23_wexp8_ieee0 1597692 75.142 100.0 ns 229 s

ms_seq_wsig23_wexp8_ieee0 945919 29.324 100.0 ns 111 s

ms_pipe_wsig23_wexp8_ieee0 1866509 28.273 100.0 ns 205 s

try_mult_wsig23_wexp8_ieee0 525991 28.231 100.0 ns 62 s

try_add_wsig23_wexp8_ieee0 339036 27.396 100.0 ns 53 s

try_sq_wsig23_wexp8_ieee0 297753 25.504 100.0 ns 38 s

ms_comb_wsig7_wexp8_ieee0 375767 34.708 100.0 ns 75 s

ms_seq_wsig7_wexp8_ieee0 275858 15.305 100.0 ns 34 s

ms_pipe_wsig7_wexp8_ieee0 526000 14.466 100.0 ns 62 s

try_mult_wsig7_wexp8_ieee0 94274 9.346 100.0 ns 13 s

try_add_wsig7_wexp8_ieee0 140221 14.196 100.0 ns 21 s

try_sq_wsig7_wexp8_ieee0 57802 6.085 100.0 ns 8 s

(a) Based on the data above, show the latency and throughput of each module for the 23-bit
significand. It might be necessary to look at the module descriptions (Verilog code) to answer this
question.

In the discussion below call the value in the Delay Actual column of the synthesis results table the clock period
and let tc denote its value. For example, for ms comb with the 23-bit significand the clock period is tc = 75.142 ns.

Also, let L denote latency and θ denote throughput.

Combinational Module, ms comb: Latency: L = tc = 75.142 ns and throughput θ = 1
tc

= 1
75.142 ns . The

combinational module computes the entire result in one cycle and so the clock period is the latency. It can compute a

new result every cycle and so the throughout is the reciprocal of the latency.

Sequential Module, ms seq: Latency: L = nctc = 5 × 29.324 ns = 146.62 ns, where nc is the number

of cycles needed to compute a result. Throughput: θ = 1
nctc

= 1
146.62 ns . The sequential module needs five cycles

(nc = 5) to compute a result, so its latency is five times its clock period. Because a new computation cannot start while

a computation is in progress the throughput is one over the latency.

Pipelined Module, ms pipe: Latency L = nstc = 4×28.273 ns, where ns is the number of stages. Throughput

θ = 1
tc

= 1
28.273 ns . Like the sequential circuit, the latency of the pipelined unit is the clock period times the number of

cycles needed to compute a result. Unlike the sequential circuit, the pipelined circuit can start a new computation every

cycle, and so the throughput is the reciprocal of the clock period.

5

(b) For each of the two significand sizes, show that the delay of the three ms modules are what one
would expect given the delays of the three arithmetic modules.

Combinational Module, ms comb: To solve this problem one needs to find the critical path through the module.

Refer to the Verilog description and the diagram of the inferred hardware below.

v0

v1

clk

CW_fp_mult
m00

CW_fp_add
a1

rnd

3'b0

1'd1

re
s
u
lt

start

re
a
d
y

ms_comb

rnd

3'b0

CW_fp_mult
m01

rnd

CW_fp_mult
m11

rnd

3'b0

3'b0

CW_fp_add
a2

rnd

3'b0

U
n
u
se
d

module ms_comb
#(int wsig = 23, wexp = 8,

int ieee = 1,

int wf = 1 + wexp + wsig)

(output uwire [wf-1:0] result,

output uwire ready,

input uwire [wf-1:0] v0, v1,

input uwire start, clk);

localparam logic [2:0] rm = 0;

assign ready = 1;

uwire [7:0] mul_s1, mul_s2, mul_s3;

uwire [7:0] a_s1, a_s2;

uwire [wf-1:0] v00, v01, v11, s1;

CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

m00(.a(v0), .b(v0), .rnd(rm), .z(v00), .status(mul_s1));

CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

m01(.a(v0), .b(v1), .rnd(rm), .z(v01), .status(mul_s2));

CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

m11(.a(v1), .b(v1), .rnd(rm), .z(v11), .status(mul_s3));

CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

a1(.a(v00), .b(v11), .rnd(rm), .z(s1), .status(a_s1));

CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

a2(.a(s1), .b(v01), .rnd(rm), .z(result), .status(a_s2));

endmodule

Based on the timings given in the synthesis results table the critical path goes through m00, a1, and a2. Both

m00 and m11 compute the square of their inputs, and based on the data in the synthesis results table computing a square

takes slightly less time than computing a product, 25.504 ns versus 28.321 ns.

