
Name Solution Formatted For Two-Sided Printing

Digital Design using HDLs

LSU EE 4755

Final Examination

Friday, 9 December 2022 15:00-17:00 CST

Alias Multiplexor Mayhem (Student Suggestion)

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (20 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

https://www.ece.lsu.edu/koppel/v/

Problem 1: [20 pts] Module norm_comb, below, computes the normal of a vector using floating-point
arithmetic units from a library. The delay through each unit in nanoseconds is shown in the diagram.

fp_sq

fp_sq
fp_add

fp_rsqrt

fp_mul

fp_sq

fp_add

fp_mul

fp_mul

x
y
z

10

10

10

5
5 40

20

20

20

nx

ny

nz

norm_comb

10

10

10

15
20

60

0 0

0

80

80

80

Critical Path (One of several possible.)

(a) Compute the latency and throughput norm_comb given the timings shown in the diagram.

�Compute the arrival time (delay) at each module output.

Arrival times and delays at the outputs are shown as circled purple numbers.

� Show the critical path.

A critical path is shown as a red dotted line. Several others are possible, for example, another critical path starts at y. The illustrated

critical path ends at nz, but it could have ended at ny or nx.

�The latency of this module is:

The latency is 80 ns .

(Because this is a combinational module, the latency is the same as the critical path.)

�The throughput of this module is:

Assuming that the clock period is the same as the critical path length, the throughput is
1 op
80 ns = 12.5 M op

s , where op refers to a

normalization operation. (The throughput is given in units of work per unit time. The unit of work here is a normalization, and the

unit of time is second.)

(b) Draw a diagram of a pipelined implementation of the norm module. The goal is to maximize throughput
first then minimize latency given the delays shown in the diagram from part a. Give some thought as to
what arithmetic units go in what stage. Show the latency and throughput of your pipelined implementation.

�Draw a diagram (not Verilog) of a pipelined version of this norm module. � Be sure to show pipeline
latches.

� For the given delays: Maximize throughput. �Avoid a hasty solution that has a higher latency than is
necessary.

The diagram appears below. Stage boundaries were chosen to minimize critical path, which is 40 ns due to the fp rsqrt module.

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

The following discussion is to help future students understand the solution. Those taking the test need only
show the diagram. To make it a pipeline, pipeline latches (collections of registers) have been inserted to divide the arithmetic

units into three stages. The positioning of the pipeline latches has been chosen to minimize the critical path, and so maximizing clock

frequency and throughput.

Recall from course material that the launch points are assumed to be module inputs and are always at register outputs. The arrival

times at launch points are by definition zero. The capture points are always register inputs. In general they can be module outputs,

but here we are assuming that the module outputs are not capture points, meaning that module outputs must be stable at the
beginning of a clock cycle. (It would also be correct to assume that module outputs were capture points, so long as the

computation of latency and throughput took this into account.) The diagram shows arrival times circled in purple including delays

at the capture points.

The critical path, shown in a red dashed line, is 40 ns, and so the clock period must be set to 40 ns (plus the delay of the register).

The path length in the other two stages is 20 ns. Were it not for fp rsqrt the clock period would be half (and so the clock

frequency would be twice as high). But it is what it is, and so the calculations in the first and last stages finish with 20 ns of slack

(meaning they arrive 20 ns before the end of the clock cycle, which by coincidence is 20 ns after the start of the clock cycle).

In a correct solution the fp rsqrt module must be in a stage by itself. For example, were an fp mul moved into the stage with

the fp rsqrt then the critical path would increase to 60 ns, hurting performance. Though it would be possible to put the two

adders in their own stage without changing the clock period, that would increase cost because another pipeline latch would be needed.

fp_sq

fp_sq
fp_add

fp_rsqrt

fp_mul

fp_sq

fp_add

fp_mul

fp_mul

x
y
z

10

10

10

5
5 40

20

20

20

nx

ny

nz

norm_comb_pipe

0 0

0

0

0

40 20

0

0

0

00

0
0

0

Critical Path (the only one)

15

10

10

10

10
20

20

�The latency of this pipelined implementation is:

Latency refers to the time to complete a normalization operation. The pipeline has three stages and the clock period is at least 40 ns

(the critical path length). Therefore the latency is 3× 40 ns = 120 ns .

Notice that the latency is higher than the combinational module. That is due to the 20 ns of slack in the first and last stages.

