
Name Formatted For Two-Sided Printing

Digital Design using HDLs

LSU EE 4755

Final Examination

Friday, 9 December 2022 15:00-17:00 CST

Alias

Problem 1 (20 pts)

Problem 2 (20 pts)

Problem 3 (15 pts)

Problem 4 (20 pts)

Problem 5 (25 pts)

Exam Total (100 pts)

Good Luck!

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

https://www.ece.lsu.edu/koppel/v/

Problem 1: [20 pts] Module norm_comb, below, computes the normal of a vector using floating-point
arithmetic units from a library. The delay through each unit in nanoseconds is shown in the diagram.

fp_sq

fp_sq
fp_add

fp_rsqrt

fp_mul

fp_sq

fp_add

fp_mul

fp_mul

x
y
z

10

10

10

5
5 40

20

20

20

nx

ny

nz

norm_comb

(a) Compute the latency and throughput norm_comb given the timings shown in the diagram.

Compute the arrival time (delay) at each module output.

Show the critical path.

The latency of this module is:

The throughput of this module is:

2 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

(b) Draw a diagram of a pipelined implementation of the norm module. The goal is to maximize throughput
first then minimize latency given the delays shown in the diagram from part a. Give some thought as to
what arithmetic units go in what stage. Show the latency and throughput of your pipelined implementation.

Draw a diagram (not Verilog) of a pipelined version of this norm module. Be sure to show pipeline
latches.

For the given delays: Maximize throughput. Avoid a hasty solution that has a higher latency than is
necessary.

The latency of this pipelined implementation is:

The throughput of this pipelined implementation is:

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

3

Problem 2: [20 pts] Incomplete module norm_comb_n is a version of the norm module from the previous

problem, now written for vectors of any length, not just 3. (Output ui = ni

(∑n−1
j=0 v2j

)− 1
2

.) It makes use

of module norm_sos to compute the sum
∑n−1

j=0 v2j . (That is, v20 + v21 + · · · + v2n−1.) Complete the modules
so that they compute their output combinationally. Use a recursive implementation for norm_sos and use
generate loops for the needed code in norm_comb_n.

Complete norm comb n so that it computes u in part by using norm sos. Use a generate loop. Use
fp mul, don’t use arithmetic operators.

module norm_comb_n #(int w = 32, int n = 8)

(output uwire [w-1:0] u[n], input uwire [w-1:0] v[n]);

uwire [w-1:0] sos; // Sum Of Squares

norm_sos #(w,n) ns(sos, v); // This part is correct, don’t modify it.

uwire [w-1:0] rmag, rs_in;

fp_rsqrt r(rmag, rs_in); // [] Rename rs_in, or connect it to something.

// [] Compute u[0] = v[0] * rmag; u[1] = v[1] * rmag; ...

endmodule

Complete norm sos so that it computes
∑n−1

j=0 v2j . Describe the module recursively. Use fp sq

and fp add, do not use arithmetic operators.

module norm_sos #(int w = 32, int n = 4)

(output uwire [w-1:0] sos, input uwire [w-1:0] v[n-1:0]);

// [] Recursively compute: sos = v[0]^2 + v[1]^2 + ...

endmodule

4 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

Problem 3: [15 pts] Appearing below is the inferred hardware from the pipelined add accumulate module
covered in class. Based on the simple model, show the timing, including the critical path, and compute the
cost. The BFA module is, of course, a binary full adder. If you don’t remember its cost and delay, just work
it out.

add_pipe
add_p0

aout

a0

a1

saa

aout_v

ai_v

ai

sum

1

0 en

0 sum

sum_valid

sum_occupiedreset

clk

add_accum

a

b ci
s

co

BFA

w

w

0

Show the timing (signal arrival time at each component output) and the critical path. Note that
aout arrives at t = 0.

Compute the cost using the simple model. Do not include the cost of add pipe but include the cost of
the BFA. Pay attention to bit widths.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

5

Problem 4: [20 pts] Appearing below are simplified solutions to Homework 4.