Using the timings from the synthesis table, the delay (critical path) through ms comb is tsq+2tadd = 25.504 ns+
2 × 27.396 ns = 80.296 ns. This is about 5 ns longer than the delay for ms comb reported in the synthesis table,

75.142 ns, a difference of only about 6%.

6

v0

v1

clk

CW_fp_mult
m1

CW_fp_add
a1

ac0

ac1

re
s
u
lt

start

ready

prob1_seq
step < 2

3'b0
3'd1

2:2

en

1:1

0:0

2:2

en

+

en
step

st
e
p

step = 3

step ≠ 0

step < 3

1

0

step < 4

step < 4

start

st
e
p

3
2

'd
0

Sequential Module, ms seq: The inferred hardware is shown above, taken from the solution to the 2020 final exam

(the module name was prob1 seq in the exam). For ms seq the critical path cannot pass through both the mutliplier

and adder, it must pass through one or the other. In addition to these arithmetic units there is also one multiplexor delay

and some logic gates. Assuming that the multiplexor and logic gates’ delays are small compared to the arithmetic unit,

the critical path will be the larger of the two delays, 28.231 ns for the multiplier and 27.396 ns for the adder. So the

clock period would be a bit over 28.231 ns. This is very close to the results from the table, 29.324 ns.

Pipelined Module, ms pipe: As with the sequential module, the critical path will be through the arithmetic unit

that takes the most time, the multiplier. Unlike the sequential version, there are no multiplexors or logic between the

arithmetic units and the pipeline latches, and so we would expect the delay to be even closer to the multiplier delay,

28.231 ns. The reported delay, 28.273 ns is indeed very close.

(c) Using the cost of the arithmetic units, show that the cost of ms_comb is lower than expected, but
the cost of ms_seq and ms_pipe are about or perhaps a little more than what one would expect.
Combinational Module, ms comb: This consists of one multiplier, two square units and two adders. The expected

cost is 525991 + 2 × 339036 + 2 × 297753 = 1799569. The reported cost is 1597692, which is lower by 11.2%.

Sequential Module, ms seq: This module has one multipler and one adder. Their costs are 525991 + 297753 =
823744. This estimated cost ignores the cost of registers, multiplexors, and miscellaneous logic. The reported cost is

945919, which is higher, perhaps due to the ignored hardware.

Pipelined Module, ms pipe: This module has the same arithmetic units as the combinational module, and so the

estimated cost, ignoring registers, would be the same, 525991+2×339036+2×297753 = 1799569. The reported

cost is 1866509 which is higher. The higher cost is probably due to ignoring the cost of registers.

7

Problem 2: It is welcome that the cost of ms_comb is lower than what one would expect based
on the cost of the arithmetic units. There are several possible reasons for this, for example the
synthesis program may be simplifying the two adders used in computations such as a+ b+ c or it
may be sharing hardware used to process the common b operand in expressions like a× b and b× c,
or perhaps it may even be transforming v20 + v0v1 + v21 into (v0 + v1)2 − v0v1. Or maybe the costs
for the arithmetic units shown in the table are higher than they should be.

Perform a set of synthesis runs to provide evidence for a reason that ms_comb cost less than its
constituent parts. Consider the possible reasons given above, or one of your own. These synthesis
runs can operate on one of the existing modules, a slightly modified version of the modules, or some-
thing wholly different. The modules m1_comb, m1_seq, m1_pipe can be used for experimentation.
See the Modules section above.

Describe the results of these experiments and how they convincingly support a particular
reason for the lower cost. Data from a single synthesis run, or a series of very similar runs will not
be considered convincing.

The Verilog file for this assignment will be collected, but submit the answers to this question
on paper or by E-mail. Please E-mail PDF files. Sending word processor source files as a final
product is unprofessional, even if they are TEX files.

In your writeup:

• Indicate how you believe the synthesis program is optimizing ms comb.

• Describe the modules you synthesized to come to this conclusion, and the results of synthesis.
Most credit will be given for this part of the assignment.

• Explain why your experiments show that the lower cost was not due to other optimizations.