�The throughput of this pipelined implementation is:

Because the implementation is pipelined a new result is computed each clock cycle so the throughput is
cyc
40 ns

op
cyc = 25 M op

s .

Notice that the throughput is higher than the combinational module. That’s because the module simultaneously computes three

operations.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

Problem 2: [20 pts] Incomplete module norm_comb_n is a version of the norm module from the previous

problem, now written for vectors of any length, not just 3. (Output ui = ni

(∑n−1
j=0 v2j

)− 1
2

.) It makes use

of module norm_sos to compute the sum
∑n−1

j=0 v2j . (That is, v20 + v21 + · · ·+ v2n−1.) Complete the modules
so that they compute their output combinationally. Use a recursive implementation for norm_sos and use
generate loops for the needed code in norm_comb_n.

�Complete norm comb n so that it computes u in part by using norm sos. �Use a generate loop. �Use
fp mul, � don’t use arithmetic operators.

// SOLUTION

module norm_comb_n #(int w = 32, int n = 8)

(output uwire [w-1:0] u[n], input uwire [w-1:0] v[n]);

uwire [w-1:0] sos; // Sum Of Squares

norm_sos #(w,n) ns(sos, v); // This part is correct, don’t modify it.

uwire [w-1:0] rmag, rs_in;

fp_rsqrt r(rmag, sos); // SOLUTION: Changed rs_in to sos.

// SOLUTION: Use a genvar loop to instantiate one fp_mul per element.

for (genvar i=0; i<n; i++)

fp_mul mi(u[i], v[i], rmag);

endmodule

�Complete norm sos so that it computes
∑n−1

j=0 v2j . � Describe the module recursively. � Use fp sq

and fp add, � do not use arithmetic operators.

module norm_sos #(int w = 32, int n = 4)

(output uwire [w-1:0] sos, input uwire [w-1:0] v[n-1:0]);

// SOLUTION

if (n == 1) begin

fp_sq s(sos, v[0]);

end else begin

localparam int nlo = n/2;

localparam int nhi = n - nlo;

uwire [w-1:0] soslo, soshi;

norm_sos #(w,nlo) slo(soslo, v[nlo-1:0]);

norm_sos #(w,nhi) shi(soshi, v[n-1:nlo]);

fp_add #(w) a(sos, soslo, soshi);

end

endmodule

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

Problem 3: [15 pts] Appearing below is the inferred hardware from the pipelined add accumulate module
covered in class. Based on the simple model, show the timing, including the critical path, and compute the
cost. The BFA module is, of course, a binary full adder. If you don’t remember its cost and delay, just work
it out.

add_pipe
add_p0

aout

a0

a1

saa

aout_v

ai_v

ai

sum

1

0 en

0

s
u
m

sum_valid

sum_occupied
reset

clk

add_accum

a

b ci
s

co

BFA

w

w

0

0

0

0

0 0 0

0

0

0

2

0

0
4

4
5 6 7

0

5

0

2

2
3 7

4

2

0

� Show the timing (signal arrival time at each component output) and � the critical path. �Note that
aout arrives at t = 0.

Solution appears above. Arrival times are circled purple numbers and the critical path is a dashed red line.

�Compute the cost using the simple model. Do not include the cost of add pipe but � include the cost of
the BFA. �Pay attention to bit widths.

The total cost is [34w + 43] uc . The table below shows the cost of each kind of component.

Item Count Each Total

Non-Constant 2-input, w-bit Multiplexors 3 3w 9w

Constant 2-input, w-bit Multiplexor 1 w w

w-bit Register with Enable 1 10w 10w

w-bit Registers without Enable 2 7w 14w

1-bit Registers 4 7 28

2-input Gates 4 1 4

3-input NOR Gate 1 2 2

BFA 1 9 9

Total Cost 34w + 43

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

Problem 4: [20 pts] Appearing below are simplified solutions to Homework 4.