(a) Below is a simplified version of the “official” solution. (Reset hardware is not shown, ignore its absence.
Some object names shortened.) Show the hardware that will be inferred for this module when instantiated
with n_avg_of=4. (Some of the hardware will be similar to the r_avg2 module from the 2021 final exam.)

module word_count
#(int wl = 5, wn = 6, n_avg_of = 10)

(output logic word_start, word_part, word_ended,

output logic [wl-1:0] lword, lavg, output logic [wn-1:0] nwords,

input uwire [7:0] char, input uwire reset, clk);

uwire nws, nwp, nwd;

word_classify wc(word_start, word_part, word_ended,

nws, nwp, nwd, char, clk, reset);

logic [wl-1:0] lrecent[n_avg_of]; // len_recent

logic [wl+$clog2(n_avg_of):0] lsum; // len_sum

assign lavg = nwords >= n_avg_of ? lsum / n_avg_of : 0;

always_ff @ (posedge clk) begin

lword <= nws ? 1 : nwp ? lword+1 : lword;

nwords <= nwd ? nwords + 1 : nwords;

end

// Plan A Code (Referred to in next subproblem.)

always_ff @ (posedge clk) if (nwd) begin

lsum += lword - lrecent[n_avg_of-1];

for (int i=n_avg_of-1; i>0; i--) lrecent[i] = lrecent[i-1];

lrecent[0] = lword;

end

endmodule

6 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

Show inferred hardware for n avg of=4.

Show word classify as a box, don’t attempt to show its contents.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

7

(b) The word_count_plan_b module below uses a different approach to keeping track of lsum. The only
difference is the hardware under the Plan B Code comment. This version avoids a loop! That’s great, right?
Show the hardware that will be inferred for the Plan B Code for n_avg_of = 4 and indicate impact on cost
and performance.

module word_count_plan_b
#(int wl = 5, wn = 6, n_avg_of = 10)

(output logic word_start, word_part, word_ended,

output logic [wl-1:0] lword, lavg, output logic [wn-1:0] nwords,

input uwire [7:0] char, input uwire reset, clk);

uwire nws, nwp, nwd;

word_classify wc(word_start, word_part, word_ended,

nws, nwp, nwd, char, clk, reset);

logic [wl-1:0] lrecent[n_avg_of];

logic [wl+$clog2(n_avg_of):0] lsum;

logic [$clog2(n_avg_of):0] tail;

assign lavg = nwords >= n_avg_of ? lsum / n_avg_of : 0;

always_ff @ (posedge clk) begin

lword <= nws ? 1 : nwp ? lword+1 : lword;

nwords <= nwd ? nwords + 1 : nwords;

end

// Plan B Code

always_ff @ (posedge clk) if (nwd) begin

lsum += lword - lrecent[tail];

lrecent[tail] = lword;

tail = tail == n_avg_of - 1 ? 0 : tail + 1;

end

endmodule

Describe impact on cost of Plan B compared to Plan A.

Describe impact on performance of Plan B compared to Plan A.

8 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

Show inferred hardware for Plan B Code. (No need to show hardware for code above the Plan B Code

comment.)

Consider using an enable (en) signal on the registers to simplify the hardware.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

9

Problem 5: [25 pts] Answer each question below.

(a) Show a sketch of the hardware for an 8-bit left shift module, using the logarithmic approach presented
in class.

Show hardware for 8-bit left shift module. Include the 3-bit shift amount input, the 8-bit data
input and 8-bit data output.

(b) Provide the following delays based on the simple model.

What is the delay for a w-bit ripple adder for the LSB and the MSB.

What is the delay for the sum of three w-bit values, say a + b + c, when computed using two ripple adders
and accounting for cascading. Delay of the sum’s LSB and MSB.

10 S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

(c) In the code fragment below there is an error in one of the last two lines.

module examples(input uwire [31:0] a, b);

localparam logic [31:0] la = a + b;

uwire logic [31:0] ua = a + b;

Which line above is incorrect? Why?

(d) The code fragment below lacks declarations.

Declare objects aa, ca, and fa so that the code below is correct.

module examples(input uwire [31:0] a, b, input uwire clk);

assign aa = a + b;

always_comb ca = a + b;

always_ff @(posedge clk) fa = a + b;

(e) Again consider the code above that assigns aa, ca, and fa. Draw a timing diagram that includes values
of a, b, and clk for which at least one of the values aa, ca, and fa will at times differ from the others.

Draw a timing diagram showing how aa, ca, and fa won’t all be the same all the time.

S
ta
p
le

T
h
is

S
id
e

S
ta
p
le

T
h
is

S
id
e

11

	Problem 1
	Part a
	Part b

	Problem 2
	Problem 3
	Problem 4
	Part a
	Part b

	Problem 5
	Part a
	Part b
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a

	Problem 1
	Part a
	Part b

	Problem 2
	Problem 3
	Problem 4
	Part a
	Part b

	Problem 5
	Part a
	Part b
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a
	Part grrcount =subprobno elax advance grrcount by-97elax a