Based on the experiments described below, it appears that the synthesis program can significantly reduce the cost

of computations of the form a2 + b2 computed using the ChipWare FP arithmetic modules. The optimization is not

applied to similar computations such as (a+ c)2 + b2.

To determine why the cost of ms comb was more than 11% less than the estimated cost, a number of new modules

were simulated. The modules were designed to test various hypotheses, including those suggested in the problem. The

modules’ names all start with m1 , followed by an abbreviation that may suggest what it does. (In the table of synthesis

results the name is appended with the parameter values used.) For example, m1 a3 is a module that computes a+b+c.
Each module was tested for correctness by updating m1 functional so that it computes the same value as the test

module. A wrapper module, m1 comb, provides a third input for modules that take three data inputs, such as m1 a3.

The third input value is just v0*v1, so m1 functional uses v0*v1 in places where v2 might go. All of the tested

modules were combinational. The synthesis script output shown below (near the end of the solution) is for runs using

these modules.

The Verilog code used for these experiments can be found at

https://www.ece.lsu.edu/koppel/v/2022/hw05-sol.v.html and the synthesis script is at

https://www.ece.lsu.edu/koppel/v/2022/syn-sol.tcl.html.

Appearing below (on the next page) is the m1 a3 module, its wrapper, and m1 functional.

8

https://www.ece.lsu.edu/koppel/v/2022/hw05-sol.v.html
https://www.ece.lsu.edu/koppel/v/2022/syn-sol.tcl.html

/// This module is synthesized.
module m1_a3

#(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)

(output uwire [wf-1:0] result, output uwire ready,

input uwire [wf-1:0] v0, v1, v2, input uwire start, clk);

localparam logic [2:0] rm = 0; // Rounding Mode

uwire [7:0] mul_s1, mul_s2, mul_s3, a_s1, a_s2;

uwire [wf-1:0] v00, v01, v11, s1;

CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

a1(.a(v0), .b(v1), .rnd(rm), .z(s1), .status(a_s1));

CW_fp_add #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

a2(.a(s1), .b(v2), .rnd(rm), .z(result), .status(a_s2));

assign ready = 1;

endmodule

/// This module is simulated
module m1_comb

#(int wsig = 23, wexp = 8, ieee = 1, wf = 1 + wexp + wsig)

(output uwire [wf-1:0] result, output uwire ready,

input uwire [wf-1:0] v0, v1, input uwire start, clk);

localparam logic [2:0] rm = 0; // Rounding Mode

uwire [wf-1:0] v01;

uwire [7:0] mul_s2;

// Generate a third input for m1_a3.

CW_fp_mult #(.sig_width(wsig), .exp_width(wexp), .ieee_compliance(ieee))

m01(.a(v0), .b(v1), .rnd(rm), .z(v01), .status(mul_s2));

m1_a3 #(.wsig(wsig), .wexp(wexp), .ieee(ieee))

a3(result, ready, v0, v1, v01, start, clk);

endmodule

// cadence translate_off

module m1_functional
(output real mag, input real v0, v1);

// The testbench uses this module to test the others, so set

// the computation to match the others.

localparam string name = "A3 Func";

// Note: The third value is v0*v1.

always_comb mag = v0 + v1 + v0 * v1;

endmodule

// cadence translate_on

9

The results of each experiment are described below. The value inputs to the modules are called v0, v1, and v2.

The original multi-step modules only had two data inputs, v0 and v1. The third input, v2, is set to v0v1 by the wrapper

module, m1 comb, for testing purposes. The synthesis program operates on modules such as m1 a3 and so to it the

value on third input, v2, is unrelated to the other two values.

In the discussion below let ca, cm, and cs denote the cost of the adder, multiplier, and square unit. Those costs

are cm = 525991, ca = 339036, and cs = 297753 for the 23-bit significand and cm = 94274, ca = 140221,

and cs = 57802 for the 7-bit significand.

Module m1 a3: Computes v0 + v1 + v2
To test for any benefit of computing a+ b+ c use a module that computes this sum, m1 a3. The expected cost is two

adders, 3ca, which is 280442 for 7 bits and 678072 for 23 bits. The synthesized costs are 278532 and 668518, respectively

or .68% and 1.41% lower than estimated. So there is not much optimization benefit from combining two adders.

Module m1 mad: Computes v0 ∗ v1 + v2
To test whether adder and multiplier hardware is shared, try a module that computes v0 × v1 + v− 2, called m1 mad.