(a) Below is a simplified version of the “official” solution. (Reset hardware is not shown, ignore its absence.
Some object names shortened.) Show the hardware that will be inferred for this module when instantiated
with n_avg_of=4. (Some of the hardware will be similar to the r_avg2 module from the 2021 final exam.)

module word_count
#(int wl = 5, wn = 6, n_avg_of = 10)

(output logic word_start, word_part, word_ended,

output logic [wl-1:0] lword, lavg, output logic [wn-1:0] nwords,

input uwire [7:0] char, input uwire reset, clk);

uwire nws, nwp, nwd;

word_classify wc(word_start, word_part, word_ended,

nws, nwp, nwd, char, clk, reset);

logic [wl-1:0] lrecent[n_avg_of]; // len_recent

logic [wl+$clog2(n_avg_of):0] lsum; // len_sum

assign lavg = nwords >= n_avg_of ? lsum / n_avg_of : 0;

always_ff @ (posedge clk) begin

lword <= nws ? 1 : nwp ? lword+1 : lword;

nwords <= nwd ? nwords + 1 : nwords;

end

// Plan A Code (Referred to in next subproblem.)

always_ff @ (posedge clk) if (nwd) begin

lsum += lword - lrecent[n_avg_of-1];

for (int i=n_avg_of-1; i>0; i--) lrecent[i] = lrecent[i-1];

lrecent[0] = lword;

end

endmodule

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

� Show inferred hardware for n avg of=4.

� Show word classify as a box, don’t attempt to show its contents.

Solution appears below.

Note that the value of lword used to compute lsum += lword - lrecent[n avg of] is the value at the register output.
That’s because lword is assigned using a non-blocking assignment. (It would have been wrong to assign lword using a blocking

assignment because then whether the lsum expression used an old or new lword would depend on simulator timing.)

Because n avg of = 4 (a power of 2) the term lsum/n avg of has been inferred as simply consisting of all but the two

least-significant bits of lsum. Dividers are expensive so this is a good thing.

The body of the last always ff block is guarded by a if (nwd). That is inferred as an enable on all of the registers inferred

for that block, which is lsum and the lrecent registers.

en

clk

8

1 +

1 +

nwords

lsum

lword

+

1

en en en

wl+3:2

0 lavg

⩾

4 (n_avg_of)

w
ord_classify

nwd

nwp
nws

char

reset

–

word_start

word_part

word_ended

lw
ord

word_count (n_avg_of=4)wc

lre¢[0]

lre¢[1]

lre¢[2]

lre¢[3]

en

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

(b) The word_count_plan_b module below uses a different approach to keeping track of lsum. The only
difference is the hardware under the Plan B Code comment. This version avoids a loop! That’s great, right?
Show the hardware that will be inferred for the Plan B Code for n_avg_of = 4 and indicate impact on cost
and performance.

module word_count_plan_b
#(int wl = 5, wn = 6, n_avg_of = 10)

(output logic word_start, word_part, word_ended,

output logic [wl-1:0] lword, lavg, output logic [wn-1:0] nwords,

input uwire [7:0] char, input uwire reset, clk);

uwire nws, nwp, nwd;

word_classify wc(word_start, word_part, word_ended,

nws, nwp, nwd, char, clk, reset);

logic [wl-1:0] lrecent[n_avg_of];

logic [wl+$clog2(n_avg_of):0] lsum;

logic [$clog2(n_avg_of):0] tail;

assign lavg = nwords >= n_avg_of ? lsum / n_avg_of : 0;

always_ff @ (posedge clk) begin

lword <= nws ? 1 : nwp ? lword+1 : lword;

nwords <= nwd ? nwords + 1 : nwords;

end

// Plan B Code

always_ff @ (posedge clk) if (nwd) begin

lsum += lword - lrecent[tail];

lrecent[tail] = lword;

tail = tail == n_avg_of - 1 ? 0 : tail + 1;

end

endmodule

�Describe impact on cost of Plan B compared to Plan A.

Plan B would be much more expensive due to the lrecent[tail] terms. The inferred hardware for lrecent[tail] used on

the right-hand-side of an expression is an n avg of-input multiplexor. The cost of the hardware for lrecent[tail]=lword

would be a decoder to provide enable inputs to the lrecent registers. There is also the cost of the tail register and the associated

adder. None of this hardware is needed for Plan A.

�Describe impact on performance of Plan B compared to Plan A.

Because of the two arithmetic units (subtract and add) operating on non-constant values it is likely that lrecent[tail] and

lrecent[n avg of] are on the critical paths in their respective modules. Plan B adds 2 lg navg of ut to the critical path in

comparison with Plan A, so it certainly hurts performance.

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

� Show inferred hardware for Plan B Code. (No need to show hardware for code above the Plan B Code

comment.)