The expected cost is cm + c + a or 234495 for 7 bits and 865027 for 23 bits. The synthesized hardware is just 2.58%

and 1.48% less costly than the estimate, not enough to explain ms comb.

Module m1 mm: Computes v0 ∗ v1 and v0 ∗ v2
Perhaps two multipliers that have a common multiplier can share some hardware. Module m1 mm tests that by using v0 in

both multiplies. This module has two outputs, one for each product. So the estimated cost is 2cm: 188548 and 1051982

for the 7- and 23-bit versions. The synthesized cost is just 1.76% and .59% less than the estimates.

Module m1 comb v3: Computes v20 + v0v2 + v21
To rule out whether the cost reduction is due to an algebraic transformation, a version of ms comb which has three value

inputs was tried. The new value, v2, replaces v1 in the v0v1 term. The estimated cost is 2cs + cm + 2ca, the same as

the ms comb estimate. The synthesized costs are 22.24% and 10.79% lower than the estimated costs, which means that

the synthesis program is not doing an algebraic transformation that depends on the middle term, v0v1, sharing a variable

with the other two.

Module m1 comb sos: Computes v20 + v21
Perhaps there’s something special about a sum of squares. The estimated cost is 2cs + ca, or 255825 and 934542 for

the 7- and 23-bit versions. The synthesized costs are substantially lower, 38.3% and 8.61%. The fact that the benefit is

larger for the smaller significand suggests that the savings is with the handling of the exponents, which are eight bits in

both versions.

Module m1 comb sop: Computes v0v2 + v1v3
Are squares special? To rule that out a module computing a sum of two products was tried. This module has four

value inputs. The estimated cost is 2cm + c1 or 328769 and 1391018. The synthesized costs are 1.99% and 1.58% less,

suggesting that there is something special about a sum of squares.

Module m1 comb ssp: Computes v20 + v1v2
Perhaps one square can be optimized, m1 comb ssp tests that. The expected cost is cm + cs + c+ a or 292297 and

1162780. The synthesized costs are 7.48% and 2.31% less, so there is some benefit to one square, but not nearly as much

as the benefit from both adder inputs being squares.

Module m1 comb alt: Computes (v20 + v0v1) + v21
Finally, just to be sure, re-do ms comb so the two squares are not operands of the same adder. The expected cost is

2cs + cm + 2ca or 441037 and 1726894. The synthesized costs are lower, 10.05% and 4.04%, suggesting that there

is some benefit of using a square input to an adder, but that the benefit is substantially larger when both inputs are a

square.

Synthesis Data on Next Page

10

Module Name Area Delay Delay Synth

Actual Target Time

m1_a3_wsig7_wexp8_ieee0 278532 28.162 100.0 ns 54 s

m1_a3_wsig23_wexp8_ieee0 668518 54.005 100.0 ns 117 s

m1_mad_wsig7_wexp8_ieee0 228453 23.283 100.0 ns 36 s

m1_mad_wsig23_wexp8_ieee0 852191 53.147 100.0 ns 114 s

m1_mm_wsig7_wexp8_ieee0 185236 9.346 100.0 ns 20 s

m1_mm_wsig23_wexp8_ieee0 1045808 28.231 100.0 ns 80 s

m1_comb_v3_wsig7_wexp8_ieee0 381271 34.077 100.0 ns 79 s

m1_comb_v3_wsig23_wexp8_ieee0 1605466 74.753 100.0 ns 276 s

m1_comb_sos_wsig7_wexp8_ieee0 157807 19.544 100.0 ns 34 s

m1_comb_sos_wsig23_wexp8_ieee0 854120 48.375 100.0 ns 128 s

m1_comb_sop_wsig7_wexp8_ieee0 322223 23.763 100.0 ns 48 s

m1_comb_sop_wsig23_wexp8_ieee0 1369003 53.049 100.0 ns 169 s

m1_comb_ssp_wsig7_wexp8_ieee0 270427 23.781 100.0 ns 44 s

m1_comb_ssp_wsig23_wexp8_ieee0 1135920 53.306 100.0 ns 152 s

m1_comb_alt_wsig7_wexp8_ieee0 441037 38.112 100.0 ns 103 s

m1_comb_alt_wsig23_wexp8_ieee0 1726894 80.177 100.0 ns 281 s

11

	Problem 0
	Problem 1
	Part char 97
	Part char 98
	Part char 99

	Problem 2