�Consider using an enable (en) signal on the registers to simplify the hardware.

The inferred hardware corresponding to the Plan B Code appears below, circled by a green dotted line. The four lrecent

registers also appear in the Plan A design. Everything else is an added cost.

clk

8

1 +

1 +

nwords

lsum

lword

+

1

wl+3:2

0 lavg

⩾

4 (n_avg_of)

w
ord_classify

nwd

nwp
nws

char

reset

–

word_start

word_part

word_ended

lw
ord

word_count (n_avg_of=4)wc

lre¢[0]

lre¢[1]

lre¢[2]

lre¢[3]

en

en

en

en

en

1 tail

1:1
0:0

+
en

nwd

lre
¢[
ta
il]

ta
il

Plan B
Hardware

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

Problem 5: [25 pts] Answer each question below.

(a) Show a sketch of the hardware for an 8-bit left shift module, using the logarithmic approach presented
in class.

� Show hardware for 8-bit left shift module. Include the �3-bit shift amount input, � the 8-bit data �
input and 8-bit data output.

Solution appears below.

6:0

1'b0 2'b0

5:0

Shift by 0 or 1

msb

lsb

a
m
t

d
a
ta
_in

d
a
ta
_o
u
t

shift_left_logarithmic

amt[0] amt[1]

4'b0

3:0

amt[2]

Shift by 0 or 2 Shift by 0 or 4

8

3

8 8 8

(b) Provide the following delays based on the simple model.

�What is the delay for a w-bit ripple adder for � the LSB and � the MSB.

The delay of the LSB is 4 ut and the delay of the MSB is 2(w + 1) ut .

�What is the delay for the sum of three w-bit values, say a + b + c, when computed using two ripple adders
and accounting for cascading. Delay of the sum’s � LSB and �MSB.

The general formula for the simple-model delay of bit i at the output of n cascaded ripple adders is [4(n− 1) + 2(i+ 2)] ut. For

this case substitute n→ 2. For the LSB, i→ 0 and for the MSB, i→ w − 1.

The delay of the LSB is 8 ut and the delay of the MSB is [8 + 2(w − 1)] ut .

10 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

(c) In the code fragment below there is an error in one of the last two lines.

module examples(input uwire [31:0] a, b);

localparam logic [31:0] la = a + b; // Incorrect.

uwire logic [31:0] ua = a + b; // Correct.

�Which line above is incorrect? �Why?

The first line is incorrect because the value assigned to localparam must be an elaboration-time constant. Since a and b are

module inputs they are not elaboration time constants.

(d) The code fragment below lacks declarations.

�Declare objects aa, ca, and fa so that the code below is correct.

module examples(input uwire [31:0] a, b, input uwire clk);

uwire [31:0] aa; // SOLUTION

logic [31:0] ca, fa; // SOLUTION

assign aa = a + b;

always_comb ca = a + b;

always_ff @(posedge clk) fa = a + b;

(e) Again consider the code above that assigns aa, ca, and fa. Draw a timing diagram that includes values
of a, b, and clk for which at least one of the values aa, ca, and fa will at times differ from the others.

�Draw a timing diagram showing how aa, ca, and fa won’t all be the same all the time.

clk

a

b

aa, ca

fa

10

2 3 4 5 6

12 13 14 15 16 17

12 13 15 17

7 8

18

18

aa and fa
different

aa and fa
similar

40.0 50.0 60.0t/ps 70.0 80.0The timing diagram appears to the right. The timing of the

changes on input b before t = 70.0 result in the output

fa being different than aa and ca for much of the time.

This is because changes b occur well before the positive edge

of clk. Outputs aa and ca, because they are driven by

combinational logic, will start changing as soon as b starts

changing. In contrast fa only starts changing at the positive

edge of clk, and the changes are based on the values of a

and b that were present at the positive edge. For example,

b starts to change at t = 40.0, which is too late for fa to

change immediately, it must wait until t = 50.0. Starting

at t = 70.0 changes to b complete just before the positive

edge, and so aa and fa have close to identical timing.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

	Problem 1
	Part a
	Part b

	Problem 2
	Problem 3
	Problem 4
	Part a
	Part b

	Problem 5
	Part a
	Part b
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a

	Problem 1
	Part a
	Part b

	Problem 2
	Problem 3
	Problem 4
	Part a
	Part b

	Problem 5
	Part a
	Part b
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a

